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Abstract

This paper surveys the most important results about hyperplanes of symplectic
dual polar spaces. These results concern constructions of such hyperplanes, classifi-
cation and characterization results. Also the problem which hyperplanes arise from
full projective embeddings will be considered here.
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1 Introduction

Let V be a vector space of even dimension 2n ≥ 4 over a field F that is equipped with a
nondegenerate alternating bilinear form f . For every subspace U of V , we denote by U⊥

the subspace of V consisting of all vectors ū ∈ V for which f(ū, ū′) = 0, ∀ū′ ∈ U . We
denote by ζ the symplectic polarity of PG(V ) associated with f . Then PG(U)ζ = PG(U⊥)
for every subspace U of V . A subspace U of V is called totally isotropic (with respect to
f) if U ⊆ U⊥. A subspace α of PG(V ) is called totally isotropic (with respect to ζ) if
α ⊆ αζ . We denote by P the set of all points of PG(V ) and by Σ the set of all totally
isotropic subspaces of PG(V ). For brevity, we will call the elements of Σ also subspaces.

The structure Π = (P ,Σ) is a polar space of rank n in the sense of Tits [62], that
means that (P ,Σ) satisfies the following four properties:

(P1) Any subspace of Π (i.e. any element of Σ) together with the subspaces contained
in it define a projective space of dimension at most n− 1.

(P2) The intersection of two subspaces of Π is again a subspace of Π.

(P3) If α is a maximal subspace of Π (i.e. a subspace of projective dimension n − 1),
and p is a point of Π (i.e. an element of P) not contained in α, then there is a
unique maximal subspace β of Π that contains p and intersects α in a subspace of
dimension n− 2. Moreover, the intersection α ∩ β consists precisely of those points
of α that are contained in a 1-dimensional subspace together with p.

(P4) There exist two disjoint maximal subspaces.
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We will denote Π also by W (2n− 1,F) and call it a symplectic polar space. If F is a finite
field with q elements, then we denote W (2n− 1,F) also by W (2n− 1, q).

With the polar space Π, there is associated a so-called dual polar space ∆ of rank n
(see Cameron [7]). This is the point-line geometry (M,L, I), where

• M is the set of maximal subspaces of Π;

• L is the set of next-to-maximal subspaces of Π, i.e. the subspaces of Π of projective
dimension n− 2;

• The incidence relation I ⊆M×L corresponds to reverse containment, i.e. if p ∈M
and L ∈ L, then (p, L) ∈ I if and only if L ⊆ p.

We denote ∆ also by DW (2n − 1,F) and call it a symplectic dual polar space. If F is
a finite field with q elements, then we denote DW (2n − 1,F) also by DW (2n − 1, q).
Distances between points or nonempty sets of points of ∆ = DW (2n − 1,F) will always
be measured in the collinearity graph of ∆. The maximal distance between two points of
DW (2n− 1,F) is equal to n.

A set H of points of ∆ = DW (2n− 1,F) is called a hyperplane if H 6=M and if every
line intersects H in either a singleton or the whole line.

A full projective embedding of ∆ = DW (2n− 1,F) is an injective map e from M to
the point set of a projective space PG(W ) satisfying the following:

(1) The image of e generates the whole projective space PG(W ).

(2) e maps lines of ∆ to full lines of PG(W ).

We denote a full projective embedding e of ∆ into PG(W ) also by e : ∆→ PG(W ).
Suppose e : ∆ → PG(W ) is a full projective embedding of ∆ = DW (2n − 1,F)

into PG(W ) and α is a hyperplane of PG(W ). Then the set Hα := e−1(e(M) ∩ α) is a
hyperplane of ∆. Any hyperplane of ∆ which can be obtained in this way is said to arise
from the embedding e. A hyperplane of ∆ is called classical if it arises from some full
projective embedding of ∆.

Suppose e : ∆ → PG(W ) is a full projective embedding of ∆ = DW (2n − 1,F) and
α is a subspace of PG(W ) disjoint from the image of e. Denote by PG(W )α the quotient
projective space whose points are the subspaces of PG(W ) that contain α as a hyperplane.
For every point x of ∆, let eα(x) be the point 〈e(x), α〉 of PG(W )α. Then eα defines a
full projective embedding of ∆ into PG(W )α. We call eα a quotient of e.

Suppose e1 : ∆→ PG(W1) and e2 : ∆→ PG(W2) are two full projective embeddings
of the dual polar space ∆ = DW (2n − 1,F). Then e1 and e2 are said to be isomorphic
if there exists an isomorphism φ : PG(W1) → PG(W2) such that e2 = φ ◦ e1. We write
e1 ≥ e2 if e2 is isomorphic to a quotient of e1.

Suppose E is a set of (mutually nonisomorphic) projective embeddings of ∆ = DW (2n−
1,F) such that every full projective embedding of ∆ is isomorphic to precisely one element
of E . Then (E ,≤) is a poset.
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Let
∧n V denote the n-th exterior power of V . If p = 〈v̄1, v̄2, . . . , v̄n〉 is an n-

dimensional subspace of V , then egr(p) := 〈v̄1∧ v̄2∧· · ·∧ v̄n〉 is a point of PG(
∧n V ). The

subspace PG(W ) of PG(
∧n V ) generated by all points egr(p), where p is an n-dimensional

totally isotropic subspace of V , has projective dimension
(
2n
n

)
−
(

2n
n−2

)
− 1, see e.g. Bour-

baki [4, 13.3], Burau [6, 82.7], De Bruyn [18, Theorem 1.1] and Premet & Suprunenko
[54, p. 1337]. Moreover, the map p 7→ egr(p) defines a full projective embedding of
∆ = DW (2n− 1,F) into PG(W ), see Cooperstein [10, Proposition 5.1]. This embedding
is called the Grassmann embedding of ∆.

A full projective embedding ẽ : ∆→ PG(W̃ ) of ∆ = DW (2n−1,F) is called absolutely
universal if ẽ ≥ e for any full projective embedding e of ∆. By results of Tits [62, 8.6] and
Kasikova & Shult [38, 4.6], we know that a dual polar space admits an absolutely universal
full projective embedding if it has at least one full projective embedding. In particular,
we thus know that the dual polar space ∆ = DW (2n− 1,F) has an absolutely universal
embedding. If |F| ≥ 3, then by results of Cooperstein [10, Theorem B] and De Bruyn &
Pasini [32, Corollary 1.2], we know that the Grassmann embedding of DW (2n − 1,F) is
absolutely universal. This is false if |F| = 2 and n ≥ 3. Li [39] and Blokhuis & Brouwer
[3] independently showed that the absolutely universal embedding of DW (2n− 1, 2) has

vector dimension (2n+1)(2n−1+1)
3

.
If e1 and e2 are two full projective embeddings of ∆ = DW (2n − 1,F) such that

e1 ≥ e2, then any hyperplane of ∆ arising from e2 also arises from e1. Hence, the classical
hyperplanes of ∆ = DW (2n − 1,F) are precisely the hyperplanes of ∆ arising from the
absolutely universal embedding of ∆.

Suppose α is a subspace of Π = W (2n − 1,F) of dimension n − 1 − k where k ∈
{0, 1, . . . , n}, and denote by Fα the set of all maximal subspaces of Π containing α. Then
Fα, regarded as a set of points of ∆ = DW (2n− 1,F), satisfies the following properties:

(i) If a line of ∆ has at least two of its points in Fα, then all its points are contained
in Fα.

(ii) If x and y are two points of Fα, then any point of ∆ on a shortest path between x
and y also belongs to Fα.

So, Fα is a convex subspace. It can be shown that every nonempty convex subspace of ∆
arises in this way. We denote by F̃α the point-line geometry induced on Fα by the lines
of ∆ that have all their points in Fα. If δ denotes the maximal distance between two
points of Fα, then F̃α is a point if δ = 0, a line if δ = 1 and a symplectic dual polar space
isomorphic to DW (2δ − 1,F) if δ ≥ 2. The convex subspace Fα is called a quad if δ = 2

and a hex if δ = 3. If F is a quad, then F̃ is a generalized quadrangle, that is a point-line
geometry that satisfies the following properties:

(GQ1) every two distinct points are incident with at most one line;

(QQ2) every point is incident with at least two lines;

(GQ3) for every non-incident point-line pair (x, L), there exists a unique point on L collinear
with x.
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If H is a hyperplane and F a nonempty convex subspace of DW (2n−1,F) then either

F ⊆ H or H ∩ F is a hyperplane of F̃ .
Let Q(2n,F) denote the quadric of PG(2n,F) defined by the equation X2

0 + X1X2 +
· · · + X2n−1X2n = 0. Here, (X0, X1, . . . , X2n) are the coordinates of a generic point
of PG(2n,F) with respect to some fixed reference system. The points and subspaces
of PG(2n,F) contained in Q(2n,F) define a polar space which we will also denote by
Q(2n,F). With Q(2n,F), there is also associated a dual polar space which we denote
by DQ(2n,F). If F is a finite field with q elements, then we denote (D)Q(2n,F) also by
(D)Q(2n, q).

The (dual) polar spaces (D)Q(2n,F) and (D)W (2n−1,F) are isomorphic if and only if
F is a perfect field of characteristic 2, i.e. a field of characteristic 2 in which each element
is a square. In the finite case, we thus know that the (dual) polar spaces (D)Q(2n, q) and
(D)W (2n− 1, q) are isomorphic if and only if q is an even prime power.

This paper intends to give a survey of the most important results regarding hyperplanes
of symplectic dual polar spaces. We provide answers to the problems mentioned in the
following list:

(1) Find families of hyperplanes of symplectic dual polar spaces.

(2) Characterize families of hyperplanes by means of their intersection with convex
subspaces.

(3) For particular values of n and F, classify all hyperplanes of DW (2n− 1,F).

(4) For particular values of n and F, classify all classical hyperplanes of DW (2n−1,F).

(5) For which n and F are all hyperplanes of DW (2n− 1,F) classical?

(6) If not all hyperplanes of DW (2n− 1,F) are classical, then find necessary and suffi-
cient conditions for a hyperplane of DW (2n− 1,F) to be classical.

2 Some families of hyperplanes

2.1 Hyperplanes constructed from other hyperplanes

Before describing some families of hyperplanes of symplectic dual polar spaces, we give
two constructions that allow to construct hyperplanes from other hyperplanes.

Construction 1: Suppose F is the field with two elements. Then every line of ∆ =
DW (2n− 1, 2) is incident with precisely three points. If X1 and X2 are two sets of points
of ∆, then we denote by X1 ∗X2 the complement of the symmetric difference X1∆X2 of
X1 and X2. If H1 and H2 are two distinct hyperplanes of ∆, then X1 ∗ X2 is again a
hyperplane of ∆.
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Construction 2: Suppose F is a convex subspace of diameter δ of ∆ = DW (2n− 1,F).

Suppose G is a hyperplane of F̃ . The maximal distance from a point of ∆ to F is equal to
n− δ. Every point x of ∆ at distance k ∈ {0, . . . , n− δ} from F lies at distance k from a
unique point πF (x) of F . Denote now by H the set of points of ∆ consisting of all points
at distance at most n − δ − 1 from F together with all points x of ∆ at distance n − δ
from F for which πF (x) ∈ G. By De Bruyn and Vandecasteele [34, Proposition 1], we
then know that H is a hyperplane of ∆ = DW (2n − 1,F). We will call H the extension
of G. If F = ∆, then we say that H is a trivial extension of G.

2.2 Singular hyperplanes

Recall that the maximal distance between two points of ∆ = DW (2n − 1,F) is equal to
n.

For every point x of ∆, we denote by Hx the set of points of ∆ at non-maximal distance
from x, i.e. the set of points of ∆ at distance at most n − 1 from x. Then Hx is a
hyperplane of ∆, which is called the singular hyperplane of ∆ with deepest point x.

Suppose F is a convex subspace of diameter δ of ∆ and G is the singular hyperplane of F̃
with deepest point x. Then the extension of G is the singular hyperplane of DW (2n−1,F)
with deepest point x.

2.3 Ovoids

An ovoid of a point-line geometry is a set of points meeting each line in a singleton. For
infinite fields F, the dual polar space ∆ = DW (2n − 1,F) always has ovoids due to the
possibility to construct such hyperplanes by means of transfinite induction. The situation
is quite different in the finite case.

Let us first discuss the case n = 2. Then ∆ = DW (3, q) ∼= Q(4, q). The generalized
quadrangle Q(4, q) always has classical ovoids. All of these are elliptic quadrics Q−(3, q) ⊂
Q(4, q). There are many values of q for which the generalized quadrangle Q(4, q) has non-
classical ovoids:

• q = ph with p an odd prime and h ∈ N \ {0, 1} ([37]);

• q = 22h+1 with h ∈ N \ {0} ([61]);

• q = 32h+1 with h ∈ N \ {0} ([37]);

• q = 3h with h ∈ N \ {0, 1, 2} ([59]);

• q = 35 ([48]).

For certain values of q, it is known that all ovoids of Q(4, q) are classical:

Theorem 2.1 • Every ovoid of Q(4, 4) is classical ([2, 44]).
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• Every ovoid of Q(4, 16) is classical ([41, 42]).

• Every ovoid of Q(4, q), q prime is classical ([1, Corollary 1, page 137]).

The following theorem, due to Thomas [60, Theorem 3.2] and Cooperstein & Pasini [12]
deals with the case n = 3.

Theorem 2.2 ([12, 60]) The dual polar space DW (5, q) does not have ovoids.

The following is an immediate consequence of Theorem 2.2.

Corollary 2.3 For every n ≥ 3, the dual polar space DW (2n−1, q) does not have ovoids.

Proof. Let F be a convex subspace of diameter 3 of ∆ = DW (2n − 1, q) and suppose

O is an ovoid of ∆. Then F ∩ O is an ovoid of F̃ ∼= DW (5, q). By Theorem 2.2, this is
impossible. �

2.4 Semi-singular hyperplanes

Suppose x is a point of ∆ = DW (2n − 1,F) and X is a set of points at distance n from
x such that every line at distance n − 1 from x has a unique point in common with X.
Denote by H the union of X and the set of points at distance at most n−2 from x. Then
H is a hyperplane of ∆, which is called a semi-singular hyperplane (with deep point x). If
n = 2, then semi-singular hyperplanes and ovoids are the same objects.

For infinite fields F, the dual polar space ∆ = DW (2n−1,F) always has semi-singular
hyperplanes due to the possibility to construct such hyperplanes by means of transfinite
induction. The situation is quite different in the finite case.

For the finite dual polar space DW (5, q), the following was proved in [25, Corollary
18 and Theorem 19].

Theorem 2.4 If q is prime or an even prime power, then DW (5, q) does not have semi-
singular hyperplanes.

The proof of Theorem 2.4 for the case where q is prime relied on the above-mentioned
result of Ball, Govaerts and Storme [1, Corollary 1, page 137] stating that every ovoid of
Q(4, q), q prime, is classical, i.e. an elliptic quadric Q−(3, q) ⊂ Q(4, q).

Suppose now that 2 ≤ n1 ≤ n2. Suppose H is a semi-singular hyperplane of DW (2n2 −
1, q) with deep point x. Let F be a convex subspace of diameter n1 of DW (2n2 − 1, q)

containing a point at maximal distance n from x. Then F̃ ∼= DW (2n1 − 1, q) and F ∩H
is a semi-singular hyperplane of F̃ with deep point πF (x). In view of Theorem 2.4, this
implies the following.

Corollary 2.5 If n ≥ 3 and q is prime or an even prime power, then the symplectic dual
polar space DW (2n− 1, q) does not have semi-singular hyperplanes.

6



2.5 Full subgrids of DW (3,F) ∼= Q(4,F)

Consider the ambient space PG(4,F) of Q(4,F). Suppose L1 and L2 are two disjoint lines
of Q(4,F), then the 3-space of PG(4,F) generated by L1 and L2 intersects Q(4,F) in a
full subgrid. This full subgrid is a hyperplane of Q(4,F) ∼= DW (3,F).

2.6 The hyperplanes of hyperbolic type

Consider the quadric Q(2n, 2) in the projective space PG(2n, 2), n ≥ 2, and a hyperplane
Π intersecting Q(2n, 2) in a nonsingular hyperbolic quadric Q+(2n− 1, 2). The subspaces
of Q(2n, 2) of maximal dimension n− 1 that are not contained in Π then define a hyper-
plane of the dual polar space DQ(2n, 2) associated with Q(2n, 2). Any such hyperplane
of DQ(2n, 2) is called a hyperplane of hyperbolic type. As DW (2n − 1, 2) ∼= DQ(2n, 2),
hyperplanes of hyperbolic type also live in the symplectic dual polar space DW (2n−1, 2).
The hyperplanes of hyperbolic type of the generalized quadrangle DW (3, 2) are precisely
the full subgrids of DW (3, 2). Hyperplanes of hyperbolic type were introduced in Section
1.2 of Pasini and Shpectorov [46].

2.7 Hyperplanes of subspace type

Suppose again that ∆ = DW (2n− 1,F) is the dual polar space associated with the polar
space W (2n− 1,F) and that the subspaces of W (2n− 1,F) are the subspaces of PG(V )
that are totally isotropic with respect to ζ.

Suppose α is an arbitrary (n− 1)-dimensional subspace of PG(V ), and denote by Hα

the set of all totally isotropic (n− 1)-dimensional subspaces of PG(V ) meeting α. Then
Hα is a hyperplane. Any hyperplane of DW (2n− 1,F) which can be obtained in this way
is called a hyperplane of subspace type.

In the special case that α itself is also totally isotropic, we know that Hα is a singular
hyperplane, namely the singular hyperplane with deepest point α. So, singular hyper-
planes are also examples of hyperplanes of subspace type. The hyperplanes of subspace
type of DW (3,F) ∼= Q(4,F) are precisely the singular hyperplanes or the full subgrids.
The extension of any hyperplane of subspace type is again a hyperplane of subspace type.

Hyperplanes of subspace type were introduced in [20] and proofs of the above-mentioned
facts can also be found in this paper (see Propositions 2.7, 2.8 and 2.10).

2.8 The hexagonal hyperplanes

A generalized hexagon is a point-line geometry S that satisfies the following properties:

• Every two distinct points of S are incident with at most one line.

• The maximal distance between two points of S is equal to 3.

• S has no subgeometries that are ordinary k-gons with k ∈ {3, 4, 5}.
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• Two distinct objects of S are contained in a subgeometry that is an ordinary 6-gon.

With an object of S, we mean a point or a line.
By Shult [57] (finite case) and Pralle [51] (general case), the dual polar space DQ(6,F)

has hyperplanes H with the property that the points and lines contained in H define a
generalized hexagon H̃ (being isomorphic to the so-called split Cayley hexagon H(F)).
These hyperplanes are therefore called hexagonal hyperplanes.

If F is a perfect field of characteristic 2, then the polar spaces DW (5,F) and DQ(6,F)
are isomorphic and therefore DW (5,F) also has hexagonal hyperplanes.

2.9 SDPS-hyperplanes

Suppose ∆ is a dual polar space of even rank 2n ≥ 2. A nonempty set X of points of ∆
is called an SDPS-set if it satisfies the following properties:

• No two distinct points of X are collinear.

• If quad Q contains two distinct points of X, then it intersects X in an ovoid of Q̃.

• The partial linear space ∆′ whose points are the elements of X and whose lines are
the quad intersections of size at least two (natural incidence) is a dual polar space
of rank n.

• If x1 and x2 are two points of X, then the distance between x1 and x2 in the geometry
∆ is twice the distance between these points in the geometry ∆′.

• Every line of ∆ meeting X is contained in a (necessarily unique) quad which inter-
sects X in at least two points.

An SDPS-set of a dual polar space of rank 0 consists of the unique point of that geometry.
An SDPS-set of a generalized quadrangle is just an ovoid of that geometry. The word
SDPS is an abbreviation of Sub Dual Polar Space and refers to the fact that ∆′ can be
regarded as a sub dual polar space of ∆. SDPS-sets were introduced in De Bruyn and
Vandecasteele [34]. In [34] (finite case) and [13, Chapter 5] (general case), it was shown
that if X is an SDPS-set of a thick dual polar space ∆ of rank 2n, then the maximal
distance from a point of ∆ to X is equal to n. Moreover, the set of points of ∆ at
distance at most n − 1 from X is a hyperplane. Any hyperplane of a dual polar space
that can be obtained in this way is called an SDPS-hyperplane. An SDPS-hyperplane of
a dual polar space of rank 2 is an ovoid.

The following theorem was proved in [19].

Theorem 2.6 ([19]) For every m ∈ N \ {0, 1}, the dual polar space DW (4m− 1, q) has
up to isomorphism a unique SDPS-set.
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The proof of Theorem 2.6 given in [19] invoked a classification result of Pralle and Shpec-
torov [53, Theorem 2], whose proof itself relied on the classification of the flag-transitive
ovoid complements of Q(4, q) obtained in Pasini and Shpectorov [45, Proposition 4.1].

We will now describe the unique SDPS-set of DW (4m−1, q). Consider the finite field Fq2
with q2 elements and let Fq denote the subfield of order q of Fq. Let δ denote an arbitrary
element of Fq2\Fq. Then Fq2 = {x1+x2δ |x1, x2 ∈ Fq}. Define τ : Fq2 → Fq;x1+x2δ 7→ x1.
Consider the following bijection φ between the vector spaces F4n

q and F2n
q2 :

φ(x1, x2, . . . , x4n) = (x1 + δx2, . . . , x4n−1 + δx4n).

Let 〈·, ·〉 be a nondegenerate alternating bilinear form on the vector space F2n
q2 . Then

τ(〈φ(·), φ(·)〉) is a nondegenerate alternating bilinear form on F4n
q . If α is a totally isotropic

n-dimensional subspace of F2n
q2 , then φ−1(α) is a 2n-dimensional totally isotropic subspace

of F4n
q . The set of all 2n-dimensional totally isotropic subspaces of F4n

q which can be
obtained in this way is an SDPS-set of DW (4n− 1, q).

3 On classical hyperplanes of DW (2n− 1,F)
Ronan [56, Corollary 2, page 180] proved that if a point-line geometry with three points
per line has a full projective embedding, then all hyperplanes of it are classical. In
particular, this means that all hyperplanes of the dual polar space DW (2n − 1, 2) are
classical. Sometimes, the fact that certain hyperplanes are classical also implies that
other hyperplanes are classical as well. In this context, we wish to mention the following
result which was proved in [24, Theorem 1.2(1)].

Theorem 3.1 ([24]) Let F be a convex subspace of diameter δ ≥ 2 of the dual polar

space ∆ = DW (2n− 1,F). Let G be a hyperplane of F̃ and let H denote the hyperplane
of ∆ that arises by extending G. Then G is classical if and only if H is classical.

As the generalized quadrangle DW (3,F) ∼= Q(4,F) admits nonclassical ovoids for every
infinite field F and for certain finite fields F, Theorem 3.1 thus implies that the extensions
of all these nonclassical ovoids are nonclassical hyperplanes as well.

Since not all hyperplanes of the dual polar space DW (2n− 1,F) are necessarily classical,
one can ask for necessary and sufficient conditions for hyperplanes of DW (2n − 1,F) to
be classical. Such necessary and sufficient conditions were obtained in [23].

Theorem 3.2 ([23]) Suppose H is a hyperplane of the dual polar space DW (2n− 1,F).
Then the following are equivalent:

• H is a classical hyperplane;

• for every quad Q not contained in H, the intersection H ∩Q is a classical ovoid of
Q̃.
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Theorem 3.2 would also be a consequence of Cardinali, De Bruyn and Pasini [9, Corollary
1.5] and the results on simple connectedness of hyperplane complements on dual polar
spaces obtained in Cardinali, De Bruyn & Pasini [9] and McInroy & Shpectorov [40].

For certain values of q, it is known that all hyperplanes of the generalized quadrangle
DW (3, q) ∼= Q(4, q) are classical, see Theorem 2.1. Theorems 2.1 and 3.2 thus imply the
following.

Corollary 3.3 • Every hyperplane of DW (2n− 1, p), p prime, is classical.

• If q ∈ {4, 16}, then every hyperplane of DW (2n− 1, q) is classical.

4 Some classification results

4.1 Hyperplanes of DW (3,F) ∼= Q(4,F)

The following result is well-known and easy to prove.

Theorem 4.1 Every hyperplane of DW (3,F) is either a singular hyperplane, an ovoid
or a full subgrid.

Proof. Let H be a hyperplane of DW (3,F) and let L denote the set of lines of DW (3,F)
contained in H. If L 6= ∅, then Property (GQ3) and the fact that H is a subspace imply
that every point of H is contained in some element of L.

If L = ∅, then any line of DW (3,F) intersects H in a singleton, showing that H is an
ovoid.

Suppose L 6= ∅ and that any two distinct lines of L meet. Then there exists a point p
that belongs to every line of L, implying that H ⊆ p⊥. Since every line not containing p
contains a point of H, we necessarily have H = p⊥.

Suppose that L contains two disjoint lines L1 and L2. Let L′ denote the set of lines
meeting L1 and L2. Then G :=

⋃
L∈L′ L is a full subgrid of DW (3,F) contained in H.

Since there are no subspaces between G and the whole point set of DW (3,F), we thus
see that H must coincide with the full subgrid G. �

4.2 Uniform hyperplanes of DW (2n− 1,F)

The following is an immediate consequence of Theorem 4.1.

Corollary 4.2 If H is a hyperplane of ∆ = DW (2n− 1,F) and Q is a quad of ∆, then

either Q ⊆ H or Q ∩H is a singular hyperplane of Q̃, Q ∩H is an ovoid of Q̃ or Q ∩H
is a full subgrid of Q̃.

If Q is a quad and H is a hyperplane of DW (2n− 1,F), then Q is called deep, singular,
ovoidal or subquadrangular (with respect to H) depending on whether Q ∩H is either Q,

a singular hyperplane of Q̃, an ovoid of Q̃ or a full subgrid of Q̃.
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Suppose H is a hyperplane of ∆ = DW (2n − 1,F), n ≥ 2. Then H is called locally
singular (locally ovoidal, respectively locally subquadrangular) if every non-deep quad is
singular (ovoidal, respectively subquadrangular) with respect to H. The hyperplane H is
called uniform if it is either locally singular, locally subquadrangular or locally ovoidal.

It can easily been shown that the locally ovoidal hyperplanes of ∆ = DW (2n−1,F) are
precisely the ovoids and we refer to Section 2.3 for the known classification results about
these hyperplanes. Regarding locally subquadrangular hyperplanes of ∆, a complete
classification was obtained by Pasini & Shpectorov [46, Theorem 3.1] (finite case) and De
Bruyn [22, Proposition 2.1] (infinite case).

Theorem 4.3 ([46, 22]) • The locally subquadrangular hyperplanes of DW (2n −
1, 2) are precisely the hyperplanes of hyperbolic type.

• If F is a field containing at least three elements, then DW (2n− 1,F) does not have
locally subquadrangular hyperplanes.

Regarding locally singular hyperplanes, the following classification results do exist. The
first result is due to Cardinali, De Bruyn and Pasini [8, Theorem 3.5].

Theorem 4.4 ([8]) Suppose the field F is not a perfect field of characteristic 2. Then
the locally singular hyperplanes of DW (2n − 1,F) are precisely the singular hyperplanes
of DW (2n− 1,F).

The following result is due to Shult [57] (finite case) and Pralle [51] (general case).

Theorem 4.5 ([57, 51]) Suppose F is a perfect field of characteristic 2. Then the locally
singular hyperplanes of DW (5,F) are precisely the singular and hexagonal hyperplanes of
DW (5,F).

The dual polar space DQ(2n,F) has a full projective embedding in a projective space
of dimension 2n over F, which is called the spin-embedding of DQ(2n,F). A description
of this spin-embedding can be found in Buekenhout and Cameron [5, Section 7]. The
following result is due to Shult & Thas [58] and De Bruyn [15, Proposition 1.2 and
Theorem 1.3].

Theorem 4.6 ([58, 15]) Suppose F is a perfect field of characteristic 2. Then the locally
singular hyperplanes of DW (2n − 1,F) ∼= DQ(2n,F) are precisely the hyperplanes of
DW (2n− 1,F) arising from its spin-embedding.

Remark. As a consequence of Pralle [50, Theorem 1], we know that if H is a non-uniform
hyperplane of DW (2n− 1,F), n ≥ 3, then there is a quad which is singular with respect
to H.
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4.3 Hyperplanes of DW (5, 2)

The hyperplanes of DW (5, 2) have been classified by Pralle [52] (using a computer) and
De Bruyn [17, Section 9] (without a computer). They showed that there are up to
isomorphism 12 such hyperplanes.

Theorem 4.7 ([52, 17]) Each hyperplane of DW (5, 2) is one of the following:

• a singular hyperplane;

• the extension of a full subgrid of a quad;

• the extension of an ovoid of a quad;

• a hexagonal hyperplane;

• a hyperplane of hyperbolic type;

• a hyperplane of the form H ∗Hx, where H is the extension of a full subgrid of a quad
Q and Hx is the singular hyperplane whose deepest point x is contained in H \Q;

• a hyperplane of the form H ∗ Hx, where H is the extension of a full subgrid of a
quad Q and Hx is the singular hyperplane whose deepest point x is not contained in
H;

• a hyperplane of the form H ∗Hx, where H is a hyperplane of hyperbolic type and x
is a point contained in H;

• a hyperplane of the form H ∗Hx, where H is a hyperplane of hyperbolic type and x
is a point not contained in H;

• a hyperplane of the form H1 ∗H2, where H1 is a hyperplane of hyperbolic type and
H2 is a hexagonal hyperplane;

• a hyperplane of the form H1 ∗ H2 where H1 is a hyperplane of hyperbolic type and
H2 is the extension of a full subgrid of a quad Q of DW (5, 2) such that Q ⊆ H1;

• a hyperplane of the form H1 ∗ H2 where H1 is a hyperplane of hyperbolic type and
H2 is the extension of an ovoid of a quad Q of DW (5, 2) such that Q ⊆ H1.

4.4 Classical hyperplanes of DW (5,F)

All hyperplanes of DW (5, 2) are classical, and in Section 4.3 we already provided a com-
plete classification of these hyperplanes. We may therefore assume here that |F| ≥ 3. If
|F| ≥ 3, then the classical hyperplanes of DW (5,F) are precisely the hyperplanes aris-
ing from the Grassmann-embedding. The classification of all hyperplanes of DW (5,F)
arising from the Grassmann embedding was achieved in a series of papers. A complete
classification for the finite dual polar spaces DW (5, q) was achieved in De Bruyn [17] for
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q even and in Cooperstein & De Bruyn [11] for q odd. A complete classification for the
dual polar spaces DW (5,F), where F is a perfect field of characteristic 2, was achieved in
De Bruyn [21].

In joint work with M. Kwiatkowski [31], the author has obtained an “almost complete”
classification of all hyperplanes of DW (5,F) arising from the Grassmann embedding. This
classification is complete if F is a field of characteristic distinct from 2, and partial for
fields of characteristic 2. The statement of the classification in [31] takes a few pages
and will therefore be omitted here. We only mention that the classification of the hy-
perplanes invoked multilinear algebra (use of exterior powers of vector spaces) and relied
on the classification of the quasi-Sp(V, f)-equivalence classes of trivectors which the au-
thors obtained in [30]. This classification itself relied on the lengthy classification of
the Sp(V, f)-equivalence classes of trivectors1 which the authors obtained in a series of
four papers (see [29] for a survey). During the classification of the Sp(V, f)-equivalence
classes itself, Revoy’s classification [55] of the GL(V )-equivalence classes of trivectors was
invoked.

4.5 Hyperplanes of DW (5,F) containing a quad

For infinite fields F, it seems not possible to obtain a complete classification of all hyper-
planes ofDW (5,F) due to possibility to construct such hyperplanes by means of transfinite
induction. However, a classification might be possible under additional restrictions. The
following result was proved in [26].

Theorem 4.8 ([26]) Suppose H is a hyperplane of the dual polar space DW (5,F) con-
taining a quad Q. Then H is either classical or the extension of a nonclassical ovoid of a
quad.

4.6 Nonclassical hyperplanes of DW (2n− 1,F)

Nonclassical hyperplanes of DW (5, q) were studied in [25]. The following is the main
result of that paper (see [25, Theorem 1]):

Theorem 4.9 ([25]) Every nonclassical hyperplane of DW (5, q) is either a semi-singular
hyperplane or the extension of a nonclassical ovoid.

Among other things, nonclassical hyperplanes of DW (2n−1,F) were studied in the paper
[27]. By relying on Theorem 4.9, the following result was proved there ([27, Theorem
1.1(1)]).

Theorem 4.10 ([27]) Suppose H is a nonclassical hyperplane of DW (2n− 1,F). Then
one of the following cases occurs:

1Classification results for Sp(V, f)-equivalence classes of trivectors were also obtained by Igusa [36,
Proposition 7, p. 1026] and Popov [49, Section 3] in the case the underlying field F is algebraically closed
and of characteristic distinct from 2.
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• H is the extension of a nonclassical ovoid of a quad;

• there exists a hex F such that F ∩H is a semi-singular hyperplane of F̃ .

Currently, no example of a semi-singular hyperplane of DW (5, q) is known. Combining
Theorem 4.10 with results of Section 2.4, we find:

Corollary 4.11 Let q be a prime power for which the dual polar space DW (5, q) has no
semi-singular hyperplanes. Then every hyperplane of DW (2n − 1, q), n ≥ 2, is either
classical or the extension of a nonclassical ovoid of a quad. In particular, this holds if q
is even.

There exists a complete classification of all ovoids of the generalized quadrangle Q(4, q) ∼=
DW (3, q) if q ∈ {2, 4, 8, 16, 32} (see [2, 44] for q ∈ {2, 4}, [35, 47] for q = 8, [41, 42] for
q = 16 and [43] for q = 32). If q ∈ {2, 4, 16}, then every ovoid of Q(4, q) is classical,
but for these values of q we already mentioned that every hyperplane of DW (2n− 1, q),
n ≥ 2, is classical, see Corollary 3.3. If q ∈ {8, 32}, then every ovoid of Q(4, q) is either a
classical ovoid or a so-called Tits ovoid. So, Corollary 4.11 implies the following:

Corollary 4.12 Let q ∈ {8, 32} and n ≥ 2. Then every nonclassical hyperplane of
DW (2n− 1, q) is the extension of a Tits ovoid of a quad of DW (2n− 1, q).

5 Some characterization results

We characterized above already some classes of hyperplanes of ∆ = DW (2n− 1,F). For
instance, in Theorem 4.3 we saw that the hyperplanes of hyperbolic type of DW (2n−1, 2)
are precisely the locally subquadrangular hyperplanes of DW (2n− 1, 2) and in Theorem
4.4, we saw that the singular hyperplanes are precisely the locally singular hyperplanes
in case F is not a perfect field of characteristic 2. This characterization of singular hyper-
planes no longer is valid for perfect fields of characteristic 2. However, it can be adapted
in the following way, see Lemma 3.4 of Cardinali, De Bruyn and Pasini [8].

Theorem 5.1 ([8]) The following are equivalent for a hyperplane H of ∆ = DW (2n −
1,F):

• H is a singular hyperplane;

• for every hex F of ∆ not contained in H, the intersection H ∩ F is a singular
hyperplane of F̃ .

Hexagonal hyperplanes of DW (5,F) with F a perfect field of characteristic 2 can be
characterized as follows.
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Theorem 5.2 Let F be a perfect field of characteristic 2 and suppose H is a hyperplane
of DW (2n−1,F) having the property that every quad is singular with respect to H. Then
n = 3 and H is a hexagonal hyperplane.

Proof. We note that a hexagonal hyperplane of DQ(6,F) does not have deep points,
that is, no points x for which {x} ∪ x⊥ is contained in the hyperplane. We will use this
fact later in the proof.

By Theorem 4.5, we know that the result is valid if n = 3.

Suppose therefore that n ≥ 4. Since the theorem is true for n = 3, we know that for
every hex F the intersection H ∩ F is a hexagonal hyperplane of F̃ .

Let x be a point of H. The lines and quads through x define a projective space Px.
Denote by Λx the set of lines through x contained in H, and regard Λx as a set of points
of Px. If L1 and L2 are two distinct elements of Λx, then the unique quad through L1

and L2 is singular with respect to H, implying that every line through x contained in Q
belongs to Λx. So, Λx is a subspace of Px. Every quad through x is singular with respect
to H and hence contains an element of Λx, showing that Λx is a hyperplane or the whole
set of points of Px. Since n ≥ 4, this implies that there exists a hex F through x such
that every line through x contained in F belongs to Λx. This implies that the hexagonal
hyperplane F ∩H of F̃ contains a deep point, which is impossible. �

In De Bruyn and Pralle [33, Theorem 1.1], the following result was proved.

Theorem 5.3 ([33]) Suppose H is a hyperplane of DW (5, q) without ovoidal quads,
where q is some prime power. Then H is one of the following:

• a singular hyperplane;

• the extension of a full subgrid of a quad;

• (only if q is even) a hexagonal hyperplane;

• (only if q = 2) a hyperplane of hyperbolic type of DW (5, q) = DW (5, 2);

• (only if q = 2) a hyperplane of the form H1 ∗ H2 where H1 is a hyperplane of
hyperbolic type of DW (5, q) and H2 is the extension of a full subgrid of a quad Q of
DW (5, 2) such that Q ⊆ H1;

• a semi-singular hyperplane (no known examples).

In the following two results, we characterize the hyperplanes of DW (2n−1,F) of subspace
type. The first result was proved in [16, Main Theorem] and relied on Theorem 5.3. The
second result was proved in [28, Theorem 1.2].

Theorem 5.4 ([16]) Let H be a hyperplane of DW (2n−1, q), n ≥ 2 and q 6= 2, without
ovoidal quads.
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• If q is odd, then H is a hyperplane of subspace-type.

• If q ≥ 4 is even, then H is either a hyperplane of subspace-type or arises from the
spin-embedding of DW (2n− 1, q) ∼= DQ(2n, q).

Theorem 5.5 ([28]) The following are equivalent for a hyperplane H of DW (2n−1,F),
n ≥ 3:

(1) H is a hyperplane of subspace-type;

(2) for every hex F of DW (2n − 1,F), the intersection F ∩ H is either F , a singular

hyperplane of F̃ or the extension of a full subgrid of a quad of F̃ .

In the following theorem, we characterize the SDPS hyperplanes of DW (2n− 1,F) (and
their extensions). This characterization result is taken from [14, Main Theorem].

Theorem 5.6 ([14]) The following are equivalent for a hyperplane H of ∆ = DW (2n−
1,F):

• H is the possibly trivial extension of an SDPS-hyperplane of a convex subspace of
even diameter of ∆;

• for every hex F of ∆, the intersection H ∩ F is either F , a singular hyperplane or
the extension of an ovoid of a quad of F̃ .
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