36,021 research outputs found

    Advanced inference in fuzzy systems by rule base compression

    Get PDF
    This paper describes a method for rule base compression of fuzzy systems. The method compresses a fuzzy system with an arbitrarily large number of rules into a smaller fuzzy system by removing the redundancy in the fuzzy rule base. As a result of this compression, the number of on-line operations during the fuzzy inference process is significantly reduced without compromising the solution. This rule base compression method outperforms significantly other known methods for fuzzy rule base reduction.Peer Reviewe

    Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies

    Get PDF
    The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin

    Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.

    Get PDF
    © 2015 Massé et al.Background: Stroke survivors often suffer from mobility deficits. Current clinical evaluation methods, including questionnaires and motor function tests, cannot provide an objective measure of the patients mobility in daily life. Physical activity performance in daily-life can be assessed using unobtrusive monitoring, for example with a single sensor module fixed on the trunk. Existing approaches based on inertial sensors have limited performance, particularly in detecting transitions between different activities and postures, due to the inherent inter-patient variability of kinematic patterns. To overcome these limitations, one possibility is to use additional information from a barometric pressure (BP) sensor. Methods: Our study aims at integrating BP and inertial sensor data into an activity classifier in order to improve the activity (sitting, standing, walking, lying) recognition and the corresponding body elevation (during climbing stairs or when taking an elevator). Taking into account the trunk elevation changes during postural transitions (sit-to-stand, stand-to-sit), we devised an event-driven activity classifier based on fuzzy-logic. Data were acquired from 12 stroke patients with impaired mobility, using a trunk-worn inertial and BP sensor. Events, including walking and lying periods and potential postural transitions, were first extracted. These events were then fed into a double-stage hierarchical Fuzzy Inference System (H-FIS). The first stage processed the events to infer activities and the second stage improved activity recognition by applying behavioral constraints. Finally, the body elevation was estimated using a pattern-enhancing algorithm applied on BP. The patients were videotaped for reference. The performance of the algorithm was estimated using the Correct Classification Rate (CCR) and F-score. The BP-based classification approach was benchmarked against a previously-published fuzzy-logic classifier (FIS-IMU) and a conventional epoch-based classifier (EPOCH). Results: The algorithm performance for posture/activity detection, in terms of CCR was 90.4 %, with 3.3 % and 5.6 % improvements against FIS-IMU and EPOCH, respectively. The proposed classifier essentially benefits from a better recognition of standing activity (70.3 % versus 61.5 % [FIS-IMU] and 42.5 % [EPOCH]) with 98.2 % CCR for body elevation estimation. Conclusion: The monitoring and recognition of daily activities in mobility-impaired stoke patients can be significantly improved using a trunk-fixed sensor that integrates BP, inertial sensors, and an event-based activity classifier

    A layered fuzzy logic controller for nonholonomic car-like robot

    Get PDF
    A system for real time navigation of a nonholonomic car-like robot in a dynamic environment consists of two layers is described: a Sugeno-type fuzzy motion planner; and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including right and left views to identify the next step to the goal. A Sugeno-type fuzzy motion planner of four inputs one output is introduced to give a clear direction to the robot controller. The second stage is a modified proportional navigation based fuzzy controller based on the proportional navigation guidance law and able to optimize the robot's behavior in real time, i.e. to avoid stationary and moving obstacles in its local environment obeying kinematics constraints. The system has an intelligent combination of two behaviors to cope with obstacle avoidance as well as approaching a target using a proportional navigation path. The system was simulated and tested on different environments with various obstacle distributions. The simulation reveals that the system gives good results for various simple environments

    Hierarchical Classification Trees Using Type-Constrained Genetic Programming

    Get PDF

    Unifying Multiple Knowledge Domains Using the ARTMAP Information Fusion System

    Full text link
    Sensors working at different times, locations, and scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels that are reconciled by their implicit underlying relationships. Even when such relationships are unknown to the user, an ARTMAP information fusion system discovers a hierarchical knowledge structure for a labeled dataset. The present paper addresses the problem of integrating two or more independent knowledge hierarchies based on the same low-level classes. The new system fuses independent domains into a unified knowledge structure, discovering cross-domain rules in this process. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, ARTMAP information fusion system features distributed code representations that exploit the neural network’s capacity for one-to-many learning. The fusion system software and testbed datasets are available from http://cns.bu.edu/techlabNational Science Foundation (SBE-0354378); National Geospatial-Intelligence Agency (NMA 201-01-1-2016
    • 

    corecore