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Abstract

In [10], one of the authors proved that there are 6 isomorphism
classes of hyperplanes in the dual polar space DW (5, q), q even, which
arise from its Grassmann-embedding. In the present paper, we extend
these results to the case that q is odd. Specifically, we determine the
orbits of the full automorphism group of DW (5, q), q odd, on the
projective points (or equivalently, the hyperplanes) of the projective
space PG(13, q) which affords the universal embedding of DW (5, q).
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1 Introduction

A partial linear rank two incidence geometry, also called a point-line geom-
etry, is a pair Γ = (P ,L) consisting of a set P whose elements are called
points and a collection L of distinguished subsets of P whose elements are
called lines, such that any two distinct points are contained in at most 1 line.
The point-collinearity graph of Γ is the graph with vertex set P where two
points are adjacent if they are collinear, that is, lie on a common line. By a
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subspace of Γ we mean a subset S of P such that if l ∈ L and l ∩ S contains
at least two points, then l ⊂ S. A subspace S is singular provided each pair
of points in S is collinear, that is, S is a clique in the collinearity graph of Γ.
(P ,L) is said to be Gamma space (see [13]) if, for every x ∈ P , {x} ∪ Γ(x)
is a subspace. A subspace S 6= P is a geometric hyperplane if it meets every
line.

Let e be a positive integer, p a prime and V a 6-dimensional vector space
over the finite field Fq, q = pe, equipped with a non-degenerate alternating
form f . Then every vector ū ∈ V is isotropic, that is, satisfies f(ū, ū) = 0. A
subspace U of V is called totally isotropic (with respect to f) if f(ū1, ū2) = 0
for all ū1, ū2 ∈ U .

Associated with (V, f) is a polar space which is denoted by W (5, q). Here,
by a polar space we shall mean a point-line geometry (P, L) which satisfies
the following properties:

1. (P, L) is a Gamma space and for every point p and line l, p is collinear
with some point of l (this means that p is collinear with 1 or all points of l).

2. No point p is collinear with every other point; and

3. There is an integer n called the rank of (P, L) such that if S0 ⊂ S1 ⊂
· · · ⊂ Sk is a properly ascending chain of singular subspaces then k ≤ n.
When n = 2 (P, L) is said to be a generalized quadrangle.

The points, respectively lines, of W (5, q) are the 1-dimensional, respec-
tively 2-dimensional, subspaces of V which are totally isotropic with respect
to f and incidence is containment. In W (5, q) two points 〈ū1〉V and 〈ū2〉V
are collinear if and only if f(ū1, ū2) = 0, i.e. if and only if ū1 and ū2 are
orthogonal.

Also associated with the alternating form f of V , there is a dual polar
space DW (5, q). The points, respectively lines, of DW (5, q) are the 3-spaces,
respectively 2-spaces, of V which are totally isotropic with respect to f and
incidence is reverse containment. We denote the point-set and line-set of
DW (5, q) by P and L, respectively. In the incidence system (P ,L) two
“points” U1 and U2 are collinear if and only if dim(U1 ∩ U2) = 2. More
generally, one can say that the distance d(U1, U2) (in the collinearity graph of
(P ,L)) between two points U1 and U2 of DW (5, q) is equal to 3−dim(U1∩U2).
The lines of the dual polar space DW (5, q) are maximal singular subspaces
and consequently, this geometry is also a Gamma space.
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Alternatively, the geometries (P, L) and (P ,L) can be defined as Lie
incidence geometries (see [4]) making use of a construction of Gamma spaces
from a symmetrical orbital (orbit of the Symplectic group on the Cartesian
products P 2 or P2 (see [13]).

By Shult and Yanushka [21] or Cameron [1], the set of totally isotropic
3-spaces of V which contain a given 1-space of V is a convex subspace of
diameter 2 of DW (5, q). Such a convex subspace is called a quad of DW (5, q).
The points and lines contained in a quad define a generalized quadrangle
which is isomorphic to the classical generalized quadrangle Q(4, q) (Payne
and Thas [16, Section 3.1]).

This paper is concerned with classifying all the geometric hyperplanes of
DW (5, q), q odd, which arise from an embedding (defined below). We will
show (See Main Theorem) that there are always six isomorphism classes of
such hyperplanes.

The notion of a geometric hyperplane was introduced by Veldkamp (see
[23], [24]) in his characterization of polar geometries for the explicit pur-
pose of proving that such a geometry is embeddable. Geometric hyperplanes
have been studied in many other contexts as well: for example, they arise in
the classification by Cohen and Shult of the affine polar spaces (see [3]), in
Cuypers’ characterization of the graph on 2300 vertices with automorphism
group Co2, the second Conway group ([8]). Often by removing a geometric
hyperplane with certain properties from an incidence geometry one can cre-
ate interesting affine geometries and this was the motivation of Pasini and
Shpectorov [15] in studying uniform hyperplanes in dual polar spaces as well
as Cooperstein and Pasini [7] in proving that ovoidal hyperplanes do not
exist in DW (5, q).

The research carried out in the present paper is part of the larger project
of classifying all hyperplanes of finite dual polar spaces of small rank. A
complete classification of all hyperplanes of the Hermitian dual polar space
DH(5, q2) was obtained in De Bruyn and Pralle [11], [12]. All hyperplanes of
the dual polar space DQ−(7, q) arising from an embedding were classified in
De Bruyn [9]. The classification of all hyperplanes of the dual polar spaces
DQ(6, q) and DQ(8, q) which arise from their spin-embeddings was obtained
in Cardinali, De Bruyn & Pasini [2], De Bruyn [9], Shult [19] and Shult &
Thas [20]. A complete list of all hyperplanes of DW (5, q), q even, arising
from an embedding was given in Pralle [17] (for q = 2) and De Bruyn [10]
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(for arbitrary q even).

2 Technical description of the results

2.1 The Grassmann-embedding of DW (5, q)

We continue with the notation introduced in Section 1. Choose a basis
S = {v̄1, w̄1, v̄2, w̄2, v̄3, w̄3} in V such that f(v̄i, w̄i) = 1 and f(v̄i, v̄j) =
f(w̄i, w̄j) = f(v̄i, w̄j) = 0 for all i, j ∈ {1, 2, 3} with i 6= j. Let W :=

∧3 V be
the third exterior product of V which is a vector space of dimension

(
6
3

)
= 20

over Fq. Define now a bilinear form g(·, ·) from W × W to Fq by setting
α ∧ β equal to g(α, β) (v̄1 ∧ w̄1 ∧ v̄2 ∧ w̄2 ∧ v̄3 ∧ w̄3) for all α, β ∈ W . Since
(ū1 ∧ ū2 ∧ ū3) ∧ (ū4 ∧ ū5 ∧ ū6) = (−1)9(ū4 ∧ ū5 ∧ ū6) ∧ (ū1 ∧ ū2 ∧ ū3) for all
vectors ū1, ū2, . . . , ū6 ∈ V , the form g(·, ·) is alternative. Obviously, it is also
non-degenerate.

For every point x = 〈ū1, ū2, ū3〉V of DW (5, q), let ε(x) denote the 1-space
〈ū1∧ū2∧ū3〉W of W =

∧3 V . This 1-space is independent from the generating
set {ū1, ū2, ū3} of x. It is well-known that the subspace M of W generated
by all 1-spaces ε(x), x ∈ P , is 14-dimensional. One readily verifies that a
basis of M is given by the set SM := {pi | 1 ≤ i ≤ 14}, where

p1 = v̄1 ∧ v̄2 ∧ v̄3, p2 = v̄1 ∧ v̄2 ∧ w̄3, p3 = v̄1 ∧ w̄2 ∧ v̄3, p4 = v̄1 ∧ w̄2 ∧ w̄3,

p5 = w̄1 ∧ v̄2 ∧ v̄3, p6 = w̄1 ∧ v̄2 ∧ w̄3, p7 = w̄1 ∧ w̄2 ∧ v̄3, p8 = w̄1 ∧ w̄2 ∧ w̄3,

p9 = v̄1 ∧ v̄2 ∧ w̄2 − v̄1 ∧ v̄3 ∧ w̄3, p10 = w̄1 ∧ v̄2 ∧ w̄2 − w̄1 ∧ v̄3 ∧ w̄3,

p11 = v̄1 ∧ w̄1 ∧ v̄2 − v̄2 ∧ v̄3 ∧ w̄3, p12 = v̄1 ∧ w̄1 ∧ w̄2 − w̄2 ∧ v̄3 ∧ w̄3,

p13 = v̄1 ∧ w̄1 ∧ v̄3 − v̄2 ∧ w̄2 ∧ v̄3, p14 = v̄1 ∧ w̄1 ∧ w̄3 − v̄2 ∧ w̄2 ∧ w̄3.

For all i, j ∈ {1, . . . , 14}, g(pi, pj) = 0, except when {i, j} is equal to {1, 8},
{2, 7}, {3, 6}, {4, 5}, {9, 10}, {11, 12} or {13, 14}. Hence, the form g(·, ·)
defines a non-degenerate alternating form in the 14-space M . For every
subspace U of M , let U⊥g = {m ∈ M | g(u, m) = 0 for all u ∈ U}.

The map ε defines a full projective embedding of the dual polar space
DW (5, q) into the projective space PG(M) ∼= PG(13, q). This embedding is
called the Grassmann-embedding of DW (5, q). If q 6= 2, then by results
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of Cooperstein [5] and Kasikova & Shult [14], we know that the Grass-
mann-embedding of DW (5, q) is absolutely universal (Ronan [18]). This
implies that all full embeddings of DW (5, q), q 6= 2, can be obtained from
its Grassmann-embedding by taking so-called quotients.

If π is a hyperplane of PG(M), then ε−1(ε(P) ∩ π) is a (geometric) hy-
perplane of DW (5, q), namely a proper subset of P intersecting each line of
DW (5, q) in either a unique point or the whole line. We will say that the
hyperplane ε−1(ε(P) ∩ π) arises from the embedding ε.

2.2 The automorphism groups of W (5, q) and DW (5, q)

Before proceeding to our main theorem we describe the automorphism groups
of W (5, q) and DW (5, q). Suppose θ is a permutation of the point-set of
W (5, q). Then θ will be an automorphism of W (5, q) if and only if it induces
a permutation on the set of all ordered pairs of distinct collinear points of
W (5, q). Similarly, a permutation of P will be an automorphism of DW (5, q)
if and only if it induces a permutation of the set of all ordered pairs of distinct
collinear points of DW (5, q). It is not difficult to see that automorphism
groups of DW (5, q) and W (5, q) are isomorphic.

That automorphisms of W (5, q) induce automorphisms of DW (5, q) is
fairly straightforward. That automorphisms of DW (5, q) induce automor-
phisms of W (5, q) follows from the fact that the quads of DW (5, q) are char-
acterized as the convex subspaces of diameter 2 and that these are in one-to-
one correspondence with the points of W (5, q). We proceed to describe the
group Aut(W (5, q)) ∼= Aut(DW (5, q)).

Recall that S = {v̄1, w̄1, v̄2, w̄2, v̄3, w̄3} is a basis of V such that f(v̄i, w̄i) =
1 and f(v̄i, v̄j) = f(w̄i, w̄j) = f(v̄i, w̄j) = 0 for all i, j ∈ {1, 2, 3} with i 6=
j. A similarity of (V, f) is a linear transformation σ ∈ GL(V ) such that
f(σ(ū1), σ(ū2)) = λσ · f(ū1, ū2) for all ū1, ū2 ∈ V . Here λσ is a non-zero
scalar which depends on σ but is independent of ū1 and ū2. We denote by
Gf ≤ GL(V ) the group of all similarities. An isometry is a similarity σ
with λσ = 1. We denote by Sf the group of all isometries. Sf is normal in
Gf and isomorphic to Sp(6, Fq). Clearly similarities induce automorphisms
of W (5, q). The kernel of the action of Gf on P is the center of Gf and
consists of all the scalar transformations λ · IV , where λ is a non-zero scalar.
Denote by PGf the quotient Gf/Z(Gf ) and by PSf the quotient of Sf by
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Sf ∩ Z(Gf ). We note that Sf ∩ Z(Gf ) = Z(Sf ) = 〈−IV 〉 and therefore
SfZ(Gf )/Z(Gf ) ∼= Sf/Z(Sf ). Thus, we may consider PSf to be a subgroup
of PGf . The group PSf is the simple group PSp(6, Fq). The index of PSf in
PGf is two (see Steinberg [22]). If σ∗ is the linear transformation of V which
fixes v̄i, i = 1, 2, 3 and takes w̄i to dw̄i, i = 1, 2, 3 with d a given non-square
in Fq then σ∗ ∈ Gf \ Sf and consequently, PGf = PSf〈σ∗〉. This describes
the automorphisms of W (5, q) which are induced by linear transformations
of V . In addition, there are so-called “field automorphisms”.

For ū ∈ V denote by [ū]S the coordinate vector of ū with respect to the
basis S of V . For every γ ∈ Aut(Fq), define a map Tγ : V → V by [Tγ(v̄)]S =
γ([v̄]S). Then Tγ induces a permutation of the point-set of W (5, q) which
preserves orthogonality and therefore induces an automorphism of W (5, q).
If A = {Tγ | γ ∈ Aut(Fq)}, then Aut(W (5, q)) = PGfA = PSf〈σ∗〉A.

2.3 The main results

Every element θ of Gf gives rise to a unique element θ′ ∈ GL(
∧3 V ) such that

θ′(ū1∧ū2∧ū3) = θ(ū1)∧θ(ū2)∧θ(ū3) for all ū1, ū2, ū3 ∈ V . Obviously, θ′ fixes

M and hence gives rise to an element θ̂ ∈ GL(M). For all α, β ∈ W =
∧3 V ,

we have
g(θ′(α), θ′(β)) = det(θ) · g(α, β). (1)

Hence, θ̂ is a similarity of (M, g). Now, define Ĝf := {θ̂ | θ ∈ Gf} and

Ŝf := {θ̂ | θ ∈ Sf}. By (1),

(φ(U))⊥g = φ(U⊥g) (2)

for every φ ∈ Ĝf and every subspace U of M .

Suppose now that γ ∈ Aut(Fq). Let B be the basis {v̄1 ∧ v̄2 ∧ v̄3, w̄1 ∧
w̄2 ∧ w̄3} ∪ {v̄i ∧ v̄j ∧ w̄k, v̄k ∧ w̄i ∧ w̄j | 1 ≤ i, j, k ≤ 3, i < j} of W . Let
T ′

γ be the Fp-linear map of W defined by [T ′
γ(α)]B = γ([α]B). We have

T ′
γ(ū1 ∧ ū2 ∧ ū3) = Tγ(ū1) ∧ Tγ(ū2) ∧ Tγ(ū3) for all ū1, ū2, ū3 ∈ V . For all

α, β ∈ W , we have
g(T ′

γ(α), T ′
γ(β)) = γ(g(α, β)). (3)

T ′
γ fixes each of the vectors of the basis SM of M and hence induces an

Fp-linear map T̂γ : M → M . By (3),

(T̂γ(U))⊥g = T̂γ(U
⊥g) (4)
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for every subspace U of M .

Let Gf (respectively Ĝf ) denote the group of Fp-linear maps of V (respec-

tively W ) generated by Gf and Tγ, γ ∈ Aut(Fq) (respectively Ĝf and T̂γ, γ ∈
Aut(Fq)). By the discussion above, for every θ ∈ Gf , there exists a unique
Fp-linear map θ′ : W → W such that θ′(ū1 ∧ ū2 ∧ ū3) = θ(ū1)∧ θ(ū2)∧ θ(ū3)
for all ū1, ū2, ū3 ∈ V . The map θ′ stabilizes M and hence induces an Fp-

linear map θ̂ : M → M . Obviously, θ̂ ∈ Ĝf . Moreover, the map θ 7→ θ̂ is an

isomorphism between the groups Gf and Ĝf .

It is the main purpose of this paper to determine the orbits of the group
Aut(DW (5, q)) on the hyperplanes of DW (5, q), q odd, which arise from
its Grassmann-embedding. Since the Grassmann-embedding of DW (5, q), q
odd, is absolutely universal, the hyperplanes of DW (5, q), q odd, arising from
the Grassmann-embedding are all the hyperplanes of that dual polar space
which arise from an embedding.

Determining the orbits of Aut(DW (5, q)) on the hyperplanes of DW (5, q)

is equivalent to the enumeration of all Ĝf -orbits on the hyperplanes of M .
By equations (2) and (4), this is equivalent to enumerating the orbits of

Ĝf on the 1-spaces of M , i.e. the points of PG(M). We will achieve our

objective by first enumerating the orbits of Ŝf on the 1-spaces of M and

then determining when these Ŝf -orbits fuse when we extend the group to all
of Aut(DW (5, q)).

Before stating our Main Theorem, we need to define some extra vectors
in M . Unless otherwise stated we will always assume in the sequel that q is
an odd prime power. Let d ∈ Fq such that d is a non-square and if −1 is
a non-square, then we take d equal to −1. Define the following additional
vectors of M :

p15 = p1 +p4, p16 = p1 +dp4, p17 = p1 +p4 +p6, p18 = p1 +p8, p19 = p1 +dp8,

p20 = dp1 + p4 + p6 + p7, p21 = dp2 + dp3 + dp5 + p8.

Also, set Pi = 〈pi〉W and Hi = ε−1(P
⊥g

i ∩ ε(P)) for every i ∈ {1, . . . , 21}. We
can now state our main theorem:
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Type Representative Orbit size
I H1 (q3 + 1)(q2 + 1)(q + 1)
II H15

q6−1
q−1

q2(q2+1)
2

III H16
q6−1
q−1

q2(q2−1)
2

IV H17 q3(q6 − 1)(q2 + 1)(q + 1)
V H18

q6(q4−1)(q3+1)
2

VI H20
q6(q4−1)(q3−1)

2

Table 1: The orbits of Aut(DW (5, q)), q odd, on the geometric hyperplanes
of DW (5, q).

Main Theorem. Let q be an odd prime power. Then the group Aut(DW (5, q))
has six orbits on the geometric hyperplanes of DW (5, q) which arise from an
embedding with representatives H1, H15, H16, H17, H18 and H20. The sizes
of the orbits are given in Table 1.

The Main Theorem is a consequence of the following two results, which
we will prove in Sections 3 and 4.

Point Enumeration Theorem (i) If −1 is a non-square in Fq, q odd,

then the group Ŝf has six orbits on the point-set of PG(M) with representa-
tives P1, P15, P16, P17, P18, and P20. The orbit sizes and the stabilizers of a
representative are given in Table 2.

(ii) If −1 is a square in Fq, q odd, then the group Ŝf has eight orbits on
the point-set of PG(M) with representatives P1, P15, P16, P17, P18, P19, P20

and P21. The orbit sizes and stabilizers are given in Table 3.

To prove the Point Enumeration Theorem we will show in both cases that
the conjectured representatives given in the tables are all in different orbits,
compute their stabilizers and hence their orbit sizes. Since in both cases the
sum of the orbit sizes is q14−1

q−1
it will follow that we have enumerated all the

Ŝf -orbits on the points of M .

Fusion Theorem (i) Assume that −1 is a non-square in Fq with q odd.
Then the automorphisms of DW (5, q) induced by σ∗ and Tγ, γ ∈ Aut(Fq),

fix each of the Ŝf -orbits of the hyperplanes H1, H15, H16, H17, H18, and H20.
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Type Representative Orbit size Stabilizer
I P1 (q3 + 1)(q2 + 1)(q + 1) q6.GL(3, q)
II P15

q6−1
q−1

q2(q2+1)
2 q5.SL(2, q)× SL(2, q)× Zq−1.2

III P16
q6−1
q−1

q2(q2−1)
2 q5.SL(2, q2)× Zq−1.2

IV P17 q3(q6 − 1)(q2 + 1)(q + 1) q5.SL(2, q) ∗ Zq−1.2
V P18

q6(q4−1)(q3+1)
2 Z2 × SL(3, q)

VI P20
q6(q4−1)(q3−1)

2 Z2 × SU(3, q)

Table 2: The Ŝf -orbits on the points of PG(M): the case that −1 is a non-
square in Fq.

Type Representative Orbit size Stabilizer
I P1 (q3 + 1)(q2 + 1)(q + 1) q6.GL(3, q)
II P15

q6−1
q−1

q2(q2+1)
2 q5.SL(2, q)× SL(2, q)× Zq−1.2

III P16
q6−1
q−1

q2(q2−1)
2 q5.SL(2, q2)× Zq−1.2

IV P17 q3(q6 − 1)(q2 + 1)(q + 1) q5.SL(2, q) ∗ Zq−1.2
Va P18

q6(q4−1)(q3+1)
4 Z2 × SL(3, q).2

Vb P19
q6(q4−1)(q3+1)

4 Z2 × SL(3, q).2
VIa P20

q6(q4−1)(q3−1)
4 Z2 × SU(3, q).2

VIb P21
q6(q4−1)(q3−1)

4 Z2 × SU(3, q).2

Table 3: The Ŝf -orbits on the points of PG(M): the case that −1 is a square
in Fq.
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(ii) Assume that −1 is a square in Fq with q odd. Then the automorphisms

of DW (5, q) induced by σ∗ and Tγ, γ ∈ Aut(Fq), fix each of the Ŝf -orbits of

the hyperplanes H1, H15, H16 and H17. On the other hand, the Ŝf -orbits of

H18 and H19 become a single orbit as do the Ŝf -orbits of H20 and H21.

The Main Theorem classifies all hyperplanes of DW (5, q), q odd, arising
from an embedding. As previously mentioned, all hyperplanes of DW (5, q),
q even, arising from an embedding were already classified in Pralle [17] (for
q = 2 with the aid of the computer) and De Bruyn [10] (for arbitrary q = 2m

without the use of the computer).

Several combinatorial properties of the hyperplanes of DW (5, q), q odd,
arising from an embedding were already obtained by the authors in [6]. For
each hyperplane H of DW (5, q), q odd, they determined by purely combi-
natorial and geometrical techniques the total number of quads Q for which
Q∩H is a certain configuration of points in Q and the total number of points
x for which ∆(x)∩H is a certain configuration of points in ∆(x). Here, ∆(x)
denotes the set of points equal to or collinear with x. On basis of these com-
binatorial properties, the authors were able to divide the set of hyperplanes
of DW (5, q), q odd, into 6 classes: Type I-hyperplanes, Type II-hyperplanes,
. . ., Type VI-hyperplanes. This terminology is consistent with the one used
in the present paper. By our Main Theorem, each of the 6 classes defined
in [6] is actually an isomorphism class, except when −1 is a non-square in
Fq. Then the Type VI hyperplanes (which all have the same combinatorial
properties mentioned above) split into 2 isomorphism classes: the Type VIa
hyperplanes and the Type VIb hyperplanes.

3 Proof of the Point Enumeration Theorem

3.1 Notations and a few lemmas

We will continue with the notations introduced in Sections 1 and 2.

Let δ ∈ Fq2 \ Fq such that δ2 = d. We may suppose that (i) w̄i = δv̄i

for every i ∈ {1, 2, 3} and (ii) V is a 3-dimensional vector space over Fq2

with basis {v̄1, v̄2, v̄3} and a 6-dimensional vector space over Fq with basis
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S = {v̄1, v̄2, v̄3, w̄1, w̄2, w̄3}. Recall that
∧3 V must be regarded as the third

exterior power of V as a vector space over the field Fq.

Lemma 3.1 If τ is an Fq2-linear transformation of V with det(τ) = 1, then
τ̂ centralizes the vectors p20 and p21.

Proof. Let Eij denote the (3 × 3)−matrix with a “1” in the (i, j)−entry
and 0’s elsewhere and set χij = {I3 + αEij |α ∈ Fq2} for all i, j ∈ {1, 2, 3}
with i 6= j. Also, set w1 = E12 −E21 + E33 and w2 = E11 + E23 −E32. Then
the group SL(3, q2) is generated by χ13, w1 and w2. So, it suffices to prove
that the induced action of each of these centralizes p20 and p21.

Let α = a+bδ where a, b ∈ Fq and suppose τ is the Fq2-linear transformation
of V whose associated matrix with respect to the basis {v̄1, v̄2, v̄3} is equal

to I3 + αE13. Then the matrix of τ with respect to S is

(
A dB
B A

)
, where

A = I3 +aE13 and B = bE13. It is now quite straightforward to compute the
induced action of τ on p20 and p21. τ̂(p20) is equal to

τ̂(d v̄1 ∧ v̄2 ∧ v̄3 + v̄1 ∧ w̄2 ∧ w̄3 + w̄1 ∧ v̄2 ∧ w̄3 + w̄1 ∧ w̄2 ∧ v̄3)

= d[v̄1 ∧ v̄2 ∧ (a v̄1 + v̄3 + bw̄1)] + v̄1 ∧ w̄2 ∧ ((db) v̄1 + aw̄1 + w̄3)

+w̄1 ∧ v̄2 ∧ ((db) v̄1 + aw̄1 + w̄3) + w̄1 ∧ w̄2 ∧ (a v̄1 + v̄3 + bw̄1)

= dv̄1 ∧ v̄2 ∧ v̄3 + (db) v̄1 ∧ v̄2 ∧ w̄1 + v̄1 ∧ w̄2 ∧ w̄3 + a v̄1 ∧ w̄2 ∧ w̄1

+w̄1 ∧ v̄2 ∧ w̄3 + (db) w̄1 ∧ v̄2 ∧ v̄1 + w̄1 ∧ w̄2 ∧ v̄3 + a w̄1 ∧ w̄2 ∧ v̄1

= p20,

since w̄1 ∧ v̄2 ∧ v̄1 = −v̄1 ∧ v̄2 ∧ w̄1 and w̄1 ∧ w̄2 ∧ v̄1 = −v̄1 ∧ w̄2 ∧ w̄1.

Similarly, τ̂(p21) is equal to

τ̂(d v̄1 ∧ v̄2 ∧ w̄3 + d v̄1 ∧ w̄2 ∧ v̄3 + d w̄1 ∧ v̄2 ∧ v̄3 + w̄1 ∧ w̄2 ∧ w̄3)

= d [v̄1 ∧ v̄2 ∧ ((db) v̄1 + aw̄1 + w̄3)] + d [v̄1 ∧ w̄2 ∧ (a v̄1 + v̄3 + bw̄1)]

+d [w̄1 ∧ v̄2 ∧ (a v̄1 + v̄3 + bw̄1)] + w̄1 ∧ w̄2 ∧ ((db) v̄1 + aw̄1 + w̄3)

= (da) v̄1 ∧ v̄2 ∧ w̄1 + d v̄1 ∧ v̄2 ∧ w̄3 + (db) v̄1 ∧ w̄2 ∧ w̄1 + d v̄1 ∧ w̄2 ∧ v̄3

+(da) w̄1 ∧ v̄2 ∧ v̄1 + d w̄1 ∧ v̄2 ∧ v̄3 + (db) w̄1 ∧ w̄2 ∧ v̄1 + w̄1 ∧ w̄2 ∧ w̄3

= p21.

11



The matrix of w1 with respect to S is

(
A O
O A

)
where A = E12 − E21 + E33

and O is the (3× 3)-matrix with all entries equal to 0. ŵ1(p20) is equal to

= ŵ1(d v̄1 ∧ v̄2 ∧ v̄3 + v̄1 ∧ w̄2 ∧ w̄3 + w̄1 ∧ v̄2 ∧ w̄3 + w̄1 ∧ w̄2 ∧ v̄3)

= d (−v̄2) ∧ v̄1 ∧ v̄3 + (−v̄2) ∧ w̄1 ∧ w̄3 + (−w̄2) ∧ v̄1 ∧ w̄3 + (−w̄2) ∧ w̄1 ∧ v̄3

= p20,

since (−v̄2) ∧ v̄1 = v̄1 ∧ v̄2, (−w̄2) ∧ w̄1 = w̄1 ∧ w̄2, (−v̄2) ∧ w̄1 = w̄1 ∧ v̄2 and
(−w̄2) ∧ v̄1 = v̄1 ∧ w̄2.

In an entirely similar way, one shows that ŵ1(p21) = p21, ŵ2(p20) = p20 and
ŵ2(p21) = p21. 2

Recall that every point x ∈ P gives rise to a 1-space ε(x) of M , i.e. a point
ε(x) of PG(M). For a line l ∈ L, we define ε(l) := {ε(x) |x ∈ l}. We
denote by l̃ the 2-space of M generated by the 1-spaces ε(x), x ∈ l. We put

P̃ = P̂ = {ε(x) |x ∈ P}, L̂ = {ε(l) | l ∈ L} and L̃ = {l̃ | l ∈ L}.
Let X be a point of PG(V ). By abuse of notation, we will also write

X ∈ PG(V ). The set Q(X) = {x ∈ P |X ⊂ x ⊂ X⊥} is a convex subspace
of DW (5, q) which defines a generalized quadrangle isomorphic to Q(4, q).
We set Q := {Q(X) |X ∈ PG(V )} and refer to the elements of Q as quads of

DW (5, q). For Q ∈ Q, we will denote by Q̂ the collection {ε(x) |x ∈ Q} and

by Q̃ the subspace of M spanned by the elements of Q̂. We refer to both Q̂
and Q̃ as the quads of M . Set Q̃ = {Q̃ |Q ∈ Q}.

For every point u of DW (5, q), ∆(u) denotes the set of points of DW (5, q)

collinear or equal to u. If P = ε(u) ∈ P̃ , then we define ∆(P ) := ε(∆(u))
and M(P ) is the subspace of M spanned by the elements of ∆(P ). We call
M(P ) the hemisphere of P .

Lemma 3.2 Let X, Y ∈ PG(V ). Then the following holds:

(i) If X ⊥f Y , then Q̃(X) ∩ Q̃(Y ) ∈ L̃.

(ii) If X and Y are not orthogonal, then Q̃(X) ∩ Q̃(Y ) = 0.

Proof. (i) The group Gf is transitive on pairs {X, Y } of 1-spaces of V
such that X ⊥f Y . Therefore we can take X = 〈v̄1〉 and Y = 〈v̄2〉. Then

Q̃(X) = 〈p1, p2, p3, p4, p9〉, Q̃(Y ) = 〈p1, p2, p5, p6, p11〉 and Q̃(X) ∩ Q̃(Y ) =

〈p1, p2〉 ∈ L̃.
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(ii) The group Gf is also transitive on pairs {X, Y } of 1-spaces of V
such that X and Y are non-orthogonal with respect to f . We can take X =
〈v̄1〉, Y = 〈w̄1〉. Now, Q̃(X) = 〈p1, p2, p3, p4, p9〉 and Q̃(Y ) = 〈p5, p6, p7, p8, p10〉.
Hence, Q̃(X) ∩ Q̃(Y ) = 0 as claimed. 2

This result implies the next corollary which is fundamental:

Corollary 3.3 Let Q̃ ∈ Q̃ and P ∈ PG(Q̃) \ P̃. Then Q̃ is the unique quad
of M which contains P .

Lemma 3.4 Let P ∈ P̃ and Q ∈ Q̃ such that P 6∈ Q. Let R denote the
unique point of Q ∩ P̃ at distance 1 from P . Then M(P ) ∩Q = R.

Proof. Since Ĝf is transitive on the pairs (P, Q) with P ∈ P̃ , Q ∈ Q̃
and P 6∈ Q, we may without loss of generality suppose that Q = Q̃(〈v̄1〉)
and P = 〈p8〉. Then R = 〈p4〉. Now, Q = 〈p1, p2, p3, p4, p9〉 and M(P ) =
〈p4, p6, p7, p8, p10, p12, p14〉 and hence M(P ) ∩Q = 〈p4〉 = R. 2

Corollary 3.5 Let P ∈ P̃ and R ∈ PG(M(P )) \ P̃. If R is contained in a
quad, then this quad necessarily contains P .

Lemma 3.6 Let Q̃ ∈ Q̃ and R ∈ PG(Q̃) \ P̃ . Then there exists a P ∈ P̃
such that R ∈ PG(M(P )).

Proof. Let L̃ be contained in Q̃ where L ∈ L. Then Q̃ =
⋃

P∈L̃〈Q̃∩∆(P )〉 ⊂⋃
P∈Q̃ M(P ). 2

In our next lemma we will show that if a point is contained in two distinct
hemispheres, in fact, it is contained in a quad.

Lemma 3.7 Let P and P ′ be distinct points of P̃ and X ∈ PG(M(P ) ∩
M(P ′)). Then there is a quad Q̃ containing P such that X ⊂ Q̃.

Proof. For every t ∈ {1, 2, 3}, Ĝf is transitive on the pairs (P, P ′) of

points of P̃ with d(P, P ′) = t. Therefore we can take (P, P ′) to be one of
(P1, P2), (P1, P4), (P1, P8). For every i ∈ {1, 2, 4, 8}, set Mi = M(Pi). Then

M1 = 〈p1, p2, p3, p5, p9, p11, p13〉, M2 = 〈p1, p2, p4, p6, p9, p11, p14〉,
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M4 = 〈p2, p3, p4, p8, p9, p12, p14〉, M8 = 〈p4, p6, p7, p8, p10, p12, p14〉.

Now M1 ∩ M2 = 〈p1, p2, p9, p11〉. This space is covered by
⋃

Q̃(〈v̄〉) where

v̄ ∈ 〈v̄1, v̄2〉. M1 ∩M4 = 〈p2, p3, p9〉 and this is contained in Q̃(〈v̄1〉). Finally,
M1 ∩M8 = 0. 2

This also has an important corollary:

Corollary 3.8 Assume X ∈ PG(M(P )) for P ∈ P̃ and X is not contained

in a quad which contains P. Then P is the unique point of P̃ for which
X ∈ PG(M(P )).

3.2 Points contained in at least one hemisphere

We now show that the points P1, P15, P16 and P17 are in distinct orbits of Ŝf ,
with orbit sizes and stabilizers as shown in Tables 2 and 3. We also show that
the union of these orbits constitute all points of PG(M) which are contained
in at least one hemisphere.

The orbit of P1 is just P̃ . There are (q3 + 1)(q2 + 1)(q + 1) such points

and the stabilizer SP1 := (Ŝf )P1 of P1 is isomorphic to the subgroup of Sf

which fixes a maximal totally isotropic subspace of V . The group SP1 has a
normal elementary Abelian subgroup E(P1) of order q6. This subgroup has
a complement L(P1) ∼= GL(3, q). This justifies the entries of line I of the
Tables 3 and 4.

For a point X of PG(V ) the stabilizer in Ŝf of Q̃(X) is isomorphic to
SX := (Sf )X . The group SX has a normal subgroup E(X) of order q5 which
is a special group. This subgroup has a complement L(X) which is isomorphic
to L(X)′ × Z(X), where L(X)′ ∼= Sp(4, q) is the commutator subgroup of
L(X) and Z(X) ∼= Zq−1. Note that L(X)′/Z(L(X)′) ∼= Ω(5, q). In fact, the

group L(X) preserves a quadratic form on Q̃(X) which we describe now.

Let X = 〈v̄1〉. Set V (X) = 〈v̄2, w̄2, v̄3, w̄3〉. Note that X ∧
∧2(X⊥) =

X ∧
∧2(V (X)) has dimension six. We denote this space by D(X). Any

vector v̄ ∈ D(X) and can be written as v̄1 ∧ α for α ∈
∧2(V (X)). Also,

for α, β ∈
∧2(V (X)), α ∧ β is a multiple of v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3. Thus, define

b :
∧2(V (X)) ×

∧2(V (X)) → Fq by α ∧ β = b(α, β) (v̄2 ∧ v̄3 ∧ w̄2 ∧ w̄3).
This defines a non-degenerate symmetric bilinear form of Witt index 3. Now
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define b̂ : D(X) × D(X) → Fq by b̂(v̄1 ∧ α, v̄1 ∧ β) = b(α, β). This also
is a non-degenerate symmetric bilinear form of Witt index 3. The space
Q̃(X) is the subspace of D(X) which is orthogonal to v̄1 ∧ v̄2 ∧ w̄2 + v̄1 ∧
v̄3 ∧ w̄3 with respect to b̂. The group L(X) has three orbits on the projective

points of Q̃(X): the singular points of the quadratic form b̂, which are the

points of Q̂(X) and the two classes of non-singular points with respect to

b̂. Note that b̂(p9, p9) = b̂(p15, p15) = 2. Also, p
⊥b̂
9 = 〈p1, p2, p3, p4〉 which

is a non-degenerate hyperbolic subspace of (Q̃(X), b̂). On the other hand,
b̂(p16, p16) = 2d and since b̂(p15, p15) · b̂(p16, p16) = 4d a non-square, it follows

that P15 and P16 are in different classes of non-singular points of (Q̃(X), b̂)

and therefore representatives of the two classes. Since there are q6−1
q−1

quads

Q(X) for X ∈ PG(V ) and for each X there are q2(q2+1)
2

points in the class

of P15 contained in Q̃(X) and q2(q2−1)
2

points in the class of P16 contained in

Q̃(X) the entries of lines II and III of Tables 3 and 4 have now been justified.

We now make use of Corollary 3.3 and simple counting to show that for
P ∈ P̃ there are points in M(P ) which are not from classes I, II and III.

Lemma 3.9 The following holds for a point P ∈ P̃:
(i) The number of points of type I in PG(M(P )) is 1 + q(q2 + q + 1).

(ii) The number of points of type II in PG(M(P )) is q2(q2+q+1)(q+1)
2

.

(iii) The number of points of type III in PG(M(P )) is q2(q2+q+1)(q−1)
2

.
(iv) There are q3(q3 − 1) points in PG(M(P )) which do not belong to a

quad.

Proof. (i): The points of type I in M(P ) are precisely ∆(P ). There are
q2 + q + 1 lines on P each with q points of ∆(P ) apart from P.

(ii) and (iii): The point P belongs to q2+q+1 quads. For a quad Q̃ containing

P, M(P ) ∩ Q̃ is the hyperplane of Q̃ spanned by ∆(P ) ∩ Q̂. A simple count

yields that M(P ) ∩ Q̃ contains q2(q+1)
2

points of type II and q2(q−1)
2

points of
type III. The second and third parts follow from this.

(iv): The number of points that have been accounted for is

1+q+q2 +q3 +(q2 +q+1)[
q2(q + 1)

2
+

q2(q − 1)

2
] = 1+q+q2 +2q3 +q4 +q5.
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Since |PG(M(P ))| = q7−1
q−1

there are q6− q3 = q3(q3− 1) remaining points. 2

Lemma 3.10 The stabilizer SP of a point P ∈ P̃ is transitive on the points
of PG(M(P )) which do not belong to quads.

Proof. Since Ŝf is transitive on P̃ we can take P = P2 and M(P ) = M2.
Recall that SP = E(P ) · L(P ) where E(P ) is elementary Abelian of order
q6, and L(P ) ∼= GL(3, q). The subgroup E(P ) fixes every projective line
of the form P + P ′, P ′ ∈ ∆(P ) \ {P} and for such a line, is transitive on
PG(P + P ′) \ {P}. This implies that E(P ) acts trivially on the six dimen-
sional quotient space M(P )/P. The action of the complement, L(P ), on
M(P )/P is equivalent to the action of GL(3, q) on the space Sym(3, q) of
(3 × 3)−symmetric matrices where the action is given by g ◦ m = gT mg
(where gT is the transpose of the matrix g). Under this action, every matrix
is equivalent to a diagonal matrix and there are six orbits on non-zero vec-
tors, two each for rank 1, 2 and 3. Representatives for the orbits on vectors
are as follows:

1)

1 0 0
0 0 0
0 0 0

 , 2)

d 0 0
0 0 0
0 0 0

 , 3)

1 0 0
0 1 0
0 0 0

 , 4)

1 0 0
0 d 0
0 0 0

 ,

5)

1 0 0
0 1 0
0 0 1

, 6)

d 0 0
0 d 0
0 0 d

 .

Note that the vectors in 1) and 2) give rise to the same point of PG(Sym(3, q))
as do the vectors in 5) and 6) but the vectors in 3) and 4) do not.

Consequently, L(P ) has four orbits on the points of M(P )/P. However, for
any 2-space U of M(P ) containing P the group E(P ) is transitive on PG(U)\
{P} and therefore SP has four orbits on the points of PG(M(P )) \ {P}. The
point P1 is a representative of one orbit, and the points P15 and P16 are the
representatives of two other orbits. Thus, there is one other orbit consisting
of all those points of PG(M(P )) which do not belong to quads. 2

The point P17 is a point of M(P2) which does not belong to a quad. In
view of Corollary 3.8 and Lemmas 3.9 and 3.10 it now follows that the orbit
of P17 has |P̃| × (q6 − q3) = q3(q6 − 1)(q2 + 1)(q + 1).
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3.3 Points not belonging to a hemisphere

We now turn our attention to points which do not belong to M(P ) for any

point P ∈ P̃ .

Since the group Ŝf is transitive on P̃ and for a point P ∈ P̃ the normal
Abelian group E(P ) acts regularly on the points P ′ with d(P, P ′) = 3, it

follows that Ŝf is transitive on ordered pairs (P, P ′) of points from P̃ at
distance three. One such pair is (P1, P8). By Cooperstein and De Bruyn [6,

Corollary 5.3], an element of Ŝf which stabilizes a given point of 〈P1, P8〉 \
{P1, P8} must either stabilize the ordered pair (P1, P8) or interchange P1 and
P8.

The stabilizer S(P1,P8) of the ordered pair (P1, P8) is isomorphic to GL(3, q).
The normal subgroup SL(3, q) acts trivially on both the points P1 and P8

while an element of Z(S(P1,P8)) will multiply p8 by a scalar a and p1 by 1
a
.

Such an element takes the point 〈p1 + p8〉 to 〈p1 + a2p8〉.

There is also a group element which interchanges the points P1 and P8

and, specifically, takes p1 to p8 and p8 to −p1. This transformation takes the
point 〈p1 + p8〉 to 〈p1− p8〉. If −1 is a non-square in Fq then all the points of
〈P1, P8〉\{P1, P8} are in the same orbit. On the other hand, if −1 is a square
in Fq then 〈p1 + p8〉 and 〈p1 + dp8〉 are in different orbits. In the former case

we get a single orbit with representative P18 and orbit size q6(q4−1)(q3+1)
2

and
in the latter case two orbits, with representatives P18 and P19 each with orbit

size q6(q4−1)(q3+1)
4

.

We next show that the group Sf contains a subgroup G ∼= GU(3, q2).
Recall that δ is an element of Fq2 such that δ2 = d and w̄i = δv̄i for every i ∈
{1, 2, 3}. For any α ∈ Fq2 , put ᾱ := αq. Note that for α = a+ bδ, ᾱ = a− bδ.

Now, define a map h : V × V → Fq2 as follows (αi, βi ∈ Fq2):

h(
3∑

i=1

αiv̄i,

3∑
i=1

βiv̄i) =
1

2δ̄

3∑
i=1

αiβ̄i.

Since tr(δ) = 0 this defines a skew Hermitian form on V. It then follows that
the map f ′ : V × V → Fq given by f ′(v̄, w̄) = tr(h(v̄, w̄)) is an alternating
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form. We claim that f ′ = f. We compute f ′(v̄i, v̄j), f
′(w̄i, w̄j), f

′(v̄i, w̄j) for
i 6= j and f ′(v̄i, w̄i) for i = 1, 2, 3.

By the definition, h(v̄i, v̄j) = h(w̄i, w̄j) = h(v̄i, w̄j) = 0 for i 6= j and conse-
quently we only have to compute f ′(v̄i, w̄i). By definition this is tr(h(v̄i, δv̄i)) =
tr( δ̄

2δ̄
) = tr(1

2
) = 1. So, our claim holds.

It now follows that if σ is an isometry of (V, h), that is, a unitary transfor-
mation, then σ is an isometry of the symplectic space (V, f). So if G = {σ ∈
GLFq2 (V ) |h(σ(ū1), σ(ū2)) = h(ū1, ū2), ∀ū1, ū2 ∈ V }, then G ∼= GU(3, q2)

and G < Sf . Let G′ be the derived subgroup of G, then G′ is isomorphic to

SU(3, q2). By Lemma 3.1 it follows that Ĝ′ centralizes 〈p20, p21〉.

We next determine the stabilizer of the point P20. We will first show in a
series of lemmas that if v̄, w̄ ∈ 〈p20, p21〉 and θ ∈ Sf satisfies θ(v̄) = w̄ then
θ(〈p20, p21〉 = 〈p20, p21〉.

Let V ′ denote the six dimensional vector space over Fq2 with basis S. For
a vector x̄ = a1v̄1 + a2v̄2 + a3v̄3 + b1w̄1 + b2w̄2 + b3w̄3 ∈ V ′ we define x̄q =
aq

1v̄1 + aq
2v̄2 + aq

3v̄3 + bq
1w̄1 + bq

2w̄2 + bq
3w̄3. For θ ∈ GL(V ) we denote by θ

the element induced by θ in GL(V ′) and θ′ the corresponding element of
GL(

∧3 V ′).

Lemma 3.11 Let {ē1, ē2, . . . , ē6} and {ē′1, ē′2, . . . , ē′6} be two bases of V ′ such
that ē1 ∧ ē2 ∧ ē3 + ē4 ∧ ē5 ∧ ē6 = ē′1 ∧ ē′2 ∧ ē′3 + ē′4 ∧ ē′5 ∧ ē′6. Then {〈ē1, ē2, ē3〉,
〈ē4, ē5, ē6〉} = {〈ē′1, ē′2, ē′3〉, 〈ē′4, ē′5, ē′6〉}.

Proof. Put α := ē1 ∧ ē2 ∧ ē3 + ē4 ∧ ē5 ∧ ē6 = ē′1 ∧ ē′2 ∧ ē′3 + ē′4 ∧ ē′5 ∧ ē′6.
For every vector x̄ of V ′, let Ax̄ denote the subspace of V ′ consisting of
all vectors ȳ satisfying α ∧ x̄ ∧ ȳ = 0. Let B be the subset of V ′ which
consists of all vectors x̄ of V ′ such that dim(Ax̄) ≥ 4. We will now prove
that B = 〈ē1, ē2, ē3〉 ∪ 〈ē4, ē5, ē6〉. In a completely similar way, one can
then also prove that B = 〈ē′1, ē′2, ē′3〉 ∪ 〈ē′4, ē′5, ē′6〉. This then implies that
{〈ē1, ē2, ē3〉, 〈ē4, ē5, ē6〉} = {〈ē′1, ē′2, ē′3〉, 〈ē′4, ē′5, ē′6〉}.

Put x̄ = δ1ē1 + δ2ē2 + · · · + δ6ē6 and ȳ = a1ē1 + a2ē2 + · · · + a6ē6. Then
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the fact that α ∧ x̄ ∧ ȳ = 0 implies that
−δ2 δ1 0 0 0 0
−δ3 0 δ1 0 0 0
0 −δ3 δ2 0 0 0
0 0 0 −δ5 δ4 0
0 0 0 −δ6 0 δ4

0 0 0 0 −δ6 δ5

 ·


a1

a2

a3

a4

a5

a6

 =


0
0
0
0
0
0

 .

So, dim(Vx̄) ≥ 4 if and only if the rank of
−δ2 δ1 0 0 0 0
−δ3 0 δ1 0 0 0
0 −δ3 δ2 0 0 0
0 0 0 −δ5 δ4 0
0 0 0 −δ6 0 δ4

0 0 0 0 −δ6 δ5


is at most 2. This happens precisely when (δ1, δ2, δ3) = (0, 0, 0) or (δ4, δ5, δ6) =
(0, 0, 0), i.e. when x̄ ∈ 〈ē1, ē2, ē3〉 ∪ 〈ē4, ē5, ē6〉. 2

The proof of the following lemma is straightforward.

Lemma 3.12 For all a, b ∈ Fq, (a + bδ) · (w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 +
δv̄3) + (a− bδ) · (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3) = 2a · p21 + 2bd · p20.

Corollary 3.13 The vectors of the 2-space 〈p20, p21〉 of
∧3 V are precisely

the vectors of the form (a + bδ) · (w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3) + (a−
bδ) · (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3), where a, b ∈ Fq.

By Lemma 3.11 and Corollary 3.13, we have

Corollary 3.14 If θ ∈ Sf such that θ̂ maps a nonzero vector of 〈p20, p21〉 to

a nonzero vector of 〈p20, p21〉, then θ̂ stabilizes 〈p20, p21〉. Moreover, one of
the following holds:

(1) θ′ stabilizes the 1-spaces 〈(w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3)〉 and
〈(w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3)〉 of

∧3 V ′.

(2) θ′ interchanges the 1-spaces 〈(w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3)〉 and
〈(w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3)〉 of

∧3 V ′.
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Let Wf denote the subgroup of Sf consisting of all θ ∈ Sf for which θ̂
stabilizes 〈p20, p21〉. Let Uf denote the normal subgroup of Wf consisting of all

θ ∈ Wf for which case (1) of Corollary 3.14 occurs. Put Ŵf := {θ̂ | θ ∈ Wf}
and Ûf := {θ̂ | θ ∈ Uf}.

Remark 3.15 Let θ be an element of Uf , let µ1 be the restriction of θ to
the 3-space 〈w̄1 + δv̄1, w̄2 + δv̄2, w̄3 + δv̄3〉 of V ′ and let µ2 be the restriction
of θ to the 3-space 〈w̄1 − δv̄1, w̄2 − δv̄2, w̄3 − δv̄3〉 of V ′. Then 1 = det(θ) =
det(µ1) · det(µ2).

Now, let x̄ be an arbitrary vector of 〈w̄1 + δv̄1, w̄2 + δv̄2, w̄3 + δv̄3〉. Since
x̄ + x̄q ∈ V , we have ȳ := θ(x̄ + x̄q) = θ(x̄) + θ(x̄q) ∈ V . Also, ȳ = ȳq =
[θ(x̄q)]q + [θ(x̄)]q. Since there exist unique ȳ1 ∈ 〈w̄1 + δv̄1, w̄2 + δv̄2, w̄3 + δv̄3〉
and ȳ2 ∈ 〈w̄1 − δv̄1, w̄2 − δv̄2, w̄3 − δv̄3〉 such that ȳ = ȳ1 + ȳ2, we necessarily
have θ(x̄q) = [θ(x̄)]q. Hence, µ2(x̄

q) = θ(x̄q) = [θ(x̄)]q = [µ1(x̄)]q.

By the previous paragraph, det(µ2) = [det(µ1)]
q. If det(µ1) = a + bδ,

then det(µ2) = a− bδ and since det(µ1) · det(µ2) = 1, we have a2 − b2d = 1.

Conversely, let a, b ∈ Fq such that a2 − b2d = 1. Then the element of
GL(V ) determined by v̄1 7→ a · v̄1 + b · w̄1, w̄1 7→ bd · v̄1 + a · w̄1, v̄2 7→ v̄2,
w̄2 7→ w̄2, v̄3 7→ v̄3, w̄3 7→ w̄3 determines an element of Uf for which the
corresponding value of det(µ1) is equal to a + bδ.

Lemma 3.16 Let a1, a2, b1, b2 ∈ Fq such that (a1, a2) 6= (0, 0) 6= (b1, b2).

Then the 1-spaces 〈a1p21 + a2p20〉 and 〈b1p21 + b2p20〉 belong to the same Ûf -

orbit if and only if (a2
1 −

a2
2

d
)(b2

1 −
b22
d
) is a square.

Proof. By Lemma 3.12, a1p21 + a2p20 = (a1

2
+ a2

2d
δ) · (w̄1 + δv̄1) ∧ (w̄2 +

δv̄2) ∧ (w̄3 + δv̄3) + (a1

2
− a2

2d
δ) · (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3) and

b1p21 + b2p20 = ( b1
2

+ b2
2d

δ) · (w̄1 + δv̄1) ∧ (w̄2 + δv̄2) ∧ (w̄3 + δv̄3) + ( b1
2
−

b2
2d

δ) · (w̄1 − δv̄1) ∧ (w̄2 − δv̄2) ∧ (w̄3 − δv̄3). By Remark 3.15, the 1-spaces

〈a1p21 + a2p20〉 and 〈b1p21 + b2p20〉 belong to the same Ûf -orbit if and only
if there exists a λ ∈ F∗q and c1, c2 ∈ Fq satisfying c2

1 − c2
2d = 1 such that

(a1

2
+ a2

2d
δ) · (c1 + c2δ) · λ = b1

2
+ b2

2d
δ. If c′1 and c′2 are the unique elements

of Fq such that (a1

2
+ a2

2d
δ)(c′1 + c′2δ) = b1

2
+ b2

2d
δ, then one readily verifies

that b2
1 −

b22
d

= (a2
1 −

a2
2

d
)(c′1

2 − c′2
2d). It now follows that 〈a1p21 + a2p20〉 and

〈b1p21 + b2p20〉 belong to the same Ûf -orbit if and only if (a2
1 −

a2
2

d
)(b2

1 −
b22
d
)

as a square. 2
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Lemma 3.17 There are two Ûf -orbits on the set of 1-spaces of 〈p20, p21〉.

Proof. If a1 = 1 and a2 = 0, then a2
1 −

a2
2

d
= 1 is a square.

Now, choose a1 ∈ F∗q. Then there exist a2, a3 ∈ F∗q such that da2
1 = a2

2+a2
3.

Then a2
1 −

a2
2

d
=

a2
3

d
is a non-square.

The claim now follows from Lemma 3.16. 2

We will now construct a particular element θ̂∗ of Ŵf \Ûf . Let A, B ∈ F∗q such

that (A
B

)2 + ( 1
B

)2 = d (Hence, A2 − B2d = −1) and consider the following
map θ∗ of Sf : 

v̄1 7→ A · v̄1 + B · w̄1,
w̄1 7→ −Bd · v̄1 − A · w̄1,
v̄2 7→ A · v̄2 −B · w̄2,
w̄2 7→ Bd · v̄2 − A · w̄2,
v̄3 7→ A · v̄3 + B · w̄3,
w̄3 7→ −Bd · v̄3 − A · w̄3.

Then one readily verifies that θ∗ ∈ Wf\Uf . Moreover, θ̂∗(p21) = Ap21+Bdp20.

Proposition 3.18 (1) If −1 is a non-square, then Ŵf has one orbit on the
set of 1-spaces of 〈p20, p21〉.

(2) If −1 is a square, then Ŵf has two orbits on the set of 1-spaces of
〈p20, p21〉.

Proof. Since Ûf is a normal subgroup of index 2 of Ŵf , we can conclude
the following:

(1) If 〈p21〉 and 〈θ̂∗(p21)〉 belong to the same Ûf -orbit, then θ̂∗ stabilizes

the two Ûf -orbits. In this case Ŵf has two orbits on the set of 1-spaces
of 〈p20, p21〉.

(2) If 〈p21〉 and 〈θ̂∗(p21)〉 belong to different Ûf -orbits, then θ̂∗ interchanges

the two Ûf -orbits. In this case Ŵf has one orbit on the set of 1-spaces
of 〈p20, p21〉.

Now, 〈p21〉 and 〈θ̂∗(p21)〉 belong to the same Ûf -orbit if and only if (12 −
02

d
)(A2 − (Bd)2

d
) = A2 −B2d = −1 is a square. The proposition follows. 2
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4 Proof of the Fusion Theorem

Since Ŝf is normal in Ĝf , if two Ŝf -orbits were to fuse via σ̂∗ or T̂γ, γ ∈
Aut(Fq), then they must have the same size. When −1 is a non-square
there are no such possibilities. When −1 is a square it could be the case
that the orbits with representatives P18 and P19 fuse and the orbits with
representatives P20 and P21 fuse. We show that this is indeed the case.

Suppose then that −1 is a square. Now σ̂∗(p1 +p8) = p1 +d3p8 and d3 is a

non-square. The points P19 = 〈p1 + dp8〉 and 〈p1 + d3p8〉 are in the same Ŝf -

orbit. So, in this case we get the fusion of the Ŝf -orbits with representatives
P18 and P19. We also show that the orbits with representatives P20 and P21

fuse. Before doing so, we note that the points P21 = 〈p8+dp2+dp3+dp5〉 and

〈p1+dp4+dp6+dp7〉 are in the same Ŝf -orbit: let σ(v̄i) = w̄i, σ(w̄i) = −v̄i, i =
1, 2, 3. Then σ̂(p1+dp4+dp6+dp7) = p8+dp2+dp3+dp5 from which the claim
follows. Now σ̂∗(p20) = σ̂∗(dp1 + p4 + p6 + p7) = dp1 + d2p4 + d2p6 + d2p7 =
d(p1 + dp4 + dp6 + dp7) and therefore σ̂∗(P20) = 〈p1 + dp4 + dp6 + dp7〉 is in

the Ŝf -orbit of P21. This completes the proof of the Fusion Theorem.
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