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Geoffroy de Clippel†and Roberto Serrano‡
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Abstract

For games in partition function form, we explore the implications of
distinguishing between the concepts of intrinsic marginal contributions
and externalities. If one requires efficiency for the grand coalition, we
provide several results concerning extensions of the Shapley value. Us-
ing the axioms of efficiency, anonymity, marginality and monotonicity, we
provide upper and lower bounds to players’ payoffs when affected by ex-
ternal effects, and a characterization of an “externality-free” value. If the
grand coalition does not form, we characterize a payoff configuration on
the basis of the principle of balanced contributions. We also analyze a
game of coalition formation that yields sharp predictions.

JEL classification numbers: C7, D62
Keywords: externalities, marginal contributions, Shapley value, Pigou-
vian transfers, coalition formation.

1 Introduction

Since the path-breaking work of Shapley (1953), much effort has been devoted
to the problem of finding a unique “fair” distribution of the surplus generated
by a collection of people that are willing to cooperate with one another. More
recently, the same question has been posed in the realistic case where exter-
nalities across coalitions are present. This is the general problem to which this
paper contributes. In tackling the question, we find that sorting out the effects
of intrinsic marginal contributions of players to coalitions from those coming
from externalities is helpful to obtain meaningful answers.1

∗Serrano gratefully acknowledges the hospitality of Universidad Carlos III and CEMFI in
Madrid, and the research support from Fundación Banco Herrero and Universidad Carlos III.

†Department of Economics, Rice University; clippel@rice.edu
‡Department of Economics, Brown University; roberto serrano@brown.edu
1William Thomson (private communication) argues that in the Shapley value literature we

should avoid redundancies and speak of “contributions” instead of “marginal contributions.”
His contribution is not marginal. We will side with the majority for now, and ours will be a
“marginal contribution.”
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Shapley (1953) studied games in which there are no externalities across coali-
tions. In such settings, Shapley characterized a unique solution using the axioms
of efficiency, anonymity, additivity and null player. Today we refer to this so-
lution as the Shapley value, which happens to be calculated as the average of
marginal contributions of players to coalitions. This comes as a surprise at first
glance: nothing in Shapley’s axioms hints at the marginality principle, of long
tradition in economic theory.

In the clarification of this puzzle, Young (1985) provides a key answer. He
formulates the marginality principle as an axiom, i.e., that the solution should be
a function of players’ marginal contributions to coalitions. He drops additivity
and null player as requirements. The result is that the only solution satisfying
efficiency, anonymity and marginality is the Shapley value.

The presence of externalities across coalitions is an important feature in
many applications. A few examples spring to mind. In an oligopolistic market,
the profit of a cartel depends on the level of cooperation among the compet-
ing firms. The power of a political alliance usually depends on the level of
coordination among competing parties. The benefit of an agent that refuses to
participate in the production of a public good depends on the level of coopera-
tion of the other agents (free-riding effect), and so on.

In this paper we are concerned with the understanding of the marginality
principle, when it is combined with externalities across coalitions. The model
we shall employ is that of games in partition function form, in which the worth
of a coalition S may vary with how the players not in S get organized. In the
model, v(S, Π) is the worth of S when the coalition structure is Π, S being
an element of Π. In defining player i’s marginal contribution to coalition S, it
is crucial to describe what happens after i leaves S. Suppose i plans to join
T , another coalition in Π. The total effect on S of i’s move is the difference
v(S, Π)− v(S \ {i}, {S \ {i}, T ∪{i}}∪Π−S,−T ). This effect can be decomposed
into two. First, there is an intrinsic marginal contribution effect associated with
i leaving S but before joining T , i.e., v(S, Π)− v(S \ {i}, {S \ {i}, {i}} ∪Π−S).
And second, there is an externality effect, which stems from the change in the
worth of S \ {i} when i, instead of remaining alone, joins T , i.e., the difference
v(S \ {i}, {S \ {i}, {i}} ∪Π−S)− v(S \ {i}, {S \ {i}, T ∪ {i}} ∪Π−S,−T ). (Note
how this latter difference is not a “partial derivative,” a marginal contribution of
player i to coalition S.) Our results follow from insisting on this decomposition.

In the first part of the paper, we shall impose that the grand coalition N
forms and players’ payoffs must add up to v(N). Then we investigate the impli-
cations of anonymity, together with a weak version of marginality. According
to this, the solution may depend on the total effect of the intrinsic marginal
contribution and the externality effects. We find the first noteworthy difference
with respect to the case of no-externalities, because in our larger domain these
axioms do not even rule out non-linear solutions.

As a result, we strenghthen the weak version of marginality, and we do so
in two ways. First, we require monotonicity, i.e., a player’s payoff should be
increasing in the total effect of his intrinsic marginal contribution and exter-
nality effects. Then, we are able to establish upper and lower bounds to each
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player’s payoff in the game. And second, complementing this result, we require
a marginality axiom, according to which a player’s payoff should depend on the
vector of intrinsic marginal contributions, not on the externality effect. The re-
sult is a characterization of an “externality-free” value on the basis of efficiency,
anonymity and marginality. In a second characterization result, this solution
is also obtained using a system of axioms much like the original one due to
Shapley.

Thus, it is apparent that using the axioms behind the Shapley value in the
larger domain leads to the “externality-free” value. Obviously, in dealing with
externalities, this is not enough, and this is why we insist on the combination of
results. That is, we view the combination of both kinds of results -the obtention
of bounds around the “externality-free” value- as a way to understand how
externalities might benefit or punish a player in a context where these normative
principles are in place. In effect, the two results together provide a range for
acceptable Pigouvian-like transfers (taxes or subsidies among players) when
efficiency is accompanied by our other normative desiderata.

The second part of our study does not impose efficiency for the grand coali-
tion. We consider payoff configuration solutions, in which a payoff vector is
assigned to each coalition structure. By requiring the principle of balanced
contributions (Myerson (1980)) or invoking the notion of potential (Hart and
Mas-Colell (1989)), we are able to characterize a unique payoff configuration
for each game. This corresponds to a Shapley value of a game in characteristic
function form and coalition structures (Aumann and Dreze (1974)).

Based on this characterization, we propose a simple game of coalition for-
mation to answer the question of which coalitions will form. This game yields a
unique equilibrium prediction in almost every partition function. Furthermore,
its simple structure and sharp prediction should make it useful in applications.

The first papers that proposed value concepts for games with externalities
were Myerson (1977) and Bolger (1989). More recently, Fujinaka (2004), Macho-
Stadler, Perez-Castrillo and Wettstein (2004) and Pham Do and Norde (2002)
also apply the axiomatic approach to the problem, and obtain interesting con-
clusions. We discuss the relationship between the works of these authors and
ours in the next sections. Finally, the coalition formation part of our paper
continues a rich literature on these issues (e.g., Bloch (1996, 2002), Ray and
Vohra (1999, 2001), Maskin (2003)).

2 Definitions

Let N be the finite set of players. A coalition is a subset of N . We shall use lower
case letters to denote the number of players in a coalition (s = |S|, n = |N |,
etc.). A partition is a set Π = {(Sk)K

k=1} (1 ≤ K ≤ n) of disjoint coalitions
that cover N , i.e. Si ∩ Sj = ∅, for each 1 ≤ i < j ≤ K, and N = ∪K

k=1Sk. By
convention, {∅} ∈ Π for every partition Π. Elements of a partition are called
atoms. A partition Π′ is finer than a partition Π if each atom of Π′ is included in
an atom of Π: if S′ ∈ Π′, then S′ ⊆ S for some S ∈ Π. We will say equivalently
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that Π is coarser than Π′. An embedded coalition is a pair (S, Π) where Π is a
partition and S is an atom of Π. EC denotes the set of embedded coalitions.
If S is a coalition and i is a member of S, then S−i (resp. S+i) denotes the set
S \ {i} (resp. S ∪{i}). Similarly, if Π is a partition and S is an atom of Π, then
Π−S denotes the partition Π \ {S} of the set N \ S.

A game in partition function form (Thrall and Lucas (1963)) is a function
v that assigns to every embedded coalition (S, Π) a real number v(S, Π). We
assume that v({∅},Π) = 0 for all Π. There are positive externalities if v(S, Π) ≥
v(S, Π′) for each pair of embedded coalitions (S, Π) and (S, Π′) such that Π
is coarser than Π′. There are negative externalities if v(S, Π) ≤ v(S, Π′) for
each pair of embedded coalitions (S, Π) and (S, Π′) such that Π is coarser than
Π′. There are no externalities if v(S, Π) = v(S, Π′) for each pair of embedded
coalitions (S, Π) and (S, Π′). In the latter case, a partition function is called a
characteristic function.

The game v is superadditive if v(S, Π) + v(T,Π) ≤ v(S ∪ T,Π′), for every
pair (S, Π) and (T,Π) of disjoint embedded coalitions, where Π−S,−T = Π′

−S,−T .
(We denote Π−(S∪T ) by Π−S,−T .)

A value is a function σ that assigns to every game v in partition function
form a unique utility vector σ(v) ∈ RN . Shapley (1953) defined and axiomatized
a value on the class of games in characteristic function form:

Shi(v) :=
∑

S⊆N s.t. i∈S

(s− 1)!(n− s)!
n!

[v(S)− v(S−i)]

for each player i ∈ N and each game v in characteristic function form.

3 Weak Marginality

Based on the marginality principle, Young (1985) proposes a beautiful axiom-
atization of the Shapley value for games in characteristic function. We shall
explore the implications of marginality, together with other basic axioms, for
the class of games in partition function form. The first two axioms that we shall
impose are hardly controversial.

Anonymity Let π be a permutation of N and let v be a game in partition func-
tion form. Then σ(π(v)) = π(σ(v)), where π(v)(S, Π) = v(π(S), {π(T )|T ∈ Π})
for each embedded coalition (S, Π) and π(x)i = xπ(i) for each x ∈ RN and each
i ∈ N .

Efficiency Let v be a game in partition function form. Then
∑

i∈N σi(v) =
v(N).

Anonymity means that players’ payoffs do not depend on their names. Effi-
ciency means that the value must be feasible and must exhaust all the benefits
from cooperation. Our axiom of efficiency admits two interpretations. Either
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the game is superadditive and we require the value to be overall efficient, or the
grand coalition has to form for some exogenous reason and we require that the
outcome yield payoffs that exhaust v(N).

Next, we turn to our discussion of marginality, central in our work. The
marginal contribution of a player i within a coalition S is defined, for games
in characteristic function form, as the loss incurred by the other members of
S if i leaves the group. This number could depend on the organization of the
players not in S when there are externalities. It is natural therefore to define
the marginal contribution of a player within each embedded coalition.

To begin, one may consider the general case where a player may join another
coalition after leaving S. That is, we introduce a (weak) version of the mar-
ginality axiom that coincides with Young’s concept of marginal contributions
on the class of games without externalities.

Weak Version of Marginality Let v and v′ be two games in partition function
form. If

v(S, Π)−v(S−i, {S−i, T+i}∪Π−S,−T ) = v′(S, Π)−v′(S−i, {S−i, T+i}∪Π−S,−T )

for each embedded coalition (S, Π) such that i ∈ S and each atom T of Π differ-
ent from S, then σi(v) = σi(v′).

For instance, if there are three players, then player i’s payoff should depend
only on the following seven real numbers:

Ai(v) = v(N, {N})− v({j, k}, {{i}, {j, k}}),
Bi(v) = v({i, j}, {{i, j}, {k}})− v({j}, {{j}, {i, k}}),
Ci(v) = v({i, j}, {{i, j}, {k}})− v({j}, {{i}, {j}, {k}}),
Di(v) = v({i, k}, {{i, k}, {j}})− v({k}, {{k}, {i, j}}),
Ei(v) = v({i, k}, {{i, k}, {j}})− v({k}, {{i}, {j}, {k}}),
Fi(v) = v({i}, {{i}, {j, k}}),
Gi(v) = v({i}, {{i}, {j}, {k}}).

There is no hope to get a characterization result of a value with this weak
notion of marginality. To see this, consider the following examples:

Example 1 The value σα, defined by σα
i (v) := 1

3Ai(v) + 1
6 (αBi(v) + (1 −

α)Ci(v)) + 1
6 (αDi(v) + (1 − α)Ei(v)) + 1

3 (αFi(v) + (1 − α)Gi(v)), satisfies
the anonymity and the efficiency axioms, as well as the weak version of mar-
ginality, for every α ∈ R. The values σα are instances of the average ap-
proach characterized by Macho-Stadler et al. (2004), as they coincide with the
Shapley value of a fictitious game vα in characteristic function form, where
vα({i}) = αv({i}, {{i}, {j, k}}) + (1− α)v({i}, {{i}, {j}, {k}}).

In addition, and what is perhaps more surprising, a large class of non-linear
values satisfy the three axioms. (Recall that they imply linearity in the domain
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of games in characteristic function form.) In this sense, our approach differs sub-
stantially from Fujinaka’s (2004). He proposes several versions of marginality,
whereby a marginal contribution is constructed as a weighted linear average of
the marginal contributions over different coalition structures. This assumption
already builds linearity in Fujinaka’s result.

Example 2 Let m : R → R be any function. Then the value σα,m, defined
by σα,m

i (v) := σα
i (v) + m(Fi(v) − Gi(v)) − m(Ci(v)−Bi(v))+m(Ei(v)−Di(v))

2 , also
satisfies the three axioms. Observe that the differences Ci(v) − Bi(v), Ei(v) −
Di(v), and Fi(v) − Gi(v) measure the externality that the agents face. The
function m transforms the externality that a player faces into a transfer paid
equally by the two other players. The value σα,m is then obtained by adding to
σα the net transfer that each player receives.

Given these examples, we propose to follow two alternative paths. First,
we shall strengthen the weak marginality axiom into a monotonicity property.
Second, we shall look more closely at the notion of “marginal contributions” to
propose an alternative marginality axiom. We undertake each of the alternatives
in the next two sections.

4 Monotonicity

This section investigates what happens when, in addition to requiring efficiency
and anonymity, weak marginality is strenghthened to the following monotonic-
ity axiom. The result will be the derivation of useful bounds to the payoff of
each player.

Monotonicity Let v and v′ be two games in partition function form. If

v(S, Π)−v(S−i, {S−i, T+i}∪Π−S,−T ) ≥ v′(S, Π)−v′(S−i, {S−i, T+i}∪Π−S,−T )

for each embedded coalition (S, Π) such that i ∈ S and each atom T of Π differ-
ent from S, then σi(v) ≥ σi(v′).

In words, if in a game the vector of marginal contributions of a player to the
different coalitions, for any organization of the complement, dominates coordi-
nate by coordinate that of a second game, the value must pay this player more
in the first game. For instance, the value σα is monotonic, for each α ∈ [0, 1].

First, we point out in the following example that monotonicity combined
with anonymity and efficiency does not imply additivity either:

Example 3 The value σα,m from Example 2 is monotonic if α = 1/2, m(x) =
x2 if |x| ≤ 1/12, and m(x) = (1/12)2 if |x| ≥ 1/12.

We may nevertheless bound each player’s payoff from below and from above.
For each player i, let vi and v̄i be two fictitious games in characteristic function
form defined as follows:
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vi(S) :=
{

minΠ{v(S, Π)|S ∈ Π} if i ∈ S
maxΠ{v(S, Π)|S ∈ Π} if i ∈ N \ S

v̄i(S) :=
{

maxΠ{v(S, Π)|S ∈ Π} if i ∈ S
minΠ{v(S, Π)|S ∈ Π} if i ∈ N \ S

for each coalition S.
Thus, the game in characteristic function form vi represents pessimistic ex-

pectations from the point of view of player i, who assumes that, whenever a
coalition that contains him cooperates, the complement organizes itself to min-
imize the coalition’s worth. Exactly the opposite happens for coalitions that
exclude him. In contrast, the game v̄i is built on player i’s most optimistic
expectations.

For example, if there are negative externalities, then

vi(S) :=
{

v(S, {S, N \ S}) if i ∈ S
v(S, {S, {j}j∈N\S}) if i ∈ N \ S,

and

v̄i(S) :=
{

v(S, {S, {j}j∈N\S}) if i ∈ S
v(S, {S, N \ S}) if i ∈ N \ S.

And if there are positive externalities, then

vi(S) :=
{

v(S, {S, {j}j∈N\S}) if i ∈ S
v(S, {S, N \ S}) if i ∈ N \ S,

and

v̄i(S) :=
{

v(S, {S, N \ S}) if i ∈ S
v(S, {S, {j}j∈N\S}) if i ∈ N \ S.

Of course, vi = v̄i if there are no externalities.
We are now ready to state our first result:

Proposition 1 If σ is a value that satisfies anonymity, efficiency and monotonic-
ity, then for each i ∈ N ,

σi(v) ∈ [Shi(vi),Shi(v̄i)].

Proof: Let V be the vector space of games in partition function form with no
externalities. We define an isomorphism between V and the set of games in
characteristic function form: γ(v)(S) := v(S, Π) for each game v ∈ V and each
coalition S; γ−1(v′)(S, Π) := v′(S) for each game v′ in characteristic function
and each embedded coalition (S, Π).

The value σ̂ := σ◦γ−1 satisfies Young’s (1985) axioms on the space of games
in characteristic function form. Hence, σ ◦ γ−1 = Sh, or σ = Sh ◦ γ for every
v ∈ V .
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Now let v be an arbitrary game in partition function form, and let νi ∈ V
be the game defined as follows:

νi(S, Π) :=
{

maxΠ′{v(S, Π′)|S ∈ Π′} if i ∈ S
minΠ′{v(S, Π′)|S ∈ Π′} if i ∈ N \ S

for each embedded coalition (S, Π). Monotonicity implies that σi(v) ≤ σi(νi) =
Shi(γ(νi)) = Shi(v̄i). A similar reasoning applies to establish the other inequal-
ity. �

Thus, anonymity, efficiency and monotonicity imply that each player i’s pay-
off must be bounded between his Shapley value payoffs in his most pessimistic
and most optimistic games in characteristic function.

5 Marginality

An alternative route to monotonicity is to strenghthen the weak version of
marginality into another marginality axiom. To do this, it will be instructive to
look closer at the concept of marginal contribution in contexts with externalities.

Consider player i and an embedded coalition (S, Π) with i ∈ S. Suppose
player i leaves coalition S and joins coalition T ∈ Π, T 6= S. One can view
this as a two-step process. In the first instance, player i simply leaves S and,
at least for a while, he is alone, which means that for the moment the coalition
structure is {S−i, {i}}∪Π−S . At this point, coalition S−i feels the loss of player
i’s marginal contribution, i.e.,

v(S, Π)− v(S−i, {S−i, {i}} ∪Π−S).

In the second step, player i joins coalition T ∈ Π−S , and then S−i is further
affected, but not because of a marginal contribution from player i. Rather, it is
affected because of the corresponding externalities created by this merger, i.e.,

v(S−i, {S−i, {i}} ∪Π−S)− v(S−i, {S−i, T+i} ∪Π−S,−T ).

If one views this as an important distinction, one should reserve the term (in-
trinsic) marginal contribution to the former difference. We shall do this in the
sequel.

Formally, let i be a player and let (S, Π) be an embedded coalition such that
i ∈ S. Then the (intrinsic) marginal contribution of i to (S, Π) is given by

mc(i,S,Π)(v) = v(S, Π)− v(S−i, {S−i, {i}} ∪Π−S)

for each game v in partition function. Player i’s vector of intrinsic marginal
contributions is obtained by varying (S, Π): mci(v) = (mc(i,S,Π))(S,Π)∈EC∧i∈S .
Here is the formal statement of the new marginality axiom for games in parti-
tion function form (note that it also reduces to Young’s if applied to games in
characteristic form).
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Marginality Let i be a player and let v and v′ be two games in partition func-
tion form. If mci(v) = mci(v′), then σi(v) = σi(v′).

Consider now the following extension σ∗ of the Shapley value to the class of
games in partition function form:

σ∗i (v) := Shi(v̂)

for each player i ∈ N and each game v in partition function form, where v̂ is
the fictitious game in characteristic function form defined as follows:

v̂(S) := v(S, {S, {j}j∈N\S})

for each coalition S.
We can call this the “externality-free” value, and we shall discuss it below.

Our second main result follows.

Proposition 2 σ∗ is the unique value satisfying anonymity, efficiency and
marginality.

Proof: The set of games in partition function form is a vector space. We define
a basis of this space to prove the proposition. Let (S, Π) be an embedded
coalition, where S is non-empty. Then e(S,Π) is the game in partition function
form defined as follows:

e(S,Π)(S′,Π′) =
{

1 if S ⊆ S′ and (∀T ′ ∈ Π′ \ {S′})(∃T ∈ Π) : T ′ ⊆ T,
0 otherwise.

Lemma 1 The collection of vectors (e(S,Π))(S,Π)∈EC constitutes a basis of the
space of games in partition function form.

Proof of Lemma 1: The number of vectors in the collection equals the dimension
of the space. It is therefore enough to show that they are linearly independent.
Let (α(S,Π))(S,Π)∈EC be a collection of real numbers such that∑

(S,Π)∈EC

α(S, Π)e(S,Π) = 0. (1)

We have to show that α(S, Π) = 0 for each (S, Π) ∈ EC. Suppose on the
contrary that there exists (S, Π) ∈ EC such that α(S, Π) 6= 0. Let (S∗,Π∗) be
an embedded coalition such that:

1. α(S∗,Π∗) 6= 0;

2. there does not exist an embedded coalition (S, Π) with α(S, Π) 6= 0 and
S ( S∗; and

3. there does not exist an embedded coalition (S∗,Π) with α(S∗,Π) 6= 0 and
Π different and coarser than Π∗.
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Observe that α(S, Π) = 0 if S is a strict subset of S∗. Also, e(S,Π)(S∗,Π∗) = 0
if S is not included in S∗. Hence,

[
∑

(S,Π)∈EC

α(S, Π)e(S,Π)](S∗,Π∗) = [
∑

(S∗,Π)∈EC

α(S∗,Π)e(S∗,Π)](S∗,Π∗).

Now observe that α(S∗,Π) = 0 if Π is different and coarser than Π∗. Also,
e(S∗,Π)(S∗,Π∗) = 0 if Π is not coarser than Π∗. Hence,

[
∑

(S∗,Π)∈EC

α(S∗,Π)e(S∗,Π)](S∗,Π∗) = α(S∗,Π∗).

Equation (1) then implies that α(S∗,Π∗) = 0, a contradiction. �

Now we continue with the proof of Proposition 2. Given the properties of
the Shapley value, it is easy to check that σ∗ satisfies the three axioms.

We prove uniqueness. Let σ be a value satisfying the three axioms. We show
that σ = σ∗ by induction on the number of non-zero terms appearing in the
decomposition of the game in the basis.

Suppose first that there is just one term, i.e. v = αe(S,Π) for some α ∈ R
and some (S, Π) ∈ EC. We now check that

σ∗i (e(S,Π)) =
{

α/s if i ∈ S
0 if i ∈ N \ S.

To do this, let i ∈ N \ S and let (S′,Π′) be any embedded coalition. The two
following statements are equivalent:

1. S ⊆ S′ and (∀T ′ ∈ Π′
−S′)(∃T ∈ Π) : T ′ ⊆ T ;

2. S ⊆ S′ \ {i} and (∀T ′ ∈ {{i},Π′
−S′})(∃T ∈ Π) : T ′ ⊆ T .

Hence e(S,Π)(S′,Π′) = 1 if and only if e(S,Π)(S′−i, {S′−i, {i},Π′
−S′}) = 1. So,

mci(v) = mci(v0), where v0 is the null game (i.e., v0(S, Π) = 0 for each (S, Π) ∈
EC). Marginality implies that σi(v) = σi(v0). On the other hand, anonymity
and efficiency imply that σi(v0) = 0. Hence σi(v) = 0.

Let now i and j be two members of S. Let π be the permutation that ex-
changes i with j. Then π(e(S,Π)) = e(S,Π) and σi(v) = σj(v), as σ is anonymous.
Finally, the efficiency axiom implies that σi(v) = α/s for each member i of S.

Suppose now that we have proved the result for all the games that have at
most k non-zero terms when decomposed in the basis and let

v =
∑

(S,Π)∈EC

α(S, Π)e(S,Π)

be a game with exactly k +1 non-zero coefficients. Let S∗ be the intersection of
the coalitions S for which there exists a partition Π such that α(S, Π) is different
from zero.
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If i ∈ N \ S∗, then player i’s marginal contribution vector in the game v
coincides with his marginal contribution vector in the game

v′ =
∑

(S,Π)∈EC s.t. i∈S

α(S, Π)e(S,Π).

Marginality implies that σi(v) = σi(v′). Note that in the game v′ the number
of terms for which α(S, Π) 6= 0 is at most k. Then, by the induction hypothesis,
σi(v′) = σ∗i (v′). Since the value σ∗ satisfies the marginality axiom as well, we
conclude that σi(v) = σ∗i (v).

On the other hand, anonymity implies that for each player i, j ∈ S∗, σi(v) =
σj(v) and σ∗i (v) = σ∗j (v). Since both σ and σ∗ satisfy efficiency, for all i ∈ S∗,
σi(v) = σ∗i (v). The proof of Proposition 2 is now complete. �

Proposition 2 is not a trivial variation on Young’s (1985) original theorem.
Some information present in the partition function has to be discarded, as a
consequence of the combination of the three axioms. To gain an intuition for
this, consider first a three-player game. The result tells us that player 1’s payoff
does not depend on x = v({1}, {{1}, {2, 3}}). This does not follow from any of
the three axioms taken separately (in particular, by marginality it could depend
on x, if S = {1} and Π−S = {{2, 3}} in the definition of the axiom). Instead,
the reasoning goes as follows. Players 2 and 3’s payoffs do not depend on x
according to the marginality axiom. The efficiency axiom then implies that
player 1’s payoff cannot depend on x either.

To gain more intuition, let us continue with this heuristic argument and
see how it would apply beyond 3-player games. Consider a four-player game.
In principle, player 1’s payoff could depend on fifteen numbers according to
the marginality axiom. Only eight of these numbers are actually relevant to
compute σ∗. Let us show for instance why player 1’s payoff cannot depend
on y = v({1}, {{1}, {2, 3}, {4}}). Marginality implies that, apart from player
1’s, only the payoff of player 4 could depend on y, or more precisely on z − y,
where z = v({1, 4}, {{1, 4}, {2, 3}}). Marginality implies also that the payoffs
of players 2 and 3 do not depend on z. On the other hand, as we know from
the proposition, the three axioms together imply that the solution must be an
anonymous and additive function. Thus, the payoffs of players 1 and 4 depend
identically on z (if z increases, both payoffs to players 1 and 4 also increase).
Hence, efficiency implies that player 4’s payoff cannot depend on z, and therefore
not on y either. The payoffs of players 2 and 3 do not depend on y either by
the marginality axiom. Hence efficiency implies that player 1’s payoff cannot
depend on y.

We regard the “externality-free” value σ∗ as a fair compromise that takes
into account the pure or intrinsic marginal contributions of players to coalitions,
stripped down from externality components. The range of payoffs identified in
Proposition 1 for each player captures how the externalities affect his payoff,
when one still requires efficiency, anonymity and monotonicity. Thus, the size of
the difference Shi(v̄i)−σ∗i expresses the maximum “subsidy” or benefit to player
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i, associated with externalities that favor him, and the difference σ∗i − Shi(vi)
represents how much i can be “taxed” or suffer, due to harmful externalities, in
a value that is still faithful to efficiency, anonymity and a principle that heavily
relies on marginal considerations.

The first justification of the efficiency axiom was referring to superadditive
games. Proposition 2 remains true even if we restrict our attention to this
subclass of games: σ∗ is the unique value satisfying the three axioms (anonymity,
efficiency and marginality) on the class of superadditive games. We need to
adapt the proof, as in Young (1985, page 71), since the game v′ appearing in
the proof is not necessarily superadditive. Let σ be a value that satisfies the
three axioms on the class of superadditive games and let v be a superadditive
game. Let

ᾱ(s) := max(S,Π)∈EC s.t. #S=s α(S, Π), for each 1 ≤ s ≤ n,

u :=
∑

(S,Π)∈EC ᾱ(s)e(S,Π),

α′(S, Π) := ᾱ(s)− α(S, Π),
w :=

∑
(S,Π)∈EC α′(S, Π)e(S,Π).

Notice that α′(S, Π) ≥ 0 for each (S, Π) ∈ EC. Also, the sum of superadditive
games is a superadditive game, and each game in the basis is superadditive.
Hence w and u = v + w are superadditive. On the other hand, u is symmetric,
in the sense that u(S, Π) = u(S′,Π′) for each pair of embedded coalitions (S, Π)
and (S′,Π′) such that S and S′ have the same cardinality. Anonymity and
efficiency imply that σ(u) = σ∗(u). It is then easy to apply the induction
argument of the previous proof to the number of non-zero terms appearing in the
decomposition of w. The key difference in using this alternative decomposition
of v is that the game obtained by deleting any number of terms α′(S, Π)e(S,Π)

is still superadditive.
One can take a bargaining approach to understand the Shapley value. This

was done for example in Hart and Mas-Colell (1996) or Perez-Castrillo and
Wettstein (2001) for games in characteristic function form. It is not difficult to
see that we obtain σ∗ if we apply these procedures to superadditive games in
partition function form. Indeed, it is assumed in these two papers that, when
a proposal is rejected, the rejected proposer goes off by himself and does not
form a coalition with anyone else. We leave the details to the interested reader.
Other rules concerning the rejected proposers would lead to values that treat
externalities differently (see Macho-Stadler et al. (2005)).

6 Additivity

A natural adaptation of Shapley’s original axiomatic system also leads to σ∗.
Let i be a player and let v be a game in partition function form. We say that
player i is null if his marginal contribution to any embedded coalition is nihil:
mci(v) = 0. Here are two additional key axioms that can be used to obtain an
alternative characterization of σ∗.
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Null Player Let i ∈ N and let v be a game in partition function form. If
player i is null, then σi(v) = 0.

Additivity Let v and w be two games in partition function form. Then,
σ(v + w) = σ(v) + σ(w).

A null player must receive a zero payoff, according to the null player axiom.
Additivity essentially amounts to the linearity of the value. It expresses a form
of mathematical simplicity by requiring a strong specific functional form.

Proposition 3 σ∗ is the unique value satisfying anonymity, efficiency, null
player and additivity.

Proof: Given the properties of the Shapley value, it is easy to check that σ∗

satisfies the four axioms.
Let σ be a value satisfying the four axioms. Let v0 be the null game:

v0(S, Π) = 0 for each embedded coalition (S, Π). By the additivity and the
null player axioms, σ(v) + σ(−v) = σ(v0) = 0 for each game v in partition
function. Combining this observation with the additivity axiom, we conclude
that σ is linear. It is therefore sufficient to prove that σ coincides with σ∗ on
the basis e defined in the previous section. This was already done in the first
step of the induction proof for proposition 2. �

Proposition 3 is equivalent to theorem 2 of Pham Do and Norde (2002). It
is not difficult to check that their solution based on the random arrival principle
coincides with σ∗. There seems to be a problem in their proof, though. Indeed,
they intend to apply similar arguments with an alternative basis. Let (S, Π)
be an embedded coalition. Then e′(S,Π) is the game in partition function form
defined as follows:

e′(S,Π)(S
′,Π′) =

{
1 if S ⊆ S′ and (∀T ′ ∈ Π′ \ {S′})(∃T ∈ Π) : T ′ = T ∩ (N \ S′),
0 otherwise.

Pham Do and Norde claim that players outside S are null in e′(S,Π), but this is
incorrect. Consider for instance the game v′ = e′({1},{{1},{2,3}}) (cf. τ9 in their
example 4.2). Then v′({1, 2}, {{1, 2}, {3}}) = 1, while v′({1}, {{1}, {2}, {3}}) =
0. Hence, one cannot say that player 2 is null in v′.

Proposition 3 also remains true even if we restrict ourselves to the sub-
class of superadditive games: σ∗ is the unique value satisfying the four ax-
ioms (anonymity, efficiency, null player and additivity) on the class of super-
additive games. Let σ be a value that satisfies the four axioms on the class
of superadditive games. Let v be a superadditive game in partition func-
tion form. Let (α(S, Π))(S,Π)∈EC be the vector of real numbers such that
v =

∑
(S,Π)∈EC α(S, Π)e(S,Π). Then

v +
∑

{(S,Π)|α(S,Π)<0}

|α(S, Π)|e(S,Π) =
∑

{(S,Π)|α(S,Π)≥0}

α(S, Π)e(S,Π).

13



Notice that each game in the basis e is superadditive. Additivity implies that

σ(v) +
∑

{(S,Π)|α(S,Π)<0}

|α(S, Π)|σ(e(S,Π)) =
∑

{(S,Π)|α(S,Π)≥0}

α(S, Π)σ(e(S,Π)).

Null player, anonymity, and efficiency still imply that σ coincides with σ∗ on
the basis. Hence,

σ(v) +
∑

{(S,Π)|α(S,Π)<0}

|α(S, Π)|σ∗(e(S,Π)) =
∑

{(S,Π)|α(S,Π)≥0}

α(S, Π)σ∗(e(S,Π)).

The linearity of σ∗ implies that σ(v) = σ∗(v).
A player is null if his vector of marginal contributions is nihil. The other

notion of marginal contributions, which contained the externality effects and
was used to define the weak version of the marginality axiom, leads in turn to
a weaker version of the null player axiom. Player i is null in the strong sense if

v(S, Π)− v(S−i, {S−i, T+i} ∪Π−S,−T ) = 0

for each embedded coalition (S, Π) such that i ∈ S and each atom T of Π differ-
ent from S. Clearly, if player i is null in the strong sense, then he is null. One
can use this definition to propose a different null player axiom:

Weak Version of the Null Player Axiom Let i ∈ N and let v be a game
in partition function form. If player i is null in the strong sense, then σi(v) = 0.

This is equivalent to the dummy player axiom of Bolger (1989) and Macho-
Stadler et al. (2004). They say that player i is dummy if v(S, Π) = v(S′,Π′)
for each (S, Π) and each (S′,Π′) that can be deduced from (S, Π) by changing
player i’s affiliation. This clearly implies that player i is null in our strong
sense. The converse is straightforward after proving that v(S, Π) = v(S, Π′) for
each pair of embedded coalitions (S, Π) and (S, Π′) such that i 6∈ S and (S, Π′)
can be deduced from (S, Π) by changing only player i’s affiliation. Indeed, if i
is null in our strong sense, then v(S, Π) = v(S+i, {S+i} ∪ {T−i|T ∈ Π−S}) =
v(S+i, {S+i} ∪ {T−i|T ∈ Π′

−S}) = v(S, Π′).
Macho-Stadler et al. (2004, theorem 1) show that any solution that satisfies

this version of the null player axiom, as well as the axioms of efficiency, additivity
and (a strong version of) anonymity is a Shapley value of a game in characteristic
function form that is obtained by performing averages of the partition function.
Our “externality-free” value σ∗ belongs to this class of solutions. Macho-Stadler
et al. also characterize a unique solution by adding an axiom of similar influence
that σ∗ does not satisfy.

In light of our first discussion concerning even non-linear solutions (recall
Example 2), we prefer the axioms of Proposition 2 to those in Proposition 3,
even though both lead to the same value. We find marginality more compelling
than additivity. It is easier to interpret and justify a restriction on the set
of variables required to compute the payoff of the players, than to impose a
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specific functional form. It is interesting to note in that respect that the non-
additive solution defined in Example 3 satisfies the strong symmetry and the
similar influence axioms of Macho-Stadler et al. (2004), in addition to satisfying
anonymity, efficiency, and the weak version of the marginality axiom. Once
again, additivity cannot be justified by the marginality principle that underlies
their dummy player axiom (the weak version of marginality), even if one imposes
their other requirements.

7 More Examples

At this point it is probably desirable to illustrate how our results can be used in
examples. This section does precisely this, by calculating the range of possible
payoffs recommended to each player by each of our different sets of axioms. We
present two examples of appealing economic content.

Example 4 This example features prominently in Ray and Vohra (2001) and
Maskin (2003). The example describes a typical “free rider” problem created
by a public good that can be produced by each two-player coalition. The set of
agents is N = {1, 2, 3}, and this is the partition function:

v(N) = 24;

v({1, 2}) = 12;

v({1, 3}) = 13;

v({2, 3}) = 14;

v({i}, {{i}, {j, k}}) = 9 for all i, j, k;

v({i}, {{i}, {j}, {k}}) = 0 for all i, j, k.

First, we calculate the payoffs corresponding to the value σ∗. This is done
by computing the Shapley value of the game in characteristic function form
where each individual i’s worth is v({i}, {{i}, {j}, {k}}) = 0. Thus, σ∗(v) =
(7.5, 8, 8.5). This is the payoff recommended if the marginal contributions, and
not the externalities, are taken into account by the solution. Effectively, This
corresponds to the Shapley value where the “free rider” effects are ignored.

Next, let us calculate the range of payoffs compatible with monotonicity. For
each player i, the game v̄i in characteristic form is such that v̄i({i}) = 9 and
v̄i({j}) = 0 for j 6= i (this corresponds to player i’s optimistic expectations
of being able to “free ride” on the coalition {j, k} when he is alone, while
he “punishes” the other singleton coalitions by never cooperating in any two-
player coalition). The reader can check that Sh1(v̄1) = 10.5, Sh2(v̄2) = 11 and
Sh3(v3) = 11.5. Each of these numbers is the upper bound to each player’s value
payoff, when values satisfy monotonicity.

In contrast, the game vi yields vi({i}) = 0 and vi({j}) = 9 for j 6= i. Then,
one obtains that Sh1(v1) = 4.5, Sh2(v2) = 5 and Sh3(v3) = 5.5. These are the
lower bounds to each player’s payoff in values that satisfy monotonicity.
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In particular, we learn that no player can appropriate more than three units
of surplus over his payoff in σ∗. If one of the players, making use of a strong
bargaining power, appropriates all of those three units, an extreme benefit from
the positive externality, no other player can benefit with respect to σ∗ at any of
these values. Similarly, no player can be punished with more than three units of
loss with respect to σ∗, and if a player is pushed all the way down to his lower
bound, no other player can be paid less than what he gets at σ∗. Considerations
like these are useful in order to evaluate how the benefits/costs associated with
externalities must be shared, if one insists on our normative principles.

Example 5 Consider a variant of the previous example, in which player 1 is
the only agent capable of free-riding from a two-player coalition, receiving a
worth of 9, as before, when coalition {2, 3} gets together. However,

v({2}, {{2}, {1, 3}}) = v({3}, {{3}, {1, 2}}) = 0.

One can easily check that σ∗(v) = (7.5, 8, 8.5), as before. However, the reader
will see that:

Sh1(v̄1) = 10.5, Sh1(v1) = 7.5;

Sh2(v̄2) = 8, Sh2(v2) = 6.5;

Sh3(v̄3) = 8.5, Sh3(v3) = 7.

That is, no monotonic solution σ ever punishes player 1 or rewards 2 and 3
with respect to the payoffs in σ∗.

8 Moving Away from the Grand Coalition: A
Balanced Contributions Approach

The objective of the present section is to adapt Myerson’s (1980) principle of
balanced contributions in order to apply it to games in partition function form.2

There are two main differences with respect to the paradigm followed in the
previous sections. First, the analysis is conducted for a given game instead of
deducing the value by comparison of different games. Second, a payoff vector is
specified for each coalition structure. So the payoff of each player is determined
as a function of the coalitions that form, instead of assuming that the grand
coalition always forms.

Formally, a payoff configuration pc is a function that associates to every
coalition structure Π a payoff vector pc(Π) in RN . We now turn to axioms on
payoff configurations.

Partition efficiency For a game v in partition function form, a payoff config-
uration is partition efficient if∑

i∈S

pci(Π) = v(S, Π),

2Equivalently, the result in this section can also be viewed as a use of the concept of
potential (Hart and Mas-Colell (1989)).

16



for each embedded coalition (S, Π).

Partition efficiency will now replace the axiom of efficiency used in previous
sections.

Next, we introduce the principle of balanced contributions, which requires
that all the members of an embedded coalition gain equally from the coopera-
tion of the other members of the embedded coalition. More precisely:

Balanced contributions The payoff configuration pc satisfies the principle
of balanced contributions if

pci(Π)− pci({S−j , {j}} ∪Π−S) = pcj(Π)− pcj({S−i, {i}} ∪Π−S),

for each embedded coalition (S, Π) and each pair (i, j) of players that belong to S.

In other words, the payoff loss that player i suffers if player j leaves S given
the coalition structure Π is equal to the payoff loss that player j suffers if player
i leaves S given the coalition structure Π. Notice how the outside options
of the players are determined endogenously, thanks to the concept of payoff
configuration. We assume, as when we defined intrinsic marginal contributions
before, that a player cannot join another coalition after leaving. Despite this
assumption, the externalities do play now an important role in the solution,
again because of the payoff configuration notion.

Let S be a coalition. A game in characteristic function form defined on S is
a function v that associates a real number v(T ) to every non-empty subset T of
S. The Shapley value is defined over S as follows:

Shi(v) :=
∑

T⊆S s.t. i∈T

(t− 1)!(s− t)!
s!

[v(T )− v(T−i)]

for each player i ∈ S.
This is the main result of this section:

Proposition 4 Let v be a game in partition function form. There exists a
unique payoff configuration pc∗ that is partition efficient for v, and that satisfies
the principle of balanced contributions. Let i be a player, let Π be a partition
and let S be the atom that includes i. Then pc∗i (Π) = Shi(v̂(S,Π)), where v̂(S,Π)

is a fictitious game in characteristic function form defined over S as follows:
v̂(S,Π)(T ) = v(T, {T, {j}j∈S\T } ∪ Π−S), for each non-empty subset T of S. In
particular, pc∗({N}) = σ∗(v).

Proof: We prove the result by induction on the cardinality s of the atom S of the
partition Π to which i belongs. The result follows from the partition efficiency
condition if s = 1. Suppose that we proved the result for 1 ≤ s ≤ n − 1 and
let us prove it for all the members of an atom S of a partition Π such that
#S = s + 1. Let Π′(i) be the partition {S−i, {i}} ∪Π−S , for each i ∈ S. Notice
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that there exists a unique vector x ∈ RS such that
∑

i∈S xi = v(S, Π) and that
satisfies the following system of equations:

xi − pc∗i (Π
′(j)) = xj − pc∗j (Π

′(i)),

for each pair (i, j) of players that belong to S . Indeed, if x and x′ are two
solutions, then xi − x′i = xj − x′j for each pair (i, j) of members of S. Thus,
x = x′, since

∑
i∈S xi =

∑
i∈S x′i = v(S, Π).

In addition, the vector (pc∗i (Π))i∈S is a solution of the system. Indeed, let i
and j be two different members of S. Then

pc∗i (Π)− pc∗j (Π) = Shi(v̂(S,Π))− Shj(v̂(S,Π)).

Using the Shapley formula and rearranging the terms, we get:

pc∗i (Π)− pc∗j (Π) =
∑

T⊆S−j s.t. i∈T (γ(s, t) + δ(s, t))v̂(S,Π)(T )
−

∑
T⊆S−i s.t. j∈T (γ(s, t) + δ(s, t))v̂(S,Π)(T ),

where

γ(s, t) =
(t− 1)!(s− t)!

s!
and

δ(s, t) =
t!(s− t− 1)!

s!
.

On the other hand, pc∗i (Π
′(j))− pc∗j (Π

′(i)) may be rewritten as∑
T⊆S−j s.t. i∈T

ε(s, t)v̂(S−j ,Π′(j))(T )−
∑

T⊆S−i s.t. j∈T

ε(s, t)v̂(S−i,Π′(i))(T ),

where

ε(s, t) =
(t− 1)!(s− t− 1)!

(s− 1)!
.

The result then follows from the fact that γ(s, t) + δ(s, t)) = ε(s, t), v̂(S,Π)(T ) =
v(S−j ,Π′(j))(T ) if T ⊆ S−j , and v̂(S,Π)(T ) = v(S−i,Π′(i))(T ) if T ⊆ S−i. �

The reason why the information contained in v̂ is sufficient to compute
pc∗({N}) is more straightforward than it was in the previous sections. In-
deed, applying the principle of balanced contributions (combined with parti-
tion efficiency), pc∗({N}) is entirely determined from the vectors pc∗N\{i}({N \
{i}, {i}}), where i varies in N . In turn, for each i ∈ N , the vector pc∗N\{i}({N \
{i}, {i}}) is entirely determined from the vectors pc∗N\{i,j}({N \{i, j}, {i}, {j}}),
where j varies in N \ {i}. Continuing in this way, only partitions with at most
one atom with more than two members will matter. Nevertheless, if it is not
assumed a priori that the grand coalition forms (as is the case in this section),
then all the information present in the partition function could become relevant.
We develop this point in the next section when we tackle coalition formation
issues.
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Our solution in this section is close to the logic of Aumann and Dreze (1974),
who define the value for characteristic functions (no externalities) and a fixed
coalition structure. In their work, as in our solution, most of the existing coali-
tion structure is used in the calculation of the marginal contributions. However,
closer to the ideas in Hart and Kurz (1983), the balanced contribution princi-
ple could also be a fruitful approach, even if the players have the possibility to
join other coalitions after leaving. For instance, members of a coalition could
compare their best threats against each other:

σi(Π)−minT∈Π\{S} σi({S−j , T+j} ∪Π−S,−T )
= σj(Π)−minT∈Π\{S} σj({S−i, T+i} ∪Π−S,−T ),

for each embedded coalition (S, Π) and each pair (i, j) of players that belong to
S. This embodies players’ most pessimistic expectations of coalition formation
when they leave a coalition. An inductive argument similar to the one in the last
proof implies that there exists a unique payoff configuration that is partition
efficient, and that satisfies this modified version of the balanced contribution
principle. Of course, the same can be said if other expectations (e.g., the most
optimistic) are used.

9 Coalition Formation

Now we shall explore the issue of coalition formation on the basis of our analysis
in the previous section. In doing so, we combine two ways of thinking. Play-
ers may strategize in forming coalitions and predicting the coalition structure.
When a coalition structure forms, however, the normative principles we have
proposed are in place to sustain payoff distributions related to the value.

Of course, there are several modelling choices that one could make at this
point, even if one is guided by the principle of balanced contributions that under-
lies the concept of the value. First, one could measure the players’ contributions
in different ways in order to define the appropriate payoff configuration (cf. the
discussion at the end of the previous section). And second, one could model the
coalition formation process itself in a variety of ways, ranging from the use of
core-like ideas to the analysis of a specific extensive form, or, since the principle
of balanced contributions typically leads to a unique payoff configuration, the
literature on coalition formation in hedonic games might also be applied to de-
termine the coalition structure that will emerge (see, for instance, Bogomolnaia
and Jackson (2002), and references therein). Taking any of these alternative
routes may lead to interesting conclusions as well.

To fix ideas here, we shall adopt the assumption used for the payoff con-
figuration pc∗ identified in Proposition 4. That is, we assume that player i’s
contribution to player j in a coalition S equals the loss incurred by j, should
i leave S. When a player leaves a coalition, he stays as a singleton in the new
coalition structure. As we shall see, this assumption will not be as restrictive
as it was when we imposed that the grand coalition had to form. Indeed, now
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all the information in the partition function will be of use in determining the
answer.

In addition, we shall postulate the following extensive form to model the
coalition formation process. Fix an order π for the players in N . Following the
order π, each player i ∈ N announces a coalition S such that i ∈ S. The outcome
of this sequential move game of perfect information is a coalition structure, in
which a coalition S forms if and only if each player in S has announced the
coalition S. If Π is the coalition structure so formed, then the payoffs to players
are given by pc∗(Π). Denote this extensive form game by Γ(π).

Note that we could replace the payoffs that are part of pc∗ with an extensive
form that implements the Shapley value for each coalition in each coalition
structure. For our purposes here, we prefer to take a simpler reduced form, as
described. Our next result follows.

Proposition 5 Let π be an order of the players. Then Γ(π) admits at least
one subgame perfect equilibrium and, for almost every game in partition function
form, there exists a unique coalition structure that can be supported by a subgame
perfect equilibrium of Γ(π).

Proof: This simply follows from the fact that, for almost every game v in par-
tition function form, the payoff configuration pc∗ allows no ties for each player.
Thus, for almost every partition function v, the proposed coalition formation
game is a finite horizon extensive form of perfect information where payoffs for
each player are different at each final outcome. In such games, there exists a
unique subgame perfect equilibrium outcome, which is obtained with the back-
wards induction algorithm. �

Next, we analyze previous examples with this extensive form game, to answer
the question of which coalition structure will emerge in each case.

Example 6 Consider again the game in partition function form of Example 4:

v(N) = 24;

v({1, 2}) = 12;

v({1, 3}) = 13;

v({2, 3}) = 14;

v({i}, {{i}, {j, k}}) = 9 for all i, j, k;

v({i}, {{i}, {j}, {k}}) = 0 for all i, j, k.

For this game, the payoff configuration pc∗ = (pc∗1(Π), pc∗2(Π), pc∗3(Π))Π of
Proposition 4 yields the following:

pc∗({N}) = (7.5, 8, 8.5);

pc∗({1}, {2, 3}) = (9, 7, 7);
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pc∗({2}, {1, 3}) = (6.5, 9, 6.5);

pc∗({3}, {1, 2}) = (6, 6, 9);

pc∗({1}, {2}, {3}) = (0, 0, 0).

Note that, since the game is superadditive, the efficient coalition structure is the
grand coalition. With this payoff configuration in mind, one can now analyze
our game of coalition formation.

The reader can check that, whatever the order π, the coalition structure pre-
dicted by the unique subgame perfect equilibrium has the first mover alone in
his singleton coalition, anticipating that after he chooses to be alone, the other
two will join together in the two-player coalition, as will surely happen. Thus,
even in superadditive games the equilibrium coalition structure need not be ef-
ficient; see Ray and Vohra (1999, 2001) and Maskin (2003) for related points.
Here, note how the “Coase theorem logic” does not work to solve inefficiencies
by means of bargaining: the application of fairness criteria within each coali-
tion ties the players’ hands while negotiating. Of course, the specific coalition
structure that emerges depends on the order, which assigns different bargaining
power to players as a function of how early they speak in the game.

Example 7 Consider now the game analyzed in Example 5. This was a variant
of the game just revisited, but in which neither player 2 nor player 3 obtains
any benefit from free riding. That is, the partition function is as the one just
described in the previous example, but where

v({2}, {{2}, {1, 3}}) = v({3}, {{3}, {1, 2}}) = 0.

For this game, the payoff configuration pc∗ prescribes the following:

pc∗({N}) = (7.5, 8, 8.5);

pc∗({1}, {2, 3}) = (9, 7, 7);

pc∗({2}, {1, 3}) = (6.5, 0, 6.5);

pc∗({3}, {1, 2}) = (6, 6, 0);

pc∗({1}, {2}, {3}) = (0, 0, 0).

Now one can see that, while the equilibrium coalition structure is ({1}, {2, 3}) if
player 1 is the first in the order π, the grand coalition ({N}) results otherwise.
The allocation of bargaining power in the order π, along with the payoff config-
uration pc∗, determines whether the outcome will be efficient or subject to the
free rider problem.

The next example shows that superadditivity does not guarantee efficiency,
even for games with no externalities.
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Example 8 Let N = {1, 2, 3} be the set of agents and let v be the following
game in characteristic function form:

v(N) = 18;

v({1, 2}) = 16;

v({1, 3}) = 14;

v({2, 3}) = 12;

v({i}) = 0 for all i.

Proposition 4 yields the following payoff configuration:

pc∗({N}) = (7, 6, 5);

pc∗({1}, {2, 3}) = (0, 6, 6);

pc∗({2}, {1, 3}) = (7, 0, 7);

pc∗({3}, {1, 2}) = (8, 8, 0);

pc∗({1}, {2}, {3}) = (0, 0, 0).

The unique subgame perfect equilibrium of our game of coalition formation
predicts that players 1 and 2 will cooperate, excluding player 3, whatever the
order π. Any reasonable theory of coalition formation should predict the same
outcome, as players 1 and 2 both rank {1, 2} as their best alternative. In partic-
ular, the interested reader can check that {{1, 2}, {3}} is the only core coalition
structure (restricted by pc∗). Yet, its associated outcome is inefficient, as two
additional dollars are available if the grand coalition forms.

A game v in characteristic function form is strictly convex if the marginal
contributions of the players are strictly increasing in the size of the coalition
with which they cooperate, i.e.,

v(S)− v(S−i) < v(T )− v(T−i)

for each player i and each pair (S, T ) of coalitions such that i ∈ S and S ( T . If
some of these inequalities are turned into equalities, the game in characteristic
function form is said to be convex.

Then, we can state the following result.

Proposition 6 If a game in characteristic function form is strictly convex, then
the grand coalition forms in the unique subgame perfect equilibrium of Γ(π), for
each order π of the players.
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Proof: Let v be a game in characteristic function form that is strictly convex.
We show that every player strictly prefers the grand coalition over any other
partition. This implies that there exists a unique subgame perfect equilibrium
outcome where the grand coalition forms.3

Let i ∈ N , let Π be a partition other than the grand coalition structure, and
let S be the atom of Π to which i belongs. Proposition 4 implies that

pc∗i (Π) =
∑

T⊆S s.t. i∈T

(t− 1)!(s− t)!
s!

[v(T )− v(T−i)].

Let T ⊆ S be such that i ∈ T . We have that∑
R⊆N s.t. R∩S=T

(r − 1)!(n− r)!
n!

=
(t− 1)!(s− t)!

s!
.

The equality follows from combinatorial calculus. Indeed, if we order all the
players in N at random according to a uniform probability distribution, then
the number on the left hand side of the equality represents the probability of
having an order of N where a member j of S comes before i if and only if j ∈ T .
If we order all the players in S at random according to a uniform probability
distribution, then the number on the right hand side of the equality represents
the probability of having an order of S where a member j of S comes before i
if and only if j ∈ T . These two probabilities must clearly be equal.

On the other hand,∑
R⊆N s.t. R∩S=T

(r−1)!(n−r)!
n! [v(T )− v(T−i)]

<
∑

R⊆N s.t. R∩S=T
(r−1)!(n−r)!

n! [v(R)− v(R−i)],

since v is strictly convex.
But notice that the left hand side is a term in pc∗i (Π), while the right hand

side is a term in Shi(v). Hence, it follows that pc∗i (Π) < Shi(v). �

We remark that for games in characteristic function form that are convex,
but not strictly convex, one can have equilibria with partitions other than the
grand coalition forming. For example, suppose v(S) = s for every S ⊆ N . For
this characteristic function, every partition is supported by a subgame perfect
equilibrium of the coalition formation game. It would be interesting to derive
additional properties of the equilibrium coalition structure of our game Γ(π).

To the best of our knowledge, Maskin (2003) is the only other paper that
studies the question of coalition formation in games with externalities and whose
payoff predictions are somehow related to the Shapley value. The approach is
quite different, as Maskin’s non cooperative procedures simultaneously deter-
mine the coalitions that form and the payoffs of the players, while we opted for

3Again, any reasonable theory of coalition formation should predict that the grand coalition
forms, as it is unanimously considered to be the best coalition structure. In particular, it is
the only core coalition structure.
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a two-stage game where coalitions are formed first, and payoffs are then deter-
mined by principles of equity. The main qualitative result is similar though:
inefficient outcomes may emerge in superadditive games if we introduce con-
siderations of coalition formation. The advantage of our model is its sharp
predictions and the simplicity to compute the equilibrium coalition structures
in examples.

10 Conclusion

This paper has explored games in partition function form. Our basic approach
is rooted in the concept of marginal contributions of players to coalitions. In
games with externalities, we have argued how it is important to separate the
concept of intrinsic marginal contributions from that pertaining to the exter-
nalities themselves.

The paper is divided into two parts, each corresponding to a different as-
sumption made on the coalition structure formed. The first part of the paper
assumes that the grand coalition is together. Under this assumption, the im-
plications of anonymity, monotonicity and marginality are explored, leading to
two main results. The first one establishes bounds to players’ payoffs if they
are to be derived from solutions that are monotonic with respect to the (weak
version of) marginal contributions. The second result provides a sharp charac-
terization of a solution that captures value-like principles, if one abstracts from
the externalities. The combination of both results provides insights to the size
of the Pigouvian-like transfers compatible with our normative principles.

In the second part of the paper, a solution is proposed for any coalition
structure. This is achieved as a consequence of the principle of balanced con-
tributions. Using this, a game of coalition formation is analyzed leading to a
sharp prediction in most games. Our way of modelling coalition formation com-
bines players’ strategizing at the time of forming coalitions with the normative
principles behind the value once a coalition structure is in place.
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