1,405 research outputs found

    Decomposable Subspaces, Linear Sections of Grassmann Varieties, and Higher Weights of Grassmann Codes

    Get PDF
    Given a homogeneous component of an exterior algebra, we characterize those subspaces in which every nonzero element is decomposable. In geometric terms, this corresponds to characterizing the projective linear subvarieties of the Grassmann variety with its Plucker embedding. When the base field is finite, we consider the more general question of determining the maximum number of points on sections of Grassmannians by linear subvarieties of a fixed (co)dimension. This corresponds to a known open problem of determining the complete weight hierarchy of linear error correcting codes associated to Grassmann varieties. We recover most of the known results as well as prove some new results. In the process we obtain, and utilize, a simple generalization of the Griesmer-Wei bound for arbitrary linear codes.Comment: 16 page

    Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad

    Get PDF
    Let F and F' be two fields such that F' is a quadratic Galois extension of F. If vertical bar F vertical bar >= 3, then we provide sufficient conditions for a hyperplane of the Hermitian dual polar space DH(5, F') to arise from the Grassmann embedding. We use this to give an alternative proof for the fact that all hyperplanes of DH(5, q(2)), q not equal 2, arise from the Grassmann embedding, and to show that every hyperplane of DH(5, F') that contains a quad Q is either classical or the extension of a non-classical ovoid of Q. We will also give a classification of the hyperplanes of DH(5, F') that contain a quad and arise from the Grassmann embedding

    Points and hyperplanes of the universal embedding space of the dual polar space DW(5,q), q odd

    Get PDF
    It was proved earlier that there are 6 isomorphism classes of hyperplanes in the dual polar space (5,q),, even, which arise from its Grassmann-embedding. In the present paper, we extend these results to the case that isodd.Specifically,wedeterminetheorbitsofthefullautomorphismgroupof(5,q) is odd. Specifically, we determine the orbits of the full automorphism group of (5,q), odd,ontheprojectivepoints(orequivalently,thehyperplanes)oftheprojectivespace(13,q) odd, on the projective points (or equivalently, the hyperplanes) of the projective space (13,q) which affords the universal embedding of (5,q)$

    A Complete Characterization of Irreducible Cyclic Orbit Codes and their Pl\"ucker Embedding

    Full text link
    Constant dimension codes are subsets of the finite Grassmann variety. The study of these codes is a central topic in random linear network coding theory. Orbit codes represent a subclass of constant dimension codes. They are defined as orbits of a subgroup of the general linear group on the Grassmannian. This paper gives a complete characterization of orbit codes that are generated by an irreducible cyclic group, i.e. a group having one generator that has no non-trivial invariant subspace. We show how some of the basic properties of these codes, the cardinality and the minimum distance, can be derived using the isomorphism of the vector space and the extension field. Furthermore, we investigate the Pl\"ucker embedding of these codes and show how the orbit structure is preserved in the embedding.Comment: submitted to Designs, Codes and Cryptograph
    corecore