7,365 research outputs found

    Marginal contributions and externalities in the value

    Get PDF
    For games in partition function form, we explore the implications of distinguishing between the concepts of intrinsic marginal contributions and externalities. If one requires efficiency for the grand coalition, we provide several results concerning extensions of the Shapley value. Using the axioms of efficiency, anonymity, marginality and monotonicity, we provide upper and lower bounds to players' payoffs when affected by external effects, and a characterization of an ''externality-free'' value. If the grand coalition does not form, we characterize a payoff configuration on the basis of the principle of balanced contributions. We also analyze a game of coalition formation that yields sharp prediction

    MARGINAL CONTRIBUTIONS AND EXTERNALITIES IN THE VALUE

    Get PDF
    For games in partition function form, we explore the implications of distinguishing between the concepts of intrinsic marginal contributions and externalities. If one requires efficiency for the grand coalition, we provide several results concerning extensions of the Shapley value. Using the axioms of efficiency, anonymity, marginality and monotonicity, we provide upper and lower bounds to players' payoffs when affected by external effects, and a characterization of an ``externality-free'' value. If the grand coalition does not form, we characterize a payoff configuration on the basis of the principle of balanced contributions. We also analyze a game of coalition formation that yields sharp predictions

    Marginal contributions and externalities in the value.

    Get PDF
    For games in partition function form, we explore the implications of distinguishing between the concepts of intrinsic marginal contributions and externalities. If one requires efficiency for the grand coalition, we provide several results concerning extensions of the Shapley value. Using the axioms of efficiency, anonymity, marginality and monotonicity, we provide upper and lower bounds to players' payoffs when affected by external effects, and a characterization of an ''externality-free'' value. If the grand coalition does not form, we characterize a payoff configuration on the basis of the principle of balanced contributions. We also analyze a game of coalition formation that yields sharp predictions

    A Logic-Based Representation for Coalitional Games with Externalities

    No full text
    We consider the issue of representing coalitional games in multiagent systems that exhibit externalities from coalition formation, i.e., systems in which the gain from forming a coalition may be affected by the formation of other co-existing coalitions. Although externalities play a key role in many real-life situations, very little attention has been given to this issue in the multi-agent system literature, especially with regard to the computational aspects involved. To this end, we propose a new representation which, in the spirit of Ieong and Shoham [9], is based on Boolean expressions. The idea behind our representation is to construct much richer expressions that allow for capturing externalities induced upon coalitions. We show that the new representation is fully expressive, at least as concise as the conventional partition function game representation and, for many games, exponentially more concise. We evaluate the efficiency of our new representation by considering the problem of computing the Extended and Generalized Shapley value, a powerful extension of the conventional Shapley value to games with externalities. We show that by using our new representation, the Extended and Generalized Shapley value, which has not been studied in the computer science literature to date, can be computed in time linear in the size of the input

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Physical Layer Security: Coalitional Games for Distributed Cooperation

    Full text link
    Cooperation between wireless network nodes is a promising technique for improving the physical layer security of wireless transmission, in terms of secrecy capacity, in the presence of multiple eavesdroppers. While existing physical layer security literature answered the question "what are the link-level secrecy capacity gains from cooperation?", this paper attempts to answer the question of "how to achieve those gains in a practical decentralized wireless network and in the presence of a secrecy capacity cost for information exchange?". For this purpose, we model the physical layer security cooperation problem as a coalitional game with non-transferable utility and propose a distributed algorithm for coalition formation. Through the proposed algorithm, the wireless users can autonomously cooperate and self-organize into disjoint independent coalitions, while maximizing their secrecy capacity taking into account the security costs during information exchange. We analyze the resulting coalitional structures, discuss their properties, and study how the users can self-adapt the network topology to environmental changes such as mobility. Simulation results show that the proposed algorithm allows the users to cooperate and self-organize while improving the average secrecy capacity per user up to 25.32% relative to the non-cooperative case.Comment: Best paper Award at Wiopt 200

    Study of a Dynamic Cooperative Trading Queue Routing Control Scheme for Freeways and Facilities with Parallel Queues

    Full text link
    This article explores the coalitional stability of a new cooperative control policy for freeways and parallel queuing facilities with multiple servers. Based on predicted future delays per queue or lane, a VOT-heterogeneous population of agents can agree to switch lanes or queues and transfer payments to each other in order to minimize the total cost of the incoming platoon. The strategic interaction is captured by an n-level Stackelberg model with coalitions, while the cooperative structure is formulated as a partition function game (PFG). The stability concept explored is the strong-core for PFGs which we found appropiate given the nature of the problem. This concept ensures that the efficient allocation is individually rational and coalitionally stable. We analyze this control mechanism for two settings: a static vertical queue and a dynamic horizontal queue. For the former, we first characterize the properties of the underlying cooperative game. Our simulation results suggest that the setting is always strong-core stable. For the latter, we propose a new relaxation program for the strong-core concept. Our simulation results on a freeway bottleneck with constant outflow using Newell's car-following model show the imputations to be generally strong-core stable and the coalitional instabilities to remain small with regard to users' costs.Comment: 3 figures. Presented at Annual Meeting Transportation Research Board 2018, Washington DC. Proof of conjecture 1 pendin
    • …
    corecore