2,150 research outputs found

    Distributed modular RT-systems for detector DAQ, trigger and control applications

    Get PDF
    A modular approach to development of distributed modular system architecture for detector control, data acquisition and trigger data processing is proposed. A multilevel parallel-pipeline model of data acquisition, processing and control is proposed and discussed. Multiprocessor architecture with SCI-based interconnections is proposed as good high-performance system for parallel-pipeline data processing. A network (Ethernet -100) can be used for loading, monitoring and diagnostic purposes independent of basic interconnections. The modular cPCI-based structures with high speed modular interconnections are proposed for DAQ and control applications. For distributed control RT-systems, to construct the effective (cost-performance) systems the same platform of an Intel compatible processor board should be used. The basic computer multiprocessor nodes consist of high-power PC MB (Industrial Computer Systems), which are interconnected by SCI modules and link to embedded microprocessor-based sub-systems for control applications. The required number of multiprocessor nodes should be interconnected by SCI for parallel-pipeline data processing in real time (according to the multilevel model) and link to RT-systems for embedded control. (19 refs)

    A new taxonomy for distributed computer systems based upon operating system structure

    Get PDF
    Characteristics of the resource structure found in the operating system are considered as a mechanism for classifying distributed computer systems. Since the operating system resources, themselves, are too diversified to provide a consistent classification, the structure upon which resources are built and shared are examined. The location and control character of this indivisibility provides the taxonomy for separating uniprocessors, computer networks, network computers (fully distributed processing systems or decentralized computers) and algorithm and/or data control multiprocessors. The taxonomy is important because it divides machines into a classification that is relevant or important to the client and not the hardware architect. It also defines the character of the kernel O/S structure needed for future computer systems. What constitutes an operating system for a fully distributed processor is discussed in detail

    Medium access control in wireless network-on-chip: a context analysis

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless on-chip communication is a promising candidate to address the performance and efficiency issues that arise when scaling current NoC techniques to manycore processors. A WNoC can serve global and broadcast traffic with ultra-low latency even in thousand-core chips, thus acting as a natural complement to conventional and throughput-oriented wireline NoCs. However, the development of MAC strategies needed to efficiently share the wireless medium among the increasing number of cores remains a considerable challenge given the singularities of the environment and the novelty of the research area. In this position article, we present a context analysis describing the physical constraints, performance objectives, and traffic characteristics of the on-chip communication paradigm. We summarize the main differences with respect to traditional wireless scenarios, and then discuss their implications on the design of MAC protocols for manycore WNoC, with the ultimate goal of kickstarting this arguably unexplored research area.Peer ReviewedPostprint (author's final draft

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Reliability Analysis of the Hypercube Architecture.

    Get PDF
    This dissertation presents improved techniques for analyzing network-connected (NCF), 2-connected (2CF), task-based (TBF), and subcube (SF) functionality measures in a hypercube multiprocessor with faulty processing elements (PE) and/or communication elements (CE). These measures help study system-level fault tolerance issues and relate to various application modes in the hypercube. Solutions discussed in the text fall into probabilistic and deterministic models. The probabilistic measure assumes a stochastic graph of the hypercube where PE\u27s and/or CE\u27s may fail with certain probabilities, while the deterministic model considers that some system components are already failed and aims to determine the system functionality. For probabilistic model, MIL-HDBK-217F is used to predict PE and CE failure rates for an Intel iPSC system. First, a technique called CAREL is presented. A proof of its correctness is included in an appendix. Using the shelling ordering concept, CAREL is shown to solve the exact probabilistic NCF measure for a hypercube in time polynomial in the number of spanning trees. However, this number increases exponentially in the hypercube dimension. This dissertation, then, aims to more efficiently obtain lower and upper bounds on the measures. Algorithms, presented in the text, generate tighter bounds than had been obtained previously and run in time polynomial in the cube dimension. The proposed algorithms for probabilistic 2CF measure consider PE and/or CE failures. In attempting to evaluate deterministic measures, a hybrid method for fault tolerant broadcasting in the hypercube is proposed. This method combines the favorable features of redundant and non-redundant techniques. A generalized result on the deterministic TBF measure for the hypercube is then described. Two distributed algorithms are proposed to identify the largest operational subcubes in a hypercube C\sb{n} with faulty PE\u27s. Method 1, called LOS1, requires a list of faulty components and utilizes the CMB operator of CAREL to solve the problem. In case the number of unavailable nodes (faulty or busy) increases, an alternative distributed approach, called LOS2, processes m available nodes in O(mn) time. The proposed techniques are simple and efficient

    A multiple-bus, active backplane architecture for multiprocessor systems

    Get PDF
    This research investigates several problems associated with current multiprocessor interconnection networks, focusing primarily on general-purpose, shared-memory configurations. The project deals with all aspects of the interconnection, from the architectural level to the physical backplane. A bus-based architecture is presented as an alternative to the limitations of current schemes. This dissertation will focus on the physical layer implementation;For increased reliability, performance and scalability, a multiple-bus architecture is proposed. Each bus uses a word-serial approach to keep the total number of bus signals manageable. A source-synchronous transfer protocol allows data to be streamed at a high rate, thus increasing the pin-efficiency of the bus. The control acquisition scheme combines collision detection and priority arbitration to minimize bus access time without requiring additional signal lines. Cache coherence, message passing, and synchronization primitives are provided within the bus protocol to support multiple-processor systems;To reduce the capacitive loading on the bus, an active backplane is employed. This moves the transceiver and bus interface unit from the plug-in module down to the backplane. In addition to increasing the characteristic impedance of the bus, it also reduces the end-to-end propagation delay. Another advantage of moving the bus transceivers to the backplane is the uniform load presented to the bus, regardless of whether a slot is populated;Due to the reduction in drive current required, a custom CMOS transceiver, suitable for VLSI implementation, is used. It incorporates the collision detection circuitry required for the control acquisition scheme. Initial transceiver prototypes have been designed and fabricated in 2-[mu]m CMOS. These have been successfully tested at transfer rates in excess of 50MHz

    Advanced Techniques for Improving the Efficacy of Digital Forensics Investigations

    Get PDF
    Digital forensics is the science concerned with discovering, preserving, and analyzing evidence on digital devices. The intent is to be able to determine what events have taken place, when they occurred, who performed them, and how they were performed. In order for an investigation to be effective, it must exhibit several characteristics. The results produced must be reliable, or else the theory of events based on the results will be flawed. The investigation must be comprehensive, meaning that it must analyze all targets which may contain evidence of forensic interest. Since any investigation must be performed within the constraints of available time, storage, manpower, and computation, investigative techniques must be efficient. Finally, an investigation must provide a coherent view of the events under question using the evidence gathered. Unfortunately the set of currently available tools and techniques used in digital forensic investigations does a poor job of supporting these characteristics. Many tools used contain bugs which generate inaccurate results; there are many types of devices and data for which no analysis techniques exist; most existing tools are woefully inefficient, failing to take advantage of modern hardware; and the task of aggregating data into a coherent picture of events is largely left to the investigator to perform manually. To remedy this situation, we developed a set of techniques to facilitate more effective investigations. To improve reliability, we developed the Forensic Discovery Auditing Module, a mechanism for auditing and enforcing controls on accesses to evidence. To improve comprehensiveness, we developed ramparser, a tool for deep parsing of Linux RAM images, which provides previously inaccessible data on the live state of a machine. To improve efficiency, we developed a set of performance optimizations, and applied them to the Scalpel file carver, creating order of magnitude improvements to processing speed and storage requirements. Last, to facilitate more coherent investigations, we developed the Forensic Automated Coherence Engine, which generates a high-level view of a system from the data generated by low-level forensics tools. Together, these techniques significantly improve the effectiveness of digital forensic investigations conducted using them
    • …
    corecore