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1. Introduction

Preordered monoids are monoids equipped with a preorder compatible with the monoid operation. They are relevant 
tools in many areas, for instance, in computer science where they are used in the theory of language recognition (see [24]), 
as well as in non-classical logics, namely in fuzzy logics (see [8] and [11]).

Many fundamental results have been obtained by switching from categories of monoids to categories of preordered or 
ordered monoids, and the same for semigroups. Examples of this fact are new proofs of two remarkable results that we 
mention next.

A celebrated result of I. Simon [25] on the classification of recognizable languages in terms of J -triviality of the cor-
responding syntactic monoids has a radically new proof in [26], where it is proved that every finite J -trivial monoid (for 
the Green’s J -equivalence relation [6]) is a quotient of an ordered monoid satisfying the identity x ≤ 1. In [9], the authors 
give another proof of this result and explain its relevance in the theory of finite semigroups. A systematic use of ordered 
monoids in language theory, was initiated by J.-E. Pin [20] and developed in [21], [22] and other subsequent papers.

The second example is a new proof of a well-known and important result of A. Tarski that gives a criterion for the 
existence of a monoid homomorphism from a given commutative monoid A to the extended positive real line R+ that sends 
a fixed element a ∈ A to 1. In [27], F. Wehrung proves that this is a Hahn-Banach type property, stating the injectivity of R+ , 
not in the category of commutative monoids, where there are no nontrivial injectives, but in the category of commutative 
monoids equipped with a preorder that makes every element positive, called there “positively ordered monoids” or P.O.M., 
for short.

Preordered monoids have a much richer diversity of features than preordered groups. In contrast with the case of pre-
ordered groups, in preordered monoids the submonoid of positive elements, called the positive cone, neither determines 
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the preorder nor is a cancellative monoid, in general. These features of preordered groups are rescued in the new context 
by considering convenient subcategories of the category of preordered monoids, OrdMon, satisfying these properties or 
appropriate generalizations, covering a wide range of structures.

In particular, the failure of the first property gives rise to a classification of preordered monoids according to the relation 
between its preorder and the preorder induced by the corresponding positive cone considered here that is, for P.O.M., the 
opposite of Green’s preorder L as explained in Section 2. Furthermore, this last preorder may or may not be compatible 
with the monoid operation. The characterization of the positive cones inducing compatible preorders provides a reason as 
to why the commutativity of the underlying monoid is often assumed in the literature.

This classification gives rise to several categories and functors between them, some of them being part of adjoint situa-
tions.

The cancellation property is often replaced by weaker conditions like the “pseudo-cancellation” introduced in [27] that 
plays an important role in the characterization of the injective objects presented there.

Let Ord be the category of preordered sets and monotone maps, and Mon the category of monoids and monoid homo-
morphisms. We recall that the forgetful functor Ord → Set is a topological functor [10] (like the one from the category of 
topological spaces to the category of sets it has initial and final structures) and that the forgetful functor Mon → Set (such 
as the underlying functor of any variety of algebras) is monadic [17, p. 156]. We prove that the forgetful functors from 
OrdMon to Mon and to Ord are topological and monadic functors, respectively, and derive some consequences of these 
facts.

Due to the fact that OrdMon is the category Mon(Ord) of internal monoids in Ord (which fails to be so in OrdGrp), 
we show that the construction of the left adjoint to U1 : OrdMon = Mon(Ord) → Ord as well as its monadicity can be 
derived from general results for the forgetful functor Mon(C) → C, when C is a symmetric monoidal category satisfying 
some additional conditions [12,13,23].

In [11] coextensions of commutative pomonoids (monoids equipped with a compatible partial order) are introduced, 
generalizing similar constructions due to P. A. Grillet [7] and J. Leech [14,15], in the unordered case.

It is well known that in the category of groups there is an equivalence between group actions and split extensions (which 
are, in this case, nothing but split epimorphisms), obtained via the semidirect product construction.

Schreier split extensions of monoids, that first appeared in [18], correspond to an important class of split epimorphisms 
of monoids, the Schreier split epimorphisms (whose name was inspired by the Schreier internal categories in monoids in-
troduced by Patchkoria in [19]). Indeed, they are exactly those split epimorphisms that correspond to monoid actions: an 
action of a monoid B on a monoid X being a monoid homomorphism ϕ : B → End(X) from B to the monoid of endo-
morphisms of X . Also this class of split epimorphisms has essentially all homological and algebraic properties of the split 
homomorphisms in groups (see [2] and [3]).

Schreier split extensions have already been defined in categories of monoids with operations [18] and in the categories 
of cancellative conjugation monoids [5].

In this paper we describe Schreier split extensions in the full subcategory OrdMon∗ of OrdMon with objects all pre-
ordered monoids whose preorder is induced by the corresponding positive cone.

In [4] the structure of the split extensions in the category of preordered groups is studied and the case where the 
restriction to the positive cones gives a Schreier split epimorphism in Mon is analysed. Also the behaviour of the category 
Mon(Ord) and, more generally, the one Mon(C) where C satisfies suitable conditions, is considered in the last section.

This paper is organized as follows. In Section 2 we give several examples of preordered monoids and characterize the 
submonoids of a monoid A that induce a compatible preorder in A. Some full subcategories of the category OrdMon are 
defined and an isomorphism is established between the full subcategory OrdMon∗ and the category RNMono(Mon) of right 
normal monomorphisms in monoids, in a sense introduced there, which plays a central role to obtain the main result of 
the last section. In Section 3 we study in detail functorial relations between the main categories involved in this paper 
that, being quite simple, give much information about these categories. We also include a brief but complete account of the 
general categorical results from which they can be derived. In Section 4 we introduce the notion of Schreier split extensions 
in the category OrdMon∗ and show how they are related with what we call preordered actions via an appropriate concept 
of semidirect product. Finally, we point out some special cases and present an example that helps to show the real character 
of the notions introduced.

Throughout we will denote preordered monoids additively, say by (A, +, 0, ≤) where the monoid (A, +, 0) is not neces-
sarily commutative and ≤ is a preorder compatible with +, that is, where +: A × A → A is a monotone map.

For concepts of category theory that are not defined here we suggest MacLane’s book [17].

2. The category of preordered monoids

We start by recalling that if (A, +, 0, ≤) is a preordered group, i.e. (A, +, 0) is a (not necessarily abelian) group and the 
preorder ≤ is compatible with the group operation

∀a,b, c,d ∈ A a ≤ b and c ≤ d =⇒ a + c ≤ b + d,

then P = {a ∈ A | 0 ≤ a} is a submonoid of A closed under conjugation. Furthermore, this monoid P , called the positive cone
of the preordered group, determines the preorder, i.e.,
2
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a ≤ b ⇐⇒ b − a ∈ P .

Indeed, if a ≤ b, since −a ≤ −a, then

0 = a − a ≤ b − a.

Conversely, if b − a ≥ 0, since a ≥ a then

b = b − a + a ≥ a.

In this case, defining

a ≤P b ⇐⇒ b ∈ P + a,

we have that ≤ coincides with ≤P and P + a = a + P , because P is closed under conjugation: x + a = a + y ⇐⇒ y =
−a + x + a ⇐⇒ x = a + y − a.

If P is the submonoid of positive elements in a preorder monoid, we define the relation ≤P by

a ≤P b if b ∈ P + a,

and get a preorder ≤P which is contained in the original preorder.

Proposition 1. If (A, +, 0, ≤) ∈ OrdMon then P = {a ∈ A | 0 ≤ a} is a submonoid of A and

a ≤P b =⇒ a ≤ b.

Proof. We have that 0 ∈ P and if a, b ∈ P then a ≥ 0 and b ≥ 0 implies that a + b ≥ 0 and so P is a submonoid of A.
If b = x + a with x ∈ P , since x ≥ 0 and a ≥ a, then b = x + a ≥ a. �
The converse of this result is false, in general, as the following example shows.

Example 1. Let (A, +, 0) be the monoid with the following addition table

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 4 4 4
2 2 2 4 4 4
3 3 3 4 4 4
4 4 4 4 4 4

equipped with the preorder ≤ with P = A and generated by the following diagram (where the arrows from zero have been 
omitted)

1 2

3 4

.

Then (A, +, 0, ≤) ∈ OrdMon and ≤P is the preorder

1 2

3 4

,

that is strictly contained in ≤.

In the previous example one can easily check that ≤P is compatible with + and so (A, +, 0, ≤P ) is also a preordered 
monoid. The following example shows that this is not always the case.
3
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Example 2. We consider the monoid (A, +, 0) with addition table

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 2 2 4
2 2 1 2 1 4
3 3 1 2 0 4
4 4 4 4 4 4

and the preorder generated by

1 2

3 4,

3 ≤ 0, and P = A, that is, 0 ≤ x, for all x ∈ A. It is easy to check that (A, +, 0, ≤) is a preordered monoid. However, ≤P

being the following preorder, plus 3 ≤P 0,

1 2

3 4

is not compatible with the monoid operation. Indeed, 2 ≥P 0 and 1 ≥P 1 but 1 + 2 = 2 �P 1 since 2 /∈ A + 1 = {1, 4}.

The following is an example of a preordered monoid where the two preorders coincide.

Example 3. Let (A, +, 0) be the monoid of Example 1 now with a different positive cone, P = {0, 1}, and the preorder 
sketched below

0 1 2

3 4

which is exactly ≤P , i.e. ≤ is the same as ≤P .

Now we characterize the submonoids of a preordered monoid which induce a compatible preorder.

Definition 1. Given a monoid A and a submonoid M of A we say that M is

- right normal if a + M ⊆ M + a, for every a ∈ A;
- left normal if M + a ⊆ a + M , for every a ∈ A;
- normal if it is both right and left normal.

Proposition 2. Let P be the positive cone of a preordered monoid (A, +, 0, ≤). Then the monoid operation is monotone with respect 
to ≤P if and only if P is right normal.

Proof. If ≤P is compatible with + and b = a + x with x ∈ P then

x ≥P 0 and a ≥P a =⇒ b = a + x ≥P a

and so there exists an y ∈ P such that a + x = y + a, i.e. a + P ⊆ P + a.
Conversely, if a ≤P b and c ≤P d then b = x + a and d = y + c, for some x, y ∈ P and so, because P is right normal, we 

can find z ∈ P for which a + y = z + a, hence

b + d = x + a + y + c = x + z + a + c

and so a + c ≤P b + d. �
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In Example 1 we have P = A, the so-called positively preordered monoid, and the left and right cosets are the following

a a + A A + a
0 A A
1 {1,4} {1,2,3,4}
2 {2,4} {2,4}
3 {3,4} {3,4}
4 {4} {4}

Since P is right normal (for all a ∈ A, a + A ⊆ A + a) then ≤P is compatible with +.
In Example 2, again P = A but P is not right normal and so ≤P is not compatible with +.

a a + A A + a
0 A A
1 {1,2,4} {1,4}
2 {1,2,4} {2,4}
3 {0,1,2,3,4} {0,1,2,3,4}
4 {4} {4}

We remark that, in this case, A is not right normal in itself but it is left normal (A + a ⊆ a + A, for every a ∈ A) and so if 
we consider the preorder

a ≤′
P b ⇐⇒ b ∈ a + P

then, using a result similar to the one of Proposition 2, we conclude that (A, +, 0, ≤′
P ) ∈ OrdMon.

Remark 1. For a submonoid M of a monoid A, we can define two preorders on A

a ≤M b ⇔ b ∈ M + a

and

a≤′
Mb ⇔ b ∈ a + M,

whose positive cones are precisely M . When M = A we have that ≤M= ≤op
L and ≤′

M = ≤op
R , where L and R are the Green’s 

relations defined, in additive notation, by

a ≤L b ⇔ M + a ⊆ M + b,

a ≤R b ⇔ a + M ⊆ b + M.

Indeed,

a ≤M b ⇔ b = x + a, for some x ∈ M ⇔ M + b ⊆ M + a ⇔ b ≤L a,

and the same for ≤R .

Corollary 1. For every submonoid M of a commutative preordered monoid (A, +, 0, ≤), the preorders ≤M and ≤′
M coincide and, 

moreover, (A, +, 0, ≤M) is a preordered monoid.

The positive cone of a commutative preordered monoid need not determine the preorder: for

+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 1

with P = A and ≤ as sketched below

1 2

the right (= left) cosets are
5
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a P + a
0 P
1 {1}
2 {1,2}

and so ≤P is

1 2 ,

but 1 �P 2 because 2 /∈ P + 1.
Let us denote by OrdMon∗ the full subcategory of OrdMon with objects the preordered monoids such that ≤ = ≤P . And 

the same for the commutative case, OrdCMon∗ .

Proposition 3. The subcategory OrdCMon∗ is coreflective in the category OrdCMon.

Proof. To each preorder commutative monoid we can associate a special one with the preorder induced by its positive cone. 
This is expressed by saying that the subcategory is coreflective. Indeed, if (A, +, 0, ≤) is a preordered commutative monoid 
and P is its positive cone then, by Corollary 1, (A, +, 0, ≤P ) ∈ OrdCMon∗ . Furthermore, the identity morphism on A defines 
a monotone one c(A,≤) : (A,≤P ) → (A,≤), by Proposition 1.

We prove that it is the coreflection of (A, +, 0, ≤) in OrdMon∗ . Indeed, given a morphism f : (A′,≤P ′ ) → (A,≤) in 
OrdCMon if a′ ∈ P ′ then f (a′) ∈ P (a′ ≥ 0 ⇒ f (a′) ≥ 0) and so f (P ′) ⊆ P . Consequently f factors through c(A,≤)

(A,≤P )
c(A,≤)

(A,≤)

(A′,≤P ′)

f̄
f

by a unique homomorphism f̄ ∈ OrdCMon∗ because if a′
1 ≤P ′ a′

2 then a′
2 ∈ P ′ + a′

1 and so

f (a′
2) ∈ f (P ′) + f (a′

1) ⊆ P + f (a′
1).

Hence, f (a′
1) ≤P f (a′

2) and so f̄ (a′
1) ≤P f̄ (a′

2) for all a′
1 ≤P ′ a′

2 in A′ . Thus OrdCMon∗ being a full coreflective subcategory 
is closed under colimits in OrdCMon. �
Definition 2. We say that a monomorphism m : S → A of monoids is right normal if its image m(S) is a right normal 
submonoid of A and denote by RNMono(Mon) the corresponding full subcategory of the category of monomorphisms of 
monoids, Mono(Mon).

Example 2 shows that the identity morphism may not be a right normal monomorphism.

Theorem 1. The category OrdMon∗ is isomorphic to the one of right normal monomorphisms in Mon, RNMono(Mon).

Proof. The functor G : OrdMon∗ → RNMono(Mon) defined by

(A,≤P )

f

(A′,≤P ′)


→ P

f |P

A

f

P ′ A′

has an inverse F : RNMono(Mon) → OrdMon∗ assigning

S

f ′

A

f

S ′ A′


→ (A,≤S)

f

(A′,≤S ′)

where f (S) ⊆ S ′ implies that f ∈ OrdMon∗ . Then G F (S → A) = G(A, ≤S ) = (S → A) and F G(A, ≤P ) = F (P → A) =
(A,≤P ). �

The following are examples, inspired by [27], of objects in OrdMon∗ .
6
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(1) The set of all R-submodules of a module A over a ring R , equipped with the “Minkowski sum”

U + V = {u + v : u ∈ U and v ∈ V }
and the order defined by the inclusion. Indeed, in this case every element is positive (i.e. the positive cone is the set of 
all R-submodules) and U ⊆ V if and only if V = V + U .

(2) All injective objects in OrdMon with respect to embeddings (not to monomorphisms) are objects in OrdMon∗ . In fact, 
let M be the submonoid of the monoid N ×N , generated by (1, 0) and (1, 1) with the order induced by the product 
order and i : M → N × N the embedding. If a ≤ b in an injective object A then there exists a (unique) morphism in 
OrdMon, u : M → A such that u(1, 0) = a and u(1, 1) = b, defined by u(n + m, m) = na + mb, for every n, m ∈ N . By 
injectivity of A, there exists a morphism v : N ×N → A

M i

u

N ×N

v

A

extending u, that is such that v · i = u. Then taking c = v(0, 1) we have that b = c + a ∈ P + a and so the preorder in A
coincides with the one induced by its positive cone. Indeed, since (0, 0) ≤ (0, 1) and v preserves the order then 0 ≤ c.

Let OrdMon� be the full subcategory of OrdMon with objects all preordered monoids whose positive cone is a right 
normal monoid. Note that Example 1 describes an object of OrdMon� that does not belong to OrdMon∗

Proposition 4. The category OrdMon∗ is coreflective in OrdMon� .

Proof. Essentially the same as the one of Proposition 3. �
Summing up, we have the following commutative diagram of categories and functors

OrdMon Mono(Mon)

OrdMon�

OrdMon∗ ∼=
RNMono(Mon)

where OrdMon∗ is coreflective in OrdMon� but OrdMon� is not coreflective in OrdMon as we prove in the following 
section.

3. The forgetful functors

Let us consider the following commutative diagram of forgetful functors

OrdMon
U2

U1

Mon

V 1

Ord
V 2

Set

where V 2 is topological and V 1 is a monadic functor. We are going to prove that also U2 is a topological functor and U1 is 
a monadic one.

We recall that U : C → D is a topological functor if every family ( f i : D → U (Ci))i∈I , where I may be a proper class, has 
a unique U -initial lift:

(i) there exists a family ( f i : C → Ci)i∈I such that U ( f i) = f i for i ∈ I;
(ii) if h : U (C ′) → U (C) is a morphism in D such that U ( f i) · h = U (gi), for each i in I , there exists a unique morphism 

h : C ′ → C in C such that U (h) = h and f i · h = gi .

The uniqueness, up to isomorphism, of the U -lift comes from the uniqueness of h.
7
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If U : C → D is a topological functor then the same holds for its dual, U op : Cop → Dop , which means that every family 
( f i : U (Ci) → D)i∈I has a unique U -final lift, a generalization of the well-known fact that each meet-complete partially 
ordered set is also join-complete. This implies that a topological functor has a left adjoint (the discrete object functor) and 
a right adjoint (the indiscrete object functor).

In this case we say that the category C is topological over D which is a powerful condition with nice consequences.
It is easy to prove that the functor V 2 is topological. However, if we replace Ord by the category Pos of partially ordered 

sets then it is no longer the case. This is a reason why the category of preordered sets is better behaved than the one of 
partially ordered sets, for our purposes.

Proposition 5. The functor U2 : OrdMon → Mon is a topological functor.

Proof. Given a family of monoid homomorphisms

f i : (X,+,0) → U2(Ai,+,0,≤i),

for i ∈ I , defining for x, x′ ∈ X

x ≤ x′ ⇔ f i(x) ≤i f i(x′),∀i ∈ I,

we obtain a preorder which, in addition, is compatible with the monoid operation:

x ≤ x′ and y ≤ y′ ⇔ ∀i ∈ I, f i(x) ≤ f i(x′) and f i(y) ≤ f i(y′)
⇔ ∀i ∈ I, f i(x) + f i(y) ≤ f i(x′) + f i(y′)
⇔ ∀i ∈ I, f i(x + y) ≤ f i(x′ + y′)
⇔ x + y ≤ x′ + y′.

It is easy to check that condition (ii) above holds and so that the family has a unique U2-initial lift. �
From this we conclude that:

(1) U2 has a left and a right adjoint defined by equipping each monoid with the discrete and the total preorder, respec-
tively;

(2) OrdMon is complete and cocomplete, since Mon is complete and cocomplete, and U2 preserves limits and colimits.

Proposition 6. The functor U1 : OrdMon → Ord has a left adjoint.

Proof. For (X, ≤), let F1(X, ≤) = (X∗, ·, ε, ≤), where X∗ is the set of all words in the alphabet X with the operation of 
concatenation, having the empty word ε as identity (i.e., X∗ is the free monoid on the set X), equipped with the preorder

w = [w1 · · · wn] ≤ w ′ = [w ′
1 · · · w ′

m]
if and only if n = m and wi ≤ w ′

i for i = 1, 2, . . . , n. In this way we define a preorder compatible with concatenation.
The morphism

η(X,≤) : (X,≤) → U1(X∗, ·, ε,≤),

which assigns to each x ∈ X the singleton word [x], is universal from (X, ≤) to U1:

(X,≤)
η(X,≤)

f

U1(X∗, ·, ε,≤)

U1 f̄

(X∗, ·, ε,≤)

f̄

U1(A,+,0,≤) (A,+,0,≤)

for each f in Ord there exists a unique f̄ ∈ OrdMon such that f̄ ([x]) = f (x) and so f̄ ([x1 x2 · · · xn]) = f (x1) + f (x2) + · · · +
f (xn), because f̄ ∈ Mon. And f̄ is monotone: if x = [x1 x2 · · · xn] ≤ y = [y1 y2 · · · yn], since xi ≤ yi , i = 1, · · · , n, we have 
f (x1) + f (x2) + · · · + f (xn) ≤ f (y1) + f (y2) + · · · + f (yn), i.e. f (x) ≤ f (y).

Consequently, this defines a functor

F1 : Ord → OrdMon

that is left adjoint of U1 with unit η. �

8
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Proposition 7. The functor U1 : OrdMon → Ord is monadic.

Proof. We recall that, by Beck’s monadicity criterion (see e.g. [16, Thm. 2.4]), a right adjoint functor U1 is monadic if and 
only if

• U1 reflects isomorphisms;
• OrdMon has and U1 preserves coequalizers of all parallel pairs ( f , g) such that its image under U1, (U1( f ), U1(g)), has 

a contractible coequalizer in Ord.

Given a morphism f : (A, +, 0, ≤) → (B, +, 0, ≤) in OrdMon such that U1( f ) is an isomorphism in Ord then, being also 
a bijective homomorphism of monoids, it is an isomorphism of monoids and so it is also an isomorphism in OrdMon. Hence 
U1 reflects isomorphisms.

For a parallel pair of morphisms f , g : (A, +, 0, ≤) → (B, +, 0, ≤) in OrdMon let q : (B, +, 0) → (C, +, 0) be a coequalizer 
of (U2( f ), U2(g)) in the category of monoids. Considering in C the preorder that is the transitive closure of the image by q
of the preorder in B , it is easy to prove that this preorder is compatible with the monoid operation, so that (C, +, 0, ≤) ∈
OrdMon, and also that

q : (B,+,0,≤) → (C,+,0,≤)

is the coequalizer of ( f , g) in this category.
Let us assume that (U1( f ), U1(g)) has a contractible coequalizer (U1( f ), U1(g), h; i, j) in Ord. We have to prove that 

the unique morphism t ∈ Ord such that t · h = U1(q) is an isomorphism.
Since V 2U1 = V 1U2 and V 1 is monadic, we know that V 2(t) is a bijection. Furthermore, if c = t(x) ≤ t(y) = d then x ≤ y. 

Indeed, by definition of the preorder in C , there exists a zig-zag in B

b1 ≤ b2 ∼ b′
2 ≤ b3 ∼ · · · ≤ bn−1 ∼ b′

n−1 ≤ bn,

such that q(b1) = c, q(bn) = d and q(bi) = q(b′
i) for i = 2, . . . , n − 1. Thus x = h(b1) ≤ h(bn) = y. �

Proposition 8. The subcategory OrdMon� is not coreflective in the category OrdMon.

Proof. For every preordered set (X, ≤), F1(X, ≤) = (X∗, ·, ε, ≤) has positive cone P = {ε} that is a right normal (indeed a 
normal) submonoid. Hence the preordered monoid F1(X, ≤) lies in OrdMon� and we have the following situation

OrdMon�
U�

1

OrdMon � OrdT

U1

Ord
F1F �

1

where U�
1 is the restriction of U1 to OrdMon� , F �

1 is the corestriction of F1 giving a left adjoint to U�
1 , and T is the 

monad that both adjunctions induce in Ord.
From the above we conclude that OrdMon� cannot be coreflective in OrdMon otherwise, being closed under coequaliz-

ers, U�
1 would be monadic and so OrdMon� ∼= OrdT ∼= OrdMon which is false as Example 2 shows. �

Direct proofs presented in this section are simple and informative about the categories involved.
However, since OrdMon is the category Mon(Ord) of internal monoids in the category of preordered sets (which is 

not true for preordered groups) these results can be derived from more general ones relative to categories of models of 
the theory of monoids in monoidal categories. In our case, since Ord is a cartesian closed category which, furthermore, is 
locally finitely presentable (see [1]), the construction of the left adjoint of U1 : OrdMon = Mon(Ord) → Ord is a special case 
of the construction of the left adjoint of the forgetful functor of Mon(C) → C, when C is a symmetric monoidal category, 
satisfying some additional conditions, presented by G. M. Kelly in [12], see also [13]. Also the monadicity of U1 was proved 
by H. Porst [23, Cor. 2.6].

In more detail, S. Lack [13] proves that the forgetful functor of Mon(C) → C has a left adjoint when C is a symmetric 
monoidal category with countable coproducts that are preserved by tensoring on either side, with the free monoid over an 
object X ∈ C given by

1 + X + X2 + · · ·
where Xn means the n-fold tensor product of X .

H. Porst [23] deals with “admissible monoidal categories” which are locally presentable categories that, in addition, are 
symmetric monoidal with the property that tensoring by a fixed object defines a finitary functor (i.e., a functor preserving 
directed colimits).
9
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In the cartesian case, that is when the tensor is given by the direct product and the identity is the terminal object in 
the monoidal category, if C is locally presentable and cartesian closed it is clearly admissible, in the above sense, and so, by 
Corollary 2.6 in [23] we conclude the monadicity of Mon(C) over C.

4. Schreier split extensions

We recall that, in the category of monoids, a Schreier split epimorphism is a split epimorphism (A, B, p, s), ps = 1B , such 
that for each a ∈ A there exists a unique x in the kernel of p such that a = x + sp(a) [2]. This can be seen as a diagram

X
k

A
pq

B
s

(1)

where k, p and s are monoid homomorphisms, ps = 1B , k is the kernel of p and q is a map (called the Schreier retraction 
map), such that,

(S1) kq + sp = 1A , and
(S2) q(k(x) + s(b)) = x, for every x ∈ X and b ∈ B .

To the Schreier split epimorphism above corresponds an action

ϕ : B → End(X)

defined by ϕ(b)(x) = q(s(b) + k(x)) that we will denote by b · x [18, Thm. 2.9].
As consequence, the monoid A is isomorphic to the semidirect product X ×ϕ B , that is the set X × B with the operation 

defined by

(x1,b1) + (x2,b2) = (x1 + ϕ(b1)(x2),b1 + b2).

Further consequences, that will be used in the sequel, are the following:

(C1) k(b · x) + s(b) = s(b) + k(x), for all b ∈ B and x ∈ X ;
(C2) q(a1 + a2) = q(a1) + q(sp(a1) + kq(a2)) = q(a1) + p(a1) · q(a2), for all a1, a2 ∈ A;
(C3) A is isomorphic to the semi-direct product X �ϕ B with isomorphisms defined by α(a) = (q(a), p(a)) and β(x, b) =

k(x) + s(b);
(C4) p is the cokernel of k and so, since the sequence is exact, we speak of Schreier split extensions.

Note that condition (C1) follows from (S1) by taking a = s(b) + k(x). A detailed proof of these conditions can be found 
in [2].

This definition can be extended to the category of preordered monoids by keeping q a set-theoretical map and assuming 
that k, p and s are monotone homomorphisms.

In this section we are going to introduce the notion of Schreier split extensions in OrdMon∗ . For that we use the 
isomorphism defined in Theorem 1 and work in the category RNMono(Mon). For simplicity, we assume that the objects in 
this category are inclusions and we denote the right normal submonoids of a monoid M by P M , since they are the positive 
cones of a compatible preorder in M .

Definition 3. A Schreier split epimorphism in RNMono(Mon) is a diagram

P X
k̄ P A

p̄
P B

s̄

X
k

A
pq

B
s

(2)

in which the lower row is a Schreier split epimorphism in Mon, and the upper row consists of right normal submonoids, 
the positive cones P X , P A , and P B , that make X , A, and B , objects in OrdMon∗ . The morphisms k̄, p̄, and s̄, are the 
corresponding restrictions.

We point out that we do not assume the monotonicity of q.
We will show that for every two objects (X, P X ) and (B, P B) in RNMono(Mon), there is an equivalence between Schreier 

split extensions of (X, P X ) by (B, P B) and a certain kind of actions that we will call preordered actions for the purpose of 
this paper.
10
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Definition 4. Let (X, P X ) and (B, P B) be two objects in the category RNMono(Mon). A preordered action of (B, P B) on 
(X, P X ), that will be denoted by (X, B, P X , P B , ϕ, ξ), consists of a monoid action of the underlying monoid B on X , i.e. a 
monoid homomorphism

ϕ : B → End(X),

together with a set-theoretical mapping

ξ : X × P B → X,

satisfying the following conditions:

(A1) ξ(0, b) = 0, for all b ∈ P B

(A2) if x ∈ P X then ξ(x, 0) = x
(A3) if ξ(x, b) = x and ξ(x′, b′) = x′ then

ξ(x + b · x′,b + b′) = x + b · x′

(A4) for all x, u ∈ X , v ∈ P B , b ∈ B , if ξ(u, v) = u, then there exists u′ ∈ X such that

x + b · u = u′ + v ′ · x

and

ξ(u′, v ′) = u′

where v ′ ∈ P B is such that b + v = v ′ + b, which exists because P B is right normal.

A morphism ( f0, f1, f2) between two Schreier split extensions in the category RNMono(Mon) is a commutative diagram 
of the form

P X

f̄0

k̄ P A

f̄1

p̄
P B

f̄2
s̄

P X ′ k̄′
P A′

p̄′
P B ′

s̄′

X
f0

k
A

f1

pq
B

f2
s

X ′
k′ A′ p′q′

B ′.
s′

A morphism of preordered actions,

( f0, f2) : (X, B, P X , P B ,ϕ, ξ) → (X ′, B ′, P ′
X , P ′

B ,ϕ′, ξ ′)

consists of two monoid homomorphisms f0 : X → X ′ and f2 : B → B ′ which restrict to the respective positive cones giving 
f̄0 : P X → P X ′ and f̄2 : P B → P B ′ , such that

f0(b · x) = f2(b) · f0(x)

and

ξ ′( f0(u), f̄2(v)) = f0(u),

whenever ξ(u, v) = u. In other words, the diagram where the horizontal arrows are defined by the monoid actions, (b, x) 
→
b · x,

B × X

f0× f2

X

f0

B ′ × X ′ X ′
11
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is commutative and the diagram

X × P B

f0× f̄2

ξ
X

f0

X ′ × P B ′
ξ ′

X ′

commutes only when restricted to those pairs (u, v) ∈ X × P B for which ξ(u, v) = u. That is, there exists g : Pξ → Pξ ′ , such 
that the left square and the outer rectangle commute

Pξ

g

X × P B

f0× f̄2

ξ
X

f0

Pξ ′ X ′ × P B ′
ξ ′

X ′

(3)

where Pξ = {(u, v) ∈ X × P B | ξ(u, v) = u} and similarly for Pξ ′ .
In this way we define a category S of Schreier split extensions in RNMono(Mon) and a category A of preordered actions.

Theorem 2. There is an equivalence of categories between the category A of preordered actions and the category S of Schreier split 
extensions in RNMono(Mon).

Proof. We define a functor G : S →A assigning to a Schreier split epimorphism in RNMono(Mon) as displayed in (2), a 
preordered action as follows:

(1) ϕb(x) = q(s(b) + k(x)), for all x ∈ X and b ∈ B;
(2) ξ(u, v) = u if k(u) + s(v) ∈ P A and ξ(u, v) = 0 otherwise.

These maps ϕ and ξ satisfy the conditions of Definition 4:

• The first condition above defines an action of B on X [18, Thm. 2.9].
• ξ(0, b) = 0 for b ∈ P B .
• ξ(x, 0) = x if x ∈ P X , since k(x) + s(0) = k(x) ∈ P A .
• If ξ(x, b) = x and ξ(x′, b′) = x′ then k(x) + s(b), k(x′) + s(b′) ∈ P A . Since P A is a monoid then

k(x) + s(b) + k(x′) + s(b′) ∈ P A,

but s(b) + k(x′) = k(b · x′) + s(b) and so we have that

k(x + b · x′) + s(b + b′) ∈ P A .

Consequently, ξ(x + b · x′, b + b′) = x + b · x′ .
• P A → A ∼= X �ϕ B right normal means that for all (x, b) ∈ X �ϕ B , (u, v) ∈ P A , there exists (u′, v ′) ∈ P A such that

(x,b) + (u, v) = (u′, v ′) + (x,b)

that is

(x + b · u,b + v) = (u′ + v ′ · x, v ′ + b)

which implies x + b · u = u′ + v ′ · x and b + v = v ′ + b.

Defining G( f0, f1, f2) = ( f0, f2) we obtain a functor G : S →A.
Conversely, given a preordered action (X, B, P X , P B , ϕ, ξ) we construct a Schreier split extension in RNMono(Mon) as 

follows (using the same notation as in (2)):

(1) A = X �ϕ B is the semi-direct product of the underlying monoids induced by the monoid action ϕ . This means that A
is the set X × B with the monoid operation

(x,b) + (x′,b′) = (x + b · x′,b + b′)

and neutral element (0, 0) ∈ X × B .
12
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(2) the right normal submonoid of A, P A = Pξ , is defined by

(x,b) ∈ P A ⇔ b ∈ P B and ξ(x,b) = x.

This gives a Schreier split extension in RNMono(Mon). Indeed:
(a) Pξ is a submonoid of X �ϕ B by (A3) and the fact that P B is a monoid.
(b) The right normality of P A comes from (A4).
(c) The morphism 〈1, 0〉 : X → A restricts to P X → P A by (A2).
(d) The morphism 〈0, 1〉 : B → A restricts to P B → P A by (A1).

Moreover, we define a functor H : A→ S assigning to each morphism

( f0, f2) : (X, B, P , P B ,ϕ, ξ) → (X ′, B ′, P X ′ , P B ′ ,ϕ′, ξ ′),

the object H( f0, f2) = ( f0, f1, f2) where f1 = g : Pξ → Pξ ′ as in diagram (3).
Then HG ∼= 1S : in the diagram

P X
k̄ P A

p̄
P B

s̄

Pξ

β̄

P B

X
k

A
pq

B
s

X �ϕ B

β

B

since β(x, b) = k(x) + s(b), by definition of Pξ , we conclude that β̄ : Pξ → P A is an isomorphism.
It is easy to check that also G H = 1A , thus giving the desired equivalence of categories. �
Finally, we point out two interesting special cases:

• When q is a monotone map then it restricts to q̄ : P A → P X and ξ is trivial, in the sense that ξ(x, b) = x when x ∈ P X

and b ∈ P B and it is zero otherwise. In this case, the upper row of the diagram (2) is a Schreier split epimorphism of 
monoids and hence P A is isomorphic to the semidirect product P X ×ϕ̄ P B .

• When q is an homomorphism then the monoid action ϕ is trivial, i.e. ϕb(x) = x, for all b ∈ B . However, we may still 
have a non trivial ξ in this case, as the following example shows.

In the diagram (2) if q is a monoid homomorphism then A ∼= X × B but the upper row need not be a Schreier split 
epimorphism.

Example 4. Let us consider the following diagram

{0} N ×N
+

N
〈0,1〉

Z
〈1,−1〉

Z×Z
+π1

Z,
〈0,1〉

(4)

which is an example of a Schreier split epimorphism in the category RNMono(Mon). The left Z has the discrete order 
because its positive cone is {0}, while the one on the right has the usual order since its positive cone is N . The positive 
cone N ×N and the corresponding order on Z ×Z will be described below.

In this case we have a non trivial ξ : Z×N →Z, defined by

ξ(u, v) =
{

u if u ∈N and u ≤ v
0 otherwise

giving a preordered action (Z, Z, {0}, N, ϕ, ξ) where ϕ is trivial, which induces a Schreier split extension in RNMono(Mon)
13
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{0} Pξ N

Z
〈1,0〉

Z×Z
π2π1

Z
〈0,1〉

(5)

where Pξ = {(u, v) ∈Z ×Z | 0 ≤ u ≤ v}, with 0 ≤ u ≤ v in the usual order of N . This defines the positive cone P = Pξ and 
the order of Z ×Z in (4).
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