1,387 research outputs found

    A novel hybrid archimedes optimization algorithm for energy-efficient hybrid flow shop scheduling

    Get PDF
    The manufacturing sector consumes most of the global energy and had been in focus since the outbreak of the energy crisis. One of the proposed strategies to overcome this problem is to implement appropriate scheduling, such as Hybrid Flow Shop Scheduling. Therefore, this study aims to create a Hybrid Archimedes Optimization Algorithm (HAOA) for solving the Energy-Efficient Hybrid Flow Shop Scheduling Problem (EEHFSP). It is hoped that this helps to provide new insights into advanced HAOA methods for resolving the EEHFSP as the algorithm has the potential to be a more efficient alternative. In this study, three stages of EEHFSP were considered in the problem as well as a sequence-dependent setup and removal times in the second stage. Experiments with three population variations and iterations were presented for testing the effect of HAOA parameters on energy consumption. Furthermore, ten job variations are also presented to evaluate the performance of the HAOA algorithm and the results showed that HAOA iteration and the population did not affect the removal and processing of energy consumption, but impacted that of setup and idle. The comparison of these ten cases revealed that the proposed HAOA produced the best total energy consumption (TEC) when compared to the other algorithms

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Flow Shop Scheduling for Energy Efficient Manufacturing

    Get PDF
    A large number of new peaking power plants with their associated auxiliary equipment are installed to meet the growing peak demand every year. However, 10% utility capacity is used for only 1%~2% of the hours in a year. Thus, to meet the demand and supply balance through increasing the infrastructure investments only on the supply side is not economical. Alternatively, demand-side management might cut the cost of maintaining this balance via offering consumers incentives to manage their consumption in response to the price signals. Time-varying electricity rate is a demand-side management scheme. Under the time-varying electricity rate, the electricity price is high during the peak demand periods, while it is low during the off-peak times. Thus, consumers might get the cost benefits through shifting power usages from the high price periods to the low price periods, which leading to reduce the peak power of the grid. The current research works on the price-based demand-side management are primarily focusing on residential and commercial users through optimizing the “shiftable” appliance schedules. A few research works have been done focusing manufacturing facilities. However, residential, commercial and industrial sectors each occupies about one-third of the total electricity consumption. Thus, this thesis investigates the flow shop scheduling problems that reduce electricity costs under time-varying electricity rate. A time-indexed integer programming is proposed to identify the manufacturing schedules that minimize the electricity cost for a single factory with flow shops under time-of-use (TOU) rate. The result shows that a 6.9% of electricity cost reduction can be reached by shifting power usage from on-peak period to other periods. However, in the case when a group of factories served by one utility, each factory shifting power usage from on-peak period to off-peak hours independently, which might change the time of peak demand periods. Thus, a TOU pricing combined with inclining block rate (IBR) is proposed to avoid this issue. Two optimization problems are studied to demonstrate this approach. Each factory optimizes manufacturing schedule to minimize its electricity cost: (1) under TOU pricing, and (2) under TOU-IBR pricing. The results show that the electricity cost of each factory is minimized, but the total electricity cost at the 2nd hour is 6.25% beyond the threshold under TOU pricing. It also shows that factories collaborate with each other to minimize the electricity cost, and meanwhile, the power demand at each hour is not larger than the thresholds under TOU-IBR pricing. In contrast to TOU rate, the electricity price cannot be determined in ahead under real-time price (RTP), since it is dependent on the total energy consumption of the grid. Thus, the interactions between electricity market and the manufacturing schedules bring additional challenges. To address this issue, the time-indexed integer programming is developed to identify the manufacturing schedule that has the minimal electricity cost of a factory under the RTP. This approach is demonstrated using a manufacturing facility with flow shops operating during different time periods in a microgrid which also served residential and commercial buildings. The results show that electricity cost reduction can be achieved by 6.3%, 10.8%, and 24.8% for these three time periods, respectively. The total cost saving of manufacturing facility is 15.1% over this 24-hour period. The results also show that although residential and commercial users are under “business-as-usual” situation, their electricity costs can also be changed due to the power demand changing in the manufacturing facilities. Furthermore, multi-manufacturing factories served by one utility are investigated. The manufacturing schedules of a group of manufacturing facilities with flow shops subject to the RTP are optimized to minimize their electricity cost. This problem can be formulated as a centralized optimization problem. Alternatively, this optimization problem can be decomposed into several pieces. A heuristic approach is proposed to optimize the sub-optimization problems in parallel. The result shows that both the individual and total electricity cost of factories are minimized and meanwhile the computation time is reduced compared with the centralized algorithm

    Energy-Aware Multi-Objective Job Shop Scheduling Optimization with Metaheuristics in Manufacturing Industries: A Critical Survey, Results, and Perspectives

    Get PDF
    In recent years, the application of artificial intelligence has been revolutionizing the manufacturing industry, becoming one of the key pillars of what has been called Industry 4.0. In this context, we focus on the job shop scheduling problem (JSP), which aims at productions orders to be carried out, but considering the reduction of energy consumption as a key objective to fulfill. Finding the best combination of machines and jobs to be performed is not a trivial problem and becomes even more involved when several objectives are taken into account. Among them, the improvement of energy savings may conflict with other objectives, such as the minimization of the makespan. In this paper, we provide an in-depth review of the existing literature on multi-objective job shop scheduling optimization with metaheuristics, in which one of the objectives is the minimization of energy consumption. We systematically reviewed and critically analyzed the most relevant features of both problem formulations and algorithms to solve them effectively. The manuscript also informs with empirical results the main findings of our bibliographic critique with a performance comparison among representative multi-objective evolutionary solvers applied to a diversity of synthetic test instances. The ultimate goal of this article is to carry out a critical analysis, finding good practices and opportunities for further improvement that stem from current knowledge in this vibrant research area.Javier Del Ser acknowledges funding support from the Basque Government (consolidated research group MATHMODE, Ref. IT1294-19). Antonio J. Nebro is supported by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and the Andalusian PAIDI program with Grant P18-RT-2799

    Energy-Efficient Flexible Flow Shop Scheduling With Due Date and Total Flow Time

    Get PDF
    One of the most significant optimization issues facing a manufacturing company is the flexible flow shop scheduling problem (FFSS). However, FFSS with uncertainty and energy-related elements has received little investigation. Additionally, in order to reduce overall waiting times and earliness/tardiness issues, the topic of flexible flow shop scheduling with shared due dates is researched. Using transmission line loadings and bus voltage magnitude variations, an unique severity function is formulated in this research. Optimize total energy consumption, total agreement index, and make span all at once. Many different meta-heuristics have been presented in the past to find near-optimal answers in an acceptable amount of computation time. To explore the potential for energy saving in shop floor management, a multi-level optimization technique for flexible flow shop scheduling and integrates power models for individual machines with cutting parameters optimisation into energy-efficient scheduling issues is proposed. However, it can be difficult and time-consuming to fine-tune algorithm-specific parameters for solving FFSP

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    An Energy-Efficient No Idle Permutations Flow Shop Scheduling Problem Using Grey Wolf Optimizer Algorithm

    Get PDF
    Energy consumption has become a significant issue in businesses. It is known that the industrial sector has consumed nearly half of the world's total energy consumption in some cases. This research aims to propose the Grey Wolf Optimizer (GWO) algorithm to minimize energy consumption in the No Idle Permutations Flowshop Problem (NIPFP). The GWO algorithm has four phases: initial population initialization, implementation of the Large Rank Value (LRV), grey wolf exploration, and exploitation. To determine the level of machine energy consumption, this study uses three different speed levels. To investigate this problem, 9 cases were used. The experiments show that it produces a massive amount of energy when a job is processed fast. Energy consumption is lower when machining at a slower speed. The performance of the GWO algorithm has been compared to that of the Cuckoo Search (CS) algorithm in several experiments. In tests, the Grey Wolf Optimizer (GWO) outperforms the Cuckoo Search (CS) algorithm
    corecore