9 research outputs found

    A TAXONOMY OF FORKS IN THE CONTEXT OF DECENTRALIZED AUTONOMOUS ORGANIZATIONS

    Get PDF
    Decentralized autonomous organizations (DAOs) are blockchain-based organizations that manage resources through self-executing rules defined in smart contracts and rely on decentralized governance approaches. Many DAOs were affected by forking, a phenomenon in which a new DAO–the fork–is created by copying another DAO’s–the parent’s–protocols, source code, and/or data. Current research unveiled various far-reaching implications of DAO forking but comparing and generalizing these is inhibited by a missing fine-grained understanding of the different types of DAO forks. This motivates us to develop a taxonomy of DAO forks. We developed our taxonomy based on research on forking of DAOs and software development projects and the examination of 21 real-world cases of DAO forking. Our taxonomy contributes a framework to researchers of DAOs and software forking as well as practitioners, who are now able to define and distinguish different types of DAO forks and their individual implications

    Same File, Different Changes: The Potential of Meta-Maintenance on GitHub

    Full text link
    Online collaboration platforms such as GitHub have provided software developers with the ability to easily reuse and share code between repositories. With clone-and-own and forking becoming prevalent, maintaining these shared files is important, especially for keeping the most up-to-date version of reused code. Different to related work, we propose the concept of meta-maintenance -- i.e., tracking how the same files evolve in different repositories with the aim to provide useful maintenance opportunities to those files. We conduct an exploratory study by analyzing repositories from seven different programming languages to explore the potential of meta-maintenance. Our results indicate that a majority of active repositories on GitHub contains at least one file which is also present in another repository, and that a significant minority of these files are maintained differently in the different repositories which contain them. We manually analyzed a representative sample of shared files and their variants to understand which changes might be useful for meta-maintenance. Our findings support the potential of meta-maintenance and open up avenues for future work to capitalize on this potential.Comment: 12 pages, ICSE 202

    Detecting and Characterizing Semantic Inconsistencies in Ported Code

    Get PDF
    Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (1) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows that SPA can detect porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points

    Recording and Replaying System Specific, Source Code Transformations

    Get PDF
    International audienceDuring its lifetime, a software system is under continuous maintenance to remain useful. Maintenance can be achieved in activities such as adding new features, fixing bugs, improving the system's structure, or adapting to new APIs. In such cases, developers sometimes perform sequences of code changes in a systematic way. These sequences consist of small code changes (e.g., create a class, then extract a method to this class), which are applied to groups of related code entities (e.g., some of the methods of a class). This paper presents the design and proof-of-concept implementation of a tool called MacroRecorder. This tool records a sequence of code changes, then it allows the developer to generalize this sequence in order to apply it in other code locations. In this paper, we discuss MacroRecorder's approach that is independent of both development and transformation tools. The evaluation is based on previous work on repetitive code changes related to rearchitecting. MacroRecorder was able to replay 92% of the examples, which consisted in up to seven code entities modified up to 66 times. The generation of a customizable, large-scale transformation operator has the potential to efficiently assist code maintenance

    Understanding Variability-Aware Analysis in Low-Maturity Variant-Rich Systems

    Get PDF
    Context: Software systems often exist in many variants to support varying stakeholder requirements, such as specific market segments or hardware constraints. Systems with many variants (a.k.a. variant-rich systems) are highly complex due to the variability introduced to support customization. As such, assuring the quality of these systems is also challenging since traditional single-system analysis techniques do not scale when applied. To tackle this complexity, several variability-aware analysis techniques have been conceived in the last two decades to assure the quality of a branch of variant-rich systems called software product lines. Unfortunately, these techniques find little application in practice since many organizations do use product-line engineering techniques, but instead rely on low-maturity \clo~strategies to manage their software variants. For instance, to perform an analysis that checks that all possible variants that can be configured by customers (or vendors) in a car personalization system conform to specified performance requirements, an organization needs to explicitly model system variability. However, in low-maturity variant-rich systems, this and similar kinds of analyses are challenging to perform due to (i) immature architectures that do not systematically account for variability, (ii) redundancy that is not exploited to reduce analysis effort, and (iii) missing essential meta-information, such as relationships between features and their implementation in source code.Objective: The overarching goal of the PhD is to facilitate quality assurance in low-maturity variant-rich systems. Consequently, in the first part of the PhD (comprising this thesis) we focus on gaining a better understanding of quality assurance needs in such systems and of their properties.Method: Our objectives are met by means of (i) knowledge-seeking research through case studies of open-source systems as well as surveys and interviews with practitioners; and (ii) solution-seeking research through the implementation and systematic evaluation of a recommender system that supports recording the information necessary for quality assurance in low-maturity variant-rich systems. With the former, we investigate, among other things, industrial needs and practices for analyzing variant-rich systems; and with the latter, we seek to understand how to obtain information necessary to leverage variability-aware analyses.Results: Four main results emerge from this thesis: first, we present the state-of-practice in assuring the quality of variant-rich systems, second, we present our empirical understanding of features and their characteristics, including information sources for locating them; third, we present our understanding of how best developers\u27 proactive feature location activities can be supported during development; and lastly, we present our understanding of how features are used in the code of non-modular variant-rich systems, taking the case of feature scattering in the Linux kernel.Future work: In the second part of the PhD, we will focus on processes for adapting variability-aware analyses to low-maturity variant-rich systems.Keywords:\ua0Variant-rich Systems, Quality Assurance, Low Maturity Software Systems, Recommender Syste

    Automated Software Transplantation

    Get PDF
    Automated program repair has excited researchers for more than a decade, yet it has yet to find full scale deployment in industry. We report our experience with SAPFIX: the first deployment of automated end-to-end fault fixing, from test case design through to deployed repairs in production code. We have used SAPFIX at Facebook to repair 6 production systems, each consisting of tens of millions of lines of code, and which are collectively used by hundreds of millions of people worldwide. In its first three months of operation, SAPFIX produced 55 repair candidates for 57 crashes reported to SAPFIX, of which 27 have been deem as correct by developers and 14 have been landed into production automatically by SAPFIX. SAPFIX has thus demonstrated the potential of the search-based repair research agenda by deploying, to hundreds of millions of users worldwide, software systems that have been automatically tested and repaired. Automated software transplantation (autotransplantation) is a form of automated software engineering, where we use search based software engineering to be able to automatically move a functionality of interest from a ‘donor‘ program that implements it into a ‘host‘ program that lacks it. Autotransplantation is a kind of automated program repair where we repair the ‘host‘ program by augmenting it with the missing functionality. Automated software transplantation would open many exciting avenues for software development: suppose we could autotransplant code from one system into another, entirely unrelated, system, potentially written in a different programming language. Being able to do so might greatly enhance the software engineering practice, while reducing the costs. Automated software transplantation manifests in two different flavors: monolingual, when the languages of the host and donor programs is the same, or multilingual when the languages differ. This thesis introduces a theory of automated software transplantation, and two algorithms implemented in two tools that achieve this: ”SCALPEL for monolingual software transplantation and τSCALPEL for multilingual software transplantation. Leveraging lightweight annotation, program analysis identifies an organ (interesting behavior to transplant); testing validates that the organ exhibits the desired behavior during its extraction and after its implantation into a host. We report encouraging results: in 14 of 17 monolingual transplantation experiments involving 6 donors and 4 hosts, popular real-world systems, we successfully autotransplanted 6 new functionalities; and in 10 out of 10 multlingual transplantation experiments involving 10 donors and 10 hosts, popular real-world systems written in 4 different programming languages, we successfully autotransplanted 10 new functionalities. That is, we have passed all the test suites that validates the new functionalities behaviour and the fact that the initial program behaviour is preserved. Additionally, we have manually checked the behaviour exercised by the organ. Autotransplantation is also very useful: in just 26 hours computation time we successfully autotransplanted the H.264 video encoding functionality from the x264 system to the VLC media player, a task that is currently done manually by the developers of VLC, since 12 years ago. We autotransplanted call graph generation and indentation for C programs into Kate, (a popular KDE based test editor used as an IDE by a lot of C developers) two features currently missing from Kate, but requested by the users of Kate. Autotransplantation is also efficient: the total runtime across 15 monolingual transplants is 5 hours and a half; the total runtime across 10 multilingual transplants is 33 hours

    Analyzing repetitiveness in big code to support software maintenance and evolution

    Get PDF
    Software systems inevitably contain a large amount of repeated artifacts at different level of abstraction---from ideas, requirements, designs, algorithms to implementation. This dissertation focuses on analyzing software repetitiveness at implementation code level and leveraging the derived knowledge for easing tasks in software maintenance and evolution such as program comprehension, API use, change understanding, API adaptation and bug fixing. The guiding philosophy of this work is that, in a large corpus, code that conforms to specifications appears more frequently than code that does not, and similar code is changed similarly and similar code could have similar bugs that can be fixed similarly. We have developed different representations for software artifacts at source code level, and the corresponding algorithms for measuring code similarity and mining repeated code. Our mining techniques bases on the key insight that code that conforms to programming patterns and specifications appears more frequently than code that does not. Thus, correct patterns and specifications can be mined from large code corpus. We also have built program differencing techniques for analyzing changes in software evolution. Our key insight is that similar code is likely changed in similar ways and similar code likely has similar bug(s) which can be fixed similarly. Therefore, learning changes and fixes from the past can help automatically detect and suggest changes/fixes to the repeated code in software development. Our empirical evaluation shows that our techniques can accurately and efficiently detect repeated code, mine useful programming patterns and API specifications, and recommend changes. It can also detect bugs and suggest fixes, and provide actionable insights to ease maintenance tasks. Specifically, our code clone detection tool detects more meaningful clones than other tools. Our mining tools recover high quality programming patterns and API preconditions. The mined results have been used to successfully detect many bugs violating patterns and specifications in mature open-source systems. The mined API preconditions are shown to help API specification writer identify missing preconditions in already-specified APIs and start building preconditions for the not-yet-specified ones. The tools are scalable which analyze large systems in reasonable times. Our study on repeated changes give useful insights for program auto-repair tools. Our automated change suggestion approach achieves top-1 accuracy of 45%-51% which relatively improves more than 200% over the base approach. For a special type of change suggestion, API adaptation, our tool is highly correct and useful

    On the Socio-Technical Dependencies in Free/Libre/Open Source Software Projects

    Get PDF
    During the course of the past two decades, Open Source Software (OSS) development model has lead to a number of projects which have produced software that rivals and in some cases even exceeds the scale and quality of the traditional software projects. Among others, Eclipse, Apache, Linux, and BSD operating system are representative examples of such success stories.However, OSS project like traditional in-house projects, often pose the potential for enormous problems, whose effects run the gamut from immense cumulative delay through complete breakdown and failure. This situation is evident, as OSS development is a socio-technical endeavor and is non-trivial. Such development occurs within an intensively collaborative process, in which technical prowess must go hand in hand with the efficient coordination and management of a large number of social, inter-personal interactions across the development organization. Furthermore, those social and technical dimensions are not orthogonal. It has been recognized that the structure of a software product and the layout of the development organization working on that product correlate.Therefore this thesis argue that a comprehensive understanding on the sustainable evolution of OSS projects can be gained through the examination of the mutual influence of social and technical dimensions in OSS development. Thus, the goal of this thesis is the verification and reasoning of the following proposition,“The evolution of the Open Source Software (OSS) project is constrained by the non-orthogonal evolution of Social and Technical dimensions (often termed as Socio-Technical dependency) of such projects”.In concrete terms, this thesis investigates and measures empirically the extent to which the two dimensions of OSS projects, social and technical, approximate and influence each other during the evolution of the projects. Perceived insight is then used to build proposals that would provide empirical basis to frame theory around the affirmed proposition.Moving towards this goal, this thesis proposes models, methods, frameworks and tool supports to measure, assess, and reason the socio-technical dependency within OSS project context. The starting point is to propose a data model to mimic the social and technical dimensions and their inter-relationships. This model is instantiated through the repository data of OSS projects that represent each of these dimensions. Then, methods and a mathematical model are proposed to derive dependency between the two dimensions, and to utilize them in measuring socio-technical dependency quantitatively. These proposals are then put into practice within distinct OSS project contexts to empirically measure and investigate socio-technical dependency. Along the process, frameworks, architectural design and corresponding tool implementations are provided to automate the analysis and visualization of such dependency.Reported results suggest that high degree of socio-technical congruence can be considered as the implicit underlying principle for building team collaboration and coordination within the developer community of long lived OSS projects. Even being highly distributed community of developers, and mostly using passive communication channels, OSS communities are tied together by maintaining task dependent communication. Such communication is often ad-hoc, adaptive and situated as it cope with rapid and continuous changes in the underlying software.Additionally, collaboration among projects are significantly influenced by the resembling properties among the projects. Resembling properties (e.g., project domain, size, and programming language) often form a favorable ground, thus creating a stimuli for developers to participate in those projects
    corecore