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Abstract

In [10], one of the authors proved that there are 6 isomorphism
classes of hyperplanes in the dual polar space DW (5, q), ¢ even, which
arise from its Grassmann-embedding. In the present paper, we extend
these results to the case that ¢ is odd. Specifically, we determine the
orbits of the full automorphism group of DW(5,¢q), ¢ odd, on the
projective points (or equivalently, the hyperplanes) of the projective
space PG(13,q) which affords the universal embedding of DW (5, q).
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1 Introduction

A partial linear rank two incidence geometry, also called a point-line geom-
etry, is a pair I' = (P, L) consisting of a set P whose elements are called
points and a collection £ of distinguished subsets of P whose elements are
called lines, such that any two distinct points are contained in at most 1 line.
The point-collinearity graph of T' is the graph with vertex set P where two
points are adjacent if they are collinear, that is, lie on a common line. By a
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subspace of I' we mean a subset S of P such that if [ € £ and [ NS contains
at least two points, then [ C S. A subspace S is singular provided each pair
of points in S is collinear, that is, S is a clique in the collinearity graph of I'.
(P, L) is said to be Gamma space (see [13]) if, for every z € P,{z} UT'(x)
is a subspace. A subspace S # P is a geometric hyperplane if it meets every
line.

Let e be a positive integer, p a prime and V' a 6-dimensional vector space
over the finite field F,, ¢ = p°, equipped with a non-degenerate alternating
form f. Then every vector u € V' is isotropic, that is, satisfies f(u,u) = 0. A
subspace U of V' is called totally isotropic (with respect to f) if f(uy,uz) =0
for all @y, 1 € U.

Associated with (V) f) is a polar space which is denoted by W (5, ¢). Here,
by a polar space we shall mean a point-line geometry (P, L) which satisfies
the following properties:

1. (P, L) is a Gamma space and for every point p and line [, p is collinear
with some point of  (this means that p is collinear with 1 or all points of [).

2. No point p is collinear with every other point; and

3. There is an integer n called the rank of (P, L) such that if So C S} C
- C Sk is a properly ascending chain of singular subspaces then £ < n.
When n =2 (P, L) is said to be a generalized quadrangle.

The points, respectively lines, of W(5,q) are the 1-dimensional, respec-
tively 2-dimensional, subspaces of V' which are totally isotropic with respect
to f and incidence is containment. In W(5,¢) two points (u;)y and (u2)y
are collinear if and only if f(uy,us) = 0, i.e. if and only if u; and uy are
orthogonal.

Also associated with the alternating form f of V', there is a dual polar
space DW (5, q). The points, respectively lines, of DW (5, q) are the 3-spaces,
respectively 2-spaces, of V' which are totally isotropic with respect to f and
incidence is reverse containment. We denote the point-set and line-set of
DW(5,q) by P and L, respectively. In the incidence system (P,L) two
“points” U; and U, are collinear if and only if dim(U; N U) = 2. More
generally, one can say that the distance d(Uy, Us) (in the collinearity graph of
(P, L)) between two points Uy and U, of DW (5, q) is equal to 3—dim(U;NUs).
The lines of the dual polar space DW (5, ¢) are maximal singular subspaces
and consequently, this geometry is also a Gamma space.



Alternatively, the geometries (P, L) and (P,L) can be defined as Lie
incidence geometries (see [4]) making use of a construction of Gamma spaces
from a symmetrical orbital (orbit of the Symplectic group on the Cartesian

products P? or P? (see [13]).

By Shult and Yanushka [21] or Cameron [1], the set of totally isotropic
3-spaces of V' which contain a given 1-space of V is a convex subspace of
diameter 2 of DW (5, q). Such a convex subspace is called a quad of DW (5, q).
The points and lines contained in a quad define a generalized quadrangle
which is isomorphic to the classical generalized quadrangle Q(4,¢q) (Payne
and Thas [16, Section 3.1]).

This paper is concerned with classifying all the geometric hyperplanes of
DW (5, q), q odd, which arise from an embedding (defined below). We will
show (See Main Theorem) that there are always six isomorphism classes of
such hyperplanes.

The notion of a geometric hyperplane was introduced by Veldkamp (see
23], [24]) in his characterization of polar geometries for the explicit pur-
pose of proving that such a geometry is embeddable. Geometric hyperplanes
have been studied in many other contexts as well: for example, they arise in
the classification by Cohen and Shult of the affine polar spaces (see [3]), in
Cuypers’ characterization of the graph on 2300 vertices with automorphism
group Cog, the second Conway group ([8]). Often by removing a geometric
hyperplane with certain properties from an incidence geometry one can cre-
ate interesting affine geometries and this was the motivation of Pasini and
Shpectorov [15] in studying uniform hyperplanes in dual polar spaces as well
as Cooperstein and Pasini [7] in proving that ovoidal hyperplanes do not
exist in DW (5, q).

The research carried out in the present paper is part of the larger project
of classifying all hyperplanes of finite dual polar spaces of small rank. A
complete classification of all hyperplanes of the Hermitian dual polar space
DH (5,q?) was obtained in De Bruyn and Pralle [11], [12]. All hyperplanes of
the dual polar space DQ (7, ¢) arising from an embedding were classified in
De Bruyn [9]. The classification of all hyperplanes of the dual polar spaces
DQ(6,q) and DQ(8, q) which arise from their spin-embeddings was obtained
in Cardinali, De Bruyn & Pasini [2], De Bruyn [9], Shult [19] and Shult &
Thas [20]. A complete list of all hyperplanes of DW(5,q), ¢ even, arising
from an embedding was given in Pralle [17] (for ¢ = 2) and De Bruyn [10]



(for arbitrary ¢ even).

2 Technical description of the results

2.1 The Grassmann-embedding of DWW (5, q)

We continue with the notation introduced in Section 1. Choose a basis
S = {1, w1, 09, Wo, U3, w3} in V such that f(v;,w;) = 1 and f(v;,7;) =
f(w;, ;) = f(5;,@;) = 0 for all i,j € {1,2,3} withi # j. Let W := A>V be
the third exterior product of V which is a vector space of dimension (g) =20
over F,. Define now a bilinear form g¢(-,-) from W x W to F, by setting
a A B equal to g(a, 8) (01 Awy A v Awg A3 A ws) for all a, 3 € W. Since
(wy A g A z) A (g A s A i) = (—1)2(tg A tis A tig) A (g A tig A tig) for all
vectors uy, Us, . .. ,ug € V, the form g(-,-) is alternative. Obviously, it is also
non-degenerate.

For every point « = (uy, us, ug)y of DW (5, q), let ¢(x) denote the 1-space
(g Ny ATig)w of W = A* V. This 1-space is independent from the generating
set {uy, ug, ug} of z. It is well-known that the subspace M of W generated
by all 1-spaces €(x), x € P, is 14-dimensional. One readily verifies that a
basis of M is given by the set Syy:= {p; |1 <@ < 14}, where

P1 = U1 AU AVg, pg = U1 AV2 ANWs, p3 = U1 A Wa A U3, Py = U1 /\ Wa N\ Ws,

Ps = W1 AV A U3, pg = W1 N\ Vg AW3, pr = Wi AW A Us, pg = W1 N\ Wy A\ Ws,
Do = Uy ATy Aty — Ty ATy A3, Pro = Wy A Dy Ay — Wy A T3 A D3,
P11 = U1 A0y A Uy — Uy ADg Ay, Pra = 0y AWy A Wy — W A U A s,
P13 = U1 AWy ANV3 — U2 ANWg A Vs, P14 = U1 AW N\ W3 — Uy N\ Wa N\ Ws.

For all ¢, € {1,...,14}, g(pi,p;) = 0, except when {i,j} is equal to {1,8},
{2,7}, {3,6}, {4,5}, {9,10}, {11,12} or {13,14}. Hence, the form g(-,-)
defines a non-degenerate alternating form in the 14-space M. For every
subspace U of M, let U*s = {m € M| g(u,m) =0 for all u € U}.

The map € defines a full projective embedding of the dual polar space
DW (5, q) into the projective space PG(M) = PG(13,q). This embedding is
called the Grassmann-embedding of DW (5,q). If ¢ # 2, then by results



of Cooperstein [5] and Kasikova & Shult [14], we know that the Grass-
mann-embedding of DW(5,q) is absolutely universal (Ronan [18]). This
implies that all full embeddings of DW (5, q), ¢ # 2, can be obtained from
its Grassmann-embedding by taking so-called quotients.

If 7 is a hyperplane of PG(M), then ¢ (e(P) N 7) is a (geometric) hy-
perplane of DW (5, q), namely a proper subset of P intersecting each line of
DW (5,q) in either a unique point or the whole line. We will say that the
hyperplane e~ (e(P) N7) arises from the embedding e.

2.2 The automorphism groups of W (5,q) and DW (5, q)

Before proceeding to our main theorem we describe the automorphism groups
of W(5,q) and DW (5,q). Suppose € is a permutation of the point-set of
W (5,q). Then 0 will be an automorphism of W (5, ¢) if and only if it induces
a permutation on the set of all ordered pairs of distinct collinear points of
W (5,q). Similarly, a permutation of P will be an automorphism of DW (5, q)
if and only if it induces a permutation of the set of all ordered pairs of distinct
collinear points of DW (5,q). It is not difficult to see that automorphism
groups of DW (5, ¢q) and W (5, q) are isomorphic.

That automorphisms of W (5,¢q) induce automorphisms of DW(5,q) is
fairly straightforward. That automorphisms of DW(5,¢q) induce automor-
phisms of W (5, q) follows from the fact that the quads of DW (5, ¢) are char-
acterized as the convex subspaces of diameter 2 and that these are in one-to-
one correspondence with the points of W (5, q). We proceed to describe the
group Aut(W(5,q)) = Aut(DW (5,q)).

Recall that S = {1, Wy, U2, W, U3, w3} is a basis of V such that f(v;, w;) =
1 and f(l_li,@j) = f(?I)Z',’U_Jj) = f(’(_Ji,U_)j) = 0 for all Z,j S {1,2,3} with ¢ 7é
j. A similarity of (V, f) is a linear transformation ¢ € GL(V') such that
flo(uy),o(ug)) = Ay - f(uq,us) for all uy,us € V. Here A, is a non-zero
scalar which depends on o but is independent of #; and u,. We denote by
Gy < GL(V) the group of all similarities. An isometry is a similarity o
with A\, = 1. We denote by Sy the group of all isometries. Sy is normal in
G and isomorphic to Sp(6,F,). Clearly similarities induce automorphisms
of W(5,q). The kernel of the action of Gy on P is the center of Gy and
consists of all the scalar transformations A - I/, where A is a non-zero scalar.
Denote by PG/ the quotient Gy/Z(Gy) and by PS; the quotient of Sy by



Sy N Z(Gy). We note that Sy N Z(Gy) = Z(S§) = (—Iy) and therefore
StZ(Gy)/Z(Gy) =2 S§/Z(Sf). Thus, we may consider PSy to be a subgroup
of PGy. The group PS; is the simple group PSp(6,F,). The index of PS; in
PGy is two (see Steinberg [22]). If o™ is the linear transformation of V' which
fixes v;, ¢ = 1, 2,3 and takes w; to dw;, + = 1,2,3 with d a given non-square
in F, then 0* € G\ Sy and consequently, PGy = PS(c*). This describes
the automorphisms of W (5, ¢) which are induced by linear transformations
of V. In addition, there are so-called “field automorphisms”.

For @ € V denote by [u]s the coordinate vector of @ with respect to the
basis S of V.. For every v € Aut(F,), defineamap T, : V. — V by [T,(v)]s =
v([v]s). Then T, induces a permutation of the point-set of W (5, ¢) which
preserves orthogonality and therefore induces an automorphism of W (5, q).
If A={T,|v € Aut(F,)}, then Aut(W(5,q)) = PG;A = PS¢(c*)A.

2.3 The main results

Every element 8 of G gives rise to a unique element 6 € GL(A\’* V) such that
0’ (uy Nug ANug) = 0(uy) NO(ug) NO(ug) for all uy, us, ug € V. Obviously, 0’ fixes
M and hence gives rise to an element 0 € GL(M). Forall o, Be W = NV,
we have

9(0'(2),0'(B)) = det(6) - (v, B). (1)
Hence, 6 is a similarity of (M,g). Now, define C/J\f = {006 € Gy} and
S; = 1810 € S} By (1),

(e(U))* = (U) (2)

for every ¢ € é} and every subspace U of M.

Suppose now that v € Aut(F,). Let B be the basis {03 A U5 A 03,01 A
we A w3} U {0 Avj AWy, 0 Ay Awj |1 < 4,5,k < 3,0 < j} of W. Let
1! be the Fj-linear map of W defined by [T”(a)]s = 7([a]z). We have
T (uy A g A ug) = T, (ur) AT (tug) AT, (uz) for all 4y, ug,uz € V. For all
a, 3 € W, we have

9(T(a), T(3)) = v(g(ex, B)). (3)
Té fixes each of the vectors of the basis Sp; of M and hence induces an
[F,-linear map ﬁ : M — M. By (3),

(T, (U)* =T, (U*) (4)
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for every subspace U of M.

Let G (respectively G ;) denote the group of F-linear maps of V (respec-
tively W) generated by Gy and T, v € Aut(F,) (respectively G and T, v €
Aut(F,)). By the discussion above, for every 6 € Gy, there exists a unique
[F,-linear map ¢’ : W — W such that 6'(u; A g A tg) = 6(u1) A 0(uz) A 6(us)
for all @y, us,u3 € V. The map ¢ stabilizes M and hence induces an -
linear map 0: M — M. Obviously, 0 G . Moreover, the map 6 — 0 is an
isomorphism between the groups G_f and G_f

It is the main purpose of this paper to determine the orbits of the group
Aut(DW(5,q)) on the hyperplanes of DW(5,q), ¢ odd, which arise from
its Grassmann-embedding. Since the Grassmann-embedding of DW (5, q), ¢
odd, is absolutely universal, the hyperplanes of DW (5, q), ¢ odd, arising from
the Grassmann-embedding are all the hyperplanes of that dual polar space
which arise from an embedding.

Determining the orbits of Aut(DW (5, q)) on the hyperplanes of DW (5, q)

—

is equivalent to the enumeration of all G_f—orbits on the hyperplanes of M.
By equations (2) and (4), this is equivalent to enumerating the orbits of
G_f on the l-spaces of M, i.e. the points of PG(M). We will achieve our
objective by first enumerating the orbits of Sy on the l-spaces of M and

then determining when these S¢-orbits fuse when we extend the group to all
of Aut(DW(5,q)).

Before stating our Main Theorem, we need to define some extra vectors
in M. Unless otherwise stated we will always assume in the sequel that ¢ is
an odd prime power. Let d € F, such that d is a non-square and if —1 is
a non-square, then we take d equal to —1. Define the following additional
vectors of M:

P15 = D1 +Da, P16 = D1 +dpa, P17 = D1 +Pa+DPs, Dis = P1+DPs, Pig = p1+dps,

P20 = dp1 + pa + ps + Pz, P21 = dpa + dps + dps + ps.

Also, set P, = (p;)w and H; = e_l(PiLg Ne(P)) for every i € {1,...,21}. We
can now state our main theorem:



’ Type \ Representative \ Orbit size ‘

I H, (@ +D(@+1)(g+1)
11 His Colele)
11 Hys £-ldlg-l)
v Hy; ¢ (¢° ;ﬁ(lqz‘(qf)(;ﬂ()q +1)
\\/]I 518 qG(q4—12)(q3—1)
20 5

Table 1: The orbits of Aut(DW (5,q)), ¢ odd, on the geometric hyperplanes
of DW (5, q).

Main Theorem. Let q be an odd prime power. Then the group Aut(DW (5, q))
has sixz orbits on the geometric hyperplanes of DW (5, q) which arise from an
embedding with representatives Hy, Hys, Hig, Hi7, Hig and Hoy. The sizes
of the orbits are given in Table 1.

The Main Theorem is a consequence of the following two results, which
we will prove in Sections 3 and 4.

Point Enumeration Theorem (i) If —1 is a non-square in F,, q odd,

then the group 3‘; has six orbits on the point-set of PG(M) with representa-
tives Py, Pis, Pig, P17, Pis, and Pyy. The orbit sizes and the stabilizers of a
representative are given in Table 2. -

(i1) If —1 is a square in F,, q odd, then the group Sy has eight orbits on
the point-set of PG(M) with representatives Py, Pi5, Pig, P17, Pis, Pig, P
and Pyy. The orbit sizes and stabilizers are given in Table 3.

To prove the Point Enumeration Theorem we will show in both cases that
the conjectured representatives given in the tables are all in different orbits,
compute their stabilizers and hence their orbit sizes. Since in both cases the

sum of the orbit sizes is qr_f it will follow that we have enumerated all the

@—orbits on the points of M.

Fusion Theorem (i) Assume that —1 is a non-square in F, with q odd.
Then the automorphisms of DW (5,q) induced by o* and T, v € Aut(F,),

fix each of the Sy-orbits of the hyperplanes Hy, Hys, His, Hi7, Hig, and Hy.



’ Type \ Representative \

Orbit size

|

Stabilizer

I 2 (> + ﬁ)(q22+21)(q +1) ¢°.GL(3,q)
II Py %% q°.SL(2,q) x SL(2,q) X Zy_1.2
111 Pig e 0®.SL(2,¢%) X Ly_1.2
vV Pyi7 ¢@° =1 +1)(g+1) ¢°.SL(2,q) * Zq—1.2
5} s 3
AV4 Pis w Zy x SL(3,q)
674 3
VI Py (@1 Zy x SU(3,q)

Table 2: The é}—orbits on the points of PG(M): the case that —1 is a non-

square in [F.

’ Type \ Representative \ Orbit size \ Stabilizer
I P (@ +D)(*+1)(g+1) ¢°.GL(3,q)
11 Pis Lololgtl) @®.SL(2,q) % SL(2,q) X Zg_1.2
11 Prg £-lalg=l) @®.SL(2,q%) X Ty_1.2
IV Piq ¢ -1 +1)(g+1) ¢°SL(2,9) ¥ Zy—1.2
Va Prs Ll D@+ Zs x SL(3,q).2
Vb P CUCENCES)] Zy x SL(3,q).2
Via Pag UCENICE)] Zy x SU(3,q).2
VIb Py CHGENICE) Zs x SU(3,q).2

Table 3: The g}—orbits on the points of PG(M): the case that —1 is a square

in [F,.




(i1) Assume that —1 is a square in Fy with ¢ odd. Then the automorphisms
of DW(5,q) induced by o* and T, v € Aut(F,), fir each of the g;-orbits of
the hyperplanes Hy, Hy5, Hig and Hi7. On the other hand, the S’;-orbits of
Hs and Hyg become a single orbit as do the S’;-orbits of Hyg and Ho.

The Main Theorem classifies all hyperplanes of DW(5,¢), ¢ odd, arising
from an embedding. As previously mentioned, all hyperplanes of DW (5, q),
q even, arising from an embedding were already classified in Pralle [17] (for
q = 2 with the aid of the computer) and De Bruyn [10] (for arbitrary ¢ = 2™
without the use of the computer).

Several combinatorial properties of the hyperplanes of DW (5, q), ¢ odd,
arising from an embedding were already obtained by the authors in [6]. For
each hyperplane H of DW (5, q), ¢ odd, they determined by purely combi-
natorial and geometrical techniques the total number of quads ) for which
QN H is a certain configuration of points in () and the total number of points
x for which A(z)N H is a certain configuration of points in A(z). Here, A(z)
denotes the set of points equal to or collinear with x. On basis of these com-
binatorial properties, the authors were able to divide the set of hyperplanes
of DW (5, q), q odd, into 6 classes: Type I-hyperplanes, Type II-hyperplanes,
..., Type VI-hyperplanes. This terminology is consistent with the one used
in the present paper. By our Main Theorem, each of the 6 classes defined
in [6] is actually an isomorphism class, except when —1 is a non-square in
F,. Then the Type VI hyperplanes (which all have the same combinatorial
properties mentioned above) split into 2 isomorphism classes: the Type Vla
hyperplanes and the Type VIb hyperplanes.

3 Proof of the Point Enumeration Theorem

3.1 Notations and a few lemmas

We will continue with the notations introduced in Sections 1 and 2.

Let 0 € Fpe \ F, such that §° = d. We may suppose that (i) w; = 6v;
for every i € {1,2,3} and (ii) V is a 3-dimensional vector space over Fp
with basis {v1, 0,03} and a 6-dimensional vector space over F, with basis
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S = {0y, Vo, U3, W1, We, w3 }. Recall that /\3 V must be regarded as the third
exterior power of V' as a vector space over the field F,.

Lemma 3.1 If 7 is an F2-linear transformation of V' with det(1) = 1, then
T centralizes the vectors psy and po;.

Proof. Let E;; denote the (3 x 3)—matrix with a “1” in the (7, j)—entry
and 0’s elsewhere and set x;; = {Is + aE;j|a € Fpe} for all 4,5 € {1,2,3}
with ¢ 7’é ] AISO, set w1 = E12 — E21 + E33 and W9 = Ell + E23 — E32. Then
the group SL(3,q?) is generated by Y13, w; and wy. So, it suffices to prove
that the induced action of each of these centralizes pog and poy.

Let o = a+bé where a,b € F, and suppose 7 is the F-linear transformation
of V whose associated matrix with respect to the basis {0y, U9, U3} is equal

dB
B A
A =I5+ aF 3 and B = bE3. It is now quite straightforward to compute the
induced action of 7 on pyy and pg;. T(pao) is equal to

to I3 + aF3. Then the matrix of 7 with respect to § is , where

7(d U1 N Uy AN U3 + U1 Ao A W3 + Wy A Uy A Ws + Wy A W A U3)

= d[o1 ANUg A (a 01 + U3 + bwy )] + 01 A wa A ((db) U1 + awy + w3)
+w1 A Do A ((db) D1 + awy + w3) + w1 A ws A (a U1 + 03 + b))

= dvy AUy A U3+ (db) vy AUy AWy + 0y AW A W3 + a U3 A Wy AWy
+101 A Uy A w3 + (db) W1 A Dy A0y + 01 A Wa A Tg + a 0y A Wa ATy

= D20,

sincewl/\f)g/\@l:—@l/\@g/\wl andwl/\wg/\ﬁlz—@l/\wg/\wl.

Similarly, 7(ps1) is equal to

7(d vy N Uy A W3 +d vy A\ Wa A Vg + d Wy A Dy A Vg + Wy A Wy A Ws3)

= d [0y AU A ((db) U1 + awy + w3)] + d [01 A wa A (a 0y + 03 + by )]
+d [y AUz A (a 01 + U3 + by )] + w1 A we A ((db) 01 + awy + ws)

= (da) U1 AUy ANy +d 03 AUy Az + (db) Dy A we AWy +d 0 Awa A Us
+(da) w1 A e AUy +d Wy A Dy A s+ (db) wy A wa AUy + Wy A we A W3

= DP21-

11



The matrix of w; with respect to S is (é i) where A = Fiy — E9 + FEs3

and O is the (3 x 3)-matrix with all entries equal to 0. w;(psg) is equal to
= wi(d Uy AUy A U3+ U1 AWy AWz + W1 A Uy A W3 + W1 A Wy A Ts)
= d (=0y) ANy A3+ (—02) ANy A w3 + (—wa) AUy Aws + (—ws) A wy A Vs
= P20,

since (—02) AUy = U1 A U, (—We) AWy = Wy A We, (—V2) A wy = w; A Uz and
(—wg) ATy = U1 A Wy.

In an entirely similar way, one shows that wi(p21) = pa1, Wa(p2p) = P2 and
Wa(pa1) = par. U

Recall that every point z € P gives rise to a 1-space €(z) of M, i.e. a point
e(z) of PG(M). For a line | € L, we define €(l) := {e(x) |z € [}.
denote by [ the 2-space of M generated by the 1-spaces e(x), r € I. We put
P=P={ex)|zeP}, L={e(l)|leL}and L={I|l € L}.

Let X be a point of PG(V). By abuse of notation, we will also write
X € PG(V). The set Q(X) ={x € P|X Cx C X'} is a convex subspace
of DW (5,q) which defines a generalized quadrangle isomorphic to Q(4,q).
We set Q := {Q(X)| X € PG(V)} and refer to the elements of Q as quads of
DW(5,q). For Q € Q, we will denote by Q the collection {¢(z) |z € Q} and
by Q the subspace of M spanned by the elements of Q We refer to both Q
and Q as the quads of M. Set Q = {Q|Q € Q}.

For every point u of DW (5, q), A(u) denotes the set of points of DW (5, q)
collinear or equal to u. If P = e(u) € P, then we define A(P) := ¢(A(u))

and M (P) is the subspace of M spanned by the elements of A(P). We call
M (P) the hemisphere of P.

Lemma 3.2 Let X,Y € PG(V). Then the following holds:

(1) fX Ly Y, thenQX)NQY)e L. N

(17) If X and Y are not orthogonal, then Q(X)NQ(Y) =
Proof. (i) The group G is transitive on pairs {X,Y} of 1-spaces of V
such that X L Y. Therefore we can take X = (v;) and Y = (02). Then

Q(X) = (p1,p2,ps,pa,po), QYY) = (p1,p2,ps5, 06, p11) and Q(X) N Q(Y) =
(p1,p2) € L.

12



(ii) The group Gy is also transitive on pairs {X,Y} of l-spaces of V
such that X and Y are non-orthogonal with respect to f. We can take X =

<'l_}1>7 Y ’:V <’U_)1> NVOW’ @(X) = <p17p27p37p47p9> and Q(Y) = <p57p67p77p87p10>-
Hence, Q(X)NQ(Y) = 0 as claimed. O

This result implies the next corollary which is fundamental:

Corollary 3.3 Let Q € Q and P € PG(@) \7”5 Then Q is the unique quad
of M which contains P.

Lemma 3.4 Let P € P and Q € Q such that P Z (). Let R denote the
unique point of Q@ NP at distance 1 from P. Then M(P)NQ = R.

Proof.  Since G is transitive on the pairs (P,Q) with P € 73, Q € Q

and P ¢ @, we may without loss of generality suppose that @ = Q({7;
and P = <p8> Then R = <p4> NOW7 Q = <p17p27p37p47p9> and M(P>
(P4, P6, 7, P8, P10, P12, P1a) and hence M(P) N Q = (ps) = R.

~
~—

o

Corollary 3.5 Let P € P and R € PG(M(P))\ P. If R is contained in a
quad, then this quad necessarily contains P.

Lemma 3.6 Let Q € Q and R € PG(Q) \ P. Then there exists a P € P
such that R € PG(M(P)).

Proof. Let L be contained in Q where L € £. Then Q = UP€E<C§HA(P)> -
Upeg M(P). O

In our next lemma we will show that if a point is contained in two distinct
hemispheres, in fact, it is contained in a quad.

Lemma 3.7 Let P and P’ be distinct points of P and X € PG(M(P) N
M(P")). Then there is a quad @) containing P such that X C Q.

Proof.  For every t € {1,2,3}, G is transitive on the pairs (P, P") of

points of P with d(P, P") = t. Therefore we can take (P, P') to be one of

(Pl,PQ), (Pl,P4>, (Pl, Pg) For every 1€ {1,274,8}, set Mz = M(R) Then
My = (p1, P2, 3, Ps; Do, P11, P13), Mo = (p1, D2, Pa, D6, Pos P11, P1a)
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My = (p2, p3, Pa, Ds, D9, P12, P14), Mg = (4, D6, P7, Ps, P10, P12, P14)-

Now M; N My = (p1,ps,po, p11). This space is covered by U@((@)) where
v € (1,0q9). My N My = (pa,p3,po) and this is contained in Q((v1)). Finally,
My N Mg =0. O

This also has an important corollary:

Corollary 3.8 Assume X € PG(M(P)) for P € P and X is not contained

i a quad which contains P. Then P 1is the unique point of P for which
X € PG(M(P)).

3.2 Points contained in at least one hemisphere

We now show that the points P;, Pi5, Pig and P;; are in distinct orbits of g},
with orbit sizes and stabilizers as shown in Tables 2 and 3. We also show that
the union of these orbits constitute all points of PG(M) which are contained
in at least one hemisphere.

The orbit of P is just P. There are (¢* + 1)(¢> + 1)(¢ + 1) such points
and the stabilizer Sp, := (g;) p, of P, is isomorphic to the subgroup of Sy
which fixes a maximal totally isotropic subspace of V. The group Sp, has a
normal elementary Abelian subgroup E(P;) of order ¢° This subgroup has
a complement L(P;) = GL(3,q). This justifies the entries of line I of the
Tables 3 and 4.

For a point X of PG(V) the stabilizer in 3; of Q(X) is isomorphic to
Sx := (Sf)x. The group Sx has a normal subgroup E(X) of order ¢° which
is a special group. This subgroup has a complement L(X) which is isomorphic
to L(X) x Z(X), where L(X)" = Sp(4,q) is the commutator subgroup of
L(X) and Z(X) = Z,—1. Note that L(X)"/Z(L(X)") = Q(5,q). In fact, the
group L(X) preserves a quadratic form on @(X ) which we describe now.

Let X = (5y). Set V(X) = (Ty, Wy, U3, w3). Note that X A A*(X+) =
X A A*(V(X)) has dimension six. We denote this space by D(X). Any
vector o € D(X) and can be written as 7, A a for a € A*(V(X)). Also,
for a, 5 € /\2(\/(X))7 a A (8 is a multiple of v, A U3 A wy A ws. Thus, define
b: AN(V(X)) x A2(V(X)) = F, by aA B = bla,B) (T ATs Ay A D).
This defines a non-degenerate symmetric bilinear form of Witt index 3. Now
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define b : D(X) x D(X) — F, by b(ty A a, 5, A B) = b(a, 3). This also
is a non-degenerate symmetric bilinear form of Witt index 3. The space
Q(X) is the subspace of D(X) which is orthogonal to 91 A Ug A wq + 01 A
U3 A3 with respect to b. The group L(X) has three orbits on the projective
points of @(X ): the singular points of the quadratic form b, which are the
points of @(X ) and the two classes of non-singular points with respect to
b. Note that b(py,pg) = b(pis,p15) = 2. Also, ngE = (p1,p2, P3, p4) which
is a non-degenerate hyperbolic subspace of (Q(X), b). On the other hand,
b(plﬁ,pw) = 2d and since b(p15,p15) b(p167p16> = 4d a non-square, it follows
that Py and Pyg are in different classes of non-singular points of (Q(X),b)

and therefore representatives of the two classes. Since there are qqﬁ_—_ll quads

Q(X) for X € PG(V) and for each X there are M points in the class

of Pj5 contained in @( X) and q—) points in the Class of Pj¢ contained in
Q(X) the entries of lines IT and III of Tables 3 and 4 have now been justified.

We now make use of Corollary 3.3 and simple counting to show that for
P € P there are points in M (P) which are not from classes I, IT and III.

Lemma 3.9 The following holds for a point P € P:
(i) The number of points of type I in PG(M(P)) is 1+ q(¢* + ¢ + 1).
(12) The number of points of type II in PG(M(P)) is w.
(1ii) The number of points of type 111 in PG(M(P)) is w.
(iv) There are ¢*(¢> — 1) points in PG(M(P)) which do not belong to a
quad.

Proof. (i): The points of type I in M (P) are precisely A(P). There are
¢* 4+ q + 1 lines on P each with ¢ points of A(P) apart from P.

(ii) and (iii): The point P belongs to ) q 24 g+1 quads. For a quad @ containing
P,M(P)N Q is the hyperplane of () spanned by A(P)N Q. A simple count

yields that M(P) N Q contains & (qﬂ) points of type II and 2 (q U points of
type III. The second and third parts follow from this.

(iv): The number of points that have been accounted for is

g +1) N ¢*(q—1)

5 5 | =14+q+¢+2¢°+¢"+¢".

l+g++ ¢+ (P +q+1)]
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Since |[PG(M(P))| = ‘];T_ll there are ¢° — ¢* = ¢*(¢®> — 1) remaining points. O

Lemma 3.10 The stabilizer Sp of a point P € P is transitive on the points
of PG(M(P)) which do not belong to quads.

Proof. Since 3} is transitive on P we can take P = P, and M(P) = M,.
Recall that Sp = E(P) - L(P) where E(P) is elementary Abelian of order
¢, and L(P) & GL(3,q). The subgroup E(P) fixes every projective line
of the form P + P', P’ € A(P)\ {P} and for such a line, is transitive on
PG(P + P’) \ {P}. This implies that E(P) acts trivially on the six dimen-
sional quotient space M(P)/P. The action of the complement, L(P), on
M(P)/P is equivalent to the action of GL(3,q) on the space Sym(3,q) of
(3 x 3)—symmetric matrices where the action is given by g o m = g'myg
(where g7 is the transpose of the matrix g). Under this action, every matrix
is equivalent to a diagonal matrix and there are six orbits on non-zero vec-
tors, two each for rank 1, 2 and 3. Representatives for the orbits on vectors
are as follows:

100 d 00 100 100
Hi{ooo],2lo00]|,3(0o10],4(0do0],
000 000 000 000
100 0
5(o0 1 0], 6) 0
00 1 d

Note that the vectors in 1) and 2) give rise to the same point of PG(Sym(3, q))
as do the vectors in 5) and 6) but the vectors in 3) and 4) do not.

Consequently, L(P) has four orbits on the points of M (P)/P. However, for
any 2-space U of M (P) containing P the group F/(P) is transitive on PG(U)\
{P} and therefore Sp has four orbits on the points of PG(M (P))\ {P}. The
point Pj is a representative of one orbit, and the points P;5 and Pjg are the
representatives of two other orbits. Thus, there is one other orbit consisting
of all those points of PG(M (P)) which do not belong to quads. O

The point Pj7 is a point of M (P) which does not belong to a quad. In
view of Corollary 3.8 and Lemmas 3.9 and 3.10 it now follows that the orbit
of Pi7 has [P x (¢° = ¢°) = ¢*(¢° = 1)(¢* + (¢ + 1).
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3.3 Points not belonging to a hemisphere

We now turn our attention to points which do not belong to M (P) for any
point P € P.

Since the group 3’; is transitive on P and for a point P € P the normal
Abelian group E(P) acts regularly on the points P’ with d(P, P’) = 3, it
follows that 3'; is transitive on ordered pairs (P, P’) of points from P at
distance three. One such pair is (P, Pg). By Cooperstein and De Bruyn [6,
Corollary 5.3], an element of g} which stabilizes a given point of (P, Fg) \
{P, Ps} must either stabilize the ordered pair (P, Ps) or interchange P; and
B.

The stabilizer S(p, p,) of the ordered pair (P, Ps) is isomorphic to GL(3, q).
The normal subgroup SL(3,q) acts trivially on both the points P; and Ps
while an element of Z(S(p, p,)) will multiply ps by a scalar a and p, by %
Such an element takes the point (p; + ps) to (p1 + aps).

There is also a group element which interchanges the points P, and Py
and, specifically, takes p; to pg and pg to —p;. This transformation takes the
point (p; + ps) to (p1 —ps). If —1 is a non-square in [F, then all the points of
(P, Ps)\{P1, P} are in the same orbit. On the other hand, if —1 is a square
in IF, then (p; + ps) and (p; + dps) are in different orbits. In the former case
we get a single orbit with representative Pjg and orbit size w and
in the latter case two orbits, with representatives P;g and P9 each with orbit

. 6 4_1 3 1
size Ll 4)(q 1)

We next show that the group Sy contains a subgroup G = GU(3,¢%).
Recall that ¢ is an element of F 2 such that 0% = d and w; = dv; for every i €
{1,2,3}. For any a € F2, put & := 4. Note that for a = a+bd, & = a — bd.

Now, define a map h: V x V — F2 as follows (o, 5; € Fp2):

3 3 3
i=1 i=1 i—1

Since tr(0) = 0 this defines a skew Hermitian form on V. It then follows that
the map f': V x V — F, given by f'(v,w) = tr(h(v,w)) is an alternating
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form. We claim that f' = f. We compute f'(v;,v;), f'(w;, w;), f'(v;,w;) for
i # j and f'(v;,w;) for i =1,2,3.

By the definition, h(v;,v;) = h(w;,w;) = h(v;,w;) = 0 for i # j and conse-
quently we only have to compute f’(v;, w;). By definition this is tr(h(v;, 7)) =
tr(2) =tr(3) = 1. So, our claim holds.

It now follows that if o is an isometry of (V,h), that is, a unitary transfor-
mation, then o is an isometry of the symplectic space (V, f). So if G = {0 €
GLy,(V)[h(o(u1),0(t2)) = h(tn,t2), Vs, Uz € V}, then G = GU(3,¢%)
and G < Sy. Let G’ be the derived subgroup of G, then G’ is isomorphic to
SU(3,¢*). By Lemma 3.1 it follows that G’ centralizes (P20, D21)-

We next determine the stabilizer of the point Pyy. We will first show in a
series of lemmas that if 0,w € (pao, p21) and 6 € Sy satisfies §(v) = w then

9(<p20,p21> = <p207p21>-

Let V' denote the six dimensional vector space over F, with basis S. For
a vector T = a10; + Aoy + asts + byw; + baty + baws € V'’ we define 79 =
alvy + advy + advs + blw, + biw, + blws. For § € GL(V) we denote by 0
the element induced by 6 in GL(V') and @' the corresponding element of
GLN* V).

Lemma 3.11 Let{é, ey, ... 66} and{é},é,, ..., e} be two bases of V' such
that e Néa Neés+ ey Nes Nég = €y Ney Nes+ ey Nes Neg. Then {(é1, s, e3),
<é47 é5véﬁ>} = {<éllaé/27 ég>7 <é£17 é{c’)?élfi>}

Proof. Put @ :== e ANéa Nes+eéegNeés Neg =€) Ney Néy+ ey Nes N e
For every vector z of V', let A; denote the subspace of V' consisting of
all vectors g satisfying a« A Z Ay = 0. Let B be the subset of V' which
consists of all vectors Z of V' such that dim(Az) > 4. We will now prove
that B = (€1,és,€3) U (€4,€5,8). In a completely similar way, one can
then also prove that B = (€], é,,¢é}) U (€}, 5, ;). This then implies that
{<éh €2, é3>7 <é47 €s, 66>} = {<é,1’ é/27 éé>7 <é217 é/5> é/6>}

Put z = 611 + 0962 + - - - + dg6 and § = ai€; + azsés + - - - + agég. Then
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the fact that a A z Ay = 0 implies that

i —52 51 0 0 0 0 aq 0
—53 0 51 0 0 0 a9 0
0 —53 (52 0 0 0 as . 0
0 0 0 =6 6 0] |a| |0
0 0 0 _56 0 (54 as 0
L 0 0 0 0 _56 55 i | Qg i | 0 i
So, dim(Vz) > 4 if and only if the rank of
[ 6, & 0 0 0 0]
—d3 0 & O 0 O
0 —d3 02 O 0 0
0 0 0 —d 94 O
0 0 0 —d 0 04
0 0 0 0 —b 05|

is at most 2. This happens precisely when (d1, 9o, d3) = (0,0,0) or (d4, 05, dg) =
(0,0,0), i.e. when & € (€1, 3, €3) U (€4, €5, ). a

The proof of the following lemma is straightforward.

Lemma 3.12 For all a,b € F,, (a + bd) - (wy + dv1) A (g + 602) A (w3 +
073) 4+ (a — bd) - (w1 — 001) A (g — dV2) A (W3 — 0V3) = 2a - pa1 + 2bd - pag.

Corollary 3.13 The vectors of the 2-space (pag, pa1) of /\3 V' are precisely
the vectors of the form (a + bo) - (wy + dv1) A (W2 + 002) A (w3 + dv3) + (@ —
b(S) . (’lﬁl - 5?71) VAN (12)2 - 5@2) A (’LDg - 5’[73), where a, b S Fq.

By Lemma 3.11 and Corollary 3.13, we have

Corollary 3.14 If 0 € Sy such that 0 maps a nonzero vector of (psg, p21) to

a nonzero vector of (pag, p21), then 0 stabilizes (P20, P21). Moreover, one of
the following holds:

(1) @' stabilizes the 1-spaces ((wy + 601) A (Wy + 003) A (w3 + 603)) and
(1 — 601) A (W — 6T2) A (03 — 073)) of N> V.

(2) @' interchanges the 1-spaces (w1 + 601) A (g + 60s) A (w3 + 603)) and
(@1 = 601) A (w3 — 002) A (w3 — 603)) of \*V".
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Let W} denote the subgroup of S; consisting of all § € S; for which 0
stabilizes (pao, p21). Let Uy denote the normal subgroup of W consisting of all
6 € Wy for which case (1) of Corollary 3.14 occurs. Put W\f = {06 Wy}
and ﬁ; = {@\] 6 eUs}.

Remark 3.15 Let 6 be an element of Uy, let u; be the restriction of 0 to
the 3-space (w; + dv1, Wy + d0y, w3 + dv3) of V' and let py be the restriction
of § to the 3-space (W, — 60y, Wy — 60a, W3 — 63) of V'. Then 1 = det(f) =
det(ul) . det(,uz)

Now, let & be an arbitrary vector of (w; 4+ 00y, we + d0s, w3 + d03). Since
T4 27 €V, we have § := 0(z + z%) = 0(z) + 0(z9) € V. Also, j = 7 =
[0(z9)]7 4 [0()]?. Since there exist unique g, € (W + 60y, Wy + Iy, W3 + 0T3)
and gy € (wy — dvy, Wy — dUy, w3 — 6U3) such that ¥ = y; + ¥2, we necessarily
have 0(z7) = [#(Z)]9. Hence, pus(29) = 0(z7) = [0(Z)]7 = [ ()]

By the previous paragraph, det(us) = [det(u1)]?. If det(uy) = a + b0,
then det(us) = a — bd and since det(juy) - det(us) = 1, we have a® — b%d = 1.

Conversely, let a,b € F, such that a®* — b*d = 1. Then the element of
GL(V) determined by 1 — a - 01 + b - wy, Wy — bd - U1 + a - Wy, Uy +— D,
Wy +— We, Us — Us, W3 — wWs determines an element of U; for which the
corresponding value of det(uy) is equal to a + b.

Lemma 3.16 Let ay,as,b1,bo € F, such that (ai,as) # (0,0) # (b1, be).
Then the 1-spaces (ai1pa1 + aapao) and (bipar + bapag) belong to the same Uy-
orbit if and only if (a? — %)(b% — %) is a square.

Proof. By Lemma 3.12, aips + aspo = (% + 530) - (w1 + 001) A (w2 +

00y) A (w3 + 0U3) + (% — §20) - (w1 — 601) A (w2 — 002) A (ws — 603) and
bipar + bapao = (& + B6) - (w1 + 601) A (w2 + 602) A (w3 + 003) + (& —
3—35) - (wy — dv1) A (wg — d0,) A (w3 — dv3). By Remark 3.15, the 1-spaces
(a1po1 + aspao) and (bypa1 + bapag) belong to the same ﬁ\f orbit if and only
if there exists a A € IFZ and ¢, ¢y € F, satisfying ¢7 — ¢3d = 1 such that
(U +26) (¢ + b)) - A=5%2+ ;’35 If ¢} and ¢, are the unique elements
of F, such that (% + % )(c1 + y6) = % + 24, then one readily verifies
thatbf——g (a2 75 2

(b1pa1 + bapag) belong to the same Uf orbit if and only if (a? — )(b% — %)
as a square. O

/

2d
)(c} d). Tt now follows that {(a1ps + a2p20> and
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Lemma 3.17 There are two @-orbz’ts on the set of 1-spaces of (p2g, P21)-

Proof. If a; =1 and ay = 0, then a? — %% =1 is a square.
Now, choose a; € F;. Then there exist ay, as € I} such that dai = a3+a3.

2 2
Then af — % = % is a non-square.
The claim now follows from Lemma 3.16. O

We will now construct a particular element 0% of V[//\f\@ Let A, B € F, such
that (4)? + (4)? = d (Hence, A*> — B?d = —1) and consider the following
map 6* of S:

(0, — A0+ B-wy,
wy +— —Bd~z71—A~2D1,
Vg > A'@Q—B'wg,
’LDQ (d Bd'@Q—A'IDQ,
’173 — A’Dg—l—Bws,

\’U_Jg = —Bd’ljg—A’LT)g

Then one readily verifies that §* € W\U;. Moreover, GA*(pgl) = Apo1+Bdpsy.

Proposition 3.18 (1) If —1 is a non-square, then T/I/ff has one orbit on the

set of 1-spaces of (pag, P21)-
(2) If =1 is a square, then Wy has two orbits on the set of 1-spaces of

<p207 p21> .

Proof. Since ﬁ; is a normal subgroup of index 2 of I/I//\f, we can conclude
the following:

(1) If (p1) and (é\*(pgl» belong to the same @-orbit, then 6+ stabilizes
the two Uy-orbits. In this case Wy has two orbits on the set of 1-spaces
of (pao, P21)-

(2) If (pa1) and <é;(p21)) belong to different U, s-orbits, then 6 interchanges
the two Ur s-orbits. In this case Wf has one orbit on the set of 1-spaces
of (P20, P21)-

Now, <p21> and (6%(ps1)) belong to the same U}—orbit if and only if (12 —
2

)(A2 — BI0y = A2 _ B2%d = —1 is a square. The proposition follows. O
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4 Proof of the Fusion Theorem

Since :S’; is normal in G_f, if two S}—orbits were to fuse via ¢* or i, v e
Aut(F,), then they must have the same size. When —1 is a non-square
there are no such possibilities. When —1 is a square it could be the case
that the orbits with representatives P;g and P9 fuse and the orbits with
representatives Py and P»; fuse. We show that this is indeed the case.

Suppose then that —1 is a square. Now (;*(pl +pg) = p1 +d®pg and d® is a
non-square. The points Pyg = {p; + dps) and (p; + d>pg) are in the same 3}—
orbit. So, in this case we get the fusion of the S s-orbits with representatives
Pig and Pig. We also show that the orbits with representatives Psy and P
fuse. Before doing so, we note that the points Py = (ps+dps+dps+dps) and
(p1+dps+dps+dpr) are in the same @—orbit: let o(v;) = Wy, o(w;) = —0;,1 =
1,2,3. Then & (p1+dps+dps+dpr) = ps+dps+dps+dps from which the claim
follows. Now o*(pao) = o*(dpy + pa + ps + pr) = dpy + d®ps + dps + dPpr =
d(p1 + dpy + dpg + dp7) and therefore 0/_\*(P2()) = (p1 + dpy + dps + dp7) is in
the @—orbit of P5;. This completes the proof of the Fusion Theorem.
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