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Abstract. This paper proposes a rule base simplification method for fuzzy systems. The method is based on aggregation of rules
with different linguistic values of the output for identical permutations of linguistic values of the inputs which are known as
inconsistent rules. The simplification removes the redundancy in the fuzzy rule base by replacing each group of inconsistent
rules with a single equivalent rule. The simulation results from a transportation demand management case study show that the
aggregated fuzzy system with the consistent rule base approximates better the given data than the original fuzzy system with the
inconsistent rule base. The main advantage of the proposed method over other methods is that it does not require any refinement
of the rule base using additional data sets or expert knowledge. In this context, the method is quite suitable for applications where
rule base refinement is unacceptable due to time constraints or impossible due to lack of additional data or knowledge.
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1. Introduction15

Fuzzy systems are usually good at capturing the qual-16

itative complexity of a wide range of problems by means17

of their linguistic modeling and approximate reasoning18

capabilities. However, this comes at a price because the19

associated operations during fuzzification, inference20

and defuzzification increase the quantitative complexity21

of the solution to these problems. This price gets even22

higher as the amount of fuzzy operations increases as23

a result of the increased number of rules in the fuzzy24

system.25

The number of rules in a fuzzy system is often an26

exponential function of the number of inputs to the sys-27

tem and the number of linguistic values that these inputs28

can take [5, 17, 24, 32]. This exponential function has
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been used as a main indicator for the quantitative com- 29

plexity of the associated fuzzy system. However, this is 30

a fairly rough indicator because the quantitative com- 31

plexity depends on the overall amount of operations 32

during fuzzification, inference and defuzzification. For 33

example, a 4-input fuzzy system with 2 linguistic values 34

per input has the same number of 16 rules as a 2-input 35

fuzzy system with 4 linguistic values per input but the 36

amount of operations in the first system is about twice 37

as big as the one in the second system due to the twice 38

bigger number of inputs in the rules. 39

There has been a growing interest recently in com- 40

plexity issues of fuzzy systems [2, 9, 16, 25]. This is due 41

to the fact that fuzzy systems are already more widely 42

used in large-scale applications where their quantita- 43

tive complexity becomes more obvious. In particular, 44

many methods have been developed for reducing this 45

quantitative complexity. These are known as rule base 46

reduction methods as they reduce the number of rules 47

by reducing the number of inputs or the number of 48
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2 A. Gegov et al. / Rule base simplification in fuzzy systems by aggregation of inconsistent rules

linguistic values that these inputs can take. The main49

objective in this case is to suppress the associated expo-50

nential function. These methods are classified into six51

groups and discussed below.52

The first group of methods are aimed at removing less53

significant or merging similar linguistic values [11, 23].54

From these two strands, the one based on removal of55

linguistic values is more straightforward but it involves56

a higher risk as a result of the removal of the associated57

fuzzy set. On the other hand, the strand based on merg-58

ing of linguistic values is more difficult for application59

due to the necessity to define a new fuzzy set for each60

of the merged linguistic values.61

The second group of methods are aimed at removing62

less significant or merging similar inputs [18, 30]. From63

these two strands, the one based on removal of inputs64

is more straightforward but it involves a higher risk as65

a result of the removal of the associated physical vari-66

able. On the other hand, the strand based on merging of67

inputs is more difficult for application due to the neces-68

sity to justify physically the merging of the associated69

variables.70

The third group of methods are based on singu-71

lar value decomposition of the matrix representing the72

crisp values of the output from a fuzzy system [6, 33].73

As a result of this decomposition, the number of lin-74

guistic values for the inputs to the system is reduced.75

Although this group of methods can be quite effective76

in reducing the number of rules in a fuzzy system, they77

are applicable mainly for systems with two inputs. In78

the case of more inputs, the singular value decomposi-79

tion process becomes quite complex as the dimension80

of the space in which the associated matrix is defined81

increases significantly.82

The fourth group of methods are based on conver-83

sion of the intersection rule configuration of a fuzzy84

system into a union rule configuration with a smaller85

number of rules [13, 31]. This group of methods can86

be quite effective in reducing the number of rules in87

a fuzzy system but they can only be applied to a spe-88

cial class of problems called ‘additively separable’. For89

problems that don’t belong to this class, the conversion90

of the intersection rule configuration into a union rule91

configuration is not possible.92

The fifth group of methods convert a fuzzy system93

into spatially decomposed subsystems as a result of94

which the overall number of rules is reduced [3, 4,95

7, 8, 27, 28]. In this case, the interactions among the96

subsystems are partially compensated and the result-97

ing decomposed system has a decoupled structure.98

Although this group of methods have been widely used99

recently, the success of their application depends on the 100

strength of interactions among the subsystems and the 101

level of their compensation. 102

The sixth group of methods rearrange the inputs in 103

a fuzzy system in a way that leads to the reduction of 104

the number of rules [10, 15, 19, 20, 21, 26]. In this 105

case, the fuzzy system is decomposed into a multilayer 106

hierarchical structure such that each layer has only two 107

inputs and one output. Although these methods have 108

become quite popular recently, they don’t offer clear 109

interpretation of the intermediate variables between the 110

first and the last layer. Besides this, only two inputs are 111

taken into account in each layer while all other inputs 112

are ignored. 113

Most of the above rule base reduction methods for 114

fuzzy systems have serious drawbacks such as empirical 115

nature and limited scope. The empirical nature of the 116

methods in groups 1, 2 and 5, 6 assumes the use of a ‘trial 117

and error’ approach that can be unreliable. Besides this, 118

the limited scope of the methods in groups 3, 4 makes 119

them inapplicable to a wide range of fuzzy systems. 120

This paper addresses the above two drawbacks of rule 121

base reduction methods by proposing a novel rule base 122

simplification method that is characterised by system- 123

atic nature and universal scope. Besides this, the method 124

leads to solutions which approximate closely the data. 125

The remaining part of this paper is structured as 126

follows. Section 2 provides some theoretical prelimi- 127

naries for fuzzy systems. Section 3 introduces the rule 128

base simplification method. Section 4 illustrates the 129

application of this method to several examples with 130

inconsistent rule bases. Section 5 summarises the main 131

advantages of the method and highlights future research 132

directions. 133

2. Theoretical preliminaries 134

A fuzzy system can be represented by the following 135

rule base: 136

If i1 is v11 and . . . and im is vim1 then o1 is vo11 137

and . . . and on is von1 138

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

if i1 is vi1r and . . . and im is vimr then o1 is vo1r 140

and . . . and on is vonr (1) 141

where m is the number of inputs, n is the number of 142

outputs and r is the number of rules. In this case, ip, 143

P = 1, . . . m represents the p-th input, vips, P = 1, 144
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. . . m, s = 1, . . . r is the linguistic value of the p-th input145

in the s-th rule, oq, q = 1, . . . n represents the q-th out-146

put and voqs, q = 1, . . . n, s = 1, . . . r is the linguistic147

value of the q-th output in the s-th rule.148

The maximum number of rules r in a fuzzy system is
an exponential function of the number of inputs m and
the number of linguistic values w that each input can
take [12, 14]. If this number is a constant, the maximum
number of rules is given by:

r = wm (2)

where w is the number of linguistic values per input.
However, if the number of linguistic values that each
input can take is not a constant, the maximum number
of rules in a fuzzy system is given by:

r = w1 . . . wm (3)

where wp, P = 1, . . . , m is the number of linguistic149

values that the p-th input can take.150

Fuzzy rule bases have some important properties [1].151

These properties describe the extent to which the per-152

mutations of linguistic values of inputs and outputs are153

present in the rule base. The properties also describe the154

type of mapping in the rule base between permutations155

of linguistic values of inputs in the ‘if’ part and permu-156

tations of linguistic values of outputs in the ‘then’ part.157

Four basic properties of fuzzy rule bases are introduced158

below by propositions. These propositions make use of159

logical equivalence, i.e. a property is present when the160

corresponding condition holds and vice versa. This log-161

ical equivalence also implies that a property is absent162

when the corresponding condition does not hold and163

vice versa.164

Proposition 1: A fuzzy rule base is complete if and165

only if all possible permutations of linguistic values of166

inputs are present in the ‘if’ part of the rule base.167

Proposition 2: A fuzzy rule base is exhaustive if and168

only if all possible permutations of linguistic values of169

outputs are present in the ‘then’ part of the rule base.170

Proposition 3: A fuzzy rule base is consistent if and171

only if every present permutation of linguistic values of172

inputs is mapped to only one permutation of linguistic173

values of outputs.174

Proposition 4: A fuzzy rule base is monotonic if and175

only if every present permutation of linguistic values176

of outputs is mapped from only one permutation of177

linguistic values of inputs.178

The aim of the proposed rule base simplification 179

approach in fuzzy systems is to remove the redundancy 180

in the rule base that is caused by inconsistent rules, 181

i.e. rules with different linguistic values of the out- 182

put for identical permutations of linguistic values of 183

the inputs rules. Inconsistent rules may be present in 184

fuzzy systems irrespective of whether the rule base has 185

been created using data sets or expert knowledge. In 186

this case, the approach identifies all inconsistent rules 187

and removes these rules from the rule base by aggregat- 188

ing them into a single equivalent rules. Therefore, this 189

approach acts as an aggregator for inconsistent rules in 190

the rule base that reduces the quantitative complexity 191

in fuzzy systems. The approach is particularly useful 192

in situations where rule base refinement is not suitable 193

due to time constraints or impossible due to lack of 194

additional data or knowledge. 195

In order to follow the proposed approach, it is nec- 196

essary to consider the stages of fuzzification, inference 197

and defuzzification. This consideration is presented fur- 198

ther below whereby the inference stage includes three 199

substages - application, implication and aggregation 200

[22, 29]. The considerations are for single-output sys- 201

tems but they can be easily extended to multiple-output 202

systems whereby each output is considered separately 203

and in relation to the same set of inputs. To facilitate 204

the software implementation of the theoretical results, 205

the notation used in the presentation of the proposed 206

approach is similar to the one from the Matlab Fuzzy 207

Logic Toolbox. 208

The fuzzification stage in a fuzzy system maps the 209

crisp value of each input to the system to a fuzzy value 210

by a fuzzy membership degree. This degree can be 211

obtained from the fuzzy membership functions for the 212

inputs to the fuzzy system. The considerations pre- 213

sented are based on normal triangular or trapezoidal 214

fuzzy membership functions that have a maximum 215

equal to 1 and are commonly used in fuzzy systems 216

due to their simplicity. 217

In this case, the fuzzy membership degree fps for an 218

input is derived by 219

fps = 0, if xps ≤ aps 220

fps = (xps − aps)/(bps − aps), if aps ≤ xps ≤ bps 221

fps = (cps − xps)/(cps − bps), if bps ≤ xps ≤ cps 222

fps = 0, if cps ≤ xps (4) 223

where xps, P = 1, . . . , m, s = 1, . . . , r is the contin- 224

uous crisp value of the p-th input in the s-th rule of 225

the fuzzy system and aps, bps, cps are the parameters 226
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of the triangular fuzzy membership function used for227

fuzzification of this input. In particular, aps is the point228

at which the membership function becomes greater229

than 0, bps is the point at which the membership func-230

tion reaches its maximum at 1 and cps is the point at231

which the membership function becomes equal to 0232

again. The symbol ‘/’ denotes arithmetic division in233

Equation (4) and all subsequent equations.234

The application sub-stage in a fuzzy system maps235

the fuzzy membership degrees of the inputs in each236

rule to a firing strength for this rule. The considerations237

presented here are based on rule bases with conjunctive238

terms in the ‘if’ part. Such rule bases are commonly239

used in fuzzy systems due to their ability to represent240

in a definitive way the simultaneous effect of all inputs241

as opposed to rule bases with disjunctive terms that are242

more ambiguous and therefore not so common.243

In this case, the firing strength gs for a rule is
derived by:

g1 = min (f11, . . . , fm1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gr = min (f1r, . . . , fmr)

(5)

where fps, P = 1, . . . , m, s = 1, . . . , r is the fuzzy244

membership degree for the p-th input in the s-th rule of245

the fuzzy system.246

The implication substage in a fuzzy system maps247

the firing strength for each rule to a fuzzy membership248

function for the output in this rule. The considerations249

presented here are based on horizontal truncation that250

cuts the normal fuzzy triangular membership function251

for the output in each rule to subnormal fuzzy trape-252

zoidal membership function whose maximum is equal253

to the firing strength for this rule. This type of trun-254

cation is commonly used in fuzzy systems due to its255

simplicity.256

In this case, the fuzzy membership function Fsq for
an output is defined by

Fsq = {f1sq ∗ y1sq, . . . , ftsq ∗ ytsq} (6)

where fksq, k = 1, . . . , t, s = 1, . . . , r, q = 1, . . . , n257

is the fuzzy membership degree for the k-th element258

from a discrete variation range for the q-th output in259

the s-th rule of the fuzzy system, yksq is the associ-260

ated element from this range and t is the number of261

such elements. The symbol ‘*’ in Equation (6) denotes262

binary association, i.e. the fuzzy membership degree263

fksq is associated with the element yksq from the discrete264

variation range for this output.265

As the subscript k for fksq and yksq in Equation (6) is 266

not required further, this subscript will be omitted for 267

simplicity. Therefore, the element ysq is mapped to its 268

fuzzy membership degrees fsq by: 269

fsq = 0, if ysq ≤ asq 270

fsq = (ysq − asq)/(bsq − asq), if asq ≤ ysq ≤ bsq 271

fsq = gs, if bsq ≤ ysq ≤ csq 272

fsq = (dsq − ysq)/(csq − bsq), if csq ≤ ysq ≤ dsq 273

fsq = 0, if dsq ≤ ysq (7) 274

where ysq, s = 1, . . . , r, q = 1, . . . , n is the discrete 275

crisp value of the q-th output in the s-th rule of the 276

fuzzy system and asq, bsq, csq, dsq are the parameters 277

of the trapezoidal fuzzy membership function for this 278

output. This function is obtained during the implication 279

substage from the initial triangular fuzzy membership 280

function for the output. In particular, asq is the point at 281

which the membership function becomes greater than 282

0, bsq is the point at which the membership function 283

becomes equal to its maximum gs, csq is the point 284

at which the membership function becomes less than 285

its maximum at gs and dps is the point at which the 286

membership function becomes equal to 0 again. 287

The aggregation substage in a fuzzy system maps 288

the fuzzy membership functions for all rules to an 289

aggregated fuzzy membership function representing the 290

overall output for the rules. The considerations pre- 291

sented here are based on disjunctive rule bases. Such 292

rule bases are commonly used in fuzzy systems due to 293

their ability to represent flexibly the individual effect 294

from the most influential rule as opposed to conjunc- 295

tive rule bases that are more restrictive and therefore 296

not so common. 297

In this case, the aggregated fuzzy membership func-
tion Fq for an output is derived by:

Fq = F1q or . . . or Frq (8)

where Fsq, s = 1, . . . r, q = 1, . . . n is the fuzzy mem- 298

bership function for the q-th output in the s-th rule of the 299

fuzzy system. The symbol ‘or’ denotes a union opera- 300

tion that is applied to the fuzzy membership functions 301

for the output in all rules. This operation is applied to 302

the fuzzy membership degrees for all the elements from 303

the discrete variation range for this output. 304

The defuzzification stage in a fuzzy system maps 305

the aggregated fuzzy membership function for an out- 306

put to a crisp value from the discrete variation range 307

for this output. As this value is of a continuous type, 308
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the associated discrete variation range is mapped to its309

continuous counterpart. The considerations presented310

assume that the defuzzified value of the output is the311

centre of gravity for the aggregated fuzzy membership312

function for this output. This defuzzification method313

commonly used in fuzzy systems due to its applica-314

bility for any shape of aggregated fuzzy membership315

function for the output.316

In this case, the defuzzified value Dq for an output is317

derived by:318

Dq = (f1q.y1q + . . . + ftq.ytq)/319

(f1q + . . . + ftq) (9)320

where fkq, k = 1, . . . , t, q = 1, . . . , n is the aggre-321

gated fuzzy membership degree for the k-th element322

from the discrete variation range for the q-th output of323

the fuzzy system and ykq is the associated element from324

this range. Equation (9) represents fksq and yksq from325

Equation (6) without the rule index s as the defuzzi-326

fication stage is independent of the rules. Obviously,327

Dq can take any values within the continuous counter-328

part for the discrete variation range for this output. The329

symbols ‘.’ and ‘+’ in Equation (9) denote arithmetic330

multiplication and addition, respectively.331

3. Rule base simplification method332

The method introduced here removes the redundancy333

in an inconsistent rule base of a fuzzy system during334

the fuzzification, inference and defuzzification stages335

for each simulation cycle. The redundancy is expressed336

by the presence of inconsistent rules and it is removed337

by aggregating the redundant subset of these rules with338

the aim of making the rule base consistent.339

Aggregation of inconsistent rules in a fuzzy system340

is equivalent to representing a ‘one-to-many’ mapping341

as a ‘one-to-one’ mapping. A mathematical theorem for342

this representation is shown below. The proof of the the-343

orem is shown further below and it is based on Boolean344

logic laws. In this proof, the operations of negation,345

conjunction, disjunction and implication are all defined346

in the context of classical binary logic.347

Theorem 1: A set of inconsistent disjunctive rules in
the form

If (A1s and . . . and Ams) then Cq1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If (A1s and . . . and Ams) then Cqz

(10)

where Aps = (ip is vip,s ), P = 1, . . . , m, j = 1, . . . , 348

z and Cqz = (oq is voq,z), q = 1, . . . , n are 349

logical propositions describing the terms for the 350

p-th input in the j-th rule and the terms for the q-th 351

output in accordance with Equation (1), s is a set label 352

and z is the set cardinality, can be represented as a 353

single rule in the form: 354

If (A1s and . . . and Ams) 355

then (Cq1 or . . . or Cqz) (11) 356

Proof 1: Equation (10) represents a set of ‘if-then’
implications that can be rewritten as:

(A1s and . . . and Ams) imp Cq1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(A1s and . . . and Ams) imp Cqz

(12)

where the ‘if-then’ notations are replaced by ‘implica- 357

tion’ operators. 358

The implications in Equation (12) are also dis- 359

junctive rules that can be rewritten as: 360

[(A1s and . . . and Ams) impCq1] or . . . or 361

[(A1s and . . . and Ams) imp Cqz] (13) 362

where all rules are disjuncted together in one rule. 363

Using implication related laws, Equation (13) can 364

be rewritten as: 365

[not (A1s and . . . and Ams) or Cq1] or . . . or 366

[not (A1s and . . . andAms) or Cqz] (14) 367

where the ‘implication’ operators are replaced by ‘nega- 368

tion’ and ‘disjunction’ operators. 369

Using commutative laws, Equation (14) can be 370

rewritten as: 371

{[not (A1s and . . . and Ams)] or . . . or 372

[not (A1s and . . . and Ams)]} or 373

(Cq1 or . . . or Cqz) (15) 374

where the terms for the inputs are grouped separately 375

from the terms for the output. 376

Using idempotent laws, Equation (15) can be re- 377

written as: 378

[not (A11 and . . . andAms)] or 379

(Cq1 or . . . or Cqz) (16) 380

where only one of the z identical permutations of terms 381

for the input is preserved. 382
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Using again implication related laws, Equation (16)383

can be rewritten as:384

(A11 and . . . and Ams) imp385

(Cq1 or . . . orCqz) (17)386

where the ‘negation’ and ‘disjunction’ operator are387

replaced by an ‘implication’ operator.388

Equation (17) represents an implication that can389

be rewritten as Equation (11) where the implication390

operator is replaced by an ‘if-then’ notation. So, this391

concludes the proof.392

The ‘one-to-many’ mapping from Equation (10) is393

represented equivalently as a ‘one-to-one’ mapping394

from Equation (11). In this case, the z identical logi-395

cal propositions (A1s and . . . and Ams) . . . (A1s and396

. . . and Ams) in the ‘if’ part of the inconsistent set of397

rules in Equation (10) are represented by a single log-398

ical proposition (A1s and . . . and Ams) in the ‘if’ part399

of a single equivalent rule in Equation (11).400

Theorem 1 can be trivially extended to an arbitrary401

number of sets of inconsistent rules where each of these402

sets can be represented by a separate single equivalent403

rule. In this way, the inconsistent rule base of a fuzzy404

system can be converted to an equivalent consistent rule405

base of a smaller size.406

Theorem 1 describes the theoretical foundations407

of the rule base simplification method. The practical408

implementation of this method is given by the algorithm409

below.410

Algorithm 1:411

1. Put all inconsistent rules in disjoint sets whereby412

the rules in each set have the same permutation of413

linguistic values of inputs and different permuta-414

tions of linguistic values of the inputs.415

2. For each set of inconsistent rules, aggregate the416

rules into a single equivalent rule.417

3. For each set of inconsistent rules, keep only the418

single equivalent rule.419

Algorithm 1 guarantees that there are only con-420

sistent rules left in a fuzzy rule base after the421

completion of the simplification process. In this422

case, the number of consistent rules is equal to the423

number of inconsistent groups of rules plus the num-424

ber of consistent rules. Therefore, the simplification425

process can be applied with a guaranteed success426

whereby the resulting simplified rule base is always427

consistent.428

All steps in Algorithm 1 can be applied off-line. This 429

is because the single equivalent rule can be found before 430

the start of the fuzzification stage. 431

Algorithm 1 describes the aggregation process for 432

inconsistent rules but it does not say when this pro- 433

cess can be applied with full success, i.e. without any 434

residual inconsistency being left. In other words, the 435

question is when it would be possible to aggregate all 436

inconsistent rules from each set into a single equiva- 437

lent rule. This would be possible if the following three 438

Conditions 1–3 are fulfilled with respect to the fuzzy 439

membership functions for the output: 440

Condition 1: The number of these fuzzy membership 441

functions is odd, i.e. there is a fuzzy membership func- 442

tion in the middle. 443

Condition 2: The fuzzy membership function in the 444

middle is symmetrical, i.e. it has an axis of symmetry. 445

Condition 3: Each of the remaining fuzzy member- 446

ship functions has a symmetrical image with respect 447

to the axis of symmetry of another symmetrical fuzzy 448

membership function. 449

Conditions 1–3 guarantee that the aggregation pro- 450

cess will lead to a single equivalent rule for each set 451

of inconsistent rules. In this case, the single equivalent 452

rule for each set of inconsistent rules in the aggregated 453

system would represent an approximation of the associ- 454

ated inconsistent rules from the same set in the original 455

system. Although Conditions 1–3 may appear to be 456

restrictive, they are actually not as most fuzzy systems 457

meet these conditions anyway as part of the require- 458

ments for spreading the fuzzy membership functions 459

for the output uniformly across its discrete variation 460

range. 461

It should also be noted that Conditions 1–3 guarantee 462

precise approximation of each set of inconsistent rules 463

in the rule base with the associated single equivalent rule 464

derived during the aggregation process. However, these 465

conditions have mainly theoretical importance because 466

precise approximation is possible under the assumption 467

that the remaining rules from the rule base are ignored, 468

as shown further in Section 4. 469

Theorem 1 and Algorithm 1 are presented above 470

for a single-output fuzzy system but they can be 471

trivially extended to a multiple-output fuzzy system 472

with an arbitrary number of outputs. In this case, the 473

multiple-output fuzzy system from Equation (1) can be 474

represented by the following n equivalent single-output 475

fuzzy systems:
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If i1 is vi11 and . . . and im is vim1 then oq is vq11476

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477

If i1 is vi1r and . . . and im is vimr then oq is vq1r478

q = 1, . . . , n (18)479

where by all considerations from the theorem and the480

algorithm can be applied repetitively to each of these481

systems.482

4. Theoretical results483

The rule base simplification method is applied here to484

a single-input-single-output example in which the rule485

base includes a single set of two inconsistent disjunctive486

rules. This example illustrates the rule base simplifica-487

tion method theoretically whereby the remaining rules488

from the rule base are ignored.489

A fuzzy system has the following set of two incon-490

sistent rules:491

492

If i1 is P then o1 is S493

or494

If i1 is P then o1 is B (19)495

where the simple linguistic terms P, S and B denote the496

linguistic values positive, small and big, respectively.497

In accordance with Theorem 1, this system can be
approximated precisely with the single equivalent rule:

If i1 is P then o1 is M (20)

whereby the linguistic term M (medium) for the output498

in this rule has replaced the terms S (small) and B (big)499

for the same output from the set of two inconsistent500

disjunctive rules. In this case, Algorithm 1 should be501

applied and Conditions 1–3 should hold.502

For clarity, the fuzzy system from Equation (19)503

will be called ‘original’ whereas the fuzzy system from504

Equation (20) will be referred to as ‘aggregated’. The505

difference between these two systems can be illustrated506

by the implication substage, the aggregation substage507

and the defuzzification stage. In this case, the fuzzifi-508

cation stage and the application substage for the two509

systems are the same due to the identical ‘if’ parts for510

the input, as shown by Equations (19, 20).511

As the ‘if’ parts of the two rules in the original system512

are identical, the firing strength gS for the first rule and513

the firing strength gB for the second rule in this system514

are assumed to have been found to be equal to 0.66. 515

Likewise, due to the identity between the ‘if’ part of the 516

single rule in the aggregated system and the antecedent 517

parts of the two rules in the original system, the firing 518

strength gM for this single rule must also have been 519

found to be equal to 0.66. 520

At the implication substage, the fuzzy membership 521

functions FS and FB for the output from the original 522

system are obtained as: 523

FS ={0/0, 0.33/1, 0.66/2, 0.66/3, 0.66/4, 0.33/5, 524

0/6, 0/7, 0/8, 0/9, 0/10, 0/11, 0/12} 525

FB ={0/0, 0/1, 0/2, 0/3, 0/4, 0/5, 0/6, 0.33/7, 526

0.66/8, 0.66/9, 0.66/10, 0.33/11, 0/12} (21) 527

where FS and FB represent the linguistic values S and 528

B, respectively. 529

Due to the trapezoidal shape FS and FB , the asso- 530

ciated fuzzy membership degrees fS and fB for any 531

element y from the discrete variation range for the out- 532

put will be mapped by: 533

fs = 0, if y ≤ as 534

fs = (y − as)/(bs − as), if as ≤ y ≤ bs 535

fs = 0.66, if bs ≤ y ≤ cs 536

fs = (ds − y)/(ds − cs), if cs ≤ y ≤ ds 537

fs = 0, if ds ≤ y (22) 538

539

fB = 0, if y ≤ aB 540

fB = (y − aB)/(bB − aB), if aB ≤ y ≤ bB 541

fB = 0.66, if bB ≤ y ≤ cB 542

fB = (dB − y)/(dB − cB), if cB ≤ y ≤ dB 543

fB = 0, if dB ≤ y (23) 544

where the parameters of the membership functions FS 545

and FB are the following 546

as = 0, bs = 2, cs = 4, ds = 6 547

ab = 6, bB = 8, cB = 10, dB = 12 (24) 548

At the aggregation substage, the aggregated fuzzy 549

membership functions FSB for the output from the orig- 550

inal is obtained as follows: 551

FSB = Fs or FB = {0/0, 0.33/1, 0.66/2, 552

0.66/3, 0.66/4, 0.33/5, 0/6, 0.33/7, 0.66/8, 553

0.66/9, 0.66/10, 0.33/11, 0/12} (25) 554555
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At the defuzzification stage, the defuzzified value556

DSB for the output from the original system is obtained557

as follows:558

DSB = [(0.0) + (0.33.1) + (0.66.2)559

+(0.66.3) + (0.66.4) + (0.33.5) + 0.6560

+(0.33.7) + (0.66.8) + (0.66.9)561

+(0.66.10) + (0.33.11) + (0.12)]/(0562

+0.33 + 0.66 + 0.66 + 0.66 + 0.33 + 0563

+0.33 + 0.66 + 0.66 + 0.66 + 0.33 + 0)564

= 32/5.33 = 6 (26)565

At the implication substage, the fuzzy membership566

function FM for the output from the aggregated system567

is obtained as:568

FM = {0/0, 0/1, 0/2, 0/3, 0.33/4, 0.66/5,569

0.66/6, 0.66/7, 0.33/8, 0/9, 0/10, 0/11,570

0/12} (27)571

where FM represents the linguistic value M.572

Due to the trapezoidal shape of FM , the associ-573

ated fuzzy membership degree fM for any element y574

from the discrete variation range for the output will be575

mapped by:576

fM = 0, if y ≤ aM577

fM = (y − aM)/(bM − aM), if aM ≤ y ≤ bM578

fM = 0.66, if bM ≤ y ≤ cM579

fM = (dM − y)/(dM − cM), if cM ≤ y ≤ dM580

fM = 0, if dM ≤ y (28)581

where the parameters of the membership functions FM

and FB are the following:

aM = 3, bM = 5, cM = 7, dM = 9 (29)

At the aggregation substage, the aggregated fuzzy582

membership function for the output from the aggregated583

system is equal to FM because there is only one rule in584

this system.585

At the defuzzification stage, the defuzzified value586

DM for the output from the aggregated system is587

obtained as follows:

DM = [(0.0) + (0.1) + (0.2) + (0.3)

+(0.33.4) + (0.66.5) + (0.66.6) + (0.66.7)

+(0.33.8) + (0.9) + (0.10) + (0.11)

+(0.12)]/(0 + 0 + 0 + 0 + 0.33

+0.66 + 0.66 + 0.66 + 0.33 + 0 + 0 + 0

+0) = 16/2.66 = 6

(30) 588

It follows from Equations (26 and 30) that the 589

defuzzified value DSB for the output from the origi- 590

nal system is equal to the defuzzified value DM for the 591

same output from the aggregated system. This shows 592

that the two systems from Equations (19, 20) are equiv- 593

alent in terms of their behaviour for the chosen crisp 594

value of the input. 595

5. Simulation results 596

The rule base aggregation method is applied to a case 597

study on transportation demand management where the 598

main goal is to model preferences of employees to 599

telecommuting. In this case, inconsistency is dealt with 600

using the aggregation approach whereby the original 601

and the aggregated model are compared to each other 602

with regard to their ability to approximate the given 603

data. In this comparison, Theorem 1 and Algorithm 604

1 are used for the derivation of the aggregated model 605

under the assumption that Conditions 1–3 hold. 606

The data is based on a survey that has been obtained 607

from seven government organisations in the central 608

business district of Tehran - capital city of Iran. The 609

inputs taken into account for determining preferences 610

of employees are computer time usage, travel cost 611

from home to work and work experience. The out- 612

put from this process is the number of days on which 613

each employee prefers to telecommute to work from 614

home. 615

The three inputs and the output are presented by three 616

linguistic terms each, as shown in Figs. 1–4. These 617

terms belong to the set low, medium, high and they 618

are represented by symmetric triangular fuzzy member- 619

ship functions that cover uniformly the whole variation 620

range for each of these four variables. 621

The rule bases for the aggregated and original model 622

are presented in Tables 1 and 2, respectively. In this case, 623

the original model has 36 rules whereas the aggregated 624

model has only 27 rules. This is due to the fact each 625

of the 9 pairs of inconsistent rules from the original 626
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Table 1
Aggregated model

No Computer Travel Work Output
usage cost experience

1 1 1 1 1
2 1 1 2 1
3 1 1 3 2
4 1 2 1 1
5 1 2 2 2
6 1 2 3 2
7 1 3 1 2
8 1 3 2 2
9 1 3 3 2
10 2 1 1 2
11 2 1 2 2
12 2 1 3 2
13 2 2 1 2
14 2 2 2 2
15 2 2 3 2
16 2 3 1 2
17 2 3 2 2
18 2 3 3 3
19 3 1 1 2
20 3 1 2 3
21 3 1 3 3
22 3 2 1 2
23 3 2 2 2
24 3 2 3 2
25 3 3 1 3
26 3 3 2 3
27 3 3 3 3

model has been replaced by a single equivalent rule in627

the aggregated model in accordance with Theorem 1,628

Algorithm 1 and Conditions 1–3.629

The output surfaces for the aggregated and original630

model are plotted in Figs. 5–10, respectively. In this631

case, the output surface for each of the two models is632

plotted for three fixed values for the third input. It is633

Fig. 1. Linguistic terms for first input (computer time usage).

Table 2
Original model

No Computer Travel Work Output
usage cost experience

1 1 1 1 1
2 1 1 2 1
3 1 1 3 1
4 1 1 3 3
5 1 2 1 1
6 1 2 2 2
7 1 2 3 1
8 1 2 3 3
9 1 3 1 1
10 1 3 1 3
11 1 3 2 2
12 1 3 3 2
13 2 1 1 1
14 2 1 1 3
15 2 1 2 2
16 2 1 3 1
17 2 1 3 3
18 2 2 1 1
19 2 2 1 3
20 2 2 2 2
21 2 2 3 1
22 2 2 3 3
23 2 3 1 2
24 2 3 2 2
25 2 3 3 3
26 3 1 1 1
27 3 1 1 3
28 3 1 2 3
29 3 1 3 3
30 3 2 1 1
31 3 2 1 3
32 3 2 2 2
33 3 2 3 2
34 3 3 1 3
35 3 3 2 3
36 3 3 3 3

Fig. 2. Linguistic terms for second input (travel cost).
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Fig. 3. Linguistic terms for third input (work experience).

Fig. 4. Linguistic terms output (telecommuting preference).

Fig. 5. Output surface for aggregated model with third input fixed
to 0.

Fig. 6. Output surface for aggregated model with third input fixed
to 15.

Fig. 7. Output surface for aggregated model with third input fixed
to 30.

Fig. 8. Output surface for original model with third input fixed to 0.

obvious from these plots that the output surfaces of the 634

two models are quite similar. 635

The output values for the aggregated and original 636

model are plotted in Figs. 11 and 12, respectively. In 637
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Fig. 9. Output surface for original model with third input fixed to 15.

Fig. 10. Output surface for original model with third input fixed
to 30.

this case, the output value for each of the two models638

is plotted alongside the data output, i.e. the observation639

value for each of the 245 individuals from the survey. It640

is also obvious from these plots that the output values 641

of two models are quite similar. Finally, the aggregated 642

and the original model are evaluated comparatively 643

in terms of the Mean Absolute Deviation (MAD) in 644

Table 3. The column labels in this table have the follow- 645

ing meanings and notations: number of individual (Ind), 646

output value for original model (Org), rounded value for 647

original model (Rounded-Org), output value for aggre- 648

gated model (Agg), rounded value for aggregated model 649

(Rounded-Agg), output value from observations (Obs), 650

MAD for original model (MAD Org) and MAD for 651

aggregated model (MAD Agg). All fractional values of 652

the outputs for the two models have been rounded to 653

the nearest integer to make them more compatible with 654

the integer format of the data output. 655

The last row in Table 3 shows the average MAD for 656

the aggregated and original model taken across all 245 657

individuals from the survey. In this case, the aggregated 658

model outperforms the original model in terms of accu- 659

racy although it has a substantially smaller number of 660

rules. This implies that the removal of the inconsis- 661

tent rules from the original model has led not only to 662

improvement of efficiency but also to improvement of 663

accuracy. In other words, the inconsistent rules repre- 664

sent redundancy in the rule base whose removal through 665

aggregation leads to improvement in these two model 666

performance indicators. 667

6. Conclusion 668

The proposed rule base aggregation method reduces 669

the number of rules in a fuzzy system. This translates 670

into a reduction of the associated computational com- 671

plexity in terms of the overall amount of operations 672

6
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Fig. 11. Simulation results for aggregated model.
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Fig. 12. Simulation results for original model.

Table 3
Comparative evaluation of both models

Ind Org Rounded Agg Rounded Obs MAD MAD
Org Agg Org Agg

1 2.5 3 2.4155 2 3 0 1
2 2.5 3 2.5315 3 3 0 0
3 2.5 3 2.526 3 2 1 1
4 2.5 3 2.5086 3 3 0 0
5 2.5 3 2.4155 2 3 0 1
6 2.5 3 2.5 3 4 1 1
7 2.5 3 2.4197 2 3 0 1
8 1.9888 2 1.8479 2 2 0 0
9 1.8329 2 1.7478 2 2 0 0
10 2.5 3 2.5856 3 4 1 1
. . . . . . . .
. . . . . . . .
. . . . . . . .
235 3.2393 3 3.2522 3 2 1 1
236 2.5 3 2.6114 3 0 3 3
237 2.5 3 2.5908 3 2 1 1
238 2.5 3 2.5 3 0 3 3
239 2.5 3 2.5 3 3 0 0
240 2.5 3 2.6985 3 0 3 3
241 2.5 3 2.5999 3 2 1 1
242 3.0555 3 3.1394 3 5 2 2
243 2.5 3 2.529 3 3 0 0
244 2.5 3 2.7698 3 3 0 0
245 2.5 3 2.6392 3 3 0 0

Average 1.114 1.110

during the stages of fuzzification, inference and673

defuzzification. Therefore, the method is suitable for674

time-critical applications in which rule base refine-675

ment is either unacceptable due to time constraints or676

impossible due to lack of additional date or knowledge.677

Besides this, the solution obtained by the proposed678

method outperforms the one obtained without using this679

method in terms of both efficiency and accuracy for the 680

case study under consideration. 681

The proposed method can be used without mod- 682

ification for other types of fuzzification, inference 683

and defuzzification. For example, instead of triangular 684

membership functions for fuzzification, it is possible to 685

use trapezoidal ones or others. Also, instead of trun- 686

cation type of implication, it is possible to use scaling 687

type or others. And finally, instead of centre of gravity 688

type of defuzzification, it is possible to use weighted 689

average type or others. 690

The proposed method is illustrated for fuzzy sys- 691

tems with a single rule base but it can be also used for 692

fuzzy systems with multiple rule bases such as fuzzy 693

networks. In this case, the fuzzy network can be trans- 694

formed into a linguistically equivalent single rule base 695

system by means of rule base merging operations and 696

the method can then be applied in exactly the same way 697

to this single rule base system. 698

The proposed method is illustrated for non-evolving 699

fuzzy systems. However, it can be also used for evolv- 700

ing fuzzy systems whose rule base is updated before 701

the start of the fuzzification stage. In this case, if 702

the updated rule base is inconsistent, it can be made 703

consistent by aggregation of the inconsistent rules. 704
705
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