
Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

International Journal of Algebra and Computation1
(2016)2
c© World Scientific Publishing Company3
DOI: 10.1142/S02181967165003634

Solution sets for equations over5

free groups are EDT0L languages6

Laura Ciobanu7

Institut de mathématiques8
Université de Neuchâtel9

Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland10
laura.ciobanu@unine.ch11

Volker Diekert12

Institut für Formale Methoden der Informatik13
Universität Stuttgart14

Universitätsstr. 38, D-70569 Stuttgart, Germany15
diekert@fmi.uni-stuttgart.de16

Murray Elder17

School of Mathematical & Physical Sciences18
The University of Newcastle19

Callaghan, New South Wales 2308, Australia20
murray.elder@newcastle.edu.au21

Received 8 August 201522
Accepted 17 May 201623

Published24

Communicated by O. Kharlampovich25

We show that, given an equation over a finitely generated free group, the set of all solu-26
tions in reduced words forms an effectively constructible EDT0L language. In particular,27
the set of all solutions in reduced words is an indexed language in the sense of Aho. The28
language characterization we give, as well as further questions about the existence or29
finiteness of solutions, follow from our explicit construction of a finite directed graph30
which encodes all the solutions. Our result incorporates the recently invented recom-31
pression technique of Jeż, and a new way to integrate solutions of linear Diophantine32
equations into the process. As a byproduct of our techniques, we improve the complexity33
from quadratic nondeterministic space in previous works to NSPACE(n log n) here.34

Keywords: Equation in a free group; EDT0L language; indexed language; compression;35
free monoid with involution.36

Mathematics Subject Classification: 03D05, 20F65, 20F70, 68Q25, 68Q4537

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287496822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1142/S0218196716500363

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

2 L. Ciobanu, V. Diekert & M. Elder

0. Introduction1

In this paper, we prove that the set of all solutions, as reduced words, to an equation2

in a finitely generated free group or free monoid with involution, has a description as3

an EDT0L language. Furthermore, we show that this description can be computed4

in NSPACE(n log n), where n is the length of the equation plus the number of5

generators of the group or monoid.6

We construct a finite graph, of singly exponential size 2O(n log n), with nodes7

labeled by equations of bounded size plus some additional data, and directed edges8

corresponding to transformations applied to the equations. More precisely, the edges9

are labeled by endomorphisms of a free monoid C∗, where C is a finite alphabet10

which includes the group or monoid generators. The graph, viewed as a nondeter-11

ministic finite automaton, produces a rational language of endomorphisms of C∗.12

We show that the set of all such endomorphisms applied to a particular “seed” word13

gives the full set of solutions to the input equation as reduced words. Thus, by the14

definition of Asveld [2], we obtain that the solution set is an EDT0L language, and15

therefore an indexed language. Moreover, one can decide if there are zero, infinitely16

or finitely many solutions simply by checking if the graph is empty, has directed17

cycles or not. Our complexity results concerning these decision problems are the18

best known so far; and with respect to space complexity they might be optimal.19

The first algorithmic description of all solutions to a given equation over a free20

group is due to Razborov [20, 21]. His description became known as a Makanin–21

Razborov diagram, and this concept plays a major role in the positive solution of22

Tarski’s conjectures about the elementary theory in free groups [14, 24]. While23

Makanin–Razborov diagrams are also graphs whose edges are labeled by mor-24

phisms, these morphisms are group homomorphisms, and it is unfeasible to use this25

approach to directly obtain solutions in freely reduced words, as the cancellation26

within group elements after applying a homomorphism cannot be controlled. Also,27

it is extremely complicated to explicitly produce a Makanin–Razborov diagram for28

a given equation, and this has been done only in very few cases ([25]).29

A description of solution sets as EDT0L languages was known before only for30

quadratic word equations over a free monoid by [10]; the recent paper [6] did not31

aim at giving such a structural result. The present paper builds on the techniques32

in [6], in particular we make use of Jeż’s recompression method [12]. There is also33

a description of all solutions for a word equation over free monoids by Plandowski34

in [19]. His description is given by some graph which can be computed in singly35

exponential time, but without the aim to give any formal language characterization.36

In this paper, we restrict ourselves to equations in free groups or free monoids37

with involution, and their solution sets in reduced words. It is possible to generalize38

our construction in several directions. First, we can replace the free group by any39

finitely generated free product P = �1≤i≤sFi, where each Fi is either a free or finite40

group, or a free monoid with arbitrary involutions. Second, we can allow arbitrary41

rational constraints for free products. We consider Boolean formulae Φ, where each42

atomic formula is either an equation or a rational constraint, written as X ∈ L,43

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 3

where L ⊆ P is a rational subset. More concretely, let P be a free product as above,1

Φ a Boolean formula over equations and rational constraints, and {X1, . . . , Xk}2

any subset of variables. Then the techniques developed in this paper allow us to3

prove that Sol(Φ) = {σ(X1)# · · ·#σ(Xk) |σ solves Φ in reduced words} is EDT0L.4

Moreover, there is an algorithm which takes Φ as input and produces an NFA A such5

that Sol(Φ) = {ϕ(#) |ϕ ∈ L(A)}. The algorithm is nondeterministic and uses quasi-6

linear space in the input size of Φ. However, these more technical results are not7

the scope of the present paper. They follow from standard results in the literature8

and they have been announced in the conference version of this paper which was9

presented at ICALP 2015, Kyoto (Japan), 4–10 July 2015 [3]. Full proofs are in the10

corresponding paper on arXiv [4].11

0.1. Article organization12

In Sec. 1, we give preliminary definitions and notations. In Sec. 2, we state the13

main result, Theorem 2.1, that solutions in reduced words to equations in either14

a free group or a free monoid with involution are described by a finite graph or15

nondeterministic finite automaton (NFA) which can be constructed in nondeter-16

ministic quasi-linear space. The main work of the paper is in Sec. 3 which treats17

the monoid case. We define the NFA in Sec. 3.6, and present the proofs that the18

NFA encodes only correct solutions (soundness), and all solutions (completeness),19

in Secs. 3.9 and 3.10, respectively. The most complicated part is the completeness20

proof, which involves producing a path for a given solution from initial to final21

node by alternatively expanding and compressing the equation, ensuring that at all22

times the size of the equation is bounded so that we stay within the graph.23

Once the monoid case is proved, in Sec. 4 we follow relatively standard methods24

to reduce the problem of finding solutions in reduced words in a free group to the25

monoid case. In the final section, we give an explicit example of the alternating26

expansion-compression procedure.27

We stress that the complicated part of the paper is to prove that the NFA we28

construct encodes exactly all solutions; the specification and construction of the29

NFA, and hence the EDT0L language description, is extremely simple by contrast.30

1. Preliminaries31

1.1. Monoids with involution32

An alphabet is a finite set whose elements are called letters. By Γ∗ we denote the free33

monoid over the finite set Γ. The elements of a free monoid are called words, and34

the empty word is denoted by 1. The length of a word w is denoted by |w|, and |w|x35

counts how often a symbol x appears in w. Let M be any monoid and u, v ∈ M .36

We write u ≤ v if u is a factor of v, which means we can write v = xuy for some37

x, y ∈ M . We denote the neutral element in M by 1, and use the notation idC∗ for38

the neutral element in the monoid of endomorphisms over a free monoid C∗.39

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

4 L. Ciobanu, V. Diekert & M. Elder

An involution on a set Γ is a mapping x �→ x such that x = x for all x ∈ Γ. For1

example, the identity map is an involution. An involution on a monoid must also2

satisfy xy = y x. Any involution on a set Γ extends to Γ∗: for a word w = a1 · · · am3

we let w = am · · · a1; then Γ∗ endowed with the involution is called a free monoid4

with involution. If a = a for all a ∈ Γ then w is simply the word w read from5

right-to-left.6

A morphism between sets with involution is a mapping respecting the involution,7

and a morphism between monoids with involution is a homomorphism ϕ : M → N8

such that ϕ(x) = ϕ(x). A morphism is a ∆-morphism if ϕ(x) = x for all x ∈ ∆ where9

∆ ⊆ M . In this paper, whenever the term “morphism” is used, it refers to a mapping10

which respects the underlying structure, including the involution. All groups are11

monoids with involution given by x = x−1; and all group homomorphisms are12

morphisms.13

1.2. Free partially commutative monoids14

Let ∆ be a finite set with involution. An independence relation is an irreflexive15

relation θ ⊆ ∆ × ∆ such that (x, y) ∈ θ ⇔ (x, y) ∈ θ. Every independence relation16

defines a free partially commutative monoid with involution M(∆, θ) by17

M(∆, θ) = ∆∗/ {xy = yx |(x, y) ∈ θ} .

These monoids are well-studied in computer science as they form the basic algebraic18

model for concurrency, see [7, 13, 15]. In mathematics free partially commutative19

groups are commonly referred to as right-angled Artin groups (RAAGs). Their20

study has a long history with strong connections to topology and geometric group21

theory, see for example [26].22

In this paper, we will need algorithms for equality and factor testing in free23

partially commutative monoids. This can be done very efficiently: for example,24

there is a linear time algorithm ([16]) to decide on input u, w ∈ ∆∗ whether u ≤ w25

in M(∆, θ). Here we need the uniform version, as follows: the input is a tuple26

(∆, θ, u, w) with u, w ∈ ∆∗, and the question is whether u is a factor of w in27

M(∆, θ). This problem can easily be solved in nondeterministic linear space (which28

suffices for our purposes) by the following argument: first find words p, q ∈ ∆∗ by29

scanning w from left to right and for each position guessing (nondeterministically)30

whether each corresponding letter belongs to p, u or q, requiring that |puq| = |w|31

(we do this by marking each letter of the input, which requires linear space). Second,32

check that the choice of positions assigned to u produces a word that is indeed equal33

to u. Third, check whether puq is equal to w in M(∆, θ). For both the second and34

third steps we use the “projection lemma” of [13, 5]: for example, in the third step35

we check that |puq|a = |w|a for all a ∈ ∆, then we check that the projections of36

puq and w to {a, b}∗ yield identical words for all a, b ∈ ∆ such that ab �= ba in37

M(∆, θ). The projections are obtained by ignoring all letters in puq and w which38

are not in {a, b}.39

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 5

Another fact about partially commutative monoids that we use later is that1

for u ∈ M(∆, θ) the values |u| and |u|a are well-defined since |xy|a = |yx|a for all2

x, y ∈ ∆∗, a ∈ ∆.3

We will define free partially commutative monoids through “types” in Sec. 3.3,4

which for simplicity of notation are also denoted by θ.5

1.3. Languages6

Languages refer traditionally to subsets of finitely generated free monoids; the class7

of regular languages can be defined via rational expressions, nondeterministic finite8

automata, or recognizability via homomorphisms to finite monoids, to mention just9

a few of the possible definitions [18]. These notions generalize to arbitrary monoids,10

but lead to different classes, in general.11

We define a rational subset in any monoid M by means of nondeterministic finite12

automaton (NFA). An NFA is a directed finite graph A with initial and final states,13

where the transitions between states are labeled by elements of the monoid M . We14

say that m ∈ M is accepted by the automaton A if there exists a path from some15

initial to some final state such that multiplying the edge labels together in M yields16

m. This defines the accepted language L(A) = {m ∈ M |m is accepted by A}. Then17

L ⊆ M is rational if and only if L is accepted by some NFA over M (see [9]). An18

NFA is called trim if every state is on some path from an initial to a final state.19

For a trim NFA A we have L(A) �= ∅ if and only if A �= ∅.20

We say that L ⊆ M is recognizable if there is a homomorphism ν : M → N21

to a finite monoid N such that L = ν−1(ν(L)). The family of recognizable subsets22

is closed under finite union and complementation (and therefore also under finite23

intersection), and therefore forms a Boolean algebra. For finitely generated free24

monoids Kleene’s Theorem asserts that a subset is recognizable if and only if it is25

rational; and in this context a rational subset is also called regular.26

In this paper, we are mainly interested in rational subsets of free groups F (A+),27

free monoids A∗, and monoids End(C∗) of endomorphisms over a free monoid C∗.28

If |C| ≥ 2, then End(C∗) is neither free nor finitely generated and it contains29

nontrivial finite subgroups.30

Suppose we have an NFA where each transition label is an endomorphism in31

End(C∗) which is applied in the opposite direction of the transition. If a path32

is labeled by the sequence h1, . . . , ht, then we can apply the endomorphism h =33

h1 · · · ht to an element u ∈ C∗ and the result is a word h(u) = h1 · · · ht(u) ∈34

C∗. Thus, {h(u) |h ∈ L(A)} defines a language in C∗. This leads to the notion of35

EDT0L, defined next.36

1.3.1. EDT0L Languages37

The acronym EDT0L refers to Extended, Deterministic, Table, 0 interaction, and38

Lindenmayer. There is a vast literature on Lindenmayer systems, see [22], with39

various acronyms such as D0L, DT0L, ET0L, HDT0L and so forth. For more40

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

6 L. Ciobanu, V. Diekert & M. Elder

regular EDT0L

context-free

ET0L indexed context-sensitive

Fig. 1. Containments of formal language classes. Each edge from left to right represents strict
containment.

background on Lindenmayer systems we refer to [23]. The subclass EDT0L is equal1

to HDT0L (see for example [23, Theorem 2.6]), and has received particular atten-2

tion. It is a subclass of indexed languages in the sense of Aho [1], see for example [8].3

Indexed languages are context-sensitive, and they strictly contain all context-free4

languages. The classes of EDT0L and context-free languages are incomparable [8]5

and therefore the inclusion of EDT0L into indexed languages is proper.6

We define EDT0L languages in A∗ through a characterization (using rational7

control) due to Asveld [2], which is the analogue of Ginsburg and Rozenberg’s8

result for ET0L languages ([11, Lemma 4.1]). We start with some alphabet C such9

that A ⊆ C, and a rational set of endomorphisms R ⊆ End(C∗). Note that if10

R ⊆ End(C∗) is any subset of endomorphisms, then we can apply R to any word11

u ∈ C∗ and we obtain a subset {h(u) |h ∈ R} ⊆ C∗.12

Definition 1.1. Let A be an alphabet and L ⊆ A∗. We say that L is an EDT0L13

language if there is an alphabet C with A ⊆ C, a rational set of endomorphisms14

R ⊆ End(C∗), and a letter c ∈ C such that L = {h(c) |h ∈ R} .15

The set R is called the rational control, and C the extended alphabet.16

Note that for an arbitrary set R of endomorphisms of C∗ we have17

{h(c) |h ∈ R} ⊆ C∗, but the definition implies that R must guarantee h(c) ∈ A∗18

for all h ∈ R.19

Example 1.2. Let A = {a, b} and C = {a, b, #}. Consider four endomorphisms20

f, ga, gb, h defined as f(#) = ##, ga(#) = a#, gb(#) = b#, and h(#) = 1,21

and on all other letters f, ga, gb, h behave like the identity. Consider the rational22

language R = h {ga, gb}∗ f (where endomorphisms are applied right-to-left). A23

simple inspection shows that {ϕ(#) |ϕ ∈ R} = {vv |v ∈ A∗}, which is not context-24

free.25

1.4. Complexity26

We use the standard O-notation for functions from N to R≥0. A function f is called27

quasi-linear if f(n) ∈ O(n log n). We say that f is singly exponential if f(n) ∈28

2O(p(n)) where p(n) is a polynomial. We also use the standard meaning of complexity29

classes like NP, NSPACE(f), DSPACE(f) and DTIME(f) as in [17].30

Let C and D be two domains and for each x ∈ C ∪D we let 〈x〉 ∈ {0, 1}∗ denote31

some binary encoding. We assume that for every x ∈ C its input size is defined32

as a natural number which might be different from the binary length of 〈x〉. For33

admin
Callout
AQ: Please provide the citation for Figs. 1 and 3.

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 7

example, in our case we define the input size of an equation over a free group or1

monoid to be the length of the equation plus the number of generators of the group2

or monoid. As usual, we omit details on the specific encoding and how to check3

that a binary string y is of the form y = 〈x〉 for some x ∈ C. In our case, we content4

ourselves that the encoding of a word of length n over some alphabet Γ uses at5

most O(n log |Γ|) bits and that the check y = 〈x〉 can be done deterministically in6

linear space with respect to the binary length of y.7

A function t : C → D is computable in NSPACE(f) if there is a nondeterministic8

Turing machine M with a two-way read-only input tape, a work tape, and a write-9

only output tape. The input x ∈ C is given as the binary string 〈x〉. During the10

computation the machine writes some binary string on the output tape from left to11

right such that for the entire computation the size of M ’s work tape is bounded by12

O(f(n)) where n is the input size of x. There must be at least one run of the machine13

where M stops and if M stops, then output must be the correct value 〈f(x)〉. We rely14

on a result by Immerman and Szelepcsényi which implies that NSPACE(f) is (effec-15

tively) closed under complementation for functions f satisfying log n ∈ O(f(n))16

[17, Theorem 7.6]). As a consequence, “trimming” an automaton will become pos-17

sible in NSPACE(n log n) in Sec. 3.8. Recall that every NSPACE(n log n)-computable18

function can also be simulated by some deterministic algorithm in time 2O(n log n)19

(see [17, Theorem 3.3]).20

1.5. Word equations over monoids with rational constraints21

Let A be an alphabet of constants with involution and let π : A∗ → M be a22

surjective morphism onto a monoid with involution M . Furthermore, let X be a set23

of variables. We may assume that X is endowed with an involution without fixed24

points. Thus, X �= X for all X ∈ X .25

Definition 1.3. A word equation with rational constraint over M is a pair (U, V)26

of words U, V ∈ (A ∪ X)∗ which has the following attributes.27

• The input size of the equation is defined as |A| + |UV |.28

• The rational constraint is given by a homomorphism ν : (A ∪ X)∗ → N , where29

N is a finite monoid.30

• A solution of the equation (U, V) with constraint ν is given by a map31

σ : X → A∗

which extends to a homomorphism σ : (A ∪ X)∗ → A∗ that fixes the constants,32

such that for all X ∈ X :33

(1) σ(X) = σ(X), i.e. σ : X → A∗ is a morphism,34

(2) ν(X) = νσ(X), i.e. the solution respects the constraint on X ,35

(3) πσ(U) = πσ(V), i.e. σ(U) and σ(V) are equal in the monoid M .36

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

8 L. Ciobanu, V. Diekert & M. Elder

Note that we constrain the solutions to be in a recognizable set (see the defini-1

tions in Sec. 1.3), but in this case the notions of recognizable and rational sets are2

the same, since we are in the free monoid (A ∪ X)∗.3

2. Solution Sets for Equations Over Free Monoids With Involution4

and Free Groups: The Main Results5

Let A± = A+ ∪ {a |a ∈ A+} be a finite alphabet with involution and assume that6

the involution is without fixed points: a �= a for all a ∈ A±. We let F(A+) be the7

free group over A+ and we realize the involution inside F(A+) by a = a−1. Thus8

A± = A+ ∪ {
a−1 |a ∈ A+

} ⊆ F(A+) ⊆ A∗
±.

Following standard terminology, a word w ∈ A∗± is reduced if it does not contain9

any factor aa where a ∈ A±. The set of reduced words is a regular subset F ⊆ A∗
±10

which is closed under involution. We fix F as a set of normal forms for F(A+);11

thus, as a set, we identify F(A+) with F. The inclusion A± ⊆ F(A+) induces the12

canonical projection π : A∗
± → F(A+). Given a word w we obtain π(w) by a13

repeated cancellation of all factors aa; and w is reduced if and only if π(w) = w.14

We shall also use a special symbol # which is not in A± and serves as “marker”.15

For example, we will encode a system of equations {(Ui, Vi) |1 ≤ i ≤ s} as a single16

equation17

(U1# · · ·#Us, V1# · · ·#Vs). (2.1)

If we require that no σ(X) is allowed to use #, where X is a variable, then18

∀ i : πσ(Ui) = πσ(Vi) ⇔ πσ(U1# · · ·#Us) = πσ(V1# · · ·#Vs) (2.2)

since positions of the # letters must be the same on both sides. In our context,19

rational constraints are the most convenient way to ensure that no # appears in20

σ(X), see Sec. 3.2. We let21

A = A± ∪ {#}
with # = #. Thus, {1, #} forms a group which is isomorphic to Z/2Z if we let22

#−1 = #.23

In order to have a uniform statement we let M(A) be either the free monoid24

with involution A∗ or the free product of the free group F(A+) with the cyclic group25

{1, #} of order 2. Thus, henceforth:26

M(A) = A∗ or M(A) = A∗/ {aa = 1 |a ∈ A} ,

and π : A∗ →M(A) is the canonical projection induced by the inclusion A ⊆M(A).27

In both cases π is injective on F ⊆ A∗, and ifM(A) = A∗, then π is just the identity.28

Given a word equation (U, V) with UV ∈ (A± ∪ X)∗ over M(A), we say that a29

solution σ is a solution in reduced words if σ(X) ∈ F for all X ∈ X . We will realize30

this condition as a rational constraint µ into a finite monoid N with a zero element31

0 ∈ N such that µ(w) �= 0 if and only if w ∈ F.32

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 9

Theorem 2.1. Let (U, V) be an equation over M(A) of input size n = |A| + |UV |1

(according to Definition 1.3) and in variables X1, X1, . . . , Xm, Xm. Then there is2

an NSPACE(n log n) algorithm which computes c1, . . . , cm ∈ C, where C ⊇ A is an3

extended alphabet of size |C| ∈ O(n), and a trim NFA A which produces the set of4

solutions in reduced words. That is,5

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | πσ(U) = πσ(V)}
= {(h(c1), . . . , h(cm)) ∈ C∗ × · · · × C∗ | h ∈ L(A)}. (2.3)

The NFA has the following properties.6

(1) It is nonempty if and only if the equation (U, V) has some solution.7

(2) It has a directed cycle if and only if (U, V) has infinitely many solutions.8

These properties can also be decided in NSPACE(n log n).9

Recall that the input size n used in the statement of the theorem might be10

smaller than the length of some binary encoding for the input. If the number of11

distinct symbols used in the equation is constant, then our algorithm is quasilinear12

in the input size; if, on the other hand, the number of distinct symbols used in the13

equation is linear, then we need linear space, only.14

Theorem 2.1 yields the characterization of solutions sets as EDT0L languages.15

To do so, we identify a tuple of words (w1, . . . , wk) ∈ F with the single word16

w1# · · ·#wk ∈ A∗.17

Let (U, V) be an equation as in Theorem 2.1. For any subset {Z1, . . . , Zk} of18

variables appearing in UV we define the solution set as19

SolZ(U, V) = {σ(Z1)# · · ·#σ(Zk) |σ solves (U, V) in reduced words} . (2.4)

Note that for k = 0 we have Sol∅(U, V) = ∅ if the equation (U, V) has no solution20

and Sol∅(U, V) = {1} otherwise. Considering subsets of variables allows for some21

flexibility. In particular, we can introduce auxiliary variables which do not impact22

the solution set. If, however, every variable occurring in UV is either of the form23

Zi or Zi for some 1 ≤ i ≤ k, then we say that SolZ(U, V) is a full solution set.24

Corollary 2.2. Let (U, V) be an equation as in Theorem 2.1 and let {Z1, . . . , Zk} be25

any subset of variables appearing in UV . Then SolZ(U, V) is an EDT0L language.26

More precisely, if A is the trim NFA constructed in Theorem 2.1, then we can find27

c′1, . . . , c
′
k ∈ C such that28

SolZ(U, V) = {h(c′1# · · ·#c′k) |h ∈ L(A)} .

In particular, the full solution set is EDT0L.29

Proof. The language characterization follows from Definition 1.1 of an EDT0L30

language, given that each Zj corresponds to some Xi in Theorem 2.1.31

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

10 L. Ciobanu, V. Diekert & M. Elder

Note that Theorem 2.1 shifts the traditional perspective from solving an equa-1

tion to an effective construction of some NFA producing an EDT0L set. Once the2

NFA is constructed, the existence of a solution, or whether the number of solutions3

in reduced words is zero, finite or infinite, become graph properties of the NFA.4

Thus, the algorithmic difficulty of solving equations and describing their solution5

set reduces to the complexity of building a nondeterministic finite automaton for a6

given input.7

3. Proof of Theorem 2.1 in the Monoid Case: M(A) = A∗8

In this section, we prove Theorem 2.1 in the monoid case. Before delving into the9

proof, we introduce in Secs. 3.1–3.7 further necessary terminology and notation.10

Let M(A) = A∗. In this case π = idA∗ and so π is not needed in the11

rest of this section. Without restriction, we may assume |A+| ≥ 1. Let Xinit =12 {
X1, X1, . . . , Xm, Xm

}
be the initial set of variables, that is, for each 1 ≤ i ≤ m13

either Xi or Xi occur in UV .14

Let κ ∈ O(1) be some “large enough” constant, whose exact value will be15

discussed in Sec. 3.10.4, and choose an alphabet C of constants and an alphabet Ω16

of variables such that17

C ⊇ A, |C| = κ · n and Ω ⊇ Xinit, |Ω| = 6n.

Fix Γ = C ∪ Ω. We assume that C and Ω are sets with involution and that, inside18

Γ = C ∪ Ω, the marker # is the only self-involuting symbol. Thus, # = # and19

x �= x for all x ∈ Γ\ {#}.20

By Σ we denote the set of C-morphisms σ : Γ∗ → C∗. Every solution will be21

drawn from Σ.22

3.1. The initial word equation Winit23

For technical reasons we need that for every variable Xi which appears in UV there24

is some factor #Xi# appearing in the initial equation. Instead of viewing equations25

as equalities between two words U and V , we will treat equations as a statement26

about a single word W ∈ Γ∗, as follows. This will require us to redefine the notion27

of solution as well.28

We define the initial equation Winit ∈ (A ∪ Xinit)∗ as:29

Winit = #X1# · · ·#Xm#U#V #U#V #Xm# · · ·#X1#. (3.1)

Then for every σ ∈ Σ we have30

σ(U) = σ(V) ⇔ σ(Winit) = σ(Winit)

and31

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | σ ∈ Σ ∧ σ(U) = σ(V)}
= {(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | σ ∈ Σ ∧ σ(Winit) = σ(Winit)}.

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 11

We have the following symmetry: if w ≤ Winit is a factor and no # appears in1

w, then w ≤ Winit, too. The number of # letters in Winit is odd, and there is a2

distinguished # exactly in the middle of Winit.3

Observe that Winit is longer than UV , but clearly linear in n. More concretely,4

since m ≤ |UV | and n = |UV | + |A| > |UV | + 1, we get the bound:5

|Winit| ≤ 4m + 5 + 2 · |UV | ≤ 6 · |UV | + 5 < 6(|UV | + 1) < 6n. (3.2)

Also observe that
∑

X∈Xinit
|Winit|X ≤ 2m + 2 |UV | ≤ 4n.6

3.2. The finite monoid NF7

In order to ensure that solutions are in reduced words which do not contain the8

symbol #, we introduce a morphism to a fixed finite monoid NF which plays the role9

of (a specific) rational constraint. We define NF as follows: NF = {1, 0}∪(A±×A±)10

with multiplication given by 1 · x = x · 1 = x, 0 · x = x · 0 = 0, and11

(a, b) · (c, d) =

{
(a, d) if b �= c,

0 otherwise.

The monoid NF has a natural involution given by 1 = 1, 0 = 0, and (a, b) = (b, a).12

The morphisms to NF are defined on subsets of Γ, and although they change13

during the algorithm, they always extend the following fixed morphism14

µ0 : A∗ → NF

which is defined by15

µ0(#) = 0, µ0(a) = (a, a)

for a ∈ A±. It is clear that µ0 respects the involution and µ0(w) = 0 if and only16

if either w contains # or w is not reduced. If, on the other hand, 1 �= w ∈ A∗
±17

is reduced, then µ0(w) = (a, b), where a is the first and b the last letter of w. An18

additional feature is that µ(w) = 1 if and only if w is the empty word.19

Defining µ(X) for a variable X has the following meaning for a solution σ with20

σ(X) ∈ A∗
±: the value µ(X) = 0 is not possible in any solution, µ(X) = 1 implies21

σ(X) = 1, and µ(X) = (a, b) ⇔ σ(X) ∈ F ∩ aF ∩ Fb.22

3.3. Types23

Later in the proof we will need to perform compression of large blocks of letters24

in an efficient manner. This will be achieved by putting a partially commutative25

structure on the monoid we work with. The partial commutativity will be induced26

by types, which we introduce below. The basic idea is that we assign a variable X27

the “type” θ(X) = c when we predict that in some solution σ(X) ∈ c∗ (so X and28

c commute), and we assign a constant b the “type” θ(b) = c when we rename some29

letters b as c.30

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

12 L. Ciobanu, V. Diekert & M. Elder

Besides the initial alphabet A and the global alphabet C, we also need a cur-1

rent alphabet of constants B, where A ⊆ B = B ⊆ C, and a current set of2

variables X = X ⊆ Ω. Let ∆ = B ∪ X . A type is a partially defined function3

θ : (∆\A) → (B\A) which respects the involution. We identify θ with the relation4

{(θ(x), x) ∈ ∆ × ∆ |θ(x) is defined}. We obtain an independence relation5

θ = {(θ(x), x) ∈ ∆ × ∆ |θ(x) is defined for x}

and hence a free partially commutative monoid6

M(∆, θ) = ∆∗/ {xθ(x) = θ(x)x |θ(x) is defined for x} .

If the domain where θ is defined is empty, then M(∆, θ) = M(∆, ∅) is the free7

monoid ∆∗.8

Remark 3.1. By definition, the size |θ| is bounded by |∆|. Hence, it is linear in n9

and the specification of θ needs O(n log n) bits.10

Definition 3.2. Let B satisfy A ⊆ B = B ⊆ C, X = X ⊆ Ω, and θ be a type. The11

notation12

M(B,X , θ, µ)

denotes the free partially commutative monoid with involution M(B ∪ X , θ),13

equipped with a morphism µ : M(B ∪ X , θ) → NF such that µ(a) = µ0(a) for14

all a ∈ A, where µ0 : A∗ → NF is the morphism specified in Sec. 3.2. We call15

M(B,X , θ, µ) a structured monoid.16

A morphism ϕ from M(B,X , θ, µ) to M(B′,X ′, θ′, µ′) is a morphism of monoids17

with involution ϕ : M(B,X , θ, µ) → M(B′,X ′, θ′, µ′) such that µ′ϕ = µ.18

Definition 3.2 implies that whenever θ(x) is defined, then µ(xθ(x)) = µ(θ(x)x)19

(because µ is a homomorphism). Henceforth we use the following conventions. If20

B′ ⊆ B and X ′ ⊆ X with A ⊆ B′ = B′ and X ′ = X ′, then M(B′,X ′, θ, µ)21

denotes the structured monoid M(B′,X ′, θ′, µ′) where θ′ and µ′ are induced by22

the restrictions of θ and µ to B′ ∪ X ′. Moreover, if M(B,X , θ, µ) is known from23

the context, then we abbreviate M(B, ∅, θ, µ) as M(B). Since no letter from A is24

involved in a type, M(A) is the free monoid with involution A∗ together with the25

morphism µ0 : A∗ → NF, and26

M(A) = M(A, ∅, ∅, µ0) ⊆ M(B) ⊆ M(B,X , θ, µ)
µ→ NF.

3.4. Reference list of symbols27

In Table 1, we summarize notations introduced so far for easy reference. These28

conventions hold unless stated otherwise. They also apply to “primed” symbols29

such as B′, where B′ denotes a set with A ⊆ B′ = B′ ⊆ C.30

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 13

Table 1. Reference list of symbols.

A+ ⊆ A±, the initial alphabets without self-involuting letters.

A± ∪ {#} = A ⊆ B = B ⊆ C.

Γ = C ∪ Ω and x = x ∈ Γ implies x = #.

X = X ⊆ Ω, the current set of variables.

n = |A| + |UV |, |C| = κn and |Ω| = 6n.

∆ = B ∪ X .

µ : ∆ → NF, a morphism with µ(a) = µ0(a) for a ∈ A.

θ : (∆\A) → (B\A), the type defining an independence relation.

M(∆, θ), free partially commutative monoid defined by ∆ and θ.

M(B,X , θ, µ) = M(∆, θ) together with µ which extends µ0 : A∗ → NF.

M(B), submonoid of M(B,X , θ, µ) together with the restriction of θ, µ.

a, b, c, . . . refer to letters in C.

u, v, w, . . . refer to words in C∗.
X, Y, Z, . . . refer to variables in Ω.

x, y, z, . . . refer to words in Γ∗.

3.5. Extended equations and their solutions1

The states of the NFA we are going to construct correspond to equations derived2

from our initial equation. Each state contains such an equation, together with the3

specification of which set of constants, variables and types are used. Moreover, we4

keep track of the morphism µ which represents the constraint. Formally, we use the5

notion of extended equation. The notions we introduce now are quite technical, but6

the reader should keep in mind that the most important fact is that an extended7

equation contains an equation which is a modification of the initial equation, and8

this equation has bounded length. When types are present, this equation is an9

element in a free partially commutative monoid rather than simply a word in a free10

monoid.11

Definition 3.3. An extended equation is a tuple (W, B,X , θ, µ), where W is a word12

in (B ∪ X)∗ such that:13

(1) |W | ≤ 204n.14

(2) If θ = ∅, then
∑

X∈X |W |X ≤ 4n. Otherwise
∑

X∈X |W |X ≤ 12n.15

(3) |W |# = |Winit|# and W ∈ #(B ∪ X)∗#.16

(4) Every x with # �= x ∈ B ∪ X satisfies µ(x) �= 0.17

(5) Every X ∈ X appears in W .18

(6) If x ≤ W is a factor with |x|# = 0, then x ≤ W , too.19

Remark 3.4. As noted above, the word W (including the notion of factor)20

is to be seen as representing an element in the free partially commutative21

monoid M(B,X , θ, µ) = M(B ∪ X , θ). Note that by definition |θ| ≤ |B ∪ X |22

(see Remark 3.1). The bounds on the length of W , and on the number of vari-23

ables appearing in W , will be explained in later sections (Sec. 3.10.3), where we24

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

14 L. Ciobanu, V. Diekert & M. Elder

will show that we can find all solutions to an input equation by considering mod-1

ified equations that satisfy these restrictions. What is important for now is that2

|W | ∈ O(n) which means the number of extended equations is finite.3

Definition 3.5. Let V = (W, B,X , θ, µ) be an extended equation. The weight ‖V ‖4

of V is a 4-tuple of natural numbers, ‖V ‖ = (ω1, ω2, ω3, ω4), where5

ω1 = |W | ,
ω2 = |W | − |{a ∈ B | |W |a ≥ 1}| ,
ω3 = |W | − |θ| ,
ω4 = |B| .

Remark 3.6. We order tuples in N� lexicographically. The lexicographic ordering6

is chosen to function as follows. If we start at an equation of high weight, then the7

weight of the equation reduces by “compression”. The first component gives more8

weight to longer equations. If two equations have the same length, then we declare9

the equation in which more distinct constants appear to be smaller because the10

term |{a ∈ B | |W |a ≥ 1}| appears with a negative sign. If two equations have the11

same length and use the same number of distinct constants, we declare the equation12

in which more symbols are typed to be smaller. Finally, if both equations have the13

same length, the same number of distinct letters in use, and the same number of14

typed symbols, then we declare the equation defined over the smaller set B to be15

smaller.16

Since for every extended equation we have a current alphabet B, we need the17

notion of a B-solution, which can then be extended to a solution over the desired18

alphabet A. The next few pages are somewhat technical, but will be used to justify19

that when we modify extended equations in certain ways, solutions are preserved.20

Definition 3.7. Let V = (W, B,X , θ, µ) be an extended equation.21

• A B-solution at V is a B-morphism σ : M(B,X , θ, µ) → M(B, ∅, θ, µ) such that22

σ(W) = σ(W) and σ(X) ∈ y∗ whenever (X, y) ∈ θ.23

• A solution at V is a pair (α, σ) where σ is a B-solution and α : M(B, ∅, θ, µ) → A∗24

is an A-morphism (which implies µ = µ0α). Moreover, if the set X in V is25

nonempty, then we require that α is nonerasing, that is, α(a) �= 1 for all a ∈ B.26

The weights ‖α, σ‖ and ‖α, σ, V ‖ of a solution (α, σ) at V are defined as27

‖α, σ‖ =
∑

X∈X
|ασ(X)| ∈ N, (3.3)

‖α, σ, V ‖ = (‖α, σ‖ , ‖V ‖) ∈ N5. (3.4)

Remark 3.8. Let V = (W, B,X , θ, µ) be an extended equation with a solution28

(α, σ). Then σ(X) cannot have any factor of the form # or aa with a ∈ B because29

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 15

0 �= µ(X) = µ0ασ(X). In particular, ασ(X) is a reduced word in A∗
±. Hence,1

ασ satisfies the constraint ασ(X) ∈ F. Note that a priori we do not exclude the2

possibility that factors aa appear in W , since for example it could be that Winit3

contains a factor aX and some solution σ(X) begins with a.4

The next two lemmas show how morphisms between structured monoids trans-5

form solutions of extended equations. These two lemmas will play an important6

role in the proof of the algorithm “soundness”.7

In the first lemma we consider the morphisms which leave all constants invariant,8

and conclude that such a morphism decreases the weight of a solution. In addition,9

this lemma specifies a situation, in part (iv), when the weight strictly decreases.10

Lemma 3.9. Let V =(W, B,X , θ, µ) and V ′ = (W ′, B,X ′, θ′, µ′) be extended equa-11

tions such that θ(a) = θ′(a) and µ(a) = µ′(a) for all a ∈ B. In other words, M(B) =12

M(B, ∅, θ, µ) = M(B, ∅, θ′, µ′).13

Let τ : M(B,X , θ, µ) → M(B,X ′, θ′, µ′) be a B-morphism such that W ′ = τ(W)14

and α : M(B) → M(A, ∅, ∅, µ0) be an A-morphism such that α(a) �= 1 for all a ∈ B.15

Given a B-solution σ′ at V ′, define a B-morphism σ : M(B,X , θ, µ) → M(B)16

by σ(X) = σ′τ(X).17

Then the following assertions hold.18

(i) (α, σ) is a solution at V and (α, σ′) is a solution at V ′.19

(ii) ασ(W) = ασ′(W ′).20

(iii) ‖α, σ‖ ≥ ‖α, σ′‖.21

(iv) If there is some X with τ(X) ∈ X ′∗aX ′∗ where a ∈ B and α(a) �= 1, then22

‖α, σ‖ > ‖α, σ′‖.23

Proof. (i) Since σ′ is a B-solution at V ′ we have24

σ(W) = σ′τ(W) = σ′(τ(W)) = σ′τ(W) = σ(W) = σ(W).

By hypothesis, α(a) �= 1 for all a ∈ B. Hence, (α, σ) is a solution at V . Since25

M(B) = M(B, ∅, θ, µ) = M(B, ∅, θ′, µ′), we have (α, σ′) is a solution at V ′.26

(ii) The assertion ασ(W) = ασ′(W ′) is trivial since W ′ = τ(W), σ = σ′τ .27

(iii) For each X write τ(X) as a word28

τ(X) = xX,1 · · ·xX,�X

with xX,i ∈ B ∪ X ′. Since every X ′ ∈ X ′ appears somewhere in τ(W) (by29

Definition 3.3(5)) we obtain: X ′ ⊆ ⋃ {xX,i |X ∈ X ∧ 1 ≤ i ≤ �X} . Hence30

‖α, σ‖ =
∑

X∈X
|ασ(X)| =

∑
X∈X

|ασ′τ(X)| (3.5)

=
∑

X∈X
|ασ′(xX,1 · · ·xX,�X)|

∑
X∈X ,1≤i≤�X

|ασ′(xX,i)| (3.6)

≥
∑

X′∈X ′
|ασ′(X ′)| = ‖α, σ′‖ . (3.7)

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

16 L. Ciobanu, V. Diekert & M. Elder

(iv) If there is some X with τ(X) ∈ X ′∗aX ′∗ where a ∈ B and α(a) �= 1, then some1

xX,i = a /∈ X ′ with ασ′(a) = α(a) �= 1. Hence, |ασ′(xX,i)| ≥ 1; and the ≥ in2

(3.7) becomes the inequality >.3

In the second lemma we consider the morphisms which leave all variables invari-4

ant, and conclude that such a morphism does not change the weight of a solution.5

6

Lemma 3.10. Let V = (W, B,X , θ, µ) and V ′ = (W ′, B′,X , θ′, µ′) be extended7

equations, h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) be an (A ∪ X)-morphism , and8

α : M(B) → M(A, ∅, ∅, µ0) be an A-morphism where M(B) = M(B, ∅, θ, µ) such9

that the following conditions are satisfied.10

• W = h(W ′).11

• α(a) �= 1 for all a ∈ B.12

• If X �= ∅, then h(a′) �= 1 for all a′ ∈ B′.13

• If θ(X) = c ∈ B for some X ∈ X , then c ∈ B′, θ′(X) = c, and h(c) ∈ c∗.14

Given a B′-solution σ′ at V ′, define a B-morphism σ : M(B,X , θ, µ) → M(B)15

by σ(X) = hσ′(X). Then (α, σ) is a solution at V and (αh, σ′) is a solution at V ′.16

Moreover, ασ(W) = αhσ′(W ′) and17

‖α, σ‖ = ‖αh, σ′‖ .

Proof. By definition, µh = µ′ and µ0α = µ. Hence (αh, σ′) is a solution at V ′.18

Now, h(X) = X for all X ∈ X . Hence, σ(h(X)) = σ(X) = hσ′(X). For b′ ∈ B′19

we obtain σh(b′) = h(b′) = hσ′(b′) since σ′ and σ are the identity on B′ and B,20

respectively. It follows that σh = hσ′ and hence, ασ(W) = αhσ′(W ′). Next,21

σ(W) = σ(h(W ′)) = h(σ′(W ′)) = h(σ′(W ′)) = σ(h(W ′)) = σ(h(W ′)) = σ(W).

Moreover, if X ∈ X and θ(X) is defined, then θ(X) = θ′(X) = c ∈ B ∩ B′, and22

h(c) ∈ c∗ by hypothesis. Hence, σ′(X) ∈ c∗ and therefore σ(X) = hσ′(X) ∈ c∗,23

too. Thus, σ is a B-solution at V and, consequently, (α, σ) a solution at V . Finally,24

since σ(X) = hσ′(X) we obtain25

‖α, σ‖ =
∑

X∈X
|ασ(X)| =

∑
X∈X

|αhσ′(X)| = ‖αh, σ′‖ .

During the process of finding a solution, the parameters W, B,X , θ, µ change. We26

describe the possible changes in terms of a directed graph, which will be converted27

into an NFA.28

3.6. The NFA F and the trimmed NFA A29

We are ready to define the NFA A mentioned in Theorem 2.1 in the case where30

M(A) = A∗ is a free monoid with involution.31

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 17

3.6.1. States1

We start by building an NFA F whose states are all the extended equations2

(W, B,X , θ, µ) according to Definition 3.3. We will later obtain A by trimming,3

that is, by removing all states which are not on accepting paths. Thus, the only4

difference between F and A is that A does not have superfluous states.5

Lemma 3.11. An extended equation V = (W, B,X , θ, µ) can be specified using at6

most O(n log n) bits, so F has not more than singly exponentially many states.7

Proof. We claim that each component of V can be specified using O(|Γ|) = O(n)8

letters from Γ plus a finite alphabet. Since |Γ| ∈ O(n), we can encode each letter9

in Γ plus the finite alphabet as a binary number of length at most O(log n) bits.10

Thus V can be encoded by a binary string of length in O(n log n). It follows that11

the total number of extended equations is at most 2O(n log n).12

To establish the claim, notice that W ∈ Γ∗ with |W | ≤ 204n, B ∪ X ⊆ Γ,13

θ ⊂ Γ × Γ and |θ| ≤ |B ∪ X|. Since µ : B ∪ X → NF and NF is finite, µ can14

be encoded as a list {(c, µ(c)) | c ∈ B ∪ X}, using letters from Γ plus the finite15

alphabet NF.16

Initial states. An initial state is any state of the form (Winit, A,Xinit, ∅, µinit),17

where18

µinit : (A ∪ Xinit) → NF

is a morphism extending µ0 such that µinit(X) �= 0 for all X ∈ Xinit.19

If (α, σ) is a solution of (Winit, A,Xinit, ∅, µinit), then necessarily α = idA∗ since20

α leaves the letters from A invariant. Moreover, we know that µinit(X) = µ0σ(X).21

This means that the initial value of µinit(X) tells us whether σ(X) = 1; and if22

σ(X) �= 1, then µinit(X) = (a, b) and σ(X) ∈ aA∗ ∩ A∗b. Hence, µinit(X) specifies23

the first and last letters of the reduced word σ(X) whenever σ(X) �= 1. Moreover,24

µinit(X) �= 0 implies ασ(X) ∈ F. Hence, ασ(X) is a reduced word in A∗
±.25

Final states. We choose and fix “distinguished” letters c1, . . . , cm ∈ C\A such26

that ci �= cj �= ci for all i �= j. We say that a state (W, B, ∅, ∅, µ) is final if27

(1) W = W ,28

(2) The word W has a prefix of the form #c1# · · ·#cm#.29

Every final state has the unique B-solution σ = idB because final states do not30

have any variables.31

Remark 3.12. The names initial and final refer to the phase in the construction of32

the graph at which a state is produced, rather than being start or accept states for33

the NFA. That is, when we obtain the EDT0L language characterization, the start34

states of the NFA recognizing the rational language of endomorphisms correspond35

to the final states defined here, and the accept states correspond to the initial states.36

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

18 L. Ciobanu, V. Diekert & M. Elder

3.7. Transitions1

We define two different forms of transitions, based on substitutions and compres-2

sions. Both forms are labeled by an endomorphism of C∗ which induces a morphism3

between partially commutative monoids M(B, ∅, θ, µ) and M(B′, ∅, θ′, µ′).4

The direction of each transition is opposite to that of the morphism labeling5

the transition. Suppose we have a path p from an initial to a final state. A very6

important (and, perhaps, initially counterintuitive) fact is that in order to produce7

solutions, our algorithm follows the path p backwards, that is, from the final to8

the initial state; we compose the morphisms labeling the transformations in such a9

directed path p from the last edge to the first one, in order to produce the solutions.10

This is in agreement with our initial and final states being accept and start states11

in the NFA, respectively.12

3.7.1. Substitutions13

A substitution transition transforms the variables and does not affect the constants.14

Let V = (W, B,X , θ, µ) and V ′ = (W ′, B,X ′, θ′, µ′) be states in F sharing the15

same set of constants B; and assume that V is not final and that V ′ is not an16

initial state. Moreover, let θ(b) = θ′(b), and µ(b) = µ′(b) for all b ∈ B. Therefore17

M(B) = M(B, ∅, θ, µ) = M(B, ∅, θ′, µ′).18

Let τ : M(B,X , θ, µ) → M(B,X ′, θ′, µ′) be any B-morphism such that τ(W) =19

W ′, τ modifies only X and X for some variable X , leaves all x ∈ (B ∪X)\{
X, X

}
20

invariant, and21

τ(X) ∈ (B ∪ X ′)∗ with |τ(X)| ≤ 3.

Furthermore, we only allow the following choices for τ(X),X and X ′:22

(i) τ(X) = 1 and X ′ = X\{
X, X

}
.23

(ii) τ(X) = uX and X ′ = X with u ∈ B∗ and 1 ≤ |u| ≤ 2.24

(iii) τ(X) = cX ′X and X = X ′\{
X ′, X ′} with c ∈ B and θ′(X ′) = c.25

In each of these three cases we define the substitution transition:26

V = (W, B,X , θ, µ) ε→ (τ(W), B,X ′, θ′, µ′) = V ′.

Here, the label ε denotes the identity morphism idC∗ , it restricts to the identity27

morphism from M(B, ∅, θ′, µ′) to M(B, ∅, θ, µ), and it will be applied in the opposite28

direction from τ and the transition. Note that after having performed a substitution29

transition we have ‖V ′‖ < ‖V ‖ if and only if τ is defined by τ(X) = 1 for some X .30

3.7.2. Compressions31

A compression transition affects the constants, but does not change the variables.32

Let V = (W, B,X , θ, µ) and V ′ = (W ′, B′,X , θ′, µ′) be states in F sharing the33

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 19

same set of variables X and assume V is not a final state, θ(X) = θ′(X) and1

µ(X) = µ′(X) for all X ∈ X .2

Let h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) be any (A ∪ X)-morphism such that3

W = h(W ′) and4

(1) if V ′ is non-final, then 1 ≤ |h(c)| ≤ 2 for all c ∈ B′,5

(2) if V ′ is final, then
∑

c∈B′ |h(c)| ≤ |W |.6

In case that either ‖V ‖ > ‖V ′‖ or V ′ is final and h �= idB∗ , we define a com-7

pression transition in F by8

V = (h(W ′), B,X , θ, µ) h→ (W ′, B′,X , θ′, µ′) = V ′,

where the transition label h is given by an endomorphism h ∈ End(C∗) which9

induces the morphism h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) and which leaves all10

letters not in B′ invariant. The direction of the morphism h is again opposite to11

that of the transition.12

Remark 3.13. The reason that we have to treat transitions to final states differ-13

ently is two-fold. First, the coexistence of “singular” and “nonsingular” solutions14

is possible. In the singular case we have σ(X) = 1 for some X and in the nonsin-15

gular case we have σ(X) �= 1 for all X . Say there are solutions σ and σ′ such that16

σ(X1) = 1 and σ′(X1) = a ∈ A±. Then for some h, h′ ∈ L(A) and some c1 we17

must have h(c1) = 1 and h′(c1) = a. Thus in transformations to a final state we18

must allow that h maps some letters to the empty word. In all other situations this19

is forbidden. Thus, if V
h→ V ′ is a compression transition and V ′ is final, then we20

allow ‖V ‖ < ‖V ′‖.21

Second, if a state V = (W, B, ∅, θ, µ) has no variables, then W has prefix22

#u1# · · ·#um# with ui ∈ C∗. In this case we wish to allow a compression transi-23

tion h to a final state in one step. By imposing the condition
∑

c∈B′ |h(c)| ≤ |W |24

we make sure the specification of h fits into our linear space bound, which is crucial25

in our complexity analysis below.26

Example 3.14. Let U = aX and V = aaab be an equation, for the purposes of27

demonstrating how the graph or NFA works. We have28

Winit = #X#aX#aab#Xa#baa#X#.

A path from initial to final states in the graph F for this equation is shown in Fig. 2,29

where for simplicity we label states by a prefix of W in each extended equation.30

The first four transitions are substitutions τ1(X)= τ2(X)= aX, τ3(X)= bX,31

τ4(X) = 1 so h1, h2, h3, h4 are just idC∗ , and the map h5(c1) = aab is a com-32

pression to a final state. A solution for X can be obtained by applying the maps33

to c1 in reverse order to the path labeling, so we get σ(X) = h1h2h3h4h5(c1) =34

h1h2h3h4(aab) = aab.35

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

20 L. Ciobanu, V. Diekert & M. Elder

Fig. 2. A path in F from initial to final state for the equation aX = aaab. The solution σ(X)
is obtained by applying the maps h1, h2, h3, h4, h5 to c1 in reverse order, that is, σ(X) =
h1h2h3h4h5(c1).

3.8. Proof that the NFA is constructed in quasi-linear space1

We can now give the algorithm to construct the trim NFA A in NSPACE(n log n).2

We first give an algorithm to construct F , then use this to construct A.3

Lemma 3.15. Given a tuple V = (W, B,X , θ, µ), where W ∈ Γ∗, B ⊆ C,X ⊆ Ω, θ4

is a type, and µ : (B∪X) → N is a mapping, we can check within NSPACE(n log n)5

whether V is an extended equation (that is, V is a state in F) and furthermore6

decide whether the state V is initial or final.7

Proof. As noted in Lemma 3.11, writing down any extended equation requires at8

most O(n log n) bits, so if V requires more space we reject it as a valid input. If V9

fits into the allowed space, then go through the conditions listed in Definition 3.3.10

It is obvious how to check the first five conditions. For example, if |W | > 204n,11

then we reject immediately.12

The most involved test is to see that for every factor u of every ui with the13

interpretation ui ∈ M(Γ, θ) the element u also appears in W ∈ M(Γ, θ). For this14

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 21

test, we invoke the algorithm that solves the uniform factor problem in free partially1

commutative monoids as explained in Sec. 1.2. Recall that the uniform factor prob-2

lem refers to an input of the form (Γ, θ, u, w). In our case the input has the specific3

form (Γ, θ, u, W). We presented a nondeterministic algorithm using linear space in4

the input size, where the input size of a tuple (Γ, θ, u, w) is (|Γ|+|θ|+|uw|) log|Γ|, as5

we need O(log|Γ|) bits to encode letters. Since (|Γ|+ |θ|+ |uw|) log|Γ| ∈ O(n log n),6

the call of such a subroutine fits into our space bound.7

Having completed the check that V is a state of F , it is easy to check whether8

it is initial (W = Winit, B = A, θ = ∅) or final (W = W , θ = ∅, X = ∅); since θ = ∅9

in both cases we are just checking W = Winit, W = W in a free monoid.10

In the following, when we say that V = (W, B,X , θ, µ) is a state in F , this11

means V is given as a tuple for which the syntax check according to Lemma 3.1512

that V is indeed a state was performed.13

Lemma 3.16. Given states V = (W, B,X , θ, µ), V ′ = (W ′, B′,X ′, θ′, µ′) in F , and14

a mapping h : B′ → B∗, we can check within NSPACE(n log n) whether the triple15

(V, V ′, h) encodes an transition V
h→ V ′ in the graph F .16

Proof. We assume h is specified as a tuple requiring at most O(n log n) bits. In17

order to check whether V
h→ V ′ is a compression transition we must have h �= idB∗18

and then we go through the conditions of Sec. 3.8, most of which are immediate to19

verify. Among these, we have to compute h(W ′) as a word in (B∪X)∗ and then see20

if W = h(W ′) ∈ M(B ∪X , θ). The test W = h(W ′) ∈ M(B∪X , θ) is a special case21

of the uniform factor problem in free partially commutative monoids, as already22

discussed in the proof of Lemma 3.15.23

For a substitution transition, a necessary condition is B = B′ and h = idB ,24

which is trivial to check. Next we guess some mapping τ : X → (B ∪ X ′)∗ with25

|τ(X)| ≤ 3 for all X ∈ X . Just as above we check τ(W) = W ′ ∈ M(B′ ∪ X ′, θ′)26

and the other requirements for substitutions listed in Sec. 3.7.1.27

As usual in automata theory we modify the NFA F by removing all states which28

are not on a path from some initial to some final state. If there is no such path,29

then L(F) is the empty set. The resulting NFA will be denoted as A. We have30

L(A) = L(F). Moreover, L(A) = ∅ if and only if the automaton A is empty.31

The key tool used to build the trim NFA A is Ispath(V, V ′), which we define32

to be a Boolean predicate that yields true if and only if there is a path from state33

V to V ′ in the graph A.34

Lemma 3.17. Let V, V ′ represent two states in the graph F . Then the predicate35

Ispath(V, V ′) can be evaluated in NSPACE(n log n).36

Proof. Define the language LF = {(V, V ′) | Ispath(V, V ′) = true}. On input37

(V, V ′) we can guess a path V = V0, V1, h1, V2, h2, . . . , V
′ = Vk, hk in F from V38

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

22 L. Ciobanu, V. Diekert & M. Elder

to V ′ and check for each i whether (Vi−1, Vi, hi) encodes a transition by using1

Lemmas 3.15 and 3.16. Thus, LF ∈ NSPACE(n log n).2

Since NSPACE(n log n) is closed under complementation by Immerman and3

Szelepcsényi (see [17, Theorem 7.6]), we also have4

LF = {(V, V ′) | � ∃ a path from V to V ′ in F} ∈ NSPACE(n log n).

Thus, the predicate Ispath(V, V ′) can be evaluated in NSPACE(n log n) by running5

two procedures simultaneously to determine if (V, V ′) ∈ LF or (V, V ′) ∈ LF .6

Proposition 3.18. We can construct the trim NFA A in NSPACE(n log n). Within7

the same space complexity we can decide whether A is empty, or whether A contains8

a directed cycle.9

Proof. For each V that is a state of F output V as an initial node of A if both (1)10

V is initial in F , and (2) there exists some path to a final state in F . We check (1)11

using Lemma 3.15. For (2) we run through all final states V ′ of F and evaluate the12

predicate Ispath(V, V ′). If at some point Ispath(V, V ′) becomes true, we output13

V as an initial node in A. If no initial node in A is found, then we stop; the output14

is A = ∅. Hence, we continue only if there is at least one initial node.15

Next, we construct all transitions of A as follows. We list all triples (V, V ′, h)16

where V
h→ V ′ is a transition in F . For each such triple we consider all states V017

of A which are initial, and for each V0 we evaluate Ispath(V0, V). If no such V0 is18

found where Ispath(V0, V) is true, then we move to the next triple (V, V ′, h). If at19

least one such V0 exists, we list all states Vf of F which are final. For each Vf we20

evaluate Ispath(V ′, Vf). If no such Vf is found where Ispath(V ′, Vf) is true, then21

we move to the next triple (V, V ′, h). Otherwise we output (V, V ′, h) as a transition22

of A. If, moreover, V ′ is final in F , then we mark that transition in order to indicate23

that V ′ is final in A, too. We then move to the next triple (V, V ′, h).24

Having these two lists at hand we have constructed the trim NFA A.25

Finally, to check for a directed cycle we enumerate all pairs (V, V ′) ∈ A × A26

with V �= V ′ and for each pair evaluate Ispath(V, V ′) and Ispath(V ′, V).27

With the assertion in Proposition 3.18 the algorithmic part of the proof of the28

monoid version of Theorem 2.1 is finished. It remains to show the soundness and29

completeness of the construction. This requires purely existential statements, where30

no reference to effectiveness is necessary.31

3.9. Soundness32

In this section, we prove soundness, that is, any output we obtain by following the33

transitions in the NFA A from an initial to a final state, and then applying the34

corresponding maps in reverse order to the distinguished letters, gives a correct35

solution to the equation Winit.36

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 23

Recall that we have chosen distinguished letters c1, . . . , cm ∈ C, and that if1

(W, B, ∅, ∅, µ) is a final state, then W = W and W ∈ #c1# · · ·#cm#B∗.2

Proposition 3.19. Let V0
h1→ · · · ht→ Vt be a path in A of length t, where V0 =3

(Winit, A,Xinit, ∅, µinit) is an initial and Vt = (W, B, ∅, ∅, µ) is a final state. Then4

V0 has a solution (idA∗ , σ) with σ(Winit) = h1 · · ·ht(W). Moreover, for 1 ≤ i ≤ m5

we have6

σ(Xi) = h1 · · ·ht(ci).

Proof. Let s≥ 0 and V0
h1→ · · · hs→ Vs be any path to some state Vs = (Ws, B,7

X , θ, µ) such that σs is a B-solution at Vs. We claim that V0 and Vs have solutions8

(idA∗ , σ) and (idA∗h1 · · ·hs, σs), respectively, with9

σ(Winit) = h1 · · ·hsσs(Ws). (3.8)

Claim (3.8) is trivial for s =0 and for s > 0 it follows by induction using Lemma 3.1010

or Lemma 3.9, depending on whether hs is a substitution transition or a compression11

transition. Now for s = t we have W = W by the definition of a final state.12

Since no variables occur in W , σt = idB∗ is the (unique) B-solution of W , so13

σ(Winit) = h1 · · ·ht(W).14

By definition #X1# · · ·#Xm# is a prefix of Winit and #c1# · · ·#cm# is a15

prefix of W for the final state Vt, but h = idA∗h1 · · ·ht is an A-morphism from B∗16

to A∗ with |h(c)|# = 0 for all c ∈ B. This implies17

σ(#X1# · · ·#Xm#) = h(#c1# · · ·#cm#).

In particular, σ(Xi) = h1 · · ·ht(ci) for 1 ≤ i ≤ m.18

Using the notation of Theorem 2.1 we have shown soundness, that is, every19

output we obtain is a solution in reduced words.20

Corollary 3.20. The following inclusion holds:21

{(h(c1), . . . , h(cm)) ∈ C∗ × · · · × C∗ | h ∈ L(A)} ⊆⋃
{µ|µ(X) �=0}

{(σ(X1), . . . , σ(Xm))

∈ Fm | σ ∈ Σ ∧ σ(Winit) = σ(Winit) ∧ µ = µ0σ},
where Σ denotes the set of C-morphisms σ : Γ∗ → C∗.22

Proof. Follows from Proposition 3.19.23

Corollary 3.21. If the NFA A is nonempty, then there is some solution σ which24

maps all variables Xi to reduced words in A∗
± and which satisfies σ(Winit) =25

σ(Winit).26

If the NFA A contains a directed cycle, then there are infinitely many such σ.27

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

24 L. Ciobanu, V. Diekert & M. Elder

Proof. The first part follows from Proposition 3.19.1

Now assume that A contains a directed cycle. Then for every t0 ∈ N we can2

choose a path V0
h1→ · · · ht→ Vt from an initial state V0 to some final state Vt with3

t > t0. For each 0 ≤ s ≤ t define αs = idA∗h1 · · ·hs. Thus, α0 = idA∗ . We view4

αs ∈ End(C∗), and let (αs, σs) be the corresponding solution at Vs, which exists5

due to (3.8).6

For every transition Vi−1
hi→ Vi which is defined either by a compression, or7

by a substitution of type (i), we have ‖Vi−1‖ > ‖Vi‖. Since ‖V ‖ ∈ O(n4) for all8

states, there is a constant κ′ such that every path of length κ′n4 must include a9

substitution of type (ii) or (iii). Thus, we may assume that for a large enough t10

there are more than t0 transitions where Vi−1
hi→ Vi is defined by a substitution of11

type (ii) or (iii), i.e. with τ(X) ∈ Γ∗CΓ∗.12

By the definition of A we have αs(c) �= 1 for all c ∈ C whenever s < t. (The13

final transition is an exception.) By Lemmas 3.9 and Lemma 3.10, we have14

‖α0, σ0‖ ≥ t0.

since for each compression transition the weight is unchanged, and for each substi-15

tution the weight decreases, and in particular, it decreases strictly at least t0 times.16

The result follows since α0 = idA∗ . Hence, there infinitely many solutions σ0.17

3.10. Completeness18

Now we show that every solution of the equation Winit can be obtained from A.19

Let us fix some state V = (W, B,X , ∅, µ) and assume that V has a solu-20

tion (α, σ). We will show that if V is “small enough”, then A contains a path21

V
h1→ V1 · · · ht→ Vt to some final state Vt = (W ′, B′, ∅, ∅, µ′) such that σ(W) =22

h1 · · · ht(W ′). Let us make precise what “small” means.23

Definition 3.22. A state V = (W, B,X , ∅, µ) is called small if24

|W | ≤ 96n + 6 |Winit| .
Clearly every initial state is small. Final states need not be small.25

3.10.1. Forward property of transitions26

The existence of a path V
h1→ V1 · · · ht→ Vt to some final state Vt = (W ′, B′, ∅, ∅, µ′)27

such that σ(W) = h1 · · ·ht(W ′) relies on the following technical concept.28

Definition 3.23. Let V = (W, B,X , θ, µ) h→ (W ′, B′,X ′, θ′, µ′) = V ′ be a tran-29

sition in A and (α, σ) be a solution at V . We say that the triple (V h→ V ′, α, σ)30

satisfies the forward property if there exists a solution (αh, σ′) at V ′ such that31

ασ(W) = αhσ′(W ′).

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 25

By a slight abuse of language: if V
h→ V ′ is a transition in A and the solution1

(α, σ) at the source V is clear from the context, then we say also that the transition2

V
h→ V ′ satisfies the forward property. In particular, if we follow a path from3

V having a solution (α, σ) to some state V ′ = (W ′, B′, ∅, θ′, µ′) by transitions4

satisfying the forward property, then V ′ has some solution. But as V ′ uses no5

variables, we obtain W ′ = W ′.6

Lemma 3.24. Let V = (W, B,X , θ, µ) ε→ (τ(W), B,X ′, θ′, µ′) = V ′ be a substitu-7

tion transition (according to Sec. 3.7.1) and θ(Y) = θ′(Y) for all Y ∈ X ∩ X ′. In8

each of the following cases (V ε→ V ′, α, σ) satisfies the forward property:9

(1) σ(X) = 1 and the transition V
ε→ V ′ removes X by τ(X) = 1;10

(2) θ = ∅, σ(X) = av, µ′(X) = µ(v), and the transition V
ε→ V ′ is defined by11

τ(X) = aX ;12

(3) θ(X) = ∅, σ(X) = cuv, u ∈ c∗, µ′(X ′) = µ(u), µ′(X) = µ(v), and the transition13

V
ε→ V ′ is defined by τ(X) = cX ′X with θ′(X ′) = c;14

(4) θ(X) = c, σ(X) = cu, µ′(X) = µ(u), and the transition V
ε→ V ′ substitutes X15

by τ(X) = cX.16

Proof. Let V
ε→ V ′ be defined by τ : M(B,X , θ, µ)→M(B,X ′, θ′, µ′). It is enough17

to show that V ′ has a B-solution with σ = σ′τ .18

(1) Let σ′ be the restriction of σ to X ′ = X\{X, X
}
. Then we have σ = σ′τ .19

(2) Recall that by definition of a substitution transitions, we have θ′ = ∅, too.20

Define σ′ by σ′(X) = v and σ′(Y) = σ(Y) for Y �= X, X. Since µ′(X) = µ(v),21

we obtain σ′ as a morphism; and we have σ = σ′τ .22

(3) Define σ′(X ′) = u, σ′(X) = v and σ′(Y) = σ(Y) for Y �= X ′, X ′, X, X. Then23

we have σ = σ′τ .24

(4) Define σ′(X) = u and σ′(Y) = σ(Y) for Y �= X, X. Since θ(X) = c and σ is a25

solution, we have u ∈ c∗ and as τ is a morphism we have θ′(X) = c, too. Then26

we have σ = σ′τ .27

In all cases it is clear that σ′ is a B-solution.28

Lemma 3.25. Let B′ ⊆ B and V = (h(W ′), B,X , θ, µ) h→ (W ′, B′,X , θ′, µ′) = V ′29

be a compression transition (according to Sec. 3.8). If σ : X → M(B, ∅, θ, µ) factors30

through morphisms as31

σ : X σ′
→ M(B′, ∅, θ′, µ′) h→ M(B, ∅, θ, µ)

such that σ′(X) ∈ c∗ whenever θ′(X) = c, then (αh, σ′) is a solution at V ′ and32

(V h→ V ′, α, σ) satisfies the forward property.33

Proof. We have σh = hσ′ and hence, ασ(W) = αhσ′(W ′).34

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

26 L. Ciobanu, V. Diekert & M. Elder

Frequently, we cannot apply Lemma 3.25 because σ cannot be written as hσ′.1

The typical example is that B′ � B, but some σ(X) uses a letter from B\B′, and2

h(a) = a for all a ∈ B′. This type of “alphabet reduction”, switching from a larger3

alphabet B to some proper subset B′, is needed only if the type relations θ, θ′ are4

empty. Therefore the following lemma applies in this situation.5

Lemma 3.26. Let B′ � B and V = (W, B,X , ∅, µ) ε→ (W ′, B′,X , ∅, µ′) = V ′ be a6

compression transition which is induced by the identity idC∗. Thus, ε becomes the7

canonical inclusion of M(B′, ∅, ∅, µ′) into M(B, ∅, ∅, µ). In particular, W = W ′ and8

µ′ is the restriction of µ.9

Let (α, σ) be a solution at V . Define a B′-morphism β : M(B, ∅, ∅, µ) → M(B′,10

∅, ∅, µ′) by β(b) = α(b) for b ∈ B\B′ and β(b) = b for b ∈ B′. Let σ′(X) = βσ(X).11

Then (αε, σ′) is a solution at V ′ with ασ(W) = αεσ′(W ′). In particular, (V ε→12

V ′, α, σ) satisfies the forward property.13

Proof. Since α : M(B, ∅, ∅, µ) → M(A, ∅, ∅, µ0) is an A-morphism with µ(a) =14

µ0(a) for all a ∈ A, we have µβ(b) = µα(b) = µ0α(b) = µ(b) for all b ∈ B\B′ and15

β is indeed a B′-morphism from M(B, ∅, ∅, µ) to M(B′, ∅, ∅, µ′).16

Note that M(B′,X , ∅, µ′) is a submonoid of M(B,X , ∅, µ) and ε realizes the17

inclusion of these free monoids. Hence W = ε(W ′) = W ′ as words. In particular,18

σ(W) = σ(W) implies σ′(W ′) = σ′(W
′
). Thus, (αε, σ′) solves V ′.19

Finally, by definition of β we have α = αβ because α is an A-morphism. Hence20

α = αεβ and we obtain21

αεσ′(W ′) = αεσ′(W) = αεβσ(W) = ασ(W).

Definition 3.27. Let σ : Γ → C∗ be any C-morphism and W ∈ Γ∗. The word W22

is realized as a sequence of positions, say 1, 2, . . . , |W |, and each position is labeled23

by a letter from Γ. If W = u0x1u1 · · ·xmum, with ui ∈ C∗ and xi ∈ Ω, then we24

have σ(W) = u0σ(x1)u1 · · ·σ(xm)um. The positions in σ(W) corresponding to the25

positions of the ui’s are henceforth called visible.26

Given w = σ(W), each visible position in w can be uniquely identified with a27

position in W , both positions having the same label in C. Following a path satisfy-28

ing the forward property makes the length of the equation oscillate. In particular,29

throughout the compression method below the algorithm progresses from small state30

to small state, but in between the states are not necessarily small.31

Proposition 3.28 shows that every solution can be found by tracing a path in A.32

Proposition 3.28. Let V = (W, B,X , ∅, µ) be small and let (α, σ) be a solution at33

V . Then A contains a path V
h1→ V1 · · · ht→ Vt to some final state Vt of transitions34

satisfying the forward property.35

In particular, if V is an initial state, then we have σ(Xi) = h1 · · ·ht(ci) for all36

1 ≤ i ≤ m, where c1, . . . , cm are the distinguished letters.37

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 27

3.10.2. Reduction of Proposition 3.28 to Lemma 3.291

As a base case we let X = ∅: thus, V = (W, B, ∅, ∅, µ). If V is final, then there is2

nothing to do. Otherwise, by definition of an extended equation, we have W ∈#B∗#3

and |W |# = |Winit|#. Since X = ∅, we have (α, σ) = (α, idB∗) and we can write4

W = #u1# · · · #um#um+1#um+2#um+2#um+1#um# · · · #u1#.

Define B1 = A ∪ {c1, c1, . . . , cm+2, cm+2} as a disjoint union where c1, . . . , cm5

are the distinguished letters. Define V1 = (W1, B1, ∅, ∅, µ1) with6

W1 = #c1# · · · #cm#cm+1#cm+2#cm+2#cm+1#cm# · · · #c1#.

Defining µ1(ci) = µ(ui) and h1(ci) = ui yields the desired result. Clearly,7

(αh1, idB∗
1
) is a solution at the final state V1 and the compression transition V

h→ V18

satisfies the forward property. (Note that we could have some ui = 1, so this is where9

the case distinction discussed in Remark 3.13 is needed.)10

The proof of Proposition 3.28 is by induction on the weight ‖α, σ, V ‖. It cov-11

ers the rest of this section. Throughout the proof, all transitions satisfy the for-12

ward property by Lemmas 3.24–Lemma 3.26; therefore, if we know that Vi =13

(Wi, Bi,Xi, θi, µi) has a Bi-solution σi for all 1 ≤ i ≤ s, where s is some posi-14

tive integer, then we obtain σ(W) = h1 · · ·hsσs(Ws) by Definition 3.23.15

Preprocessing. By the base case we may henceforth assume that X �= ∅. If we16

have σ(X) = 1 for some variable, then we follow a substitution transition removing17

the variable; and we are done by induction on the weight.18

Thus, without restriction, we can assume σ(X) �= 1 for all variables. For each19

X ∈ X , if σ(X) ∈ aB∗ we follow a substitution transition defined by τ(X) = aX .20

This has the effect of popping out constants at the start and end of each variable,21

since each X comes with its involution X. Since W has at most 4n variables present,22

the length of W increases by at most 8n and the weight ‖ασ‖ decreases. In case23

that this substitution leads to a situation where a solution maps X to the empty24

word, we remove X and X. After that we are done by induction on the weight25

(since ‖ασ‖ is the dominant term in the lexicographic ordering), unless we end26

with |τ(W)| > 96n + 6 |Winit|, that is, the new state is not small. In that case27

we will have 96n + 6 |Winit| < |τ(W)| ≤ 104n + 6 |Winit|. Thus, in proving a more28

general statement, we will not assume that V is small, but that29

96n + 6 |Winit| < |W | ≤ 104n + 6 |Winit| .
So far, we did not discuss the size of B. Assume that we are in the situation30

of Lemma 3.26: there is B′ with A ⊆ B′ � B such that W ∈ (B′ ∪ X)∗, then31

we can use Lemma 3.26; and we are done by induction on the weight. Thus, after32

preprocessing we may assume that all letters in B\A appear in W , that is, |W |b ≥ 133

for all b ∈ B\A.34

During the preprocessing we decreased the weight, but at the end of this phase35

V may no longer be small. Therefore, the proof of Proposition 3.28 reduces to36

showing the following lemma.37

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

28 L. Ciobanu, V. Diekert & M. Elder

Lemma 3.29. Let V = (W, B,X , ∅, µ) be a state with a solution (α, σ) such that1

X �= ∅ and |W | ≤ 104n + 6 |Winit|. Then A contains a path of transitions satisfying2

the forward property to some small state V ′ = (W ′, B′,X ′, ∅, µ′) with a solution3

(α′, σ′) such that ‖α, σ, V ‖ ≥ ‖α′, σ′, V ′‖.4

3.10.3. Proof of Lemma 3.295

The assertion of the lemma is trivial if V is small, that is, if |W | ≤ 96n + 6 |Winit|.6

Hence, we may assume 96n + 6 |Winit| < |W | ≤ 104n + 6 |Winit|. Let V = (W, B,7

X , ∅, µ) be a state with a fixed solution (α, σ) satisfying the hypothesis of8

Lemma 3.29. We describe a way to find a path through A in terms of a proce-9

dure which “knows” the solution (α, σ).10

Block compression11

We employ block compression only if W contains a factor b2, where b ∈ B and12

b �= #. Otherwise we move straight to the next procedure, called pair compression.13

During the procedure we will increase the length of W by O(n), but at the end we14

will arrive at an equation where |W ′| ≤ |W |; and importantly, W ′ will not contain15

any proper factor b2 with b ∈ B and b �= #. We give an demonstration of this16

procedure in Sec. 5.17

Remark 3.30. While this procedure is technical, the idea is quite simple. The18

goal is to eliminate long blocks b� that are visible in the equation. To do so we use19

transitions which replace bb by b, just two letters at a time. Before we can apply20

such a compression, we must ensure the length of any maximal block b� with at21

least part of the block visible must be even. So first we follow various substitution22

and compression transitions to arrange this.23

(1) Recording the constants with large exponents. Due to the previous sub-24

stitutions X �→ bX in the preprocessing step, we have that for each X if25

bX ≤ W and b′X ≤ W are factors with b, b′ ∈ B, then # �= b = b′. For26

each b ∈ B\ {#} define two sets:27

Λb =
{
λ ≥ 2 |∃ dbλe ≤ σ(W) : d �= b �= e and some b in dbλe is visible

}
,

Xb = {X ∈ X |bX ≤ W ∧ σ(X) ∈ bB∗} .

Note that28 ∑
b

|Λb| + |Xb| ≤ |W | . (3.9)

By Definition 3.3 we have Λb = Λb. Another fact is crucial: it might be that there29

are X ∈ X\Xb with σ(X) ∈ bB∗, but then to the left of every occurrence of X30

there is (the same) letter b′ ∈ B\{#, b, b
}
. In this case the block compression31

procedure does not touch the variable X (although it may change σ(X)). If,32

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 29

on the other hand, X ∈ Xb, then a factor bb crosses the left border for every1

occurrence of X . The first b in such a factor is visible in W , the second one2

is not.3

(2) Introducing the type and renaming of some constants. For each b∈B4

with Λb �= ∅ we introduce a fresh letter cb ∈ C\B with µ(cb) = µ(b). In addition,5

for each λ ∈ Λb introduce a fresh letter cλ,b with µ(cλ,b) = µ(b). The fresh6

letters are chosen such that cb = c b and cλ,b = cλ,b. Note that cλ,b and cb are7

just names for formal symbols realized by fresh letters in the fixed extended8

alphabet C.9

We let B′ = B∪⋃ {cb, cb, cλ,b, cλ,b |λ ∈ Λb ∧ b ∈ B} and we introduce a type10

by θ(cλ,b) = cb for all λ ∈ Λb. This yields a free partially commutative monoid11

M(B′,X , θ, µ). We define an X -morphism12

h : M(B′,X , θ, µ) → M(B,X , ∅, µ)

by h(cλ,b) = h(cb) = b. Next, we modify W : in every factor dbλe of σ(W) with13

d �= b �= e and λ ∈ Λb we replace that factor by dcλ
b e. This defines a new14

word W ′ such that h(W ′) = W . Note that so far, no cλ,b does appear in W ′.15

Let V ′ = (W ′, B′,X , θ, µ). Then V ′ is a state and we can follow the transition16

V
h→ V ′. We have ‖V ′‖ < ‖V ‖ since θ �= ∅ and this term appears before the17

number of constants in the weight of a state. (It might be that all b are gone,18

so we cannot make sure that the second component in the weight decreased.)19

Note that for each λ ∈ Λ at least one position labeled by cb is visible in W .20

We rename V ′ = (W ′, B′,X , θ, µ) as V = (W, B,X , θ, µ) and rename the21

solution as (α, σ).22

(3) Splitting the variables starting with special constants. We skip this23

step if Xb = ∅ for all b. Otherwise, for each b ∈ B and X ∈ Xb we write24

σ(X) = c�
bw for some � ≥ 1 with w /∈ {b, cb}B∗. We split the variable X by25

defining τ(X) = cbX
′X where X ′ = X ′

b,X ∈ Ω\X is a fresh variable, which is26

assigned a type θ′(X ′) = cb. Moreover, we let µ′(X ′) = µ(cb)�−1, µ′(X) = µ(w),27

σ′(X ′) = c�−1
b , and σ′(X) = w. The new set of variables is a disjoint union28

X ′ = X ∪ {X ′
b,X , X ′

b,X | b ∈ B ∧ X ∈ Xb}.
We obtain a new state V ′ = (τ(W), B,X ′, θ′, µ′) and a morphism29

τ : M(B,X , θ, µ) → M(B,X ′, θ′, µ′).

The morphism τ defines a substitution transition V
ε→ V ′ which pops a letter.30

The new solution at V ′ is (α, σ′).31

We rename V ′ = (τ(W), B,X ′, θ′, µ′) as V = (W, B,X , θ, µ) and rename32

the solution as (α, σ). The next step introduces the letters cλ,b into W and33

σ(W).34

(4) Identifying a position in each block dcλ
b e. We represent W ∈ M(B,X , θ, µ)35

by any word in (B∪X)∗. For each letter cb, we scan the word σ(W) from left to36

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

30 L. Ciobanu, V. Diekert & M. Elder

right and stop at each occurrence of a factor dcλ
b e where λ ∈ Λb and d �= cb �= e.1

At the stop we do the following.2

• If at least one of the cb’s in this block is visible in W , then choose the left-3

most corresponding visible position in W , and replace the label cb at this4

visible position by cλ,b. In σ(W), replace dcλ
b e by dcλ,bc

λ−1
b e. If no position5

of the cb’s in this block is visible in W , then we make no change.6

Thus, from left to right, we transform the word W into an element W ′ ∈7

M(B,X ′, θ, µ) and simultaneously σ(W) into an element σ′(W ′) ∈ M(B). We8

obtain a new state V ′ = (W ′, B,X , θ, µ) and we can follow the arc V
h→ V ′9

where h is the X -morphism defined by a renaming h(cλ,b) = cb. Note that10

‖V ‖ > ‖V ′‖ since for each cλ,b a factor cλ,bcb appears in W ′, so there are more11

letters visible in W ′ than in W , which decreases the second component in the12

weight of an extended equation. At V ′ we obtain a new solution (α, σ′); and as13

usual, we rename V ′ = (τ(W), B,X ′, θ′, µ′) as V = (W, B,X , θ, µ) and rename14

the solution as (α, σ).15

Due to partial commutation we have the following: if a factor f ∈16

d {cb, cλ,b}�
e occurs in σ(W) with d, e /∈ {cb, cλ,b}, then we have � = λ ∈ Λb,17

and f = dcλ,bc
λ−1
b e ∈ M(B, ∅, θ, µ). Moreover, if θ(X) = cb, then X commutes18

with the letter cb, but X does not commute with any cλ,b.19

(5) The block compression. As long as there exists a letter cb which occurs in20

σ(W), perform the following loop, which also finishes the block compression.21

During the following loop we maintain the invariant: if dcλ,bc
�
be and d′cλ,bc

�′
b e′22

are factors of σ(W) with d �= cb �= e and d′ �= cb �= e′, then � = �′ and σ(W)23

contains a factor d cλ,b cb
� e as well. During the loop we perform various times24

a renaming in order to keep the notation V and (α, σ) at the current states.25

Initially we define a list26

ΛB = {b ∈ B |Λb �= ∅} .

while ΛB �= ∅ do27

(a) For some b ∈ ΛB remove b and b from ΛB;28

(b) Let c = cb and for all λ ∈ Λb abbreviate cλ,b as cλ.29

(c) while |σ(W)|c ≥ 1 do30

(i) For all X with θ(X) = c where |σ(X)| is odd, follow a substitution31

transition of type X �→ cX . Hence, we may assume that |σ(X)| is even32

for all X with θ(X) = c.33

(ii) Remove all X from X where σ(X) = 1. Observe, if there remains a34

variable X with θ(X) = c, then σ(W) contains a factor c2.35

(iii) For all cλ where σ(W) contains a factor dcλc�e where d �= c �= e and �36

is odd, follow a compression transition with h(cλ) = ccλ.37

In order to see that this is possible observe that for every occurrence38

of such a factor dcλc�e there are only two possibilities. Either none of39

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 31

the positions of cλc� are visible in W , or the position of cλ is visible1

in W . Moreover, c commutes with cλ and with all X where θ(X) = c;2

and |σ(X)| is even for those X . Thus, wherever cλ is visible in W , the3

factor ccλ is visible in W ∈ M(B,X , θ, µ).4

Still, we need to be more precise in order to guarantee a weight reduc-5

tion. The X -morphism defined by h(cλ) = ccλ leads to new element6

W ′ ∈ M(B,X , θ, µ) and a new solution (αh, σ′). In case that no let-7

ter c occurs in σ′(W ′) anymore, the letter c and the type becomes8

useless. Thus, if |σ′(W ′)|c = 0, then we actually follow a compression9

transition10

V
h→ (W ′, B′,X , θ′, µ)

where B′ = B\{c, c} and hence |θ′| < |θ|. Nevertheless ‖V ‖ > ‖V ′‖11

since |W ′| < |W | due to compression.12

(iv) If there exists a variable X with θ(X) = c, then we know σ(X) = c2c�13

where � is even. We follow a substitution arc defined by X �→ c2X in14

order to guarantee that a factor c2 becomes visible in W .15

(v) Due to the previous steps: either we have c /∈ B or W contains a visible16

factor c2. In the first case, we skip this step. Thus, we assume that17

W contains a visible factor c2. Now, if σ(W) contains a factor dcλc�e18

where d �= c �= e, then � is even; and if θ(X) = c, then σ(X) = cj and19

j is even, too. Thus we can follow a compression transition defined20

by h(c) = c2. This leads to a new equation W ′ with h(W ′) = W21

and new solution σ′(W ′) and the number of occurrences of c and c is22

halved. Note that ‖V ‖ > ‖V ′‖ since W contains a factor c2. Hence,23

|W | > |W ′|. Rename the parameters to V, W, B,X , θ, µ, α, σ.24

endwhile25

(d) Rename all cλ by cλ,b.26

endwhile27

Space requirements for the block compression28

Let us show that the block compression can be realized inside A.29

Lemma 3.31. Let V = (W, B,X , ∅, µ) be the state after preprocessing, when we30

enter “block compression ”, and let V ′ = (W ′, B′,X ′, ∅, µ′) be the state at the end31

of block compression. Then V ′, as well as all intermediate states between V and V ′,32

are in A. Moreover, |W ′| ≤ 104n + 6 |Winit|.33

Proof. At the end of block compression we have X ′ ⊆ X , and each visible position34

of the new letter cλ,b occupies a position where some letter b was visible in W .35

Thus, |W ′| ≤ |W | ≤ 104n + 6 |Winit|.36

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

32 L. Ciobanu, V. Diekert & M. Elder

To show that the procedure stays inside A we calculate the maximum length1

of an intermediate equation during the process. We start block compression with2

|W | ≤ 104n + 6 |Winit|, and |X | ≤ 4n. In step (3) we add at most 8n new variables3

X ′ and at most 8n constants (we may substitute a variable X by aX ′XX ′′b in4

the case that σ(X) = a�wb�′). So the length of the intermediate equation at this5

step is at most 104n + 6 |Winit| + 16n = 120n + |Winit|. The only other step of6

block compression that adds length to the equation during the inner while-loop in7

step (5).8

We start this loop with |W | ≤ 120n+|Winit| and with at most 8n typed variables9

(the variables that were added in step (3)). We perform the loop at step (5c) with10

one letter c ∈ ΛB fixed.11

In step (i) we pop at most one c letter for each typed variable, and in step (ii)12

we pop c2 for each typed variable, so we add at most 3 · 8n = 24n c’s, and then in13

step (v) we halve the number of c’s, so overall we add at most 12n c′s. We repeat14

this loop until all c’s are eliminated. In each iteration we add at most 24n new c15

letters, but then divide the total number of c letters by 2. If we just consider the16

number of new c letters added from the start of the while loop, we see that after17

each iteration the number of new c letters remaining is at most:18

Iteration Number before Number added Number before Number after
step (i) step (v) step (v)

1 0 24n 24n 12n

2 12n 24n 36n 18n

3 18n 24n 42n 21n

4 21n 24n 45n 23n

5 23n 24n 48n 24n

19

Thus the total length of W is never more than20

120n + 6 |Winit| + 48n = 168n + 6 |Winit| . (3.10)

Since this call of the inner while-loop eliminates all occurrences of the letter c, at the21

end of each call the length of W returns to being bounded above by 120n+6 |Winit|,22

when we repeat the while-loop at step (5c) for another constant in ΛB, until ΛB = ∅.23

Thus all states are in A.24

For the final state V ′ = (W ′, B′,X ′, ∅, µ′) the type relation is empty. If V ′ is25

small, that is, |W ′| ≤ 96n + 6 |Winit|, then Lemma 3.29 is shown. Thus, without26

restriction we again have27

96n + 6 |Winit| < |W ′| ≤ 104n + 6 |Winit| .

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 33

Pair compression1

After block compression we run pair compression, following essentially the for-2

mulation of Jeż’s original procedure [12]. We start a pair compression at a state3

Vp = (W, B,X , ∅, µ) where we have:4

• |W |b ≥ 1 for all b ∈ B\A.5

• 96n + 6 |Winit| < |W | ≤ 104n + 6 |Winit|.6

• W doesn’t contain any proper factor b2 with b ∈ B\#.7

• The current solution is denoted by (α, σ).8

The goal of the process is to end at a state Vq = (W ′′, B′,X ′′, ∅, µ′′) with |W ′′| ≤9

96n+6 |Winit| by some path satisfying the forward property and without increasing10

the weight. Moreover, there will be no types in this phase. Note that the constraints11

make sure that σ(X) does not contain any factor aa, but we cannot rule out that12

W contains such factors. However, the number of aa factors remains bounded by13

|Winit|, since they can only occur after preprocessing Winit.14

Consider all partitions B\ {#} = L ∪ R such that b ∈ L ⇔ b ∈ R. Note that15

there is no overlap between factors ab, cd ∈ LR unless ab = cd. Moreover16

ab ∈ LR ⇔ ba ∈ LR.

For each choice of (L, R) we count the number positions in W where some factor17

ab ∈ LR with a �= b begins. We intend to compress all these factors into single18

letters.19

Remark 3.32. We choose and fix one of the partitions (L, R) such that the number20

of factors ab ∈ LR in σ(W) such that a �= b and at least one of a or b visible is21

maximal.22

We say that ab ∈ LR is crossing if W contains either a factor aX with σ(X) ∈23

bB∗ or a factor bX with σ(X) ∈ aB∗ (or both). In the first phase we run the24

following procedure.25

Uncrossing. Create a list L = {X ∈ X |∃ b ∈ R : σ(X) ∈ bB∗}.26

For each X ∈ L:27

• choose b ∈ R such that σ(X) ∈ bB∗ and follow a substitution transition X �→ bX .28

This concludes the “uncrossing”; and, as done previously we rename the parameters29

to V, W, B,X , µ, α, σ.30

Above, when we follow X �→ bX with b ∈ R, then automatically X is replaced31

with X b, and b ∈ L. We also have
{
X, X

} ⊆ L if and only if σ(X) ∈ bB∗a for some32

ab ∈ LR. In that case we actually substituted X by bXa and X by aX b. Recall33

that we have at most 4n variables in W . Thus, at this stage we have:34

|W | ≤ 104n + 6 |Winit| + 8n = 112n + |Winit| . (3.11)

The second phase begins with creating a list P = {ab ∈ LR |a �= b}. After that35

we run the following while-loop.36

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

34 L. Ciobanu, V. Diekert & M. Elder

while P �= ∅ do1

(1) Define2

B′ = A ∪ {a ∈ B | |W |a ≥ 1 ∨ ∃X ∈ X : σ(X) ∈ aB∗} .

If B′ �= B, then follow a substitution transition V
ε→ (W, B′,X , ∅, µ) where the3

label ε = idC∗ yields the inclusion of M(B′, ∅, ∅, µ) into M(B, ∅, ∅, µ). Rename4

the parameters to V, W, B,X , µ, α, σ.5

(2) Select and remove some pair ab in P . If ab does not occur as a factor in W ,6

then do nothing, else perform the next steps.7

(3) Choose a fresh letter c = cab ∈ C\B with µ(c) = µ(ab) and let B′′ = B∪{c, c}.8

Define an X -morphism9

h : M(B′′,X , ∅, µ′) → M(B,X , ∅, µ)

by h(c) = ab.10

(4) Replace in W all factors ab by c and all factors ba by c. Let W ′ ∈ (B′∪X)∗ be the11

new word and V ′ = (W ′, B′′,X , ∅, µ′) be the new state. We have W = h(W ′);12

and hence there is a compression transition13

V
h→ V ′.

(5) Follow the compression transition V
h→ V ′; and rename the parameters to14

V, W, B,X , µ, α, σ.15

endwhile16

Lemma 3.33. During the while-loop for pair compression the following properties17

hold.18

(1) After the first step, where the new alphabet B′ is created (and then renamed as19

B) we have |B| ≤ |W | + 2.20

(2) No factor ab ∈ LR ever becomes crossing.21

(3) At each step where we move from state V to V ′ we have ‖V ‖ > ‖V ′‖.22

(4) Each transition satisfies the forward property.23

Proof. (1) In the first step inside the loop, when the new alphabet B′ is created,24

we have |B′| ≤ |W |. Therefore, after the first renaming, we have |B| ≤ |W |. When25

we define B′′, we add two new letters. Hence, we obtain |B′′| ≤ |W | + 2, which26

yields, after renaming, |B| ≤ |W | + 2. This property persists during subsequent27

loops.28

(2) We have to show that no factor ab ∈ LR ever becomes crossing. To see this,29

consider the alphabet reduction by following the transition V
ε→ (W, B′,X , ∅, µ)30

with B′ �= B. It involves replacing every letter a ∈ B\B′ by α(a) according to31

Lemma 3.26. The potential problem is that we might have a ∈ L, but α(a) starts32

with a letter in R, so we might create new LR factors. However as B′ contains all33

letters a where σ(X) ∈ aB∗ for some X , we never introduce any new crossing pairs.34

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 35

(3) The assertion ‖V ‖ > ‖V ′‖ is trivial.1

(4) The transition V
ε→ (W, B′,X , ∅, µ) with B′ �= B satisfies the forward prop-2

erty by Lemma 3.26. In order to see that V
h→ V ′ satisfies the forward property3

when we have h(c) = ab we proceed as follows. As done for W , also replace in4

σ(W) all factors ab by c and all factors ba by c. Since ab is not crossing, we find a5

B′-morphism6

σ′ : M(B′,X , ∅, µ′)∗ → M(B′, ∅, ∅, µ′)

such that σ(X) = hσ′(X) for all variables X . Thus, we obtain (αh, σ′) as a solution7

at V ′8

Lemma 3.34. Let Vp = (W, B,X , ∅, µ) be a state in A with a solution (α, σ) where9

96n + 6 |Winit| < |W | ≤ 104n + 6 |Winit| such that W does not contain any factor10

d2 for # �= d ∈ B. Let (L, R) be the partition with B\ {#} = L ∪ R according11

to the choice made in Remark 3.32. Then pair compression on Vp leads to a state12

Vq = (W ′′, B′,X , ∅, µ′′) with |W ′′| ≤ 96n + 6 |Winit| , that is, the state Vq is small.13

Moreover, the intermediate steps of the pair compression algorithm are performed14

within A.15

Proof. Recall that the NFA A is trim. Hence, there is a path16

V0
h1→ · · ·Vp−1

hp→ Vp

from an initial state with the appropriate µ to Vp. Let Vi = (Wi, Bi,Xi, θi, µi).17

We perform the following marking process. The idea is that we wish to mark all18

constants in the Wi which could possibly give rise to a factor aa in W . These factors19

can arise in exactly two ways: the initial equation may be unreduced to start with,20

or from a substitution (for example, we may have aX or Y Z factors of the initial21

equation and we pop X → aX or Y → Y a, Z → aZ).22

(1) In W0 = Winit we mark all letters (both constants and variables).23

(2) If Vi−1
ε→ Vi is a substitution transition, Wi = τ(Wi−1) and the positions with24

constants in Wi−1 are mapped to positions with constants in Wi. We mark25

constants in Wi that come from marked constants in Wi−1, and if τ(X) ∈ aΓ∗26

and X is marked in Wi−1, we mark the newly added a on the left of the variable27

X in Wi, and leave X unmarked. If τ(Y) = Y and Y is marked in Wi−1, we28

leave Y marked in Wi. Note that in this way each marked variable gives rise to29

exactly one marked letter.30

(3) If Vi−1
h→ Vi is a compression transition, then we have h(Wi) = Wi−1. Mark a31

constant c in Wi if it is mapped by h to an occurrence of a factor containing a32

marked position in Wi−1.33

Note that since the pair compression procedure is always preceded by the prepro-34

cessing step above, we can assume that every variable X in Winit has been replaced35

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

36 L. Ciobanu, V. Diekert & M. Elder

by aX where a is marked, so in Vp the word W contains at most |Winit| marked1

constants and no marked variables.2

When we run the pair compression procedure on W we cannot compress pairs3

aa, or pairs containing variables. If we now mark all variables present in W , then4

we are allowed to compress any pairs of letters in W that are unmarked. After5

marking the variables we have at most 2 |Winit| marked letters in W .6

Let us factor the word W ∈ (B ∪X)∗ as W = x0u1x1 · · ·u�x�, where � is chosen7

to be maximal that for all 1 ≤ i ≤ � we have:8

(1) xi ∈ (B ∪ X)∗.9

(2) ui ∈ (B\{#})∗ and ui does not contain any marked position.10

(3) The length of each ui is exactly 3.11

The factorization enjoys the following properties.12

• Since all #’s are marked, we have x0 �= 1 �= x�. Some other xi can be empty.13

• Since we require |ui| = 3 it may be that xi contains for each marked position14

also two unmarked position. The exception is the first position in x0. Hence, we15

obtain16 ∑
0≤i≤�

|xi| ≤ 3(2 |Winit|) − 2 ≤ 6 |Winit| .

• Since |W | − 6 |Winit| > 96n, the previous line yields17

� > 32n.

Consider the word W ′ which was obtained via the substitution transitions, but18

before the compression of factors ab ∈ LR into single letters. The increase in length,19

which is |W ′| − |W |, comes from the substitution transitions X �→ bX, X �→ X b20

with X ∈ L, so the length goes up by at most 8n. Note that the ui factors do not21

change, only the xi factors do. Hence W ′ has the factorization W ′ = y0u1y1 · · ·u�y�22

with yi ∈ (B ∪ X)∗ and23

|y0 · · · y�| ≤ |x0 · · ·x�| + 8n. (3.12)

Finally, let W ′′ be the word obtained after pair compression has been performed.24

The word W ′′ is the compression of some word y0v1y1 · · · vmym where each vi is25

the result of the compression restricted to ui.26

Each ui can be written as ui = abc with a, b, c ∈ B. Since W did not contain27

any proper factor d2 with d ∈ B by hypotheses (and as we have performed block28

compression first), we know a �= b �= c. Moreover, we cannot have a = b or c = b29

because in every occurrence of bb in W at least one position is marked.30

Assume for a moment that membership to L or R was defined uniformly at ran-31

dom. That is for each # �= a ∈ B the probability for aa ∈ LR is 1
2 and independent32

of the other events “bb ∈ LR” for a �= b.33

There are two possibilities: either b ∈ L or b ∈ R. In the first case, either34

c ∈ R or c ∈ L, and in the second case either a ∈ L or a ∈ R. Each event35

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 37

bc ∈ LR, bc ∈ LL, ab ∈ LR, ab ∈ RR has probability 1
4 , so with probability 1

21

one pair in the factor ui is compressed: thus the expected length of a factor vi is2

E [|vi|] = 3
2 + 2

2 = 5
2 . By linearity of expectation, we obtain3

E [|v1 · · · v�|] =
5
2
�. (3.13)

Thus if the partition (L, R) were chosen at random, we expect the length of the4

word u1 · · ·u� to decrease from 3� to 5
2� or less, that is, we expect at least 1

6� factors5

ui are compressed (each vi has length either 2 or 3). But in Remark 3.32 we made6

the best choice of compressing a maximal number of pairs in W ′. This means at7

least 1
6� factors of W ′ are compressed. Hence, for the actual pair compression, we8

may estimate the length of W ′′ as follows.9

|W ′′| ≤ |x0 · · ·x�| + 8n +
5
2
� since

1
6
� factors are compressed

= |W | + 8n− �

2
since |W | = |x0 · · ·x�| + 3�

≤ |W | − 8n since � > 32n

≤ 96n + 6 |Winit| since |W | ≤ 104n + 6 |Winit|.
Since |W ′′| ≤ 96n + 6 |Winit|, the last state Vq = (W ′′, B′,X , ∅, µ′′) is small.10

11

A linear bound on the size of C is evident from the proofs above and an explicit12

bound is given next. Thus, we have shown Lemma 3.29.13

3.10.4. The size of the extended alphabet C: the choice of κ14

The longest equation W we needed to establish completeness occurs during block15

compression, where we found that |W | ≤ 168n + 6 |Winit| (3.10). Combining this16

with |Winit| ≤ 6n (3.2) we obtain17

|W | ≤ 168n + 36n = 204n. (3.14)

The largest alphabet we ever needed during block and pair compression was less18

than19

3 · (|A+| + |W |) ≤ 3 · (n + 204n) = 3 · 205n = 615n.

Thus, we can choose κ such that20

|C| = κ · n = 615n. (3.15)

3.10.5. Finishing the proof of Theorem 2.1 in the monoid case21

Lemma 3.29 implies Proposition 3.28 by the reduction in Sec. 3.10.2. This in22

turn proves (2.3) in Theorem 2.1 in the monoid case M(A) = A∗. Clearly,23

{(h(c1), . . . , h(cm)) ∈ C∗×· · ·×C∗ | h ∈ L(A)} is empty if and only if L(A) = ∅. It24

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

38 L. Ciobanu, V. Diekert & M. Elder

remains to show that A contains a directed cycle if and only if (U, V) has infinitely1

many solutions. If there is no cycle, then L(A) is finite and (U, V) can have only2

finitely many solutions. The converse has been shown in Corollary 3.21.3

4. Proof of Theorem 2.1 in the Group Case: M(A) = F(A+)4

The proof is a reduction to the monoid case. Recall that A = A± ∪ {#}, F is the5

subset of reduced words in A∗
±, and π : A∗ → F(A+) is the canonical projection.6

We start with an equation (U, V) in the free group F(A+), where U, V ∈ (A ∪7

X)∗, X =
{
X1, X1, . . . , Xm, Xm

}
, and solutions are A-morphisms σ : (A∪X)∗ → F8

such that πσ(U) = πσ(V). In a first phase we transform the equation (U, V) into9

a system of triangular equations, where triangular means 1 ≤ |UV | ≤ 3. We may10

assume UV �= 1. If |UV | ≤ 3, then the equation is already triangular. Hence, let11

us assume |UV | ≥ 4. Since we are in the group case we may also assume |V | = 1.12

Write U = x1 · · ·xp with xi ∈ A ∪ X and p ≥ 3. Next, we introduce a new variable13

X and replace x1 · · ·xp = V by the system14

x1 · · ·xp−1 = X ∧ Xxp = V.

We iterate until the system is triangular. The procedure introduces more variables,15

but it does not change the set of solutions. More formally, if {(Ui, Vi) |1 ≤ i ≤ t} is16

the system of triangular equations we obtained above, then17

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | πσ(U) = πσ(V)}
= {(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | ∀ 1 ≤ i ≤ t : πσ(Ui) = πσ(Vi)}.

The crucial step in our reduction is to switch from solutions over free groups to18

solutions over free monoids with involution. We do this using the following lemma,19

whose geometric interpretation is simply that the Cayley graph of a free group (over20

standard generators) is a tree.21

Lemma 4.1. Let x, y, z be reduced words in A∗±. Then xy = z holds in the group22

F(A+) (i.e. π(xy) = π(z)) if and only if there are reduced words P, Q, R in A∗
± such23

that x = PR, y = RQ, and z = PQ holds in the free monoid A∗
±.24

Proof. The direction from right to left is trivial, whether or not P, Q, R are25

reduced. For the other direction there are two cases. First, xy is a reduced word.26

Then we can choose P = x, R = 1, Q = y, and we are done. Second, we have27

x = x′a and y = ay′ for some letter a ∈ A±, so x′y′ = z′ holds in the group F(A+).28

By induction, there are reduced words P, Q, R′ with x′ = PR′, y′ = R′Q, z = PQ in29

A∗
±. We can define R = R′a, which is reduced due to the equation x = x′a = PR′a30

and the fact that x is reduced. The result is now immediate.31

The consequence of Lemma 4.1 is that with the help of fresh variables P, Q, R32

we can substitute every equation xy = z with x, y, z ∈ {1} ∪ A± ∪ Ω in F(A+) by33

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 39

Fig. 3. Paths corresponding to geodesic words for x, y, z with xy = z in the Cayley graph of
F(A+) with standard generators, as in Lemma 4.1. The geodesics to vertices x and z split after
an initial path labeled by P .

the following three word equations to be solved over a free monoid with involution:1

x = PR, y = RQ, z = PQ. (4.1)

More precisely, in the third phase of the transformation we replace each Ui = Vi,2

where Ui = xiyi and Vi = zi, by the three equations3

xi = PiRi, yi = RiQi, zi = PiQi. (4.2)

Thus, for s = 3t ≤ 3 |UV | we obtain a new system of triangular word equations4

{(U ′
i , V

′
i) |1 ≤ i ≤ s} such that5

{(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | πσ(U) = πσ(V)} (4.3)

= {(σ(X1), . . . , σ(Xm)) ∈ F× · · · × F | ∀ 1 ≤ i ≤ s : σ(U ′
i) = σ(V ′

i)}. (4.4)

Note that the morphism π is not present in (4.4), since (4.4) refers to a system of6

equations over a free monoid with involution.7

The final step is to encode the system {(U ′
i , V

′
i) |1 ≤ i ≤ s} into a single word8

equation (U ′′, V ′′) over the free monoid A∗, by defining9

U ′′ = U ′
1# · · ·#U ′

s,

V ′′ = V ′
1# · · ·#V ′

s .

Thus we have deterministically reduced the equation (U, V) to the equation10

(U ′′, V ′′), where11

|U ′′V ′′| ≤ 15 |UV |

since each U ′
iV

′
i has length at most 3 and we have inserted 2s − 2 copies of the12

letter #. This finishes the proof of Theorem 2.1 for the group case.13

Remark 4.2. Since the length of the word equation obtained from a free group14

equation of length n is at most 15n, an upper bound for the size of the alphabet C15

in the statement of Theorem 2.1 in the free group case is 615 · 15n = 9225n.16

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

40 L. Ciobanu, V. Diekert & M. Elder

5. Example of Preprocessing, Block and Pair1

Compression Procedures2

We conclude with a demonstration of the procedures described in Sec. 3.10 with a3

simple example. Suppose we have a single equation (U, V) in a free monoid with4

involution with5

U = XaY baXP and V = bY b3ZQ.

For simplicity we have chosen an equation with no involuted letters. Suppose also6

that we know a solution7

σ(X) = b5, σ(Y) = b4a, σ(Z) = bab, σ(P) = ab3a, σ(Q) = ab5ab3a.

We depict the situation as follows:8

X Y X P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
b b b b b a b b b b a b a b b b b b a b b b a︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

Y Z Q

.

For simplicity, we will ignore the rest of the word Winit, and focus just on the9

factor U#V .10

We first follow the preprocessing step as explained in Sec. 3.10.2. In this case11

we pop the first and last letter of each variable, to obtain:12

X Y X P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
b b b b b a b b b b a b a b b b b b a b b b a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y Z Q

.

Next we enter block compression. In step (1) we compute Λa = ∅, Λb = {4, 5}.13

Note that 3 �∈ Λb since the factor b3 is completely inside P and Q so is not visible.14

The block compression process will not touch this factor. We also compute Xa = ∅15

and Xb = {X, Y }. Note that P �∈ Xb since it is preceded by a in W .16

Step (2) introduces the fresh letters cb, c4,b, c5,b, and renames the letters b that17

are part of a visible block of length at least 2 as cb:18

X Y X P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
cb cb cb cb cb a cb cb cb cb a b a cb cb cb cb cb a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y Z Q

.

In step (3) we split the variables X → X ′X, Y → Y ′Y , then remove X, Y since19

σ(X) = 1 = σ(Y):20

X ′ Y ′ X ′ P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
cb cb cb cb cb a cb cb cb cb a b a cb cb cb cb cb a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

Note that Q does not belong to Xb, so it does not split even though σ(Q) starts21

with cb.22

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 41

Step (4) renames one of the cb in each block in both W and σ(W):1

X ′ Y ′ X ′ P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
c5,b cb cb cb cb a c4,b cb cb cb a b a c5,b cb cb cb cb a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

We now enter the loop in step (5). We write c = cb, cλ = cλ,b:2

X ′ Y ′ X ′ P︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷
c5 c c c c a c4 c c c a b a c5 c c c c a b3 a︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

Since θ(X ′) = θ(Y ′) = c we pop each to make the number of c letters in each3

σ(X) even:4

X ′ Y ′ X ′ P︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
c5 c c c c a c4 c c c a b a c5 c c c c a b3 a︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

Note that we have used the fact that X ′, Y ′ commute with c in the partially com-5

mutative monoid.6

We are now at part (d) of step (6). Since c4c
3 is a factor where the number of7

c letters is odd, we follow the compression transition h(c4) = c4c to obtain:8

X ′ Y ′ X ′ P︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
c5 c c c c a c4 c c a b a c5 c c c c a b3 a︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

We now have all blocks of c inside variables and in W of even length, so we can9

finally follow the block compression transition h(c) = cc to reduce the number of c10

letters by half:11

X ′ Y ′ X ′ P︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
c5 c c a c4 c a b a c5 c c a b3 a︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸

Y ′ Z Q

.

Since there are still c letters remaining in σ(W) we repeat the loop, and after12

two more iterations of the loop we obtain:13

P︷︸︸︷
c5 a c4 a b a c5 a b3 a︸︷︷︸ ︸ ︷︷ ︸

Z Q

.

At this point we have removed all letters cb so the loop terminates. We reduce14

the alphabet by removing cb, and remove the types. Note that we keep each cλ,b15

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

42 L. Ciobanu, V. Diekert & M. Elder

since each letter represents a different length block of b’s, and therefore they are all1

different. Let us rename c5,b = d and c4,b = e. So the equation is now:2

P︷ ︸︸ ︷
d a e a b a d a b b b a︸︷︷︸ ︸ ︷︷ ︸

Z Q

.

As promised, W contains no proper factors b2 for any b ∈ B, so we can start pair3

compression.4

Suppose we choose a partition of B\{#} as B+ = {a, b, d, e} and B− =5

{a, b, d, e} (we suppose this choice is maximal according to Remark 3.32). In step (1)6

of pair compression we introduce fresh letters cba, cda, cea, then in step (2) we create7

the list L = {Z, P , Q}. (We will continue to ignore involutions, and focus just on8

a factor of W containing no involuted letters or variables). We perform uncrossing9

by popping a from Z and removing Z, and since we follow P → bP then we also10

follow P → Pb, and similarly for Q, leading to:11

P︷︸︸︷
d a e a b a d a b b b a︸ ︷︷ ︸

Q

.

In step (3) we follow compression transitions h(cba) = ba, h(cda) = da, h(cea) =12

ea to obtain:13

P︷︸︸︷
cda cea cba cda b b cba︸ ︷︷ ︸

Q

.

This completes one round of the process. We then return to the preprocessing14

step, which gives:15

cda cea cba cda b b cba︸︷︷︸
Q

,

and then block compression would produce:16

cda cea cba cda c2,b cba.

Acknowledgments17

We wish to thank Monserrat Casals-Ruiz, Artur Jeż, Ilya Kazachkov, Markus18

Lohrey, Alexei Miasnikov, Nicholas Touikan for helpful discussions. We are par-19

ticularly indebted to the referee for numerous suggestions which greatly improved20

the presentation. This research was supported by the Australian Research Council21

(Future Fellowship FT110100178), the Swiss National Science Foundation (Profes-22

sorship FN PP00P2-144681/1), and a Université de Neuchâtel Overhead Grant.23

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

Solution sets for equations over free groups are EDT0L languages 43

References1

[1] A. V. Aho, Indexed grammars — an extension of context-free grammars, J. ACM 152
(1968) 647–671.3

[2] P. R. Asveld, Controlled iteration grammars and full hyper-AFL’s, Inform. Control4
34(3) (1977) 248–269.5

[3] L. Ciobanu, V. Diekert and M. Elder, Solution sets for equations over free groups are6
EDT0L languages, in Automata, Languages and Programming, eds. M. Halldórsson,7
K. Iwama, N. Kobayashi and B. Speckmann, Lecture Notes in Computer Science,8
Vol. 9135 (Springer, 2015), pp. 134–145.9

[4] L. Ciobanu, V. Diekert and M. Elder, Solution sets for equations over free groups are10
EDT0L languages, preprint (2015), arXiv:abs/1502.03426.11

[5] M. Clerbout and M. Latteux, Partial commutations and faithful rational transduc-12
tions, Theor. Comput. Sci. 34 (1984) 241–254.13

[6] V. Diekert, A. Jeż and W. Plandowski, Finding all solutions of equations in free14
groups and monoids with involution, in Computer Science Symp. in Russia 201415
(CSR 2014), eds. E. A. Hirsch, S. O. Kuznetsov, J. Pin and N. K. Vereshcha-16
gin, Moscow, Russia, June 7–11, 2014. Proc., Lecture Notes in Computer Science,17
Vol. 8476 (Springer, 2014), pp. 1–15.18

[7] V. Diekert and G. Rozenberg (eds.), The Book of Traces (World Scientific, Singapore,19
1995).20

[8] A. Ehrenfeucht and G. Rozenberg, On some context free languages that are not21
deterministic ET0L languages, RAIRO Theor. Inform. Appl. 11 (1977) 273–291.22

[9] S. Eilenberg, Automata, Languages, and Machines, Vol. A (Academic Press, New23
York, London, 1974).24

[10] J. Ferté, N. Marin and G. Sénizergues, Word-mappings of level 2, Theory Comput.25
Syst. 54 (2014) 111–148.26

[11] S. Ginsburg and G. Rozenberg, T0L schemes and control sets, Inform. Control 2727
(1975) 109–125.28

[12] A. Jeż, Recompression: A simple and powerful technique for word equations, J. ACM29
63(1) (2016) 4:1–4:51.30

[13] R. M. Keller, Parallel program schemata and maximal parallelism I. Fundamental31
results, J. ACM 20(3) (1973) 514–537.32

[14] O. Kharlampovich and A. Myasnikov, Elementary theory of free non-abelian groups,33
J. Algebra 302 (2006) 451–552.34

[15] A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI35
Rep. PB 78, Aarhus University, Aarhus (1977).36

[16] J. Messner, Pattern matching in trace monoids, in Proc. 14th Annual Symp. on37
Theoretical Aspects of Computer Science (STACS’97), Lübeck (Germany), 1997, ed.38
R. Reischuk, Lecture Notes in Computer Science, Vol. 1200 (Springer, Verlag, Hei-39
delberg, 1997), pp. 571–582.40

[17] Ch. H. Papadimitriou, Computational Complexity (Addison Wesley, 1994).41
[18] J.-É. Pin, Varieties of Formal Languages (North Oxford Academic, London,42

1986).43
[19] W. Plandowski, An efficient algorithm for solving word equations, in Proc. Annual44

Symp. Theory of Computing, ed. J. M. Kleinberg (ACM, 2006), pp. 467–476.45
[20] A. A. Razborov, On systems of equations in free groups, PhD thesis, Steklov Institute46

of Mathematics (1987), in Russian.47
[21] A. A. Razborov, On systems of equations in free groups, in Combinatorial and Geo-48

metric Group Theory (Cambridge University Press, 1994), pp. 269–283.49
[22] G. Rozenberg and A. Salomaa, The Book of L (Springer, 1986).50

Page Proof

June 25, 2016 16:19 WSPC/S0218-1967 132-IJAC 1650036

44 L. Ciobanu, V. Diekert & M. Elder

[23] G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, Vol. 11
(Springer, 1997).2

[24] Z. Sela, Diophantine geometry over groups VIII: Stability, Ann. of Math. 177 (2013)3
787–868.4

[25] N. W. M. Touikan, The equation w(x, y) = u over free groups: An algebraic approach,5
J. Group Theory 12(4) (2009) 611–634.6

[26] D. Wise, From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical7
Geometry (American Mathematical Society, 2012).8

