428 research outputs found

    Representation Theory of Finite Semigroups, Semigroup Radicals and Formal Language Theory

    Full text link
    In this paper we characterize the congruence associated to the direct sum of all irreducible representations of a finite semigroup over an arbitrary field, generalizing results of Rhodes for the field of complex numbers. Applications are given to obtain many new results, as well as easier proofs of several results in the literature, involving: triangularizability of finite semigroups; which semigroups have (split) basic semigroup algebras, two-sided semidirect product decompositions of finite monoids; unambiguous products of rational languages; products of rational languages with counter; and \v{C}ern\'y's conjecture for an important class of automata

    Schreier split extensions of preordered monoids

    Get PDF
    Properties of preordered monoids are investigated and important subclasses of such structures are studied. The corresponding full subcategories of the category of preordered monoids are functorially related between them as well as with the categories of preordered sets and monoids. Schreier split extensions are described in the full subcategory of preordered monoids whose preorder is determined by the corresponding positive cone

    Commuting upper triangular binary morphisms

    Full text link
    A morphism gg from the free monoid X∗X^* into itself is called upper triangular if the matrix of gg is upper triangular. We characterize all upper triangular binary morphisms g1g_1 and g2g_2 such that g1g2=g2g1g_1g_2=g_2g_1.Comment: 14 page

    Quantale Modules and their Operators, with Applications

    Full text link
    The central topic of this work is the categories of modules over unital quantales. The main categorical properties are established and a special class of operators, called Q-module transforms, is defined. Such operators - that turn out to be precisely the homomorphisms between free objects in those categories - find concrete applications in two different branches of image processing, namely fuzzy image compression and mathematical morphology

    The Algebra of Binary Search Trees

    Get PDF
    We introduce a monoid structure on the set of binary search trees, by a process very similar to the construction of the plactic monoid, the Robinson-Schensted insertion being replaced by the binary search tree insertion. This leads to a new construction of the algebra of Planar Binary Trees of Loday-Ronco, defining it in the same way as Non-Commutative Symmetric Functions and Free Symmetric Functions. We briefly explain how the main known properties of the Loday-Ronco algebra can be described and proved with this combinatorial point of view, and then discuss it from a representation theoretical point of view, which in turns leads to new combinatorial properties of binary trees.Comment: 49 page

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    Factorization theory: From commutative to noncommutative settings

    Full text link
    We study the non-uniqueness of factorizations of non zero-divisors into atoms (irreducibles) in noncommutative rings. To do so, we extend concepts from the commutative theory of non-unique factorizations to a noncommutative setting. Several notions of factorizations as well as distances between them are introduced. In addition, arithmetical invariants characterizing the non-uniqueness of factorizations such as the catenary degree, the ω\omega-invariant, and the tame degree, are extended from commutative to noncommutative settings. We introduce the concept of a cancellative semigroup being permutably factorial, and characterize this property by means of corresponding catenary and tame degrees. Also, we give necessary and sufficient conditions for there to be a weak transfer homomorphism from a cancellative semigroup to its reduced abelianization. Applying the abstract machinery we develop, we determine various catenary degrees for classical maximal orders in central simple algebras over global fields by using a natural transfer homomorphism to a monoid of zero-sum sequences over a ray class group. We also determine catenary degrees and the permutable tame degree for the semigroup of non zero-divisors of the ring of n×nn \times n upper triangular matrices over a commutative domain using a weak transfer homomorphism to a commutative semigroup.Comment: 45 page

    Solution sets for equations over free groups are EDT0L languages

    Get PDF
    © World Scientific Publishing Company. We show that, given an equation over a finitely generated free group, the set of all solutions in reduced words forms an effectively constructible EDT0L language. In particular, the set of all solutions in reduced words is an indexed language in the sense of Aho. The language characterization we give, as well as further questions about the existence or finiteness of solutions, follow from our explicit construction of a finite directed graph which encodes all the solutions. Our result incorporates the recently invented recompression technique of Jez, and a new way to integrate solutions of linear Diophantine equations into the process. As a byproduct of our techniques, we improve the complexity from quadratic nondeterministic space in previous works to NSPACE(n log n) here
    • …
    corecore