10 research outputs found

    A robust and physical BSIM3 non-quasi-static transient and AC small-signal model for circuit simulation

    Full text link

    A New Non-Quasi Static Mosfet Model

    Get PDF
    Recent progress in wireless communication is sustained through integrated circuit technologies that offer a low cost and low power devices that operate in the Radio Frequency (RF) range with relatively low noise figure. The submicrometer CMOS technology presents a serious alternative to the more expensive, high power GaAs and Si bipolar technologies that have been used for the design of high frequency ICs. Design testing and verification through circuit simulation is a critical step in the design cycle of RF integrated circuits (RFICs). Accurate device models are therefore required to reduce design cycles and to achieve success when the circuit is finally committed to silicon.This thesis addresses the Radio Frequency (RF) small-signal and large-signal models for the MOS transistor. The quasi-static (QS) and non-quasi-static (NQS) models are discussed and the assumptions used in their development are examined. The various charge components are briefly introduced and the source/drain charge partitioning is presented. The limitation of the QS approach at high frequency is investigated using the Bsim3v3.1 model. The development of a first order NQS small-signal model is briefly presented and its suitability for RF applications is indicated. The effect of the distributed gate, channel, and substrate resistances on the high frequency characteristics of the MOS transistor is examined. We propose a Radio Frequency small-signal equivalent circuit (EC) together with an efficient parameter extraction algorithm that is necessary for the device optimization and the development of accurate large-signal models. The validity of the proposed model and the accuracy of the extraction method are verified by comparing Pspice simulation results of the EC to experimental data and the Bsim3v3.1 model up to 10GHz

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Small-signal model for 2D-material based field-effect transistors targeting radio-frequency applications: the importance of considering non-reciprocal capacitances

    Full text link
    A small-signal equivalent circuit of 2D-material based field-effect transistors is presented. Charge conservation and non-reciprocal capacitances have been assumed so the model can be used to make reliable predictions at both device and circuit levels. In this context, explicit and exact analytical expressions of the main radio-frequency figures of merit of these devices are given. Moreover, a direct parameter extraction methodology is provided based on S-parameter measurements. In addition to the intrinsic capacitances, transconductance and output conductance, our approach allows extracting the series combination of drain/source metal contact and access resistances. Accounting for these extrinsic resistances is of upmost importance when dealing with low dimensional field-effect transistors.Comment: 8 pages, 10 figures, 4 table

    Modelling of field-effect transistors based on 2D materials targeting high-frequency applications

    Get PDF
    New technologies are necessary for the unprecedented expansion of connectivity and communications in the modern technological society. The specific needs of wireless communication systems in 5G and beyond, as well as devices for the future deployment of Internet of Things has caused that the International Technology Roadmap for Semiconductors, which is the strategic planning document of the semiconductor industry, considered since 2011, graphene and related materials (GRMs) as promising candidates for the future of electronics. Graphene, a one-atom-thick of carbon, is a promising material for high-frequency applications due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that GRM-based field-effect transistors could potentially outperform other technologies. This thesis presents a body of work on the modelling, performance prediction and simulation of GRM-based field-effect transistors and circuits. The main goal of this work is to provide models and tools to ease the following issues: (i) gaining technological control of single layer and bilayer graphene devices and, more generally, devices based on 2D materials, (ii) assessment of radio-frequency (RF) performance and microwave stability, (iii) benchmarking against other existing technologies, (iv) providing guidance for device and circuit design, (v) simulation of circuits formed by GRM-based transistors.Comment: Thesis, 164 pages, http://hdl.handle.net/10803/40531

    DESIGN OF LOW POWER MOBILE TRANSMITTER

    Get PDF
    The objective of this project is to design a power amplifier for a new two way mobile radio product being launched by Motorola. Two-way mobile radio consists of a transmitter, receiver and a voltage-controlled oscillator. Mobile radios usually have transmitter whose power output ranges from 1 W to 50 W. Design of transmitter lineup for mobile radio involves the design of appropriate matching network for driver and power amplifier. The power and voltage control of these devices are equally important. Designing a mobile radio transmitter is regarded tricky due to difficulty in getting a robust transmitter that is stable with minimum oscillation. In this work, the design is attempted usmg Advanced Design Simulator (ADS). The design simulation provides accurate simulation on harmonic filter and antenna switch. 50 ohm matching networks have also been designed and simulated using ADS and it gives close approximation to the specifications. The radio has since been prototyped and tested. The evaluation and testing of the radio has been carried out and it satisfies the specifications that are set by the Telecommunication Industry Association (TIA). Some minor optimization has also been performed to improve the radio performance. Eventual product is a transmitter line up that function well today. 11

    Modeling and Fundamental Design Considerations for Portable, Wearable and Implantable Electronic Biosensors

    Get PDF
    Chronic diseases such as cancer, diabetes, acquired immune deficiency syndrome (AIDS), etc. are leading causes of mortality all over the world. Portable, wearable and implantable biosensors can go a long way in preventing these premature deaths by frequent or continuous self-monitoring of vital health parameters

    DESIGN OF LOW POWER MOBILE TRANSMITTER

    Get PDF
    The objective of this project is to design a power amplifier for a new two way mobile radio product being launched by Motorola. Two-way mobile radio consists of a transmitter, receiver and a voltage-controlled oscillator. Mobile radios usually have transmitter whose power output ranges from 1 W to 50 W. Design of transmitter lineup for mobile radio involves the design of appropriate matching network for driver and power amplifier. The power and voltage control of these devices are equally important. Designing a mobile radio transmitter is regarded tricky due to difficulty in getting a robust transmitter that is stable with minimum oscillation. In this work, the design is attempted usmg Advanced Design Simulator (ADS). The design simulation provides accurate simulation on harmonic filter and antenna switch. 50 ohm matching networks have also been designed and simulated using ADS and it gives close approximation to the specifications. The radio has since been prototyped and tested. The evaluation and testing of the radio has been carried out and it satisfies the specifications that are set by the Telecommunication Industry Association (TIA). Some minor optimization has also been performed to improve the radio performance. Eventual product is a transmitter line up that function well today. 11

    ANALYTICAL COMPACT MODELING OF NANOSCALE MULTIPLE-GATE MOSFETS.

    Get PDF
    L’objectiu principal d’aquest treball és el desenvolupament d’un model compacte per a MOSFETs de múltiple porta d’escala nanomètrica, que sigui analític, basat en la física del dispositiu, i predictiu per a simulacions AC i DC. Els dispositius investigats són el MOSFET estàndar en mode d’inversió, a més d’un nou dispositiu anomenat “junctionless MOSFET” (MOSFET sense unions). El model es va desenvolupar en una formulació compacta amb l’ajuda de l’equació de Poisson i la tècnica de la transformación conforme de Schwarz-Cristoffel. Es varen obtenir les equacions del voltatge llindar i el pendent subllindar. Usant la funció W de Lambert, a més d’una funció de suavització per a la transcició entre les regions de depleció i acumulació, s’obté un model unificat de la densitat de càrrega, vàlid per a tots els modes d’operació del transistor. S’estudien també les dependències entre els paràmetres físics del dispositiu i el seu impacte en el seu rendiment. Es tenen en compteefectes importants de canal curt i de quantització. Es discuteixen també la simetria al voltant de Vds= 0 V, i la continuïtat del corrent de drenador en les derivades d’ordre superior. El model va ser validat mitjançant simulacions TCAD numèriques i mesures experimentals.El objetivo principal de este trabajo es el desarrollo de un modelo compacto para MOSFETs de múltiple puerta de escala nanométrica, que sea analítico, basado en la física del dispositivo, y predictivo para simulaciones AC y DC. Los dispositivos investigados son el MOSFET estándar en modo inversión, además de un nuevo dispositivo llamado “junctionless MOSFET” (MOSFET sin uniones). El modelo se desarrolló en una formulación compacta con la ayuda de la ecuación de Poisson y la técnica de transformación conforme de Schwarz-Cristoffel. Se obtuvieron las ecuaciones del voltaje umbral y la pendiente subumbral. Usando la función W de Lambert, además de una función de suavización para la transición entre las regiones de depleción y acumulación, se obtiene un modelo unificado de la densidad de carga, válido para todos los modos de operación del transistor. Se estudian también las dependencias entre los parámetros físicos del dispositivo y su impacto en su rendimiento. Se tienen en cuenta efectos importantes de canal corto y de cuantización. Se discuten también la simetría alrededor de Vds= 0 V, y la continuidad de la corriente de drenador en las derivadas de orden superior. El modelo fue validado mediante simulaciones TCAD numéricas y medidas experimentales.The main focus is on the development of an analytical, physics-based and predictive DC and AC compact model for nanoscale multiple-gate MOSFETs. The investigated devices are the standard inversion mode MOSFET and a new device concept called junctionless MOSFET. The model is derived in closed-from with the help of Poisson's equation and the conformal mapping technique by Schwarz-Christoffel. Equations for the calculation of the threshold voltage and subthreshold slope are derived. Using Lambert's W-function and a smoothing function for the transition between the depletion and accumulation region, an unified charge density model valid for all operating regimes is developed. Dependencies between the physical device parameters and their impact on the device performance are worked out. Important short-channel and quantization effects are taken into account. Symmetry around Vds = 0 V and continuity of the drain current at derivatives of higher order are discussed. The model is validated versus numerical TCAD simulations and measurement data

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore