

Tampereen teknillinen yliopisto. Julkaisu 1300
Tampere University of Technology. Publication 1300

M.M. Mahbubul Syeed

On the Socio-Technical Dependencies in
Free/Libre/Open Source Software Projects

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 29th of May 2015, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2015

ISBN 978-952-15-3525-3 (printed)
ISBN 978-952-15-3533-8 (PDF)
ISSN 1459-2045

Abstract

During the course of the past two decades, Open Source Software (OSS) devel-
opment model has lead to a number of projects which have produced software
that rivals and in some cases even exceeds the scale and quality of the traditional
software projects. Among others, Eclipse, Apache, Linux, and BSD operating
system are representative examples of such success stories.

However, OSS project like traditional in-house projects, often pose the po-
tential for enormous problems, whose effects run the gamut from immense
cumulative delay through complete breakdown and failure. This situation is
evident, as OSS development is a socio-technical endeavor and is non-trivial.
Such development occurs within an intensively collaborative process, in which
technical prowess must go hand in hand with the efficient coordination and
management of a large number of social, inter-personal interactions across the
development organization. Furthermore, those social and technical dimensions
are not orthogonal. It has been recognized that the structure of a software prod-
uct and the layout of the development organization working on that product
correlate.

Therefore this thesis argue that a comprehensive understanding on the
sustainable evolution of OSS projects can be gained through the examination of
the mutual influence of social and technical dimensions in OSS development.
Thus, the goal of this thesis is the verification and reasoning of the following
proposition,

“The evolution of the Open Source Software (OSS) project is constrained by the
non-orthogonal evolution of Social and Technical dimensions (often termed as Socio-
Technical dependency) of such projects”.

In concrete terms, this thesis investigates and measures empirically the ex-
tent to which the two dimensions of OSS projects, social and technical, approxi-
mate and influence each other during the evolution of the projects. Perceived
insight is then used to build proposals that would provide empirical basis to
frame theory around the affirmed proposition.

Moving towards this goal, this thesis proposes models, methods, frame-
works and tool supports to measure, assess, and reason the socio-technical
dependency within OSS project context. The starting point is to propose a data
model to mimic the social and technical dimensions and their inter-relationships.
This model is instantiated through the repository data of OSS projects that rep-
resent each of these dimensions. Then, methods and a mathematical model are
proposed to derive dependency between the two dimensions, and to utilize
them in measuring socio-technical dependency quantitatively. These propos-
als are then put into practice within distinct OSS project contexts to empiri-
cally measure and investigate socio-technical dependency. Along the process,

iii

frameworks, architectural design and corresponding tool implementations are
provided to automate the analysis and visualization of such dependency.

Reported results suggest that high degree of socio-technical congruence can
be considered as the implicit underlying principle for building team collabo-
ration and coordination within the developer community of long lived OSS
projects. Even being highly distributed community of developers, and mostly
using passive communication channels, OSS communities are tied together
by maintaining task dependent communication. Such communication is often
ad-hoc, adaptive and situated as it cope with rapid and continuous changes in
the underlying software.

Additionally, collaboration among projects are significantly influenced by the
resembling properties among the projects. Resembling properties (e.g., project
domain, size, and programming language) often form a favorable ground, thus
creating a stimuli for developers to participate in those projects.

Keywords: Open Source Software (OSS), Free/Libre/OSS projects, Socio-Technical
dependency, Socio-Technical congruence, Conway’s law, Resemblance, Fork-
ing.

iv

Preface

Research work of this thesis has been carried out during the years 2011-2014
as an individual research work in the Department of Pervasive Computing,
Tampere University of Technology, Finland. This thesis is financially supported
by Tampere Doctoral Programme in Information Sciences and Engineering
(TISE) during the period 2011-2013, and by TUT graduate school funding for
the year 2014. I would also like to acknowledge Tivit/Digile’s Cloud Software and
Need4Speed projects, Nokia foundation, Ulla Tuomisen and Tuula and Yrjö Neuvo
säätiö for their financial support at various stages of my Ph.D studies.

First and foremost, I would like to thank Allah the Almighty, to bless me
with the strength, capacity, mercy and protection in all aspects of my life.

I would like to express my sincere and deepest gratitude to my academic su-
pervisor, Associate Professor Imed Hammouda for his invaluable guidance, con-
tinuous support, encouragement and infinite tolerance throughout the course
of this work. Sincere gratitude to Professor Tommi Mikkonen for creating an
enthusiastic work atmosphere and constructive feedback in getting the thesis
done.

I would like to thank Professor Kari Smolander and Dr. Andrea Capiluppi
for their valuable and constructive feedback and competent judgement on the
manuscript.

I would like to take this opportunity to offer my sincere gratitude to one
of the best human beings I have ever mate, the late Professor Tarja Systä. Her
vision and guidance would always be with me.

I would like to express my gratitude to Ulla Siltaloppi and Hilkka Losoi for
their kind help with practical matters and friendly support.

Special thanks to all my friends in Finland due to whom life in abroad
becomes homely. I am very obliged to families Asaduzzaman and Bhuiyan
for offering numerous enjoyable moments. I would like to express my deepest
gratitude to my younger brothers, Shumon, Tareq, Khyrul, Mishu, Mehran,
Sunny and Safwan, who often be the inspiration of my work.

I wish to express my deepest gratitude to my beloved wife Fatema, my sweet
daughter duo – Suha and Samah for their endless support, encouragement and
love due to which each step of life become a pave to success.

Finally, the person to whom my existence belongs, Abu Jafar Md. Syeed, my
father, friend and mentor, this work is dedicated to you.

Tampere, May, 2015
M.M. Mahbubul Syeed

v

vi

Contents

Abstract iii

Preface v

Contents vii

List of Figures ix

List of Tables xi

List of Included Publications xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Research Focus . 4
1.3 Contribution . 9
1.4 Outline of The Thesis . 10

2 Background 11
2.1 Theoretical Framework . 11
2.2 Relevant Concepts . 12

2.2.1 “Social” Dimension of OSS Projects 12
2.2.2 “Technical” Dimension of OSS Projects 13
2.2.3 “Socio-Technical” Dependency in OSS Projects 14
2.2.4 Conway’s Law . 14
2.2.5 Socio-Technical Congruence 14
2.2.6 Measuring Socio-Technical Congruence 15
2.2.7 Forking . 18
2.2.8 Resemblance . 19
2.2.9 Software Ecosystem . 19
2.2.10 Tooling . 19

3 Research Approach 21
3.1 Basic Research Approach . 21
3.2 Research Methods . 22

3.2.1 Systematic Literature Review (SLR) 22
3.2.2 Case Study . 23
3.2.3 Constructive Research Approach (CRA) 24

3.3 Data Collection Method . 24

vii

3.3.1 Systematic Literature Search Strategy 24
3.3.2 Archival data . 25

3.4 Data Analysis Methods . 26
3.4.1 Data Synthesis for Systematic Literature Review 26
3.4.2 Content Analysis . 26

3.5 Research Classification . 26

4 Introduction to Included Publications 31
4.1 Publication [I]: A SLR on the evolution of OSS projects. 32
4.2 Publication [II]: The OSS data model and the methods. 35
4.3 Publication [III]: Socio-technical congruence in an OSS project. . 37
4.4 Publication [IV]: Study of socio-technical congruence and project

resemblance for forked OSS projects. 40
4.5 Publication [V]: Socio-technical congruence in the Ruby Ecosystem. 43
4.6 Publication [VI]: Measuring projects’ resemblance from devel-

oper contribution. 45
4.7 Publication [VII]: A Framework for automated data analysis and

visualization. 47
4.8 Publication [VIII]: Recommendations to build graph based data

analysis and visualization tool. 50

5 Synthesis 53
5.1 Research Questions Revisited . 53
5.2 Proposals on the Socio-Technical Dependency in OSS Projects . 59
5.3 Implications . 59

5.3.1 Implication for Research 59
5.3.2 Implication for Practice 63

5.4 Limitations and Threats to Validity 64
5.5 Conclusions . 66

viii

List of Figures

1.1 The research context and the problem domain 5
1.2 An overview of the main research questions (RQs), how they

relate to each other, the included papers that address each question. 8

2.1 Explicit Architecture and Coordination Network 16
2.2 Implicit Architecture derived from Explicit Coordination Network 16
2.3 Implicit Coordination Network derived from Explicit Architec-

ture . 17
2.4 Rough time line of the forked BSD projects. 18

4.1 OSS project data model . 35
4.2 Example of InterConnect method 36
4.3 Example of IntraConnect method 37
4.4 Example of intersection method 37
4.5 Congruence between the developer’s Communication Pattern

and the Software Architecture in FreeBSD project 38
4.6 Congruence between the Software Architecture and the Develop-

ers Communication pattern in FreeBSD project 39
4.7 Congruence between the developer’s Communication Pattern

and the Software Architecture in the BSD projects 41
4.8 Architectural resemblance between FreeBSD and netBSD 42
4.9 Community resemblance between NetBSD and OpenBSD projects 43
4.10 Socio-Technical Congruence in the Ruby ecosystem 44
4.11 Partial snapshot of the Implicit Network 46
4.12 The proposed framework and the architecture 48
4.13 The architecture of the tool Binoculars 51
4.14 User Interface of the tool Binoculars 51

5.1 An integration of the model and the methods to the Framework 56
5.2 The conceptual model of a Plug-in architecture 58

ix

x

List of Tables

3.1 OSS data sources used in this thesis 27
3.2 Research classification . 29

4.1 An overview of the results . 33

5.1 Design principle and methods used for the tools 57
5.2 An overview on the validity threats 65

xi

xii

List of Included Publications

[I] M.M. Syeed, I. Hammouda, and T. Systä. Evolution of Open Source
Software Projects: A Systematic Literature Review. Journal of Software, vol.
8, no. 11, 2013, pages 2815–2829. November, 2013.

[II] M.M. Syeed, T. Aaltonen, I. Hammouda, and T. Systä. Tool Assisted
Analysis of Open Source Projects: A Multi-faceted Challenge. International
Journal of Open Source Software and Processes, vol. 3, no. 2, 2011, pages 43–78,
April-June, 2011.

[III] M.M. Syeed, and I. Hammouda. Socio-technical Congruence in OSS
Projects: Exploring Conway’s Law in FreeBSD. In Proceedings of the 9th
IFIP WG 2.13 International Conference of Open Source Systems (OSS’2013),
pages 109–126. Springer, June, 2013.

[IV] M.M. Syeed, and I. Hammouda. Socio-Technical Dependencies in Forked
OSS Projects: Evidence from BSD Family. Journal of Software, vol. 9, no. 11,
2014, pages 2895–2909. November, 2014.

[V] M.M. Syeed, K. Marius Hansen, I. Hammouda, K. Manikas. Socio-
Technical Congruence in the Ruby Ecosystem. In Proceedings of the 10th
International Symposium on Open Collaboration (OpenSym), pages 2. ACM,
August, 2014.

[VI] M.M. Syeed, and I. Hammouda. Who Contributes to What? Exploring
Hidden Relationships Between FLOSS Projects. In Proceedings of the 10th
IFIP WG 2.13 International Conference of Open Source Systems (OSS’2014),
pages 21–30. Springer, May, 2014.

[VII] M.M. Syeed, I. Hammouda, and C. Berko. Exploring Socio–Technical
Dependencies in Open Source Software Projects — Towards an Automated
Data-driven Approach. In Proceedings of 17th the Academic MindTrek
Conference, pages 273–280. ACM, September, 2013.

[VIII] M.M. Syeed. Binoculars: Comprehending Open Source Projects through
graphs. In Proceedings of 8th IFIP WG 2.13 International Conference of Open
Source Systems (OSS’2012), pages 350–355. Springer, September, 2012.

The permissions of the copyright holders of the original publications to reprint them in
this thesis are hereby acknowledged.

xiii

xiv

Chapter 1

Introduction

During the past two decades, Open Source Software (OSS) development has
become a powerful mechanism for developing and distributing IT applications.
A number of IT pioneers are now putting serious interest and investment
in favour of OSS movement which supports OSS to gain substantial market
credibility and legitimacy [73].

What makes OSS projects inimitable to that of the traditional in-house soft-
ware development can be traced back in the seminal work of Raymond, “The
Cathedral and the Bazaar” [74]. In this book, the traditional form of software
development model, which is primarily barred within a closed group of peo-
ple planning a cathedral, is placed in a contrast to the bazaar model of OSS
development. Within this model, a loosely-knit community of developers and
developer-turned-users commonly strewn all over the world, come together to
develop the software, without the desire of monetary compensation. Develop-
ers participating in these projects join or leave voluntarily, not being restricted
by organizational rules and regulations. Most often such model of develop-
ment capitalizes on rigorous peer review and parallel debugging that lead to
innovation and rapid advance during the evolution of software products [55].
Produced software is often distributed freely under a chosen license agreement,
such as GNU General Public License [55] to guide the right to access, modify
and redistribute the code.

To facilitate open participation and collaboration, open source projects ex-
ploit a wide range of components, often coming with a large number of versions
reflecting their development and evolution history. Such components can be
classified broadly into two categories: technical artifacts, and the social artifacts.
Technical artifacts often consist of code management tools, such as version
control systems (e.g., CVS; SVN, Git), issue management systems (e.g., Jira,
Bugzilla), and commit records. In contrast social artifacts are often composed
with community communication channels, which is mostly composed of cheap
medium over Internet. For instance, emails, forums, wiki’s, chatting are com-
monly used [I]. These artifacts (both technical and social) offer the means for
adequate management and development of the product, and to build commu-
nity collaboration through communication which ranges from pure technical
discussion to merely social conversation.

Software projects of such distributed nature often pose the potential for
enormous problems, whose effects run the gamut from immense cumulative

1

delay through complete breakdown and failure [39]. Such situation is evident,
as software development is a socio-technical endeavor [92]. Any non-trivial
software development occurs within an intensively collaborative process, in
which technical prowess must go hand in hand with the efficient coordina-
tion and management of a large number of social, inter-personal interactions
across the development organization. Furthermore, those social and technical
dimensions are not orthogonal. It has been recognized that the structure of a
software product and the layout of the development organization working on
that product correlate [92].

However, despite of the high potential to be exposed to such development
problems which often jeopardies a project’s success, OSS development model
has lead to an adequate number of successful projects. These projects produced
software that rival and in some cases even exceeds the scale and quality of the
traditional software projects [6].

Therefore, in gaining a comprehensive understanding on the sustainable
evolution of OSS projects, the mutual influence of social and technical aspects
in OSS development must be evaluated.

One way to investigate this issue is to measure if there is a good fit (or
congruence) between the coordination structure mandated by the technical
work units (tasks) and the actual social organization (as expressed for example
by the communication paths observed among its members). Such dependency
between the technical and the social dimensions are often called the Socio-
technical Dependency (see Section 2.2).

This thesis offers a thorough investigation on the socio-technical dependency
within the context of OSS projects through the utilization of the data maintained
in OSS repositories. These repositories represent both the technical and social
evolution of the project.

1.1 Motivation

Software development, hence also an OSS project, is a complex engineering
activity due to its inherent multi-dimensional perspectives [9]. It is not about
developing the software only. In reality, it involves interactions among people,
processes, and tools during the development of a complete software product.
In practice, software development is performed by teams, possibly geograph-
ically dispersed, consisting of a number of individuals ranging from tens to
thousands [27]. In this setup, organizations often organize themselves around
their products’ architectures; the main components of their product define the
organization’s key subtasks [45] and become the source of most relevant infor-
mation pertinent to the task dependencies that define coordination need among
individuals and teams [25].

Due to dynamic nature of software development, changes in task dependen-
cies are obvious, which in turn jeopardies the appropriateness of the information
flows and perturb the organization’s ability to coordinate effectively. Modu-
larity, the principal concept of software engineering, cannot alone reduce or
maintain the coordination needs [7], because the theory of modularity relies on
the assumption that there exists a simple and obvious relationship between the
product modularization and the task (or work) modularization [4] [69]. Hence,
by reducing the technical interdependencies among the modules of a system,

2

the modularization theories argue, work interdependencies are reduced, thereby
reducing the need for communication among work groups [16]. Unfortunately
such assumption has flaws when applied in the context of software develop-
ment. For instance, software modularization approaches use only a subset of
the technical dependencies (e.g., syntactic relationships [31]), leaving out other
potentially relevant ones [16]. However, the tie between product structure and
task structure is no longer as simple as previously assumed, and that diminishes
over time [16].

Additionally, injecting minimal communication between teams, collocated
or distributed with increasing software modularity, is detrimental to the success
of the project. Product development literature argues that information hiding,
which leads to minimal communication between teams, causes variability in
the evolution of the projects, frequently resulting in integration problems [95].
Putting it in software development context, information hiding led develop-
ment teams to be unaware of other teams’ work resulting in coordination prob-
lems [90], which is even more severe for geographically distributed software
development projects [39].

Even though those findings do not overrule the necessity of software mod-
ularization, such modularization must be supplemented with effective coor-
dination mechanisms to allow developers to deal correctly with the dynamic
conditions that are not captured in the architectural specification [16]. Even for
a highly modular architecture, effective coordination is drastically affected by
minor changes in product architecture, which cause substantial changes in task
dependencies [41]. Such changes often introduce new dependencies, modify the
existing ones, or even eliminate some. Therefore, coordination and collaboration
in such product development organizations must be calibrated according to the
dynamic changes in dependencies within the product architecture.

This calibration for aligning the collaboration of the community to that of
the technical structure of the software are termed as socio-technical dependency
in software projects. Here, software, processes, tasks, and technology shape the
technical dimension, and the developer community forms the social dimension
of the project. In Section 2.2 a formal definition of these dimensions are given.

Recent research suggests that efficacious socio-technical alignment is aus-
picious for organizations, because high degree of socio-technical dependency
within a project results faster completion of modification requests [17] with
higher build success [57] and product quality [10]. In contrast, socio-technical
gaps are noted problematic for distributed software development [28]. For
instance, low socio-technical dependency is subjected to lower productivity
with increased number of code changes [18] [28] and negative performance
level [88] within the organizations. Complementary to these results, it is often
cited that high degree of socio-technical dependency is a natural consequence
and a desired property for collaborative development activities [11].

Being motivated by these facts, this research sets its goal to examine the
notion of socio-technical dependency within the paradigm of OSS software
projects. OSS is an interesting research topic due to its thriving success in many
domains at a global scale. With community driven development model and
open collaboration, such projects are in a clear contrast to that of in-house
projects. However, until now, a very little is known on the driving forces that
lead such projects towards successful evolution, specially from socio-technical
perspective [I]. Thus, it is beneficial to explore whether successful OSS projects

3

exhibits socio-technical properties which might explain the success and quality
issue of such projects. In turn, such results would encourage in-house projects
to adapt and mesh OSS trend and practices to the traditional practices in order
to foster team communication and to minimize collaboration gaps.

A study of this kind requires access to the complete data set representing the
evolution of both the technical and the social dimensions. In this regard, OSS
projects often maintain the data in public repositories and make them available
through Internet. Therefore, given suitable data mining tools, these data can
be used in empirical research covering most of the aspects involved in OSS
development.

In a nutshell, this thesis is intuitively motivated as follows: development of
software artifacts that depend on each other is likely to require coordination
between the people responsible for those artifacts. Conversely, lack of coor-
dination across responsible people of dependent artifacts may be a telltale of
development problems.

1.2 Research Focus

This research is centered round the following proposition,

“The evolution of Open Source Software (OSS) projects is constrained by the non-
orthogonal evolution of the Social and the Technical dimensions (often termed as socio-
technical dependency) of such projects”.

Therefore, the purpose of this thesis is to investigate and measure the extent to
which the two dimensions of OSS projects, social and technical, approximate
and influence each other during the evolution of the projects. In doing so a set
of empirical investigation on the socio-technical dependency for a wide range of
OSS project setup is carried out. Perceived insight are then used to build propos-
als that should provide empirical basis to frame theory around the proposition
stated above. In order to build foundation for the empirical investigation, a
concrete conceptualization of the socio-technical dependency is first conceived
by defining each of the project dimensions (social, technical, socio-technical)
and the related concepts. These definitions are then used to propose models,
methods, framework and tool support that are used for piloting the empirical
analysis.

During this process of investigation, special attention is paid to resolve issues
that often pose threat to the research results and tool performance. This includes
reproducibility and inter-comparability for the research results, whereas for
the tools, issues like reusability, extensibility, automation with unified data
representation are ensured.

Figure 1.1 draws the landscape of this research by defining the research
context, problem domain, research focus, and corresponding research questions.

As per this figure, the context of this research is the OSS projects. It should be
noted that OSS projects are not always standalone projects, thus dependency and
collaboration often exists beyond the boundary of a project. Therefore, this thesis
categorizes OSS projects in two abstraction levels based on certain relationship
criteria, e.g., intra-project and inter-project category. Here, Intra-project defines a
self-contained, singleton project that has its own project setup and management,

4

Fi
gu

re
1.

1:
Th

e
re

se
ar

ch
co

nt
ex

ta
nd

th
e

pr
ob

le
m

do
m

ai
n

5

that is, a community of developers and own project management systems.
For instance, FreeBSD, NetBSD, OpenBSD, FFMpeg are the examples of such
singleton project. In contrast, Inter-project defines a set of projects that exhibits
a given degree of symbiotic relationship. For this study, three such relationships
are conceived, e.g., Forking (see Section 2.2.7), Resembling projects (see Section
2.2.8), and an Ecosystem (see Section 2.2.9).

The reason of defining this composition of OSS projects as the research
context is to gain more holistic view on the topic by examining socio-technical
dependency for each given context.

Therefore, socio-technical dependency in general constitutes the problem
domain. Within this domain, four research targets and corresponding research
questions are defined to fine tune the research focus.

The first research target offers a Theoretical baseline for piloting this study
(see Figure 1.1). This target is formulated as follows,

RQ.1 What conceptualization can be gained from the existing body of knowledge
in relation to social, technical, and socio-technical dimensions of the OSS projects?

Here the target is to build a theoretical foundation based upon the state-of-
the-art research in order to define, (a) the motive and therefore the need for
this study, (b) the three dimensions of OSS projects (social, technical and socio-
technical) through systematic classification of the concerned literature, and
finally, (c) the current progress and thereby set the target for further progress.

The next research target is the Measurement of the socio-technical dependency.
Beyond just understanding how architectural dependencies impose task depen-
dencies at organizational level and influence the project overall (as discussed
in Section 1.1), practitioners need to be able to determine how well equipped a
given organization is to carry out the design and implementation of a system
with a particular architecture [42]. However, with the exception of informal and
ad hoc attempts to accommodate the development organization, there is not yet
any formal proposal of model and methods to assess the fit of the architecture
and the organization proactively [I] [42]. This assessment is especially important
to do at the early stage in the project, and also at discrete points where changes
are made to the architecture, so that appropriate and timely adjustments can be
made. Thereby, following research question originated,

RQ.2 How Socio-Technical dependency can be conceived in OSS projects?

The target here is to propose a quantitative measure of socio-technical de-
pendency which is often defined as socio-technical congruence (see Section
2.2.5). Socio-technical congruence, as per the definition, verifies if there is a
good fit between the coordination structure mandated by the technical work
units (tasks), and the actual social organization (as expressed for example by
the communication paths observed among its members) [92]. Therefore, it is a
solid indicator of how well a development team is organized in carrying out a
software development project.

This thesis proposes a mathematical model and associated methods to mea-
sure socio-technical congruence from the data maintained in OSS project reposi-
tories. As the model and the methods operate on OSS project data, a generic

6

OSS data model is a prerequisite. This data model should mimic the social,
and technical dimensions, and offer means to explore their inter-relationships
(i.e., socio-technical). Additionally, a single model to fit all would unify data
modeling, analysis and presentation.

Finally, a framework is proposed that could integrate the data model, and
implement the methods and the mathematical model to achieve fully automated
analysis of socio-technical dependency.

In addition, a detailed, coherent, and systematic methodological approach
is adopted to conduct the empirical researches for this thesis. This approach
describes among others, the data sources, data acquisition, cleaning and repre-
sentation in detail. This ensures the reproducibility of the reported results, and
sets a benchmark against which comparative studies can be carried out.

The next target is to gain Empirical insight by putting the proposed approach
in practice to empirically measure, evaluate and reason for the socio-technical
dependency. Therefore, the following research question emerges,

RQ.3 To what extent socio-technical dependency holds in the OSS projects?

The aim here is to accumulate the empirical results comprising distinct OSS
project context (see Figure 1.1) to build proposals, trends and patterns for socio-
technical dependency in such projects.

In order to perform the empirical studies, six OSS projects, one OSS ecosys-
tem and a third party OSS repository are used as case studies. The six OSS
projects are, FreeBSD1, NetBSD2, OpenBSD3, FFMpeg4, Eucaliptus5, and GStreamer6.
The selected ecosystem is the Ruby Gems Ecosystem7, and the third party data
provider service is the OHLOH (recently changed to OpenHub)8 repository.

Finally, the target is to formulate the Proposals for architectural design, corre-
sponding tool implementation and thereby distill lessons learned during the
tool-building experience as a practitioners guide. Following research question
formalize this research target:

RQ.4 What architectural design and tool concepts can be offered to conceptualize
the socio-technical dependency in the OSS projects?

The composite focus of this research question can be break down into following
set of tasks,

(a) Define architectural design based on the OSS data model and the frame-
work that would support implementation of the methods and the mathematical
model for the analysis and visualization of the socio-technical dependency. Ad-

1http://www.freebsd.org/
2http://www.netbsd.org/
3http://www.openbsd.org/
4https://www.ffmpeg.org/
5https://www.eucalyptus.com/
6http://gstreamer.freedesktop.org/
7https://rubygems.org/
8https://www.openhub.net/

7

ditionally, such design should incorporate sound design principles to support
rapid and distributed development and extension of the tools.

(b) Implement tools based on the proposed architecture to support the
intended analysis through interactive visualization and exploration.

(c) Demonstrate the fit of the design and corresponding tools by deploying
them in the empirical analysis.

(d) Distill recommendations and guidelines based on the lessons learned
during the process of designing, implementation and evaluation of the tools.

Figure 1.2 further demonstrates the relationships among these four research
targets.

Figure 1.2: An overview of the main research questions (RQs), how they relate
to each other, the included papers that address each question.

The first research question (RQ1) under the target Theoretical Base is asked
in order to gain insight into the challenges and practices within the problem
domain. Therefore, it defines the problem domain in concrete terms, and forms
the basis to formulate and investigate other research targets (as shown by the

8

Need for study link in Figure 1.2). Additionally, it offers a set of future research
directions apart from defining the basis of this thesis.

The second research question (RQ.2) under the target Measurement is asked
to define the models and methods to quantitatively measure socio-technical
dependency.

The third research question (RQ.3) is formulated to perform the empirical
investigation by utilizing the proposed models and methods. Therefore, an
Apply relationship link is drawn between the targets Measurement and the
Empirical Insight (see Figure 1.2).

Then, in the Proposal target, architectural design and tool implementations
are offered to put the proposed models, methods and framework into practice.
This target thus has a Basis for relationship with the prior two targets (see Figure
1.2).

Finally, the proposals on the socio-technical dependency is offered through
the accumulation and comprehension of the observed results.

1.3 Contribution

This thesis includes eight publications, consisting of three journals and five
conference publications. The author of this thesis is the main author of all
of the eight included papers. This means that the responsibility for running
the research, performing corresponding analysis and conducting most of the
writing process has been assumed by this author with close cooperation of his
supervisors.

The main contributions of this thesis are listed in the following:

! The thesis offers a systematic evaluation of the state-of-the-art research on
the problem domain. This not only plots the basis for this study, but also
contributes in forecasting prominent research directions on the topic.

! The thesis offers OSS data model to mimic the social and technical di-
mensions and their inter-relationships by instantiating the OSS project
repositories.

! The thesis offers a generic set of graph theocratic methods on top of the
OSS data model to explore and examine the social, technical and socio-
technical dimensions of OSS projects.

! The thesis proposes a mathematical model to measure the socio-technical
dependency.

! The thesis offers empirical investigation by deploying the models and
methods to measure socio-technical dependency in OSS projects. To get
a holistic view, a number of OSS projects are explored. This evaluation
leads to build proposals on socio-technical dependency within the defined
context of OSS projects.

! The thesis proposes framework to fully automate the data driven analysis
of OSS projects.

9

! The thesis offers architectural design concepts based on the proposed
data model and the framework that would support rapid and distributed
development of analytical tools.

! The thesis offers semi-automated and automated tools that support data
driven analysis and interactive exploration of socio-technical dependen-
cies in OSS projects. These tools seamlessly integrate the proposed models,
methods, and framework to address issues, such as, reusability of the data,
tool extensibility, automation in analysis and visualization with unified
data representation.

! The thesis offers recommendations and guidelines for the design and
implementation of the tools for OSS data analysis and visualization.

! Finally, a detailed systematic methodological approach is adopted to
conduct each empirical research in this thesis. This approach documents
each critical step within the process to support reproducibility of the
reported results and to perform comparative analysis.

1.4 Outline of The Thesis

This thesis is organized as follows: Chapter 2 defines the core concepts related
to the context and the problem domain of this thesis. Related works along this
line are also discussed. Chapter 3 is devoted to present, in detail, the research
methodologies used to answer the research questions, and bridging them to
each included paper to which they are applied. In Chapter 4, the main results
and contributions of this thesis are summarized per reported study. Finally,
the synthesis of the reported results are presented in Chapter 5. This includes
explicit listing of contributions per research question, presenting the proposals
on the socio-technical dependency, a discussion on the overall implications of
this research, and presenting the concluding words.

10

Chapter 2

Background

This chapter defines the core concepts that constitute the research focus of
this thesis. Related works on the topics are also presented. This chapter is
organized as follows, Section 2.1 binds the concepts in relation to the research
focus discussed in Section 1.2, the definitions of the concepts and the proposed
mathematical model to measure socio-technical dependency are then presented
in Section 2.2.

2.1 Theoretical Framework

The purpose of this thesis is to investigate and measure the extent to which the
two dimensions of OSS projects, social and technical, approximate and influence
each other during the evolution of the projects. Dependency between these
two dimensions are often conceived as socio-technical dependency in related
literature. The exact interpretation of these dimensions are given in Section
2.2.1, Section 2.2.2, and Section 2.2.3 to concretely define the problem domain
(presented in Figure 1.1) of this thesis.

Within the Measurement research context (presented in Figure 1.2), the quan-
titative measurement of socio-technical dependency is done through the con-
ceptualization of Conway’s law and socio-technical congruence. Because these
notions are used as the conceptual framework to define the mathematical model
for measuring socio-technical dependency. Therefore, these two notions are
defined in Section 2.2.4 and Section 2.2.5, respectively.

Then, the proposed mathematical model that quantitatively measure socio-
technical congruence is presented in Section 2.2.6. Related definition of archi-
tecture (e.g., explicit and implicit architecture of the software) and developer
coordination network (e.g., explicit and implicit coordination network) are also
presented.

Within the Empirical insight research context, this mathematical model is
used as a means to measure socio-technical congruence both at intra-project and
at inter-project level. Recall that at intra-project level, congruence is examined
for three distinct symbiotic relationships among OSS projects, e,g., forking,
resemblance and ecosystem. Therefore, these project relationships are defined
in Section 2.2.7, Section 2.2.8 and Section 2.2.9, respectively.

Finally, in Section 2.2.10 the background works motivating the proposal of

11

the framework and the tool supports (within the Proposal research target) are
presented.

2.2 Relevant Concepts

This section draws together the concepts sturdily tied with OSS projects and
this thesis.

2.2.1 “Social” Dimension of OSS Projects

In Merriam-webster dictionary the term “Social” is defined as Tending to form
cooperative and interdependent relationships with others 1.

OSS development is a perceptible example of the collaborative community-
based model [84]. The community forms the social dimension of OSS projects
which comprises developers and users [2]. Based on the level of participa-
tion, the role of the community members can be classified within the range of
project leaders (maintainers) and core members (contributors) to active and
passive users [98] [96] [102]. Project leaders are the ones who usually initiate
the project and make the major development decisions. Core members make
significant contributions to a project over time. Depending on task allocation,
core members can further be subdivided into creators (leaders), communicators
(managers), and collaborators [34]. Active users are the part of the community
who report bugs, but do not fix them. Finally, passive users are all remaining
users who just use the system.

Members of an OSS community are not subjected to any strict organiza-
tional rules, regulation or structure. Rather, they voluntarily join and contribute
to the project. These people belong to discrete geographical locations having
significant difference in background, time zone, language and cultural dis-
tances. Thus socialization within the community to contour collaboration, and
cooperation are primarily done using simple communication media like email,
wiki, and chat [101]. It is worth noticing that the medium of communication
varies from project to project. For instance, FreeBSD, NetBSD, and OpenBSD
projects maintain only mailing list archives to discuss the development and
use of the system, to report bugs, and to commit patches for bug fixes and new
features. In contrast, projects like FFMpeg, and Eucalyptus maintain a separate
bug reporting system for tracking fault reporting and resolution. Due to such
variation of communication channels, this thesis considers collecting data from
all the relevant sources specific to a case study project that links to any form
of communication, contribution and collaboration. Table 3.1 summarizes these
data sources. Communication and collaboration among the developers seen by
these communication media are used to define the social dimension, an example
of which can be found in Section 2.2.6.

These data sources are frequently used by the researchers in understanding
social dynamics of OSS projects [37]. Such efforts include, but are not limited
to understanding the nature of collaboration in OSS development project [14]
[96] [66]; examining the community structure, and practices [68] [46] [20]; un-

1http://www.merriam-webster.com/dictionary/social

12

derstanding the motivation, participation, and performance of the community
members [75], and identifying success factors [37] [40] [93].

In this thesis the social dimension comprises the community of developers
and their communication traces as seen by the communication medias used by
the projects.

2.2.2 “Technical” Dimension of OSS Projects

In Merriam-webster dictionary, the term “Technical” is defined as Relating to the
practical use of machines or science in industry, medicine, etc2.

The technical dimension of an OSS project comprises the software codebase,
and the activities concerning its development and maintenance. In other words,
developers in such project exercise their software engineering knowledge and
expertise in a real-life project setup to produce an industry scale software. Thus,
the definition of the term technical fits in the context of OSS projects.

OSS projects often use a number of repositories and corresponding data
management tools to organize the technical artifacts. Frequently used repos-
itories include, source code repositories, bug/issue reports, commit records,
and change logs. In managing changes of these repositories over time, fol-
lowing data management tools are used: CVS/SVN/GitHub for source code
version management, Bugzilla/Zira/GitHub for bug/issue reporting and track-
ing. Many projects use categorical email archives to maintain commit records
and change logs. For instance, FreeBSD, NetBSD, and OpenBSD use CVS and
SVN to version control their code base. Additionally, NetBSD, and OpenBSD
use categorical email archives for tracking commit records, change logs, and
bug reports, whereas FreeBSD uses Bugzilla for bug/issue tracking and resolv-
ing. Data extracted from each of these sources are used to define the technical
dimension, an example of which can be found in Section 2.2.6.

In this thesis the technical dimension consists of the source code for each sta-
ble release of a project, associated commit records, change logs, and issues that
explicitly reveals the architectural dependencies, and the trace of contributions
made by the developers during the evolution of the project.

Research within the technical domain has contributed heavily to under-
standing the complexity of the software development through exploration of
the sources listed above. Focus of such research can be broadly classified along
two axis, namely intra-project analysis and inter-project analysis.

Intra-project studies can be classified further into macro and micro level
studies. Macro level studies explores how the different versions of the codebase
evolve in the case of forked projects [77] for instance. In contrast, micro level
studies mostly study the evolution of the product itself. Such research can
be carried out for instance, to understand the software growth in size (e.g.,
lines of code, commits, comments, commit total) [76] [38] [13] [36], complexity
(e.g., cyclomatic complexity, halstaed complexity), and modularity [80] [91] [86]
of the software. Other studies can focus on the quality perspective of the
software [19] [59] [64], or predict the evolution, maintainability (e.g., refactoring),
defect density of the code base [97] [67] [51].

Inter-project studies, on the other hand, mostly explore the relationships

2http://www.merriam-webster.com/dictionary/technical

13

and dependencies among related projects. Such research includes for instance,
studying update propagation patterns among different OSS projects [70].

2.2.3 “Socio-Technical” Dependency in OSS Projects

As discussed in Sections 2.2.1 and 2.2.2, software development endeavors in-
volve two fundamental elements: a technical and a social component. The
technical component consists of the product to develop, the processes, the tasks,
and the technology employed in the development effort. The social component
consists of the organization and the individuals involved in the development
process, their attitudes and behaviors. In other words, a software development
project can be thought of as a socio-technical system where the two components,
the technical and the social, need to be aligned in order to have a successful
project [16]. In literature such alignment is termed as Socio-Technical depen-
dency. This dependency is prescribed as a natural consequence and desired
property for a collaborative development environment [11]. Thus, an in-depth
understanding on the socio-technical dependency within the context of OSS
projects would enable to develop methods and taxonomy to better understand
such development process [66].

2.2.4 Conway’s Law

Conway’s Law states that organizations which design systems are constrained
to produce systems which are copies of the communication structures of these
organizations [21]. That is, the software product architecture should reflect the
organizational structure of its development team [96] [67]. In [51], Conway’s
Law is considered homomorphic and thus claimed to be true in reverse as well.
This implies that the communication patterns among the developers should
reflect the architectural dependency in the developed software. In literature, this
law has been taken as a ground for investigating socio-technical dependencies in
OSS projects [72], and advice that such investigation should be carried out at task
level to device better team coordination and efficient resource management [43].

However, the question, Does Conway’s law matter in the modern era of soft-
ware development? remains central to the research community. As reported
in [42], Conway’s law still matters in software development as product quality
is strongly affected by the organizational structure. Also, with the advent of
global software engineering where development teams are distributed across
the world, the impact of organizational structure on Conway’s law and its
implications on quality is significant [57].

This research takes this law as one of the basis for defining and conceptu-
alizing Socio-technical congruence, and to derive the mathematical model to
measure such congruence.

2.2.5 Socio-Technical Congruence

A key concern in studying socio-technical dependency is how to examine the
relationship between the two dimensions. One way to do this is to measure
Socio-Technical congruence, which is based on the Conway’s law and the orga-
nizational theory. Both these theories offer a conceptual framework to define
Socio-Technical congruence. As a side note, organizational theory identifies the

14

fit or match between a particular organizational design and the organization’s
ability to carry out a task [12]. Current research in this track focuses on two
factors: temporal dependencies among tasks that are assigned to organizational
groups and the formal organizational structure as a means of communication
and coordination [15] [69].

Capitalizing on these two theories, this thesis conceived the definition of
socio-technical congruence as “the match between the coordination require-
ments established by the dependencies among tasks and the actual coordination
activities carried out by the developers”. In other words, the concept of congru-
ence has two components: the coordination needs determined by the technical
dependencies within the technical dimension, and the actual coordination ac-
tivities that took place among the developers within the social dimension. The
mathematical model proposed and evaluated in this thesis is presented in Sec-
tion 2.2.6.

2.2.6 Measuring Socio-Technical Congruence

This section defines in brief the exact instantiation of the concepts presented
earlier to measure socio-technical congruence. This approach is used in publica-
tions [III], [IV], [V] and [VIII] that are included in this thesis.

Explicit Architecture
The explicit architecture of a software presents the relationships among com-
ponents of the software (e.g., code files, modules or packages) based on the
actual design and implementation. In this thesis, functional dependency, at-
tribute referencing and header file inclusion dependency at code file level are
used to derive the Explicit Architecture of a software product. The produced
architecture corresponds to the technical dimension of the project. This study
derives the explicit architecture from the source code of each stable release of the
following OSS projects: FreeBSD, NetBSD, OpenBSD, FFMpeg, and Eucalyptus.
Figure 2.1(a) shows a hypothetical explicit architecture in which code files F1
and F2 exhibits a relationship with edge weight of 2, and code files F1 and f3
have a relationship with weight 1. The weight in this architecture designates
the types of relationships identified for a pair of code files.

For the publication [III] and [IV], the explicit architecture was abstracted to
get the package level explicit architecture. In this architecture, package P1 and
P2 have a relationship if code file F1 in package P1 has a dependency relation-
ship with a file F2 in package P2 or vice-versa. The relation weight between
packages P1 and P2 reflects the total number of such relation found among the
code files in P1 and P2.

Explicit Coordination Network
The explicit coordination network is a social network in which two developers
have a relation if they have direct communication history as recorded in the
mailing archives representing both the social and technical interactions among
the developers. Thus, this network reveals the actual communication and col-
laboration that took place among the community members at any given point
of time. In this thesis, developers coordination network is derived based on
mailing archives that corresponds to both technical (e.g., development, commits,
release planning, bug reporting and resolution) and social (e.g., general email

15

conversations) interactions. Figure 2.1(b) shows a hypothetical coordination net-
work in which developers D1 and D2 have a relation with weight 15, whereas
developers D2 and D3 have a relation with weight 20. Each relation weight in
this network shows the number of interactions that have taken palace between
a pair of developers. For this study, the explicit coordination network defines
the social dimension of an OSS project.

Figure 2.1: Explicit Architecture and Coordination Network

Implicit Architecture
The implicit architecture defines an architecture of the software where any two
components (e.g., packages or code files) are related if there are developers who
have either (a) contributed to both components, or (b) have direct communica-
tion at organizational level (e.g., a one-to-one email conversation). For instance,
consider Figure 2.2(a). According to this figure, developer D1 has contributed to
code files F1 and F2, developer D2 has contributed to code file F2, and developer
D3 has contributed to code file F3. Also, note that developers D1, D2 and D3
have communication as shown by the edges between them. Thus, according
to the definition, code files F1 and F2, and and F2 and F3 are linked to each
other in the Implicit Architecture as shown in Figure 2.2(b). In this figure, edge
weight between two code files defines the number of instances in which both
the code files receive common contribution (according to the definition).

In the context of this thesis, an implicit architecture reveals the should be
dependency among the code files based on the interaction history of their
contributing developers at organizational level. Thus, a pairwise comparison of
relations between implicit and explicit architectures would effectively reveal
the level of congruence within that community.

Figure 2.2: Implicit Architecture derived from Explicit Coordination Network

16

Implicit Coordination Network
The implicit coordination network is a developer relation network in which two
developers have a relation if they have contributed either (a) to a common code
file or (b) to the code files that have direct relations in the Explicit Architecture.
In other words, this network reveals the coordination patterns that should be
devised by the technical dependency in the code base. For instance, consider
that developer D1 has contributed to code files F1 and F2, developer D2 has
contributed to code file F2, and developer D3 has contributed to code file F3 (as
shown in Figure 2.3(a)). Hence, according to the definition, developers D1 and
D2, and D1 and D3 have link with each other in implicit coordination network
as shown in 2.3(b). In this figure, edge weight between two developers defines
the number of instances in which both of them have common contribution
(according to the definition).

In the context of this thesis, an implicit coordination network reveals the
actual communication and coordination need among the developers based
on their contribution or task responsibility. Thus, a pairwise comparison of
relations between an implicit coordination network to that of the explicit one
would effectively reveal the level of congruence within that community.

Figure 2.3: Implicit Coordination Network derived from Explicit Architecture

Measuring Socio-Technical Congruence
Congruence was measured following the similarity measure presented in equa-
tion 2.1. This measure is analogous to fit / congruence measure used in organi-
zational theory method [18] and to the Conway’s Law.

Congruence =
|RefA

⋂
AnalogousA|
|RefA|

× 100 (2.1)

In the above equation, RefA is the reference architecture or network (either
explicit or implicit), and AnalogousA is the analogous architecture or network
(either explicit or implicit) with which congruence will be measured.

This equation measures congruence between the two given architectures
or networks with respect to the reference one, RefA. Therefore, the numerator
of equation 2.1 identifies the commonalities between the two given architec-
tures, then divided by the size of the reference architecture and expressed as a
percentage.

As an example, consider the explicit architecture presented in Figure 2.1(a)
and the implicit architecture shown in Figure 2.2(b). A congruence measure

17

between the two using equation 2.1, would be as follows,

Congruence = |[EF1−F2,EF1−F3]
⋂
[EF1−F2,EF2−F3]|

|[EF1−F2,EF1−F3]| × 100 = 1
2 × 100 = 50%

Here, the explicit architecture is taken as RefA and the implicit architecture
is considered as AnalogousA; result reveals 50% congruence between the two
given architectures.

2.2.7 Forking

In the context of open source development, forking occurs when a part of a
development community (or a third party not related to the original project)
starts a completely independent line of development based on the source code
of the original project [77]. To be considered as a fork, a project should have the
following characteristics:

• A new project name.

• A branch of the software.

• A parallel infrastructure (web site, version control system, mailing lists,
etc.).

• A new developer community.

Based on this definition, the following set of relationships are proposed
within a pair of forked projects [IV]: (a) parent-child, in which one project is
forked from the other, (b) siblings, if two projects are forked from the same
parent project, and (c) lineages, for all decedent relationships in which (a)
and (b) do not hold. For example, in Figure 3, NetBSD and OpenBSD have a
parent-child relationship, FreeBSD and NetBSD are sibling projects, whereas
FreeBSD and OpenBSD are the lineages of 386BSD. The Figure 2.4 shows these
relationships among the BSD projects with rough time line of their forking.

Figure 2.4: Rough time line of the forked BSD projects.

18

2.2.8 Resemblance

According to the Merriam webster dictionary the term resemblance3 refers to the
state of looking or being like someone or something else. In other words, resemblance
refers to some distinctive properties that makes one person or thing like another.

In the context of this thesis, the given definition of resemblance is adopted to
measure how similar two OSS projects are if they are both being contributed to
by the same developer(s). The set of properties selected for defining resemblance
/ similarity between projects are programming language, project size (in LOC),
license, project domain and rating. These properties are often cited by popular
forges (e.g., SourceForge4) for categorizing FLOSS projects. The hypothesis here
is that if OSS developers contribute to several projects, simultaneously or at
different times, then there might have resemblance among those projects.

This study will be significant from diverse perspectives. For instance, com-
panies may identify who influences and controls the evolution of a specific
project of interest [1], explore the social structure of FLOSS development [24], or
simply study what motivates people to join open source communities [8].

2.2.9 Software Ecosystem

A software ecosystem in general is the interaction of a set of actors on top of a
common technological platform that results in a number of software solutions
or services [62]. In literature, different perspectives are taken while defining a
software ecosystem. This thesis adopts pure technical perspective. Two widely
adopted definitions within this perspective are presented bellow,

According to Messerschmitt and Szyperski,
A software ecosystem refers to a collection of software products that has some given

degree of symbiotic relationships [63].

According to Lungu et al.,
A software ecosystem is a collection of software projects which are developed and

evolve together in the same environment [60].
This thesis views an ecosystem as a collection of software projects that

evolves in the same environment and have some given degree of symbiotic
relationships.

2.2.10 Tooling

There exists research works that acts as a driving force in proposing the frame-
work, and tool support in answering RQ.4 under research target Proposals. For
instance, the proposal for the framework targeting towards gaining full fledged
automation of OSS data analysis is motivated by the evolution of quality mod-
els [35]. There are three generations of quality models that are distinct from
each other according to the degree of automation they offer in exploring and
analyzing data sources. For the first generation approaches, the tasks of data
gathering and evaluation are mostly manual. For instance, first generation qual-
ity models for OSS (e.g., OpenBRR, QSOS) falls within this category [35]. The

3http://www.merriam-webster.com/dictionary/resemblance
4www.sourceforge.net

19

second generation approaches offer semi-automated process. A representative
example would be the second generation quality models (e.g., QualOSS) [35].
Following the trend towards the automation of OSS data analysis approaches, it
can be argued that eventually the third generation approaches would endeavor
fully automated methods and techniques [35], which motivates in proposing
the framework [VII].

Tool implementation to comprehend OSS dynamics offer several alterna-
tives, each of which addresses specific challenges. For instance, CodeSaw [33]
provides a time series representation of social interaction data in juxtaposed
displays. Tesseract [81] explores the multi-perspective relationships in a project
for a user-selected time period (i.e., the evolution), and represents them via four
juxtaposed displays. In [5], FASTDash was proposed as an interactive conflict
management tool which provides a spatial representation of the shared code
base by highlighting team members current activity. CollabVS [26] addresses
this issue at editing time, and provides a visual representation of conflicting
code and a communication mechanism. Palantir [82] performs similar task by
graphically displaying the shared workspace to the developers with the infor-
mation of what others are doing, and calculating the severity of such activities.
Also Augur [30] provides a line oriented view of the source code with colors for
each pixel line indicating the location of the modification work and how recently
it was conducted. In [89], Ariadne utilizes call-graph approach to visualize so-
cial dependency of the developers due to code sharing. Similarly, Expertise
Browser [65] determines developers expertise from previous contributions. Yet
none of these tools effectively explores graph theoretic methods though the
unified modeling of OSS repository data for analysis and visualization. How-
ever, such approach is appropriate for OSS projects as graph structures are most
suitable for analyzing data that exhibits inherent relationships. This need sets
the favorable ground for the design and implementation of the Binoculars [VIII]
and Pomaz tool [VII].

20

Chapter 3

Research Approach

In the quest to answer the research questions (presented in Section 1.2), it
is essential to utilize certain research methodologies. Because the research
methodology provides the link between research questions and the data used to
answer them. Thus, it is indispensable to select a methodology that will provide
the necessary data to answer the stated research questions. This chapter gives a
synopsis of the methodological approaches that are used in this thesis.

The research presented in this thesis employs an empirical research method
[100]. As dictated in [100] and [79], empirical research offers the opportunity
to verify complex human behavior and their interactions with technology in a
complex real life setup through observations and experiences. This method is
also one of the highly practiced research approach in software engineering [79].

As this research primarily focused on understanding the mutual dependency
between the social and technical dimensions within the real world setup, and
belongs to software engineering domain, this thesis utilizes empirical research
methodology.

This chapter is organized as follows, the overall landscape of the empirical
research methods is presented in Section 3.1, and the methods applied in the
context of this thesis are described in Section 3.2. Data collection and analysis
approaches are highlighted in Section 3.3 and Section 3.4, respectively. Finally,
the adoption of the research approaches per included publication is summarized
in Section 3.5.

3.1 Basic Research Approach

Empirical research can be classified in accordance to two distinct paths: fixed
and flexible [78] research design. The fixed research design is also known as
quantitative research, whereas the flexible research design is often termed as
qualitative research.

The fixed research design (or quantitative research) is a highly pre-specified
research design, having a strong grab on what to do and how to do in advance.
In this research approach a conceptual framework or theory needs to be de-
veloped before getting into the main part of the research study. Consequently,
all data supporting the study need to be collected before starting to analyze it.
Quantitative research is generally used to derive relations between variables,

21

for instance, quantifying a relations or comparing two or more groups, for the
purpose of explaining, predicting, or controlling the phenomena. Statistical
methods are commonly used to establish such relations and confirm hypotheses,
with generalized findings.

The flexible research design (or qualitative research), on the other hand,
builds on the assumption that reality cannot be divided into discrete measur-
able variables. Hence, flexible research allows changing parameters of the
design based on new information revealing during the course of the study. This
includes modification of the research questions or data sources for example. The
motive of qualitative research is to seek better understanding and explaining
complex situations in their natural setting, where issues of the real world are
described. Data used for qualitative research can be both qualitative and quanti-
tative. Within this research paradigm, observations and inductive reasoning are
used to build theory from the ground up.

The nature of this thesis is qualitative, even though quantitative data have
been collected and analyzed. The contributions of this thesis are the empirical
investigation of socio-technical dependency within the context of OSS projects,
and offering novel models, methods, framework and tool support to compre-
hend the implication of such dependency. As such goals lead to gaining an
in-depth understanding on the topic, qualitative research is more suitable than
research in the breadth (quantitative research design).

3.2 Research Methods

There are several research methods for conducting empirical research in the
domain of software engineering. Commonly used research methods include,
but are not limited to, case studies [79], surveys [29], systematic literature review
[52], constructive research and experiments [71] [100], and action research [99].
The research methods selected for this thesis were systematic literature review,
case studies, and constructive research.

3.2.1 Systematic Literature Review (SLR)

Evidence-based Software Engineering (EBSE) [53] relies on aggregating the best
available evidence to address engineering questions posed by researchers. A
recommended methodology for such study is the Systematic Literature Review
(SLR) [53]. An SLR is meant to identify, evaluate, and synthesize all available
researches relevant to a particular research question, or phenomenon [53]. Re-
search study contributing to a SLR is termed as primary study, whereas the SLR
itself is called a secondary study.

An SLR can be exploited to serve a wide range of research purposes. For
instance, it can be used for identifying gaps in the current research and develop
a framework / background for appropriately positioning new research activities.
Alternatively, it can be used to identify the extent to which current empirical
evidences support / contradict theoretical hypotheses [52] [53].

The principal rationale in undertaking an SLR is to ensure that at every step
of the process that it does not patronage any predefined research hypothesis,
and report research that supports it [52]. Therefore, an SLR must be undertaken
in accordance with a predefined review strategy / protocol [52].

22

A review protocol illustrates the method that will be used to carry out an SLR,
and must be defined and peer reviewed before commencing the actual review
[52]. The protocol should define the following elements [52] [53]: rationale and
the research questions to be investigated; search strategy for identifying primary
studies (e.g., search terms, forums relevant to the study); inclusion or exclusion
criterion for the primary study; and finally, strategy for data extraction and
synthesis.

In this thesis the SLR is conducted to meet the first research target, the
Theoretical baseline (see Figure 1.2). The motive here is to gain a deeper insight on
what constitutes the study of the social, technical and socio-technical dimensions
of OSS projects, to identify gaps in current research, and thus to form the ground
for initiating this research. Therefore, as research method, an SLR is the logical
choice for this part of the thesis.

To carry out the SLR [I], a review protocol was adopted following the guide-
lines for conducting SLR in software engineering [52] [23].

3.2.2 Case Study

A case study is an in-depth investigation of a phenomenon in its real-life con-
text [103] focusing on a specific case. The cases are objects of the real world
which are studied in their natural setting, i.e., real software organizations, soft-
ware projects, a product, a group of people, or an individual. Case studies
are typically flexible design studies and well suited for software engineering
research [79].

Software engineering research is a multidisciplinary discipline. On one
hand, it studies activities like development, operation, and maintenance of the
software and related artifacts [48]; on the other hand, it deals with individuals,
groups and organizations that participate in those activities. Additionally, social
and geo-political conditions that affect such process are also studied. Therefore,
case study research can be effectively used to address many research questions
in software engineering [79]. Accordingly, OSS projects, encompassing the
multidisciplinary perspectives and the complexity of software engineering, are
well suited for case study research.

However, realization of a case study method is specific to the research focus,
as different approaches within case study research are targeted to serve different
purposes [79]. For this thesis, positivist case study method is adopted [54].
A positivist case study searches evidence for formal propositions, measures
variables, tests hypotheses, and draws inferences from a sample to a stated
population [54].

In the context of this thesis, case study research is used to serve the research
targets Measurement, and Empirical insight. Note that the focus of Measure-
ment research target is to propose models (i.e., OSS data model and math-
ematical model) and associated methods. The data model mimics both the
social and technical dimensions of OSS projects and supports exploring their
inter-relationships. Whereas, the proposed mathematical model measures socio-
technical dependency by mobilizing the methods on the data model. Then,
under the Empirical insight target, the proposals are tested by measuring socio-
technical congruence for a number of compositions of OSS projects (defined in
Section 1.2). As the research targets contemplate the purpose of a positivist case
study research, thus this approach is selected for this part of the thesis.

23

3.2.3 Constructive Research Approach (CRA)

A constructive research approach (CRA) can be defined as “a methodology
that creates innovative constructions to solve real world problems and thus
contributes to the field of study where it is applied” [61] [71]. This research
approach is widely used within the paradigm of software engineering and
computer science [50].

According to [61] [71], an idealized model of CRA should encompass the
following building blocks: (a) find a practically relevant (real-life) problem
which requires solution; (b) obtain an understanding on the topic and on the
problem; (c) design on innovative artifact that is intended to solve the original
problem; (d) implement and demonstrate that the solution works; (e) make
a theoretical contribution through carefully linking the solution to existing
theoretical knowledge; and (f) examine the scope of applicability.

In practice, the steps do not follow each other in a simple sequence; rather
the process is iterative and sometimes also recursive.

In this thesis CRA is used to address the Proposal research target (as shown
in Figure 1.2). Recall that the focus here is to present architectural design and
tool implementations that put the proposed models, methods and framework
into practice. The implemented tools are then tested with real life OSS project
data. This verification demonstrates the suitability of the proposals and the
tools in understanding the socio-technical dependency within the context of
OSS projects. Therefore, CRA as a research method seems a good fit for this part
of the thesis.

3.3 Data Collection Method

The collected data in empirical studies can be quantitative (e.g., numbers and
classes) or qualitative (e.g., words, descriptions, and pictures). For this thesis,
mostly qualitative research methods are applied, which tend to be based on
qualitative data, however quantitative data have also been collected.

There are a number of data collection methods to be choose from, and the
choice should dependent on the information sought after [147]. In this work, two
data collection methods are followed. These methods are most commonly used
for the selected research methods, and are highly accepted by the concerned
research community [78] [37] [93]. These are described next.

3.3.1 Systematic Literature Search Strategy

Input to an SLR are the primary studies on the topic of interest. Searching and
selection of the primary studies must be carried out according to the guidelines
stated in the review protocol. This is required to reduce selection bias [52]. The
study selection criteria is set to sort out the primary studies that are highly
relevant to the research questions [52].

In order to formulate selection criteria for primary studies, a series of steps
are needed to be executed. This includes: (a) defining the qualifying criteria
(both inclusion and exclusion) for the primary studies. These criteria should
be defined in relation to the research questions; (b) defining the search strategy
that should list the relevant journals and conferences, search keywords and

24

search strings for individual digital library. Search strategy might include only
automated keyword search or a manual search, or both; and finally, (c) review
and consult the search results with the domain experts to reduce selection
bias [52] [I].

Meticulous interpretation and implementation of these steps are discussed
in publication [I].

3.3.2 Archival data

An archive, according to Oxford dictionary1, refers to a collection of historical
documents or records providing information about a place, institution, or group
of people. In the realm of software development organizations, archival data
records refer to, for instance, meeting minutes, documents from different devel-
opment phases, organizational charts, communication and development history
log, versions of the code releases and previously collected measurements in an
organization [78]. For efficient management and organization of archival data,
configuration management tools are needed. Such tools offer collection, storage,
and tracking of changes over different versions of a document.

Advantages of using archival data is many. They include for instance,
taping into extensive data sets that are often drawn from large representative
samples. These data is recorded and maintained, thus having a clear chain of
modification history. Such volume of historical data is well beyond the capacity
of individuals to process (or even produce) and often cannot be retrieved via
any other source. Additionally, with advancement in the data management
and revision control systems, data can to be stored with good documentation,
including full code-books describing the variables and codes that have been
used, and easily accessible recording methods [78]. However, completeness and
quality are the two major concerns with archival data [79]. Archives offer only
the data that is recorded, which is beyond the capacity of researchers to assess
for completeness and quality. This might raise limiting factor in using archival
data for research, unless necessary measures are taken to mitigate them.

In this thesis, archival data is used to conduct case study and constructive
research, because, OSS projects often consist of a wide range of repositories, com-
ing with a large number of versions reflecting their development and evolution
history [II]. While it is a challenge to acquire tacit knowledge from developers
and users of such projects due to their distributed nature, OSS communities
often produce a rich set of repositories as a byproduct of their development
activities. In addition to the source code and other software artifacts, there are
repositories that contain the development history, such as bug reports, mailing
lists, and revision history logs [II]. These repositories are maintained through
data management and revision control systems [II].

OSS projects often maintain their project data using either of the following
means: use own data management systems and make them publically avail-
able through internet, or use third party hosting facilities to host and maintain
project data. These sources often contain a plethora of information on both
the underlying software and the associated communication and development
process [22] [3]. In literature [56] a great emphasis is given to leveraging these
repositories for deriving technical dependencies as well as developers’ coordi-

1http://www.oxforddictionaries.com/definition/english/archive?searchDictCode=all

25

nation patterns. The repository data is often longitudinal, allowing for analysis
along the whole project evolution phases. These data sources are highly ac-
cepted and utilized medium for empirical studies on OSS projects [32] [37] [93].
In Section 2.2.1 and Section 2.2.2 a discussion on the available data sources is
presented in relation to the case study projects. Additionally, data from the
Ruby Gems Ecosystem and the OHLOH repository are also collected. Table
3.1 offers a summary listing on these used data sources, and link to included
publications in which further details can be found.

3.4 Data Analysis Methods

Data analysis for quantitative and qualitative data is conducted in different
ways. Since the research methods selected for this thesis are qualitative in
nature, qualitative data analysis methods are used. The following data analysis
methods were used.

3.4.1 Data Synthesis for Systematic Literature Review

Data synthesis in an SLR involves collating and summarizing the data collected
from primary studies [52]. Activities comprising data synthesis should be spec-
ified in the review protocol. Extracted information (intervention, population,
context, sample sizes, outcomes, study quality) need to be tabulated. This
tabulation of information should be consistent with the review questions, and
highlight similarities and difference between study outcomes. Synthesis can
be both quantitative and qualitative (or descriptive). However, it is sometimes
possible to complement a descriptive synthesis with a quantitative summary.
For this thesis, the later approach is followed.

3.4.2 Content Analysis

The focus of content analysis is to gather information and generate findings.
The gathered information (content) can be any documented information and
different categories containing content are constructed for analysis.

A content analysis can either be inductive or deductive analysis [29]. In
inductive analysis, dominant themes of the collected data is looked for and
identified. By using inductive reasoning and experience the researcher reviews
the data for unifying ideas. On the other hand, in deductive analysis, the
researcher preselects the themes and sub-themes, preferably in the form of
research questions. The researcher then walks through the collected data and
records every support relevant to the research questions. This analysis of the
data can be supported by computer aided data analysis programs [78].

For the purpose of this thesis, deductive content analysis approach has been
used.

3.5 Research Classification

The results in this thesis have been reached through the use of the presented
research design and methods. Table 3.2 illustrates the link between each publi-

26

Ta
bl

e
3.

1:
O

SS
da

ta
so

ur
ce

s
us

ed
in

th
is

th
es

is

So
ur

ce
Ty

pe
D

at
a

So
ur

ce
s

Pu
rp

os
e

C
ol

le
ct

ed
Fr

om
Pu

rp
os

e
in

th
e

th
es

is
R

ef
.

Pa
-

pe
r

P
ro

je
ct

’s
in

te
rn

al
so

ur
ce

s

V
er

si
on

C
on

tr
ol

Sy
st

em
(C

V
S,

SV
N

)

M
ai

nt
ai

n
an

d
tr

ac
k

ch
an

ge
s

of
th

e
so

ur
ce

co
d

e
ov

er
th

e
re

le
as

es
.

Fr
ee

B
SD

,
N

et
B

SD
,

O
p

en
B

SD
,

FF
M

p
eg

,
E

u
ca

-
ly

pt
us

.

T
he

so
u

rc
e

co
d

e
fo

r
ea

ch
st

ab
le

re
-

le
as

e
of

th
e

se
le

ct
ed

p
ro

je
ct

s
w

as
do

w
nl

oa
de

d,
pa

rs
ed

an
d

an
al

yz
ed

.

[I
II

]
[I

V
]

[I
I]

[V
II

I]
[V

II
I]

E
m

ai
l

A
rc

hi
ve

s
(d

ev
el

op
er

)
To

tr
ac

e
ta

sk
-o

ri
en

te
d

co
m

m
u

ni
ca

ti
on

an
d

co
-

or
d

in
at

io
n

ac
ti

vi
ti

es
of

th
e

d
ev

el
op

er
s

d
u

ri
ng

pr
oj

ec
te

vo
lu

ti
on

.

Fr
ee

B
SD

,
N

et
B

SD
,

O
pe

nB
SD

,F
FM

-
pe

g,
Eu

ca
ly

pt
us

,
G

St
re

m
er

.

Th
e

co
m

m
un

ic
at

io
n

re
co

rd
s

of
ea

ch
d

ev
el

op
er

ha
s

be
en

tr
ac

ke
d

(b
ot

h
te

ch
ni

ca
la

nd
no

n-
te

ch
ni

ca
l)

.

[I
II

]
[I

V
]

[I
I]

[V
II

I]
[V

II
I]

C
V

S
/

SV
N

C
om

m
it

s
To

tr
ac

e
co

nt
ri

bu
ti

on
s

fr
om

ea
ch

d
ev

el
op

er
.I

n
so

m
e

pr
oj

ec
ts

,c
om

m
it

re
co

rd
s

ar
e

m
ad

e
av

ai
l-

ab
le

th
or

ou
gh

sp
ec

ifi
c

em
ai

la
rc

hi
ve

s.
e.

g.
,B

SD
pr

oj
ec

ts
.

Fr
ee

B
SD

,
N

et
B

SD
,

O
p

en
B

SD
,

FF
M

pe
g.

C
om

m
it

s
re

co
rd

s
fo

r
ea

ch
d

ev
el

-
op

er
is

co
lle

ct
ed

.
[I

II
]

[I
V

]
[I

I]
[V

II
I]

[V
II

I]
B

u
g

re
p

or
ts

(e
.g

.,
B

u
gz

ill
a,

Z
ir

a)

To
tr

ac
e

re
p

or
te

d
bu

gs
an

d
th

ei
r

re
so

lu
ti

on
.

A
ga

in
,f

or
so

m
e

pr
oj

ec
ts

,t
he

se
re

po
rt

s
ar

e
m

ad
e

av
ai

la
bl

e
th

or
ou

gh
sp

ec
ifi

c
em

ai
la

rc
hi

ve
s.

e.
g.

,
BS

D
pr

oj
ec

ts
.

Fr
ee

B
SD

,
N

et
B

SD
,

O
p

en
B

SD
,

FF
M

p
eg

,
E

u
ca

-
ly

pt
us

.

B
u

g
re

p
or

ts
su

bm
it

te
d

an
d

re
-

so
lv

ed
by

ea
ch

co
m

m
u

ni
ty

m
em

-
be

r
(e

it
he

r
d

ev
el

op
er

or
u

se
r)

is
re

co
rd

ed
.

[I
II

]
[I

V
]

[I
I]

[V
II

I]
[V

II
I]

E
m

ai
l

A
rc

hi
ve

s
(u

se
rs

)
To

tr
ac

e
us

er
co

m
m

un
ic

at
io

n
an

d
co

nt
ri

bu
ti

on
hi

st
or

y.
FF

M
p

eg
,

E
u

ca
-

ly
pt

us
.

Fo
r

ea
ch

us
er

of
th

e
so

ft
w

ar
e,

em
ai

l
co

m
m

un
ic

at
io

n
hi

st
or

y
is

co
lle

ct
ed

.
[I

I]
[V

II
I]

G
em

Sp
ec

i-
fi

ca
ti

on
,

G
it

is
su

es
an

d
p

u
ll

re
qu

es
ts

To
tr

ac
e

G
em

s
d

ep
en

d
en

cy
,

an
d

d
ev

el
op

er
’s

co
nt

ri
bu

ti
on

an
d

co
lla

bo
ra

ti
on

.
R

u
by

G
em

s
Ec

os
ys

te
m

.
Sp

ec
ifi

ca
ti

on
fo

r
ea

ch
G

em
(e

qu
iv

-
al

en
t

of
a

P
ro

je
ct

)
in

th
e

ec
os

ys
-

te
m

is
co

lle
ct

ed
.

A
sp

ec
ifi

ca
ti

on
co

nt
ai

ns
m

et
ad

at
a

th
at

in
cl

ud
e

th
e

ge
m

na
m

e,
d

ep
en

d
en

ci
es

to
ot

he
r

ge
m

s,
an

d
U

R
Is

fo
r

th
e

ge
m

.I
ss

ue
s

an
d

pu
ll

re
qu

es
ts

su
bm

itt
ed

an
d

re
-

so
lv

ed
by

th
e

de
ve

lo
pe

rs
of

a
G

em
ha

ve
be

en
co

lle
ct

ed
.

[V
]

E
xt

er
na

l
so

u
rc

es
(e

.g
.,

O
H

L
O

H
,

So
u

rc
e-

Fo
rg

e)

O
H

LO
H

O
H

L
O

H
is

a
fr

ee
,

p
u

bl
ic

d
ir

ec
to

ry
of

O
SS

pr
oj

ec
ts

an
d

th
e

re
sp

ec
ti

ve
co

nt
ri

bu
to

rs
.I

tc
ol

-
le

ct
s

an
d

m
ai

nt
ai

ns
de

ve
lo

pm
en

ti
nf

or
m

at
io

n
of

ov
er

40
0

th
ou

sa
nd

FL
O

SS
pr

oj
ec

ts
,a

nd
pr

ov
id

e
an

al
ys

is
of

bo
th

th
e

co
de

s
hi

st
or

y
an

d
on

go
in

g
u

p
d

at
es

,a
nd

at
tr

ib
u

ti
ng

th
os

e
to

sp
ec

ifi
c

co
n-

tr
ib

u
to

rs
.

It
ca

n
al

so
ge

ne
ra

te
re

p
or

ts
on

th
e

co
m

po
si

ti
on

an
d

ac
ti

vi
ty

of
pr

oj
ec

tc
od

e
ba

se
s.

T
he

se
d

at
a

ca
n

be
ac

ce
ss

ed
an

d
d

ow
nl

oa
d

ed
th

ro
ug

h
a

se
to

fo
pe

n
A

P
Iw

hi
ch

ha
nd

le
s

U
R

L
re

qu
es

ts
an

d
re

sp
on

se
s.

O
H

LO
H

C
ol

le
ct

ed
pr

oj
ec

td
at

a
(e

.g
.,

do
m

ai
n,

si
ze

,
lic

en
se

,
la

ng
u

ag
e)

an
d

d
e-

ve
lo

p
er

co
nt

ri
bu

ti
on

re
co

rd
(e

.g
.,

ku
d

o
ra

nk
,t

ot
al

co
nt

ri
bu

ti
on

,c
on

-
tr

ib
ut

ed
pr

oj
ec

tl
is

t,
nu

m
be

ro
fc

om
-

m
it

s)
.

[V
I]

[V
II

]

27

cation to that of the research design, research methods, data collection methods,
and data analysis methods.

Publication [I] is a review publication. The primary focus of this study is
to classify and structure the state of the art literature in the context of OSS
evolution and assess the coverage and, find gaps in the current research. For
this study, systematic literature review method is used. However, each of the
other studies is accompanied with related literature review either as a starting
point for designing the study or as a validation step to compare the outcome
against existing knowledge. The difference lies in that for those studies a less
systematic process was applied in searching and analyzing related literature
than for publication [I].

Case study research is the primary research method applied in publications
[III], [IV], [VI], and [V]. Archival data (as presented in Section 3.3.2) are analyzed
with content analysis approach. Six OSS projects, the OHLOH repository and
one ecosystem (as listed in Table 3.1) are selected as case study subjects. Selection
of these cases are mostly guided by the following criteria: (a) the code base of
these projects have undergone continuous development, improvement, and
optimization for past ten to twenty years, (b) these projects have been developed
and maintained by a large team of individuals, (c) the properties of a forked
project hold for the three BSD projects, (d) these projects have extensively been
used in earlier research on the evolution of OSS projects [49] [44], and (e) results
reported in this study can be stressed to OSS projects having similar properties,
e.g., forking, domain, community structure, and size.

The basic theme of these publications is to examine and evaluate the extent
to which socio-technical dependency holds at different abstraction levels of OSS
projects. For this, a detailed examination of the technical artifacts as well as
communication history at organizational level is presented; for OSS projects,
such data can only be collected from project archives, thus archival data and
content analysis methods seem most suitable for these studies.

Constructive research approach has been applied in publications [II], [VII]
and [VIII]. Thematically, these publications propose models, methods, and
framework for sculpting, analysis and visualization of the socio-technical per-
spectives of OSS projects. Additionally, to demonstrate the applicability of the
proposals corresponding tools (e.g., Binoculars and Pomaz) are built and tested
with the OSS project data.

28

Ta
bl

e
3.

2:
R

es
ea

rc
h

cl
as

si
fic

at
io

n
Pu

bl
ic

at
io

n
R

es
ea

rc
h

D
es

ig
n

R
es

ea
rc

h
M

et
ho

ds
D

at
a

C
ol

le
ct

io
n

M
et

ho
d

D
at

a
A

na
ly

si
s

M
et

ho
ds

[I
]

Q
ua

lit
at

iv
e

Sy
st

em
at

ic
Li

te
ra

tu
re

R
ev

ie
w

Sy
st

em
at

ic
L

it
er

at
u

re
Se

ar
ch

St
ra

te
gy

D
at

a
Sy

nt
he

si
s

fo
r

SL
R

[I
I]

Q
ua

lit
at

iv
e

C
on

st
ru

ct
iv

e
R

es
ea

rc
h

A
p

-
pr

oa
ch

A
rc

hi
va

ld
at

a
D

ed
uc

ti
ve

C
on

te
nt

A
na

ly
si

s

[I
II

]
Q

ua
lit

at
iv

e
C

as
e

St
ud

y
(P

os
it

iv
is

t)
A

rc
hi

va
ld

at
a

D
ed

uc
ti

ve
C

on
te

nt
A

na
ly

si
s

[I
V

]
Q

ua
lit

at
iv

e
C

as
e

St
ud

y
(P

os
it

iv
is

t)
A

rc
hi

va
ld

at
a

D
ed

uc
ti

ve
C

on
te

nt
A

na
ly

si
s

[V
]

Q
ua

lit
at

iv
e

C
as

e
St

ud
y

(P
os

it
iv

is
t)

A
rc

hi
va

ld
at

a
D

ed
uc

ti
ve

C
on

te
nt

A
na

ly
si

s
[V

I]
Q

ua
lit

at
iv

e
C

as
e

St
ud

y
(P

os
it

iv
is

t)
A

rc
hi

va
ld

at
a

D
ed

uc
ti

ve
C

on
te

nt
A

na
ly

si
s

[V
II

]
Q

ua
lit

at
iv

e
C

on
st

ru
ct

iv
e

R
es

ea
rc

h
A

p
-

pr
oa

ch
A

rc
hi

va
ld

at
a

D
ed

uc
ti

ve
C

on
te

nt
A

na
ly

si
s

[V
II

I]
Q

ua
lit

at
iv

e
C

on
st

ru
ct

iv
e

R
es

ea
rc

h
A

p
-

pr
oa

ch
A

rc
hi

va
ld

at
a

D
ed

uc
ti

ve
C

on
te

nt
A

na
ly

si
s

29

30

Chapter 4

Introduction to Included
Publications

Next, the main results and contributions of this thesis are summarized per
included publication. In the following sections, the main results causative to
each research question are presented. The discussed results are based on the
observations and conclusions drawn in the included papers. Table 4.1 presents
the synopsis of the results in relation to the research targets and corresponding
research questions. Pointer to the publications and to the sections of the intro-
ductory part of this thesis that offer elaborated discussion are listed in column 3
of the table.

Additionally, publications presented in this chapter are roughly ordered in
accordance to the logical ordering of the research targets presented in Figure 1.2.
To help readers navigate thorough the publications, and to draw link between
reported results and the research targets, an explicit mapping between the two
(as shown in Figure 1.2) is offered bellow,

Publication [I] reports the results obtained from the SLR that primarily
targeted to address RQ.1 formulated under the theoretical basis target. This study
synthesizes the study results under the three dimensions of OSS projects to set
the basis of this study, and to forecast future direction of works under each
of the dimensions. In Publication [VII] these results are extended further to
formally define the dimensions.

Publications [II], [III], [IV], and [VII] address RQ.2 defined under the Mea-
surement research target. Publication [II] defines the generic OSS data model
that mimics social, and technical dimensions of a project. In addition, this publi-
cation presents the graph theoretic methods that establish inter-relationships
between the two dimensions. Publications [III], and [IV] propose the mathe-
matical model to measure socio-technical congruence. In doing so, this model
utilizes the methods and the data model defined in Publication [II]. Finally,
Publication [VII] proposes the framework to integrate the data model, methods
and the mathematical model to achieve fully automated analysis and interactive
exploration of socio-technical dependency.

Publications [III], [IV], [V], [VI], and [VII] address RQ.3 within the Empir-
ical Insight research target by mobilizing the proposed models and methods.
These publications as a whole accumulated the empirical results comprising

31

distinct OSS project context (as defined in Figure 1.1) to offer proposals, trends
and patterns for socio-technical dependency in such projects. Publication [III]
measures socio-technical congruence for a singleton project (e.g., the FreeBSD
project), whereas, publication [IV] performs the same for forked BSD projects
(e.g., FreeBSD, NetBSD, and OpenBSD projects). Publication [V] determines
congruence in the context of Ruby Gems Ecosystem. Publication [IV] and [VI]
measure project resemblance for frocked project and for an arbitrary sample of
OSS projects extracted from OHLOH repository, respectively. Finally, publica-
tion [VII] evaluates the framework against two OSS projects (e.g., FFMpeg and
GStreamer).

Finally, publications [VII] and [VIII] answers the RQ. 4 under the Proposal
research target. In publication [VII] an architectural desing and correspond-
ing tool implementation is done based on the proposed framework, whereas
publication [VIII] demonstrates the implementation of the data model and the
methods proposed in publication [II]. In addition, publication [VIII] distills rec-
ommendations and guidelines based on the lessons learned during the process
of design, implementation and evaluation of the tool.

4.1 Publication [I]: A SLR on the evolution of OSS
projects.

Introduction:
This paper reports on a systematic literature survey aimed at the identification
and structuring of research on the evolution of OSS projects.

Objective:
The main objective, and thus the contribution of this study is to produce a sys-
tematic reporting of what constitutes the key contributions, the main research
gaps, and potential future directions within the domain of OSS project evolu-
tion. Special attention is given for clustering studies according to the social,
technical and socio-technical dimensions of OSS projects (defined in Section 2.2).

Method:
An obvious choice of methodology for this study is the Systematic Literature
Review (SLR). A generic methodology for conducting a SLR is presented in
Chapter 3. However, a meticulous instantiation of this method can be found in
the publication [I]. In brief, this study poses 11 research questions, and defines
a study protocol following the guidelines presented in [52] [23]. This protocol is
piloted before commencing the actual study [I]. Relevant articles are searched
from seven digital libraries. Articles are collected for thirteen years of span
starting from 2000 till 2013. At the end of the search process, a total of 101
articles are selected for final review. The review process is the strict instantiation
of the review protocol in order to minimize the reviewer bias [52] [23].

Result(s):
With the increasing dominance of open source software, the interest of under-
standing the evolutionary patterns of such projects is getting more and more
momentum for the last decade. Study focus of these studies can be classified

32

Ta
bl

e
4.

1:
A

n
ov

er
vi

ew
of

th
e

re
su

lt
s

R
es

ea
rc

h
Ta

rg
et

R
Q

A
dd

re
ss

ed
in

C
on

tr
ib

ut
io

n
In

Pu
bl

ic
at

io
n

In
th

e
in

tr
od

uc
to

ry
pa

rt
Th

eo
re

tic
al

Ba
se

R
Q

.1
[I

][
V

II
]

Se
ct

io
n

2.
2,

4.
1,

5.
1

(R
Q

.1
)

-O
ff

er
s

a
so

lid
ba

si
s

fo
r

un
de

rt
ak

in
g

th
e

re
se

ar
ch

re
po

rt
ed

in
th

is
th

es
is

.
-

D
efi

ne
s

th
e

th
re

e
d

im
en

si
on

s
(e

.g
.,

so
ci

al
,

te
ch

ni
ca

l
an

d
so

ci
o-

te
ch

ni
ca

l)
in

th
e

co
nt

ex
to

fO
SS

pr
oj

ec
ts

.
-O

ff
er

s
a

ca
te

go
ri

ca
ll

is
ti

ng
of

th
e

ga
ps

an
d

op
po

rt
un

it
ie

s
fo

r
fu

tu
re

re
se

ar
ch

on
th

e
to

pi
c.

M
ea

su
re

m
en

t
R

Q
.2

[I
I]

[I
II

][
IV

][
V

II
]

Se
ct

io
n

2.
2.

6,
4.

2,
4.

3,
4.

4,
4.

7,
5.

1
(R

Q
.2

)

-
O

SS
d

at
a

m
od

el
to

m
im

ic
th

e
so

ci
al

an
d

te
ch

ni
ca

l
d

im
en

si
on

s
an

d
th

ei
r

in
te

r-
re

la
ti

on
sh

ip
s.

-
A

ge
ne

ri
c

se
t

of
gr

ap
h

th
eo

cr
at

ic
m

et
ho

d
s

to
ex

p
lo

re
so

ci
al

,t
ec

hn
ic

al
an

d
so

ci
o-

te
ch

ni
ca

lp
er

sp
ec

ti
ve

s.
-A

m
at

he
m

at
ic

al
m

od
el

to
m

ea
su

re
so

ci
o-

te
ch

ni
ca

lc
on

gr
ue

nc
e.

-A
fr

am
ew

or
k

to
fu

lly
au

to
m

at
e

th
e

da
ta

dr
iv

en
an

al
ys

is
of

O
SS

pr
oj

ec
t.

Em
pi

ri
ca

l
In

si
gh

t
R

Q
.3

[I
II

]
[I

V
]

[V
]

[V
I]

[V
II

]
Se

ct
io

n
4.

3,
4.

4,
4.

5,
4.

7,
5.

1
(R

Q
.3

)
-M

ea
su

re
so

ci
o-

te
ch

ni
ca

lc
on

gr
ue

nc
e

w
it

hi
n

th
e

de
fin

ed
co

nt
ex

to
fO

SS
pr

oj
ec

ts
.

-M
ea

su
re

in
te

r-
pr

oj
ec

tr
es

em
bl

an
ce

.
Pr

op
os

al
R

Q
.4

[V
II

][
V

II
I]

Se
ct

io
n

4.
7,

4.
8,

5.
1

(R
Q

.4
)

-A
rc

hi
te

ct
u

ra
ld

es
ig

n
co

nc
ep

ts
ba

se
d

on
th

e
p

ro
p

os
ed

d
at

a
m

od
el

an
d

th
e

fr
am

e-
w

or
k.

-S
em

i-a
ut

om
at

ed
an

d
au

to
m

at
ed

to
ol

s
th

at
su

pp
or

td
at

a
dr

iv
en

an
al

ys
is

an
d

in
te

ra
c-

ti
ve

ex
pl

or
at

io
n

of
so

ci
o-

te
ch

ni
ca

ld
ep

en
de

nc
ie

s.
-R

ec
om

m
en

da
ti

on
s

an
d

gu
id

el
in

es
fo

r
th

e
de

si
gn

an
d

im
pl

em
en

ta
ti

on
of

an
al

yt
ic

al
to

ol
s

fo
r

O
SS

da
ta

an
al

ys
is

an
d

vi
su

al
iz

at
io

n.

33

broadly into four dominant themes, namely technical (or software) evolution,
social (or community) evolution, socio-technical (or co-evolution) evolution,
and prediction. However, technical evolution is by far the most dominant
research theme among the four.

Methodologically, these studies predominantly follow empirical research
method in their investigation. Data sources for these studies are collected from
the concerned project repositories. This includes source code management sys-
tem, commit records, change logs, bug tracking systems, and mailing archives.
Selected case study projects are delimited to flagship OSS projects that are large
in size with a large user and developer community and belong to the popular
application domains. Highest counts go to Linux, Eclipse, Apache, Ant, Mozilla,
GNOME, KDE, and ArgoUML, that fall within the domain of Operating Sys-
tems (OS), Application Software, Integrated Development Environments (IDE),
Application Servers, Libraries, Desktop Environments, and Frameworks.

Within the technical evolution, the studies mostly verify the fitness of
Lehman’s law of software evolution for OSS projects. Originally, Lehman
proposed five laws of software evolution, though ongoing investigation has
produced three more. Briefly, this law states the followings: continuing change,
increasing complexity, self-regulation, conservation of organizational stability,
conservation of familiarity, continuing growth, declining quality, and feedback
system. An elaborated discussion on these laws can be found in [58]. Empir-
ically validated metric suits are most commonly used to evaluate these laws.
Metrics include for instance, source code metrics, complexity metrics, object
oriented metrics, and project and product metrics. Reported results have both
conformance (either complete or partial) and contradiction with the laws of
software evolution. For instance, the growth rate of OSS varies between super-
linear (i.e., greater than linear) and sub-linear (i.e., less than linear) [58]. This
has both conformance and contradiction with the second and sixth law of evo-
lution. Further details can be found in the publication [I]. Additionally, other
studies examine the evolution of code complexity, code cloning, code quality
and documentation.

On the social evolution, studies are concerned on determining the motivation
of developers to participate in a project, structure of the community, changes
of the community dynamics during project evolution, and sustainability of the
community.

However, study on socio-technical dependency receives only limited at-
tention as compared to their study in isolation. Within the limited focus, the
following observations are reported. It is identified that the number of contribu-
tors grow with the growth in product size. A study analogous to this reported
that the increase of new packages and reported bugs are highly coherent with
the increase of contributors and active users, respectively. Also, the increase in
documentation and modularization levels are obliged to the rising number of
developers and their contribution to a project.

On the validity of the included studies, it is found that most of the studies
suffer from the external validity threat. In other words, the reported results can
not be generalized to the extended population of OSS projects. One reason for
this is that these studies use flagship projects as case study, which comprises
only fraction of the whole spectrum of the OSS projects.

Statistical details on the reported results can be found in publication [I].

34

Finally, the open research areas within the concerned domains are elaborated in
Section 5.3.1.

4.2 Publication [II]: The OSS data model and the
methods.

Introduction:
While it is a challenge to acquire tacit knowledge from developers and users
due to their distributed nature, open source development and user communities
often produce a rich software repository as a byproduct of other activities. These
repositories hold data on both technical and social interaction across the entire
spectrum of the project’s evolution. However, organization and representation
of such data with unified analysis methods are yet a challenge.

Objective:
This paper explores the opportunity to derive data model and methods to unify
data representation and analysis specific to the study of socio-technical depen-
dency.

Method:
Methodologically, this paper follows a constructive approach, which consists of
(a) a proposal of a model to offer an unified representation of an OSS project’s
structure, (b) a set of methods based on graph theoretic concept to examine
socio-technical dynamics of such projects, and finally, (c) a tool Binoculars imple-
mentation to demonstrate the applicability of the approach with data extracted
from two OSS projects, e.g., FFMpeg and Eucalyptus.

Result(s): The data model, as presented in Figure 4.1, is divided into domain
specific and domain independent models. In the former, the two dimensions
of OSS projects are modeled through the abstraction of corresponding project
artifacts, and in the later, everything is modeled as mathematical graphs.

Figure 4.1: OSS project data model

35

Within the domain specific model, abstract class FileSystemItem and its two
concrete subclasses, File and Directory, are used to mimic the technical domain
(Section 2.2.2). The composition relation between Directory and FileSystemItem
allows to model the real file system of the repository. To model the social dimen-
sion (Section 2.2.1), classes Person and Issue (with subclasses Mails and Bug)
are used. While class Person represents each community member’s portfolio,
Issue class along with its subclasses tracks the communication and collaboration
records.

The domain independent model consists of classes Node and Arc as depicted
in the upper part of Figure 4.1. Due to the fact that the classes in domain specific
model are the subclasses of abstract class Node, any pair of entity within the
domain specific part can have relationship links (i.e., instance of Arc) based on
a given criteria. For instance, a relationship graph among the developers (from
Person class) can be drawn based on common email conversations (taken from
Mails class) among them. Or, one can derive relationships among code files
(from FileSystemItem) based on attribute referencing, and so on. Instantiation
of the domain specific model can be done with the repository data discussed in
Sections 2.2.1, 2.2.2 and 3.3.2. For instance, CVS/SVN checkout of the source
code can be used to instantiate the FileSystemItem.

In order to derive relation among entities in domain specific model (as
presented above), a set of six methods is defined. These methods are intended
to explore the three dimensions of OSS projects. A complete listing of these
methods along with implementation details can be found in the publication [II].
To offer a brief demonstration on the applicability of these methods, three of
them are presented bellow with example,

The first method is called interConnect method. This method derives, for
instance, the relation between the developers and the artifacts to which they
have contributed. For example, Figure 4.2(a) shows the relation among the
developers (D1, D2 and D3) and the code files (F1, F2, and F3) in which they
have contributed to. Similarly, Figure 4.2(b) shows to which emails (M1, M2 and
M3) the developers have posted or replied. In other words, interConnect opera-
tion generates relation graphs that show the trend and intensity of developers
participation in the project.

Figure 4.2: Example of InterConnect method

The second method is called intraConnect method, which derives the ex-
plicit or the implicit network from a given graph generated using interConnect
method. The two example networks shown in Figure 4.3(a) and (b) are derived
from the graphs presented in Figure 4.2(a) and (b), respectively. The network
in Figure 4.3(a) is an implicit coordination network which shows developers’
relation based on common code contribution, whereases the second network

36

(Figure 4.3(b)) is an explicit coordination network showing developers relation
based on common email conversations. In other words, the first graph identifies
who should communicate with whom based on their task dependencies and
contributions, and the second graph portrays the actual communication and
interaction that took place among them.

Figure 4.3: Example of IntraConnect method

The third method is the intersection method. This method, as per the name
goes, identifies the common relations between a given pair of graphs. For
instance, Figure 4.4 shows the graph produced by taking intersection opera-
tion between the graphs shown in Figure 4.3. To put this method in practical
perspective, the generated graph reveals the extent to which developers actual
collaboration (Figure 4.3(b)) reflects the need for collaboration identified by the
technical domain (Figure 4.3(a)).

Figure 4.4: Example of intersection method

The implemented tool Binoculars and the case study transcript can be found
in the publication [II].

4.3 Publication [III]: Socio-technical congruence in
an OSS project.

Introduction:
The identification and management of work dependencies is a fundamental
challenge in software development organizations, specially for OSS projects [16].
This paper builds on the idea of socio-technical congruence, as discussed in
Section 2.2.5, to examine the relation between the structure of the technical
domain to that of the coordination patterns of the developers, and vice-versa.

Objective:
The motive here is to propose a mathematical model to measure socio-technical
congruence during the evolution of an OSS project. This method is inspired by
the Conway’s Law and the organizational theory method [17]. Furthermore,
empirical evaluation of the method is carried out with repository data extracted
from FreeBSD project.

37

Method:
This paper proposes and utilizes the mathematical model presented in Section
2.2.6 to measure socio-technical congruence. In brief, the paper derives the
architectures and coordination networks (both implicit and explicit) based on
the repository data extracted from FreeBSD project. Then, the congruence is
measured using the model presented in equation 2.1.

The repository data comprises SVN checkouts of the source code for each
stable release of the software, SVN commit history, and developers email com-
munication. In FreeBSD project, several email archives are maintained to record
commit history, bug reporting and developers’ communication. These email
archives contain data since 1994 and are updated every week. For this study,
SVN checkout for 10 stable releases, and 30 email archive data is extracted.
The email archives record the CVS/SVN commit history, bug reporting and
developers communication (email and chat). A detail discussion on these data
sources, data collection and processing is presented in the publication [III].

Result(s):

This study first verifies the extent to which the communication patterns of the
developer community is congruent with the actual architectural dependencies.
This congruence is measured between the explicit architecture and the implicit
architecture for each stable release of the FreeBSD project (defined in Section
2.2.6). The reported congruence measure is shown in Figure 4.5. In this figure,

Figure 4.5: Congruence between the developer’s Communication Pattern and
the Software Architecture in FreeBSD project

column 2 and 3 show the number of relations between packages identified by
the respective architectures. The resemblance (in column 4) shows the number
of common relations between the two, and the congruence (in column 5) reflects
the socio-technical congruence measure between the two with respect to the
explicit architecture (Section 2.2.6). According to this figure, the congruence
measure varies between 75% to 82% starting from stable release 3 onward (first
three releases are ignored as outliers [III]).

Based on the results it can be inferred that to a great extent the communica-
tion patterns of the contributing members within the community is due to the
communication needs established by the concrete architecture.

38

Second, this study examines the extent to which the explicit architecture is
congruent with the communication patterns of the developer community. To ver-
ify this, the congruence is measured between the implicit coordination network
and the explicit coordination network for each stable release of the FreeBSD.
Figure 4.6 reports the observed congruence level. According to this figure, the

Figure 4.6: Congruence between the Software Architecture and the Developers
Communication pattern in FreeBSD project

congruence values remain between 71% and 88% starting from stable release
3 (again ignoring the first three releases as outliers [III]). This result is closely
tied to the results reported in Figure 4.5. This indicates that socio-technical con-
gruence in reverse also holds for FreeBSD. In other words, the communication
patterns of the contributing developers simulates the underlying architectural
dependency of the software to a considerable extent.

Therefore, developers communication structure in FreeBSD project affects
the architectural orientation of the produced software. However, utilizing the
implicit architecture to recover the explicit one (a typical example of reverse
engineering) remains an unsolved problem, and requires further investigation.
In this study the implicit architecture is overestimating the explicit architecture
for all the releases. For instance, in stable release 4 (see Figure 4.5), the implicit
architecture identifies 153 relations among the 19 packages, whereas in reality
there are only 49. This is due to the fact that all possible communication channels
are used in this study to derive the explicit coordination network, which creates
relations among developers that are not due to technical discussion. However,
the selection is made based on the empirical results which suggested that
developers rely heavily on informal ad hoc communications [43]. As a side
effect, the implicit architecture derived from explicit coordination network holds
extra links between packages. However, this side effect can be remedied through
selective listing of communications of developers that limit within development
discussion only. A further discussion on this is provided in Section 5.4.

39

4.4 Publication [IV]: Study of socio-technical con-
gruence and project resemblance for forked OSS
projects.

Introduction:
This paper empirically investigates the socio-technical dependencies for forked
OSS projects within the scope of both intra-project and inter-project level (see
Section 1.2).

Objective:
For intra-project level (i.e., within a project setup), socio-technical congruence
is measured during the evolution of each forked project. The rationale here is
to extend the observation reported in [III] to projects that exhibit both forking
relationship and resembling project properties.

For inter-project study, resemblance in terms of software architecture and
the community are examined for a given pair of forked projects. For forks,
source code and hence also, the architecture are the same at initial stage. Thus it
would be crucial to know whether any resemblance remains between them as
the projects evolve.

Similarly, during fork, the parent community divides. This division of the
communities is often followed by a rebuild and restructuring process. However,
both the communities belong to the same origin, and individual developers have
similar interest and technical expertise. Additionally, both the forked projects
belong to the same application domain with similar technical framework. Thus
it might be possible that the fragmented communities would maintain collabo-
ration and contribute during the projects’ evolution. Therefore it is interesting
to find the extent to which communities of the forked projects collaborate.

Method:
This study follows a case study approach with data collected from three flagship
OSS projects from BSD family, namely, FreeBSD, NetBSD, and OpenBSD.

To measure the socio-technical congruence, the approach presented in Sec-
tion 2.2.6 is applied. This measurement is done per stable release per project.

However, to identify resembling architecture and the community, equation
2.1 is adopted. In the following a brief description of the approach is given,

Resemblance between the architectures for each pair of forked projects is
studied at three abstraction levels. These are, package level, first directory level
and nth directory level (i.e., the last directory where the code files reside). This
distinction is based on the hypothesis that forked projects might maintain homo-
geneous architectural design at a higher level of abstraction (e.g., package level),
yet getting liberated at detailed architectural level (e.g., nth directory level). The
adoption of equation 2.1 is presented below with an illustrative example. The
FreeBSD release 6 and NetBSD release 3.0 have 19 and 22 packages, respectively.
Thus |FreeBSD − release− 6| = 19 and |NetBSD − release− 3.0| = 22. The
intersection operation between these two architectures resulted in 16 packages
that have the same names. Then the resemblance is calculated by taking each of
these architectures as a reference architecture. For the above example, FreeBSD
release 6 has 84.21% (16/19*100) and NetBSD release 3.0 has 72.72% (16/22*100)
resemblance with each other.

40

A similar approach is followed to compare the communities. Before applying
the equation, developer list per release is produced for each forked project.
Then for a given pair of project releases, the union operation in the numerator
identifies the number of developers whose names are lexically identical. Then
resemblance is measured with respect to the real number of developers counted
for the stable releases of the projects.

Further details on study design, data collection, processing and analysis are
presented in the publication [IV].

Result(s):
The socio-technical congruence measure for each fork project offers conformance
to the congruence measure observed for FreeBSD project in publication [III]. Fig-
ure 4.7 shows the congruence between the developer’s communication patterns
and the software architecture (i.e., between implicit architecture and explicit
architecture) during the evolution of the three projects.

Figure 4.7: Congruence between the developer’s Communication Pattern and
the Software Architecture in the BSD projects

According to this figure, NetBSD (the maroon line) has a high and stable con-
gruence from the very beginning of the project, which remains between 85% and
87,5% for the first twelve releases. However, for the recent releases, the project
experienced a decrease in congruence which requires further investigation (a
discussion on the topic is presented in Section 5.3.1).

FreeBSD and OpenBSD (the blue and the green line, respectively) exhibit
a similar trend of congruence. For both these projects, there are drifts in con-
gruence during the initial releases, which then took off and remained stable for
subsequent releases. For instance, FreeBSD has a stable congruence level re-
mained between 84,83% and 89,4% starting from stable release 5. For OpenBSD
it is between 85,56% and 88,78% starting from third stable release. First few
releases are considered outliers [IV].

Such high and stable congruence points to the fact that the implicit architec-
tures derived from the communication patterns of the developer community
effectively represents the explicit one. Therefore, it can be accredited that for
the BSD forked projects, to a considerable extent the communication of the de-
veloper community may actually be due to the coordination needs as identified

41

by the architectural dependencies. Congruence measures in reverse reveal a
similar pattern.

Results on architectural resemblance reported that at higher abstraction
level (e.g., package level) the architectures of the forked projects maintain high
correspondence between them, which remains consistent as the projects evolve.
However, at directory levels the design and implementation became more
disjoint and independent. For instance, consider Figure 4.8, which shows archi-
tectural resemblance between FreeBSD and NetBSD. As can be seen from this
figure, the package level congruence remain high throughout the project’s evo-
lution. For FreeBSD it remains between 61,9% and 84,21%, whereas for NetBSD
it is between 57,69% and 80%. Contrary to this, directory level overlapping (d1
and dn) reveals a different trend. For example, at dn level, the resemblance goes
down to 3,63% and 3,34% from 29,77% and 10,82% with evolution of FreeBSD
and NetBSD project, respectively. For other combination of forked projects
almost similar trend is observed.

Figure 4.8: Architectural resemblance between FreeBSD and netBSD

Investigation of the community resemblance reveals that participation of
community members in both projects remains stable within a given range. To
be specific, consider Figure 4.9, which shows community overlapping between
NetBSD and OpenBSD projects. For NetBSD project it remains between 42,69%
and 50,3%, whereas for OpenBSD it is between 34,42% and 38,31%. A similar
trend is observed for other comparable projects. Details regarding the results
are presented in the publication [IV].

Based on these observations, it can be affirmed that the traditional percep-
tion of forking in OSS projects, which is thought to have negative stimuli for
sustainable evolution of the projects [77], can be effectively remedied though
(a) maintaining a consistent and cohesive abstract architectural design to form
a common ground of collaboration among the forked projects, (b) adopting a
collaboration model in which members of a project could participate in other
forks, and (c) maintaining a consistent and high socio-technical congruence
within the project.

42

Figure 4.9: Community resemblance between NetBSD and OpenBSD projects

4.5 Publication [V]: Socio-technical congruence in
the Ruby Ecosystem.

Introduction:
This paper offers an empirical analysis of the socio-technical congruence within
the context of an OSS ecosystem.

Objective:
The objective is to measure the socio-technical congruence at the ecosystem
level where the technical domain models the relations among the projects in
the ecosystem. Therefore, this study measures the congruence between the
developers coordination network to that of the interdependency among the
ecosystem projects (explicit architecture in this case) to which they contributed.
Overall, the following two investigations are piloted.

First, we verify whether there exist dependencies among ecosystem projects
both from social and technical perspectives. The rationale here is that for a
singleton project, the dependency between the social and technical dimensions
are desirable. Because, a project often organizes itself around the product’s
architecture and task dependencies. However, dependencies among the projects
in a ecosystem are not so explicit. This in turn could minimize inter-project
collaboration. Therefore, this verification would justify the ground for this study
by identifying the number of relations among the ecosystem projects, as well as
among the developers participating in them.

Second, we measure the socio-technical congruence to exemplify the extent
to which developer’s interaction among the ecosystem projects approximate the
projects’ dependencies.

Method:
The method presented in Section 2.2.6 is applied to measure the socio-technical
congruence. As a unit of study the Ruby Gems ecosystem is selected. A gem in
this ecosystem is a software package that contains a Ruby application or library
implemented using Ruby programming language [V]. Each gem in the Ruby
ecosystem is equivalent to a project.

As the context of the study is an ecosystem instead of a singleton OSS project,
the explicit and the implicit architecture for this study shows relations among

43

the gems. For explicit architecture, a relationship between two gems represents
development and runtime dependencies. Here, a development dependency
defines a gem that is necessary at development time for further development,
whereas a runtime dependency represents a gem that is necessary at runtime.

Data for this study is collected to derive the Ruby ecosystem architectures
and the coordination networks that correspond to the one presented in Section
2.2.6. For the former, gems specification data is collected, that contain project
metadata describing the gem name, dependencies to other gems, and URIs
for the gem (usually a Github link). For the latter, Github is used. In GitHub,
community collaboration is facilitated via among others issues and pull requests
created by GitHub users. In this study, such issues and pull requests are ex-
tracted for each gem that is hosted in GitHub. This study collects data for 12,520
Ruby gems for each of which both the specification and GitHub issue and pull
request records are found. Further details on the study method is presented in
the publication [V].

Result(s):
The verification of having technical and social dependencies among the gems
is done by examining the explicit architecture and the explicit coordination
network, respectively. The architecture shows development or runtime depen-
dencies among the gems, whereas the coordination network shows developers’
communication among the gems, as seen by the GitHub issue tracking system.

The outcome reveals 141,029 relations among 12,520 gems for the explicit
architecture, whereas the explicit coordination network shows 186,136 relations
among 55,454 developers. Due to such staggering number of relationships
both at social and technical domains, it is logical to measure socio-technical
congruence.

However, reported congruence measure reveals a different picture. It is
noted that socio-technical congruence is inversely proportional to the strength
of coordination among the developers in the network. Here the strength of
a relation measures the number of interactions taken place between a given
pair of developers. Figure 4.10 shows the congruence level with respect to the
developer coordination strength in the explicit coordination network. According
to this figure, for edge weight ≥ 2, the congruence measure is 76.2%, which
drops sharply with the increasing edge weight limit. For instance, congruence
value drops to 46.3% for edge weight ≥ 8, which goes down as low as 36.1% for
weight ≥ 19.

Figure 4.10: Socio-Technical Congruence in the Ruby ecosystem

44

As explained earlier, the edge weight in the explicit coordination network
measures the strength of collaboration among the developers. Thus, commu-
nication and collaboration get strongly tied with the increased edge weight in
this network. In this connection, the stated congruence measure shows that
congruence decreases with the increased in developer collaboration.

A fine grained analysis to this matter reveals that the developers who have
extensive collaboration (as seen in the Explicit Coordination Network) belong
to the same gem or related gems that have dependency at implementation
level. For instance, a network where edges that have weight ≥ 19 contains 362
developers. Around 79% of these developers (285 developers out of 362) work
on the same gem jdbc-jtds. Therefore, it is resonable that these 285 developers
should have extensive communication and collaboration. This observation is in
line with the prior results reported in Section 4.3 and 4.4. This perception might
partially explain the low congruence for the ecosystem.

Based on these results, the following observation can be devised: at ecosys-
tem level, the collaboration patterns among the developers at inter-project level
is not necessarily shaped by the communication needs indicated by dependen-
cies among the gems. However, there is a strong indication that developer
collaboration often exists within a project or projects that have implementation
level dependencies.

4.6 Publication [VI]: Measuring projects’ resemblance
from developer contribution.

Introduction:
In OSS domain, developers often contribute to multiple projects. Such partici-
pation should be guided by some decisive properties of the projects. Hereby,
the hypothesis is that these properties should resemble the projects that are
contributed by the same group of developers. This paper investigates whether
developers’ participation in multiple OSS projects could identify project resem-
bling properties.

Objective:
OSS projects are often classified based on their resembling properties. Popularly
cited properties are the domain, language, project size, license, and project
rating as discussed in Section 2.2.8. Due to open collaboration and participation
model, OSS developers often participate in multiple projects. In this paper, the
information of which developers contribute to which OSS projects are explored to
identify the resembling projects. The rationale is that these resembling project
properties should stimulate developer’s participation, as developers should
participate in projects which falls within their technical expertises (e.g., known
languages, domain), and are affluent (e.g., large size and rating).

Method:
In order to address the issue, data is collected from OHLOH repository. Infor-
mation of 530 top ranked OSS developers (according to their Kudo ranking [VI])
are collected. Additionally, meta-data of 4261 OSS projects that are contributed
by these 530 developers are also collected. Extracted information includes user

45

name, ranking, total commits, and the list of contributed projects for each devel-
oper, and for each project, the domain (e.g., OS, server), project size (in LOC),
language (e.g., C, C++), license (e.g., gpl, lgpl21), and project rating (calculated
by OHLOH).

First an Implicit Network is created among the projects. In this network, two
projects have a relation edge if both are contributed to by the same developer.
An edge weight reflects the total number of developers who have contributed to
both the projects. A partial snapshot of this network is shown in Figure 4.11, in
which, for instance, projects Debian and x.Org have a relation edge with weight
17, denoting the 17 developers who have contributed to both projects.

Figure 4.11: Partial snapshot of the Implicit Network

Then, for the projects present in each relation of the network, the resembling
properties are identified. For instance, in the case of Debian and x.Org projects
(in Figure 4.11) resemblance on the two properties are identified, including for
instance, language (e.g., C), and domain (e.g., OS).

Result(s):
The first observation worth noticing here is that OSS developers often prefer
to participate in projects that are affluent in terms of size, domain, and rating.
For instance, high density of developers is noticed in the implicit network for
projects that are very large (500KLOC) or large (50K-500KLOC) in size. Mutual
developer participation count for a given pair of projects (that are very large or
large) lies between 10 and 41. Additionally, this structure of sharing developers
among multiple projects is analogous to the small-world phenomenon [87]. In a
small-world structure several projects are connected with each other through
one or more links, e.g., common developers. In this setup, with increasing
number of common developers, the communities of related projects (as realized
by the implicit network) become strongly interconnected.

The second observation is that the contributors often participate in projects
that belong to the same domain, that utilizes same programming language(s) as

46

development medium, and are of similar size. That is, projects that have high
edge weight count (i.e., high developer participation) in the implicit network, are
often exhibit resemblance in accordance to project domain, size and languages.
For instance, around 98% of the projects that fall within the same domain or are
the sub-projects of a larger one, attract large number of common developers.
Similar observation holds for programming language and project size. For the
former, high developer density was noticed for 87.03% resembling projects,
whereas in case of the latter, very large and large size projects (64.13%) enjoy
similar number of common contributors. Further analytical details are presented
in the publication [VI].

Based on these observations following can be affirmed: if projects in an
implicit network are connected with high edge weight count (e.g., ≥ 10) would
most likely belongs to same domain, size and have similar technological plat-
form. Likewise, having such resembling properties in common, projects should
expect high degree of mutual developers participation.

4.7 Publication [VII]: A Framework for automated
data analysis and visualization.

Introduction:
Comprehension of OSS projects is traditionally driven by the plethora of data
produced and maintained by the projects. This data encapsulates the tacit
knowledge on the evolution of the software, and provides the history of com-
munication of the community. Acquisition and analysis of such data has been
mostly manual or semiautomated and error-prone, mainly due to heteroge-
neous and unstructured data representation. This in turn increases the validity
threat of the reported results and makes it incomparable across the studies. This
paper proposes a framework to fully automate the analysis and visualization of
OSS evolution data to tackle such challenges.

Objective:
The contribution of this paper is three-fold.

First, the formal definition of the three dimensions of OSS projects (social,
technical and socio-technical) are given through the categorical analysis and
discussion on the related research.

Second, a generic three-layer framework is proposed to fully automate
the data driven analysis of OSS projects. This framework is inspired by the
generations of the OSS quality models to achieve automation, as presented
in Section 2.2.10. In addition, the framework should address the following
challenges: data independence, re-usability, and inter-comparability of research
results.

Third, a tool Pomaz is implemented that demonstrates how this approach
produce generalized analytical results for social, technical, and socio-technical
study of OSS projects.

Method:
In order to address the first objective, a literature review on the topic is carried

47

out. For this research approach presented in Section 3.2.1 is adopted in a limited
capacity.

In proposing the framework, the highly generic and standard representation
of OSS data provided by the third party data provider services are integrated
with OSS project data sources and the data analysis logic.

Finally, a conceptual architecture encompassing the proposals of the frame-
work is derived and implemented with a tool. The tool is further evaluated in
answering research questions representative of each of the three dimensions of
an OSS project.

Result(s):
Based on the review outcome, the three dimensions of OSS projects are defined,
documentation of which is made in Section 2.2.

The proposed framework is presented in Figure 4.12(a). The first layer of
this framework consists of the raw data sources offered by the hosting sites. For
instance, most OSS projects provide public interfaces for each of the data sources
to be accessed and downloaded. Nonetheless, other hosting facilities, such as
Sourceforge and GitHub, provide similar facilities for the projects hosted by
them.

Figure 4.12: The proposed framework and the architecture

The second layer constitutes the third party data providers. A representa-
tive example would be the OHLOH repository. For this layer, three essential
components have been proposed. The first component is the data storage. The
purpose of this storage is to perform data acquisition, essentially from all avail-
able sources provided by the first layer. Additionally, it will perform adequate
data cleaning, and offer categorical representation of the data with unified
and standard format. The second component is the data analyzer and viewer
module would provide high level data analysis and visualization of selected
projects. For instance, visualizing project activity for a selected period. The final
component is a platform independent interface that comprises a set of API’s to
access the data. For instance, API’s can be build to query the database, which

48

will return the resultant data set in a platform independent format, such as
XML, JSON. Realization of the services would offer the data in a unified and
platform independent format.

The third layer in the framework is the front end data analyzers. This layer
consists of a set of customized data analysis and visualization techniques and
tools, and a local data storage unit. The techniques will be defined and im-
plemented based on the need of different parties, e.g., research targeting to
understand different perspectives of OSS projects. This layer makes use of the
data provided by the second layer through the implementation of the standard
APIs. This standardization of data removes the burden of semi-automated
data gathering and preprocessing activities, and facilitates researchers and
practitioners to concentrate more on the soundness of the underlying data anal-
ysis methodologies. Also, the data storage unit could cache the data collected
through the API’s as well as store the processed one for further use.

Within this framework, the second layer implements the data independence
for the tools and methods built in third layer, whereas the data storage in the
third layer ensures the re-usability of data.

The proposed architectural design for the framework is presented in Figure
4.12(b). The data provider in this reference architecture is the OHLOH repository,
which corresponds to the second layer of the framework. The other modules
correspond to the third layer of the framework. The Connector module is
responsible for the low-level connection and data collection. This module also
handles problems concerning missing data, false data or unavailability of the
data provider repository. The Repository module implements the re-usability
of the data. This two modules under the Repository module are used to store
already collected and processed data in local disk, thus minimizing expensive
server communication for repeated use of the same data. The analyzer accepts
the user query, identifies and collects the required data from Repository, and
carries out necessary computing. The resulting information is represented in
a format in which the chart can show it, and it is also stored in LocalStorage.
The Visualizer module handles all GUI operations (such as events) and user
interactions in the application. The Chart module is responsible for these
services which uses the JFreeChart1 OSS library for visualization.

Finally, the tool Pomaz is implemented on top of the proposed architecture
presented in Figure 4.12(b). Using the tool, it is possible to monitor the evolution
of OSS projects from social, technical, and socio-technical perspectives, and set
forecasts up regarding their future development. A demonstration of such
analysis is presented in publication [VII] using the data extracted from FFmpeg
and GStreamer projects. For this study, this tool is used to answer queries like,
(a) How does the community affect the software?, (b) How does the community
changes with the project evolution?, and (c) How does documentation follow
the growth of software?.

1http://www.jfree.org/jfreechart/

49

4.8 Publication [VIII]: Recommendations to build
graph based data analysis and visualization tool.

Introduction:
This paper offers a detailed discussion on the requirements to model and im-
plement a graph based data analysis and visualization platform to address chal-
lenges, such as extensibility of the design and the tool, platform independent
data-representation, and the inadequacy with graph visualization.

Objective:
Graph based data representation and visualization are most appropriate when
there exist inherent relations among data elements. In such visualization, one
can generate any number of links (i.e., edges) between two data points (i.e.,
nodes), and traverse easily a given path through the data. This visual experience
can be further enhanced by using layout algorithms, navigation and interaction
methods, and incremental exploration mechanisms.

However, such benefits can be easily undermined if the design and devel-
opment does not address the inherent shortcomings of graph visualization
methods and available technologies. This includes, (a) difficulties in visualizing
and comprehending large graphs; (b) efficiency of a graph layout algorithm
may be scale up-to several hundred nodes, but not beyond that; and (c) the time
complexity for visualization, interaction and update of a graph is relatively high
and increases with the increase in graph size.

This paper demonstrates an approach that effectively remedied the described
deficiencies, and pretended recommendations and guidelines for future devel-
opment.

Method:
Methodologically, this paper follows a constructive research approach in which
an architectural design is first presented with a tool implementation, and then
recommendations are advocated based on the experience gained during the
process.

Result(s):
The design decisions in defining an architecture for a tool of this kind must
provide a minimalistic kernel and well defined extension point(s) to built func-
tionalities over the kernel. As OSS analysis tools of this kind operate on project
data, a good practice would be to model a repository with generalized data
representation for both the project and processed data. This repository with
storing and retrieving functionality would form the system kernel and will
provide interfaces to implement data analysis and visualization functionalities.
Figure 4.13 shows the propsed architecture for Binoculars tool that accumulates
these proposals. As shown in Figure 4.13, the module Repository forms the
kernel for Binoculars. This repository holds the data extracted from OSS projects
(Project Repository module) and processed data (Graph Repository module).
XML is used to standardize the data representation for both the repositories.

Having this repository as the system kernel, it is now straightforward to
build functionalities over it. As shown in the Figure 4.13, six modules are build
on top of the kernel, each of which is intended to perform a specific task. For

50

Figure 4.13: The architecture of the tool Binoculars

instance, CreateGraph module fetches project data from Project Repository, cre-
ates graphs based on user selected criteria, and stores them in Graph Repository.
The GraphView module is a UI component responsible for drawing the graphs
in the user interface and for handling user interactions. This architectural design
along with XML data representation will archive the first two design challenges,
i.e., the easy extensibility of the tool functionality and a platform independent
data-representation.

The user interface of the tool Binoculars is presented in the Figure 4.14.

Figure 4.14: User Interface of the tool Binoculars

To cope with the third challenge, that is the performance inadequacy with
graph visualization, this tool adopts the following approach, (a) provide ap-
propriate level of data abstraction with incremental exploration which increase
the efficiency of layout algorithms, and (b) use efficient algorithms. The exact
instantiation of this approach is discussed below, with Figure 4.14 in mind.

A tabular view is much more efficient than graphs in displaying and render-

51

ing large data. Thus, Binoculars uses a tabular view for visualizing the entire
graph information, that might consist (a) Graph with nodes and (weighted)
edges; (b) Node list with degree count for each node; (c) description of each
node; (d) Summary data on the graph; and (e) Options to render a graph. For
instance, in Figure 4.14, items 3,4,5, and 6 show these implementations. Then,
depending on the user query and customization options selected, an abstracted
version of the graph (in tabular view) can be viewed in the graph view with
associated details (for instance, item 2 in Figure 4.14). This design decision
would substantially improve the user experience with the UI.

52

Chapter 5

Synthesis

This chapter derives the synthesis of the reported results by drawing them
together in relation to the research questions and the included publications.
This chapter is organized as follows. In Section 5.1, the synopsis of the reported
results per research question is presented. The proposals on the socio-technical
dependency for OSS projects is presented in Section 5.2. Section 5.3 discusses
the overall implications of this research from both research and practitioners
point of view. The main limitations to the validity of the results are discussed in
Section 5.4. Finally, Section 5.5 draws the concluding remarks.

5.1 Research Questions Revisited

This section summaries the contributions of this thesis per research question.

RQ1 What conceptualization can be gained from the existing body of knowledge in
relation to social, technical and socio-technical dimensions of the OSS projects?

The first motive and thus the contribution of this thesis is to build a synthesis
of the existing research through an SLR. The outcome of this survey is twofold:
first, it offers a solid basis for undertaking the research reported in this thesis,
and second, it gives a categorical listing of the gaps and opportunities for future
research on the topic.

In case of the earlier, it has been noticed that socio-technical aspect of OSS
projects as a whole got minimal attention in research as compared to their study
in isolation (discussed in Section 4.1). However, related studies on the topic
have reported that efficacious socio-technical alignment is of great importance
to software development project due to several implications. For instance, high
degree of socio-technical dependency within a project leads to faster comple-
tion of modification requests with higher build success and product quality.
In contrast, socio-technical gaps resulted in lower productivity with increase
number of code changes and negative performance level within the organiza-
tions. Studying socio-technical dependency within the evolution of OSS projects
would be a pragmatic approach in explaining several unsolved issues, such
as OSS sustainability, quality, and productivity. Therefore, the study of socio-

53

technical dependency within the context of OSS projects have been identified as
a potential research area to be explored.

In case of the latter, a comprehensive set of future research based on the
current progress on the topic has been documented. Reported research direc-
tions are broadly categorized on the three main dimensions of OSS projects,
e.g., social, technical and socio-technical. Moreover, critical issues related to the
research approach are presented. A complete reporting on the future research
direction can be found in Section 5.3.1.

Nonetheless, perceived knowledge on the three dimensions have been uti-
lized to unify their definition, and interpretation in relation to the scope of this
thesis. These are documented in Section 2.2.

RQ2 How Socio-Technical dependency can be conceived in the OSS projects?

In comprehending socio-technical dependency, the first step would be to offer
approach suitable to measure and explore the same within the context of OSS
projects.

Accumulating the proposals of this thesis, the following approach can be
offered to measure and comprehend socio-technical dependency from OSS
project artefacts.

Step1 : Define an OSS data model to mimic the social and technical dimen-
sions of OSS projects. This model should also support exploration of the
interrelationships between the two dimensions.

Step2 : Define methods to dig deep into the three dimensions of the projects.

Step3 : Define a mathematical model to measure socio-technical dependency.

Step4 : Define a framework to achieve automated data driven analysis.

Step1: The OSS data model, as presented in Figure 4.1 and discussed in
Section 4.2, effectively models the two dimensions of OSS projects by instanti-
ating the essential repositories and communication channels. It also supports
exploring inter-relations between the two dimensions in terms of relationship
graphs.

Use of this model has several benefits as the model itself holds the basic
building blocks of an OSS project and offers means to explore their relation.
From architectural design perspective, this model could offer the kernel or the
core of an analytical tool, and define extension points to build functionalities
over it as per the requirements. This design principle is based on the Plug-in
architectural design [47], which is often used by OSS projects to support rapid
development in a distributed setup and to build a sustainable ecosystem [47].
In RQ4, this issue is discussed in detail.

This model could also offer the opportunity to achieve high content validity
through a standard and platform independent data representation, and re-
usability. With content validity it would be possible to produce research results
that are conformable, and comparable [85] to the research community.

Step2: A set of six methods are defined to explore interdependency and
relation among the data sets presented in the model. These methods are based
on the graph theoretic concepts, e.g., intra-connect, inter-connect, intersection,

54

union, difference and exclusive-or. Each of these methods offer generic inter-
face, which for instance take two data sets and derive a new relation for a given
relation criteria. These methods can be used to analyze and produce data with
newer insight for each of the three dimensions of the projects. In Section 4.2,
three of these methods are presented with example cases. Other pragmatic sce-
narios in which these methods could be used includes, deriving the explicit and
implicit architectures and coordination networks (see Section 2.2.6), deriving the
contribution patterns and expertise of the community members, communication
structure of the developer community, and cross-section of the community that
have similar interest.

Step3: The mathematical model as explained in Section 2.2.6 measures the
socio-technical dependency quantitatively. In doing so, this model accepts
two architectures or coordination networks (both implicit and explicit), and
outputs the congruence between the two as a percentile value with respect to
the reference architecture or network. For deriving the architectures and the
networks, inter-connect, intra-connect and intersection methods are used.

Step4: Finally, the proposed framework (see Section 4.7) can be used to
achieve autonomy on data analysis. The target of this framework is to bring the
concerned services under a common platform to offer automated and cohesive
data analysis facilities. This framework integrates the OSS project data sources
to that of the third party data provider services, which in turn can be hooked
up with analysis methods and tools intended to serve specific requirements.

Now, a seamless integration of the proposed OSS data model and the meth-
ods to this framework can be done. This integration could offer a fully auto-
mated analysis service that address all the concerns presented in Section 1.2.
Depending on the need, this integration can be done either at the second layer
or at the third layer of the framework. An example integration is presented in
Figure 5.1, in which the proposed model and methods are implemented in the
third layer.

In this figure, the OSS data model would hold and present the data extracted
from the third party service providers. Then the methods and the mathematical
model could be implemented to operate on this data.

Additionally, each empirical study contributing to this thesis offers a de-
tailed, coherent, and systematic methodological approach in conducting empiri-
cal and constructive investigation with OSS project data. This research approach
accumulates the best practices and recommendations encountered during the
SLR and during the process of this thesis. For each study, the details of the
study protocol, study projects, data sources, data collection, refining and pre-
sentation procedure, data analysis and interpretation approach are documented
along with the associated validity threats. In cases where applicable, research
replication packages are also offered [IV]. The overall research methodology is
presented in details in Chapter 3 with links to the included publications for case
specific adoption.

RQ3 To what extent socio-technical dependency holds for the OSS projects?

The results obtained from empirical investigation of socio-technical depen-
dency within the context of OSS projects are summarized below.

At intra-project level, socio-technical congruence is measured for the three

55

Figure 5.1: An integration of the model and the methods to the Framework

BSD forked projects. Reported results reveal significantly high (over 80% in
almost all cases) and consistent leve of congruence during the entire period of
the projects’ evolution. This implies that to a considerable extent the communi-
cation of the contributing developers in the community may actually be due
to the coordination needs as identified by the architectural dependencies, and
vice-versa.

In an effort to extend this observation to inter-project level, socio-technical
congruence was examined within the Ruby Gems OSS ecosystem, in which
the technical domain constitutes the Ruby gems (i.e., projects) and their inter-
relation. However, results reveal relatively contrasting picture, with clues to
reason such observation.

Overall the results show that in Ruby Gems ecosystem the congruence mea-
sure decreases with the increase in developers’ participation in those projects.
That is, projects that have large number of common contributors constitute
rather small part of the ecosystem. However, a closer scrutiny to these group
of projects reveals that these projects either belong to the same gem or are
sub-projects to a larger gem or have development level dependency. Therefore,
people participating in these projects might require consistent collaboration
and coordination. On the contrary, for other projects in the ecosystem, the
dependency exists only at runtime or at development time. Such dependencies
do not necessarily impose any coordination needs among the projects, which
might be the root cause of such low congruence measure.

Study on Inter-project resemblance due to common developer participation
reveals that developers are keen to participate and contribute in projects that
exhibit the following resembling properties: similar domain, similar technical
platform (e.g., programming language), and similar project size. This investiga-
tion first starts with BSD projects which exhibit forked relation and resemble

56

each other on the above three properties. Referring to discussion in Section 4.4,
it can be affirmed that a significant portion of the community from each forked
project contributes to the other. This participation count in general increases as
the project matures, and remains stable within the given range.

Intuitively this observation might seem obvious, as forked projects resem-
ble each other with respect to various important properties, and this should
stimulate developer participation on those projects. Therefore, to absorb this
observation as a pattern, further investigation is required. In order to do this,
resembling projects are identified from an arbitrary sample of OSS projects that
are contributed by a certain set of developers. The results reveal that for each
resembling factor listed above, developer participation is significantly high
among the resembling projects. For instance, around 98% of the projects that
fall within the same domain or are the sub-projects of a larger one, attract large
number of common developers (between 10 and 44). Similar observation holds
for programming language and project size.

This observation for anonymous collection of projects combining with the
results obtained for forked projects lead to affirm the following collaboration
model, Resembling properties (e.g., domain, language, and size) of OSS projects
often from a favorable ground for developers to participate in those projects.
This observation holds in reverse as well. That is, two projects having a signifi-
cant number of shared developer community most likely resemble on the given
project properties.

RQ4 What architectural design and tool concept can be offered to conceptualize the
socio-technical dependency in the OSS projects?

This thesis offers a set of architectural design and corresponding tool imple-
mentations that are based the proposed models, methods, and the framework.
Table 5.1 lists the tools, their underlying design principle, and the methods they
implement.

Table 5.1: Design principle and methods used for the tools
Tool
Name

Design
Princi-
ple

Models and Methods Autonomy Requirement Achieved

Binoculars Plug-in
Archi-
tectural
design

- OSS data model.
- Graph based methods.
- Mathematical model
for socio-technical

congruence.

Semi-
Automated

- Unified data representation.
- Extensibility.
- Reusability.
- Automation.

Pomaz
- Framework.
- Graph based methods.

Automated.

As the architecture of both tools are based on the Plug-in design principle, a
background note on the topic would be suitable for discussion. According to
literature [47], a Plug-in architecture should comprise three functional building
blocks, the core, the plug-in manager and the plug-ins. Figure 5.2 shows this
conceptual model of a plug-in based system.

57

Figure 5.2: The conceptual model of a Plug-in architecture

In brief, the core along with the plug-in manager (often termed as micro-
kernel) provides the fundamental services upon which real functionalities can
be built. The services are subjective to the intended purpose of the system. How-
ever, generally they provide services like, handling the startup, registering and
unregistering the plug-ins as required, data services, and most importantly, offer
well defined extension points (or interface protocols) to deploy plug-ins. On the
other hand, the plug-ins offer the real implementation of the functionalities and
are hooked to the core by adhering to interface protocols.

Benefits of such design includes rapid and distributed development of the
system functionalities and unit testing, decomposition of a complex system
so that only required plug-ins are loaded at a given time, and building an
ecosystem around the system.

To summarize, the Binoculars architecture adheres to this plug-in design
principle. As discussed in Section 4.8, the OSS data model along with data access
interfaces forms the micro-kernel of the system. Data within the model are
represented with XML format. The data analysis and visualization techniques
are then implemented as plug-ins to this kernel. Each of these plug-ins are
plugged into the kernel through the implementation of the interfaces. Gained
experience is formulated as guidelines to built analytical tools of this kind with
graph based visualization approach, a discussion on which can be found in
Section 4.8.

However, Binoculars is a semi-automated tool, in which manual checking of
the extracted data is required to ensure its correctness. To tackle the challenge,
the tool Pomaz is implemented. This tool offers a fully automated data analysis
among others. As presented in Section 4.7, Pomaz architecture is built in ac-
cordance to the proposed framework. Within this architecture (Figure 4.12(b)),
the OHLOH data repository is used as the data source. Thus, this repository
constitutes the second layer of the framework that offer ready to use data in a
platform independent format. The tool itself offers the implementation for the
third layer. Its architecture conceptually resembles the Plug-in design principles
(see Figure 4.12(b)). The Repository module constitutes the kernel whereas the
analysis and visualization modules are implemented as plug-ins to operate on
the repository data.

58

5.2 Proposals on the Socio-Technical Dependency
in OSS Projects

Putting all the observations and discussions together, the following proposals
can be offered in relation to the proposition (see Section 1.2) inferred in this
thesis. The argument here is that these observations would set the stage in
deriving formal theories on Socio-Technical dependency in OSS projects.

High degree of socio-technical congruence can be considered as the implicit
underlying principle for building team collaboration and coordination within
the developer community of long lived OSS projects. Even being highly dis-
tributed community of developers, and mostly using passive communication
channels, OSS communities are tied together by maintaining task dependent
communication. Such communication is often ad-hoc, adaptive and situated as
it cope with rapid and continuous changes in the underlying software.

The inter-project collaboration model is significantly influenced by the re-
sembling properties among the projects. Resembling properties (e.g., project
domain, size, and programming language) often form a favorable ground, thus
creating a stimuli for developers to participate in those projects. This obser-
vation holds in reverse as well, where two projects enjoying high density of
common developer participation are most likely resemble on the given project
properties.

5.3 Implications

This thesis offers a holistic view and understating on the contemporary phe-
nomenon the Socio-Technical Dependency within the context of OSS projects. On
one hand, this study proposes novel models, methods, framework, and tool
support to assess socio-technical dependency, while on the other hand, empiri-
cal investigations are carried out through the mobilization of the proposals for
a wide spectrum of OSS project setup.

This thesis offers the following connotations in relation to the reported
results.

5.3.1 Implication for Research

One of the definitive implications of undertaking an SLR [I] is to envisage future
research directions on the concerned topic. This is done through the aggregation
and meta-analysis of the collected primary studies through the adoption of a
review protocol. Thus, such research directions are contemporary and rational
as they are elicited from, and backed by, the state-of-the-art research. The SLR
carried out to address RQ.1 offers such opportunity to forecast research agendas
along the concerned dimensions (e.g., technical, social and socio-technical).
Recall that one of the motive of RQ.1 is to formulate future research agendas
on the concerned domains along with plotting ground for this thesis. These
agendas are summarized below.

OSS evolution research mostly focused on analyzing and understanding the
evolution of the software [I]. Research under this dimension has produced

59

good sample of analytical results which are available for further examination,
assessment and comparison [83], accumulation of which suggest following
potential research agendas.

On the Law’s of OSS evolution: The most common study agenda is the fitness
measure of Lehman’s law for OSS evolution. However, a closer scrutiny to
the reported results [I] reveal both facsimile and contradicting to this law. For
instance, the growth rate of OSS systems vary between super-linear (i.e., greater
than linear) and sub-linear (i.e., less than linear). This has both conformance
and contradiction with the second and sixth law of evolution [58].

Comprehension of such results suggest that the laws and theory appear
to be breaking down through nonconforming data and findings [I]. Thus,
Lehman’s laws of software evolution, which is primarily based on the study
of the large close source systems, are not sufficient to justify or account for the
evolutionary patterns and behavior of OSS. Nonetheless, these laws did not
consider the community dimension of OSS projects, which is an essential force
for the sustainable evolution of the OSS.

Thus, a promising research agenda would be to examine the underlying on-
tologies for software evolution [83] considering the OSS specific characteristics,
and then re-assess the laws of software evolution to fit for OSS.

On the metric set for software evolution: Software evolution studies mostly
utilize metrics that are empirically validated in prior studies [I]. These metrics
are derived for closed source projects, and are primarily used to verify the
Lehman’s law of software evolution. Though these metrics provide valuable
insight to OSS evolution, they do not consider OSS specific properties, such as
development practices, organizational structure, product and project specific
characteristics, and most importantly, the community dynamics. Thus an empir-
ically validated set of metrics in favor of explicit representation of these aspects
of the projects are required to complement the existing one.

Study on the community evolution identifies several key properties [I], which
lay the foundation for further research in this direction, a glim of which is
portrayed below.

On the community building: Studies reported that the majority of OSS projects
failed to attract members to attain the critical mass. Only few flagship projects
are able to attract developers. Factors influencing the motivation to join a com-
munity have been studied, and several phenomena are proposed. Yet, it is not
identified what exclusive properties initiate the community building process at
the nebula stage of the project. Thus following research tracks can be considered
relevant:

• Why some projects are able to attract contributors during the nebula stage
of the project, while most of them can not?

• What formation of the community refers to a balance one, and how the
community structure changes towards a balance structure during its evo-
lution?

60

• Can a visible pattern be identified within the domain of OSS projects for
the above two cases?

On the migration of responsibility and sustainability: It has been reported
that migration of developers from one release to the next is high and that the
developers take more responsibility as they gain experience. Yet it is a common
phenomenon in open source domain that developers freely join or leave the
project. And when a developer leaves, his responsibilities must be handed over
for sustainability of the project. The following topics should be relevant research
problems in relation to this:

• How responsibility migrates among the developers? Does this migration
follow preferential-attachment?, i.e., is the responsibility handed over to
the developers who are in close connection to the outgoing developers.

• What impact such migration has on the project evolution?

In contrast to the technical and social evolution research, the socio-technical
dimension is least entertained till the reporting of the review. This inadequacy
in current research, yet profound impact of high socio-technical congruence in
software projects lead this thesis to be conducted. However, other potential
research directions includes for instance the following.

Sub-project evolution with their community: Large OSS projects often en-
compass many sub-projects. Often ecology of sub-communities formed around
these sub-projects, and a centralized governance govern the communities [96].
Study on the formation and evolution of sub-projects and their communities
have revealed many key characteristics [I]. Yet, analyzing the co-evolution of
the two, and its impact on the overall project remains untouched. The following
agendas would be worth to investigate.

• Is there a correlation between the evolution (growth, complexity, change)
of sub-projects and associated sub-communities? Does the community
change with the change in the sub-project?

• How does a community form around a newly added sub-project?

• What attributes of a sub-project attract new developers to join?

• What happens to the sub-community when a subproject is deleted or
merged to other sub-project?

• What dependencies lead to inter-project communication?

• What kind and level of communication and collaboration take place be-
tween sub-communities?

• Is there a correlation between project and sub-project evolution?

61

Additionally, there are certain research issues popped out of the research results
reported in this thesis, which are hereby summarized,

On the recovery of the architecture from developers coordination: High level
of Socio-Technical congruence proclaims that implicit architecture of a software
has resemblance to its explicit counterpart. In other words, it is possible to
derive the explicit architecture to a certain extent if the project exhibits high
socio-technical congruence. This verification is carried out in [III]. However,
in this study, the implicit architecture overestimates the corresponding explicit
one for each stable release [III], with more links between packages than in the
explicit one. The reason for such overestimation could be that the implicit
architecture is derived from all possible communication records among the
developers. Such records consist of general conversations that are well outside
the development discussion. For instance, FreeBSD-chat archive collects only
the email threads related to the general discussion. Inclusion of such mailing
threads cause additional relations among developers in explicit communication
network which are not due to development discussion. This in turn creates
additional links among packages in the corresponding implicit architecture.
Therefore, a study on deriving the implicit architecture from explicit task and
development related mailing threads and its resemblance to that of the explicit
one needs to be carried out.

On the Models and methods: The proposed mathematical model and the
graph theoretic methods are used to measure socio-technical congruence for a
number of OSS project setup. This measurement and the associated empirical
investigations lead to offer proposals on the socio-technical dependency. How-
ever, statistical evaluation is required to justify the impact of this measures and
proposals to that of the OSS success factors, e.g., productivity, maintainability,
quality, and sustainability.

On the Socio-Technical Congruence in an ecosystem: Study of socio-technical
dependency at ecosystem level needs to be fine tuned to achieve deeper insight
and reasoning. One way to achieve this is to examine socio-technical congruence
at different abstraction levels of an ecosystem, for instance, first at intra-project
level (i.e., within each project of the ecosystem), then for a cluster of projects
that are tightly connected (e.g., sub-projects of a larger one), and then for the
whole ecosystem. The measurement should be done at discrete time intervals
to derive trends and patterns. Initiating such study would provide means for
validating the observations reported in this thesis.

On the Framework: The proposed three layer framework [VII] is an initial
step towards a full fledged solution for automated analysis of OSS projects.
With the rise of data services such as OHLOH, future analysis tools could be
developed as plug-ins loaded online in third party service containers. This is
analogous to social network sites like Facebook, which acts as an open container
for custom applications in addition to providing API for hosted data. Such an
approach can be taken to extend the framework in the future.

62

Finally, a couple of issues related to the research approach can be improved to
increase the acceptability of the results reported in this thesis.

External validity: This is a major threat for any empirical research, and spe-
cially with OSS projects. Due to sheer number of OSS projects, it is practically
impossible to gain comprehensive external validity of the documented results.
However, results could be verified within a focused population of projects hav-
ing similar properties. Even though this thesis covers results from 6 flagship
OSS projects, one ecosystem and a public data repository, yet results can not be
generalized for any class of projects. Thus, achieving external validity for the
proposed models, methods, and empirical results could be a possible extension.

Framework for data collection and representation: As discussed throughout
this thesis, OSS projects often produce large volume of data representing their
development and evolution history. Research to date explores the repositories
that maintain these data, a list of which is provided in [I]. However, data collec-
tion and representation in these repositories vary significantly from project to
project. Furthermore, data from the same source may have different formatting
(e.g., emails are often free of format even in listing the senders credentials).
Due to these facts, it is a challenging task to collect relevant data following a
standard format from OSS repositories. In this context, researchers often employ
their own means to collect and represent data for research. This reduces the
compatibility and comparability of the reported results even if they use same
data sources. Taking these issues in consideration, a framework for uniform
data collection and representation can be developed to make the results cohesive
and comparable to each other.

In this thesis, the well accepted approach for data collection, refining, and
analysis are adopted. Additionally, each step of this process is documented and
uniformly used in each included paper. Replication package is offered to better
support reproducibility whenever possible [IV].

5.3.2 Implication for Practice

Apart from having implications on further research on the track, reported study
has significance from practitioners perspective. This includes the followings,

The SLR offered as part of answering the RQ.1 could be a hands-on guide
for practitioners. It categorically presents empirically validated and accepted
metrics, methods, datasets, and tools used for evaluating socio-technical aspects
of an OSS project. This could be a reference point for the professionals who
would like to built analytical tools and frameworks through the utilization of
the best practiced approaches.

From the design perspective, the proposed data model and the correspond-
ing architectural design presented as part of answering RQ.2 and RQ.4, re-
spectively, advocate and apply the Plug-in architectural design principle. This
essentially provides evidence that such modeling of OSS projects is a pragmatic
approach for rapid building of functionalities as plug-ins. This should also
support building an ecosystem of a distributed development community.

On the other hand, the framework presented in relation to RQ.2 and RQ.4,
fosters the design considerations for achieving higher autonomy on data driven
analysis of OSS projects. Additionally, adoption of this proposal would support

63

the following enhancements: data independence, re-usability of the data, in-
crease of the validity measure and comparability of the research results. Here,
data independence ensures the fact that methods derived for OSS data analysis
should be independent of OSS data, and can be applied across OSS projects.
Re-usability should enforce logging of data to local repositories to minimize
costly request over Internet for subsequent access. Additionally, a standard rep-
resentation and access mechanism of data across OSS projects would produce
cohesive research results, with greater validity, confidence, and comparability.

Additionally, analytical tools built on top of the proposed methods and
models (offered as part of RQ.4) would provide a quick index to organizations
to assess how well organizational activity is actually aligned with the current
and planned sub-division of inter dependent tasks in the project. This periodical
assessment would help improve software development processes and practices.

Apart from these, the outcomes of the empirical investigation carried out
to answer RQ.3 have pragmatic implications as well, a description of which is
presented below.

As discussed in Section 5.3.1, one of the implicit implications of having
high degree of socio-technical congruence is that the implicit architecture could
complement the traditional reverse engineering process in recovering the archi-
tecture of legacy systems. That is, given a comprehensive historical record of
task dependent community communication and developers contribution to the
code-base, the recovery of the system architecture can be achieved to a certain
extent.

The OSS projects studied in this thesis are ideally implementing the observed
model with high socio-technical congruence during their entire evolution history.
Therefore, it could be argued that the alignment between the social and technical
dimensions plays a pivotal role in forming cohesive and organized community
driven projects, which eventually leads to their successful evolution with high
quality.

Also, the collaboration model of developers who participate in multiple
projects is analogous to the richer gets rich and the small world phenomenon. Such
collaboration observed for OHLOH projects as well as for forked projects. For
both cases, a high density of developer participation is observed for projects that
exhibit resemblance in programming languages, domain, and project size. This
collaboration might have impact on project success, as the productivity of the
contributors is boosted by providing them a dense communication channel to
acquire more quantity and variety of information and knowledge resources [94].

Finally, for forked projects, this collaboration model could be one of the
properties to overrule the traditional perception of forking which is thought to
have negative stimuli for sustainable project evolution as presented in Section
4.4.

5.4 Limitations and Threats to Validity

Research work in this thesis has been conducted with well established and
practiced software engineering research methods and strategies, a detailed
reporting of which is made in Chapter 3. Even though the validity of the
research outcome can be questioned for several other factors that influence the
research. In literature, the validity of a research designates the trustworthiness

64

of the results. That is, to what extent the reported results are original and not
biased by the researchers’ subjective point of view [79].

Current literature presents different ways to classify aspects of the validity
and threats of a scientific research. For this thesis, three perspectives of the
validity and threats are considered [100] [79]. Table 5.2 summarizes these
validity threats and state them in relation to the concerned publications and the
mitigation measure carried out.

Table 5.2: An overview on the validity threats

Validity
Threat

Description Concerned Publication Mitigated

External
validity

How results can be gener-
alized

[II][III][IV][V][VI][VII][VIII] Partial

Internal
validity

Confounding factors that
can influence the findings

[I] Mitigated

[II][III][IV][V][VI][VII][VIII] Partial
Construct
validity

Relationship between the-
ory and observation

[I] Mitigated

[II][III][IV][V][VI][VII][VIII] Partial

In what follows, a brief description of each of the validity perspectives, and
their mitigation process in relation to individual publication included in this
thesis.

External validity

This perspective of validity identifies the extent to which (a) the reported results
can be generalized, and (b) are of interest to the relevant people outside the
investigated case [100] [79]. In assessing external validity, researchers often
make effort to extend the findings to other relevant cases. However, there is no
population from which a statistically representative sample has been drawn [79].
Yet the motive is to define a theory, that enables analytical generalization to the
population having common characteristics and relevance.

Internal validity

This aspect of validity concerns how one or more factors affect the investi-
gated factor [79]. If the research misses one such factor that might have impact
on the investigated one and thus influence the overall observation, then there is
a threat to internal validity.

Construct validity

Construct validity reflects to what extent the actual operational measures repre-
sents the intended / planned one for investigating the research questions [79].
Any deviation between the two raises a threat to the construct validity.

Most validity threats to an SLR (publication [I] in Table 5.2) is from internal

65

and construct validity. Because carrying out a survey is mostly a manual task,
it is a subject to human interpretation that might be biased [23]. To minimize
this, guidelines suggested by [79] in conducting SLR is adopted. In particular,
all steps in the review were documented and reviewed in advance, including
the selection criteria and attribute definitions.

Case study research (publications [II][III][IV][V] in Table 5.2) and construc-
tive research (publications [VI][VII][VIII] in Table 5.2) done in this thesis are
subject to all the three validity threats discussed above.

For these studies, a total of six OSS projects, Ruby gems ecosystem and the
OHLOH repository were used. These projects are large in size having over
20 years of development and evolution history, and the community size (both
developer and user community) exceeds well over the critical mass [I]. These
projects mostly belong to the domain of operating systems, multimedia and
cloud computing. Additionally, OSS evolution studies often used these projects
as case studies. Thus, it might be possible to stress the results reported in
this thesis to the population having similar properties, e.g., domain, project
size, technical platform, and evolution history. Yet, claiming complete external
validity on the basis of this reasoning is out the scope of this thesis.

Furthermore, internal and construct validity for these studies are mostly
due to (a) lack of statistical analysis validation for the proposed models and
methods, (b) limitations in accuracy for programs developed for data collection
and analysis, and (c) missing historical data, that limits the study to make use
only of available data. However, missing data is observed only for NetBSD and
OpenBSD projects, for which a total of one month email conversation record
can not be retrieved due to missing links to the corresponding repository.

5.5 Conclusions

Fred Brooks, in his classic book The Mythical Man Month [10] provides an analogy
on Why did the (mythical) Tower of Babel Fail?, even though the people had
a clear mission, manpower, materials (raw), time, and required technology.
The project failed because of communication, and its consequences on the
organization [10]. In software systems, schedule disasters, functional misfits
and system bugs arise from a lack of communication and coordination among
group of people involved in the development process [10]. Coordination in
software development must be ad-hoc, flexible and situated in order to (a) map
the coordination needs devised by the underlying technical dependencies of
the software, and (b) to effectively encounter uncertainties probed by rapid and
continuous changes in the underlying software.

Successful OSS projects, being the utmost specimen of unconventional soft-
ware development process, posed the query, do such projects exhibits high
quality of coordination that could explain their sustainable evolution? and if
so, how that could be conceived? This thesis is a sincere and humble effort to
offer a deeper understanding on the topic through the lens of socio-technical
dependency.

In doing so, this thesis first examines the state-of-the-art literature concerning
the social, technical and socio-technical dimensions of OSS projects, and derive
the need and scope for this work.

Second, this thesis proposes models, and methods to measure socio-technical

66

dependency quantitatively from OSS project artifacts. This includes proposal
of (a) a OSS data model, (b) a set of six graph theocratic methods, and (c) a
mathematical model of socio-technical congruence. The data model mimics
the social, and technical dimensions by representing the data taken from OSS
project artifacts, and the methods reveals their interdependency in terms of ar-
chitectures and coordination networks. The mathematical model then measures
the socio-technical dependency quantitatively by unitizing the architectures
and the networks.

Third, the thesis carries out empirical investigations for distinct OSS project
context to build proposals, trends and patterns of socio-technical dependency
within such projects. This is done by applying the proposed models and meth-
ods.

Finally, this thesis presenters a set of proposals to automate the analysis and
visualization of the socio-technical dependency in OSS projects. This includes,
proposal for (a) a three layer framework, (b) plug-in based architectural designs
for building tools on top of the framework and the OSS data model, and (c) de-
veloping corresponding tool supports (e.g., Binoculars and Pomaz), and thereby
distill lessons learned during the tool-building experience as a practitioners
guide.

Future work along this track should offer statistical verification of the pro-
posed methods and models in relation to the success factors of OSS projects,
e.g., sustainability, maintainability, evolution, management. Additionally, ex-
tending the results presented in this thesis in deriving guidelines and models
for building sustainable open source ecosystems would be a promising research
direction.

67

68

Bibliography

[1] T. Aaltonen and J. Jokinen. Influence in the linux kernel community.
International Conference of Open Source Systems, pages 203–208, 2007.

[2] A. Al-Ajlan. The evolution of open source software using eclipse metrics.
In International Conference on New Trends in Information and Service Science,
pages 211–218, 2009.

[3] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data
to evaluate the impact of software tools. Proceedings 21st International
Conference on Software Engineering, 24:324–333, 1999.

[4] C. Baldwin and K. Clark. Design rules: The power of modularity. MIT
Press, 2000.

[5] S. G. R. G. Biehl J.T., Czerwinski M. Fastdash: A visual dashboard for
fostering awareness in software teams. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1313–1322, 2007.

[6] C. Bird. Sociotechnical coordination and collaboration in open source
software. In International Conference on Software Maintenance, pages 568–
573, 2011.

[7] F. Bolici, J. Howison, and K. Crowston. Coordination without discussion?
socio-technical congruence and stigmergy in free and open source soft-
ware projects. 2nd STC, International Conference on Softwafre Engineering,
2009.

[8] A. Bonaccorsi and C. Rossi. Altruistic individuals, selfish firms? the
structure of motivation in open source software. First Monday (1-5), pages
203–208, 2004.

[9] F. Brooks. No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, 1987.

[10] F. P. Brooks. The mythical man-month. Anniversary Edition: Addison-Wesley
Publishing Company, 1995.

[11] T. Browning. Applying the design structure matrix to system decom-
position and integration problems: a review and new directions. IEEE
Transactions on Engineering Management, 48(3):292–306, 2011.

[12] R. Burton and B. Obel. Strategic organizational diagnosis and design.
Kluwer Academic Publishers, 1998.

69

[13] A. Capiluppi, J. González-Barahona, I. Herraiz, and G. Robles. Adapting
the “staged model for software evolution” to free/libre/open source
software. In International workshop on Principles of software evolution, pages
79–82, 2007.

[14] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the evolution of os
projects through changelog analysis. In Proceedings of the 3rd Workshop
on Open Source Software Engineering (International Conference on Softwafre
Engineering’03), pages 19–24, 2003.

[15] K. Carley and Y. Ren. Tradeoffs between performance and adaptability for
c3i architectures. International Command and Control Research and Technology
Symposium, 2001.

[16] M. Cataldo, J. Herbsleb, and K. Carley. Socio-technical congruence: A
framework for assessing the impact of technical and work dependen-
cies on software development productivity. Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering and
measurement, pages 2–11, 2008.

[17] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley. Identification of
coordination requirements: implications for the design of collaboration
and awareness tools. In Computer supported cooperative work, pages 353–362,
2006.

[18] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley. Identification of
coordination requirements: Implications for the design of collaboration
and awareness tools. Conference on Computer supported cooperative work,
Banff, Canada, 2006.

[19] D. Challet and Y. L. Du. Microscopic model of software bug dynam-
ics: Closed source versus open source. International Journal of Reliability,
Quality and Safety Engineering, 12(6), 2005.

[20] R. Chang, S. Yang, J. Moon, W. Oh, and A. Pinsonneault. A social capital
perspective of participant contribution in open source communities: The
case of linux. In Hawaii International Conference on System Sciences, pages
1–10, 2011.

[21] M. Conway. How do committees invent? Datamation, 14(4):28–31, 1968.

[22] J. Cook, L. Votta, and A. Wolf. Cost-effective analysis of in-place software
processes. Transactions on Software Engineering, 24:650–663, 1998.

[23] B. Cornelissen, A. Zaidman, A. Deursen, L. Moonen, and R. Koschke. A
systematic survey of program comprehension through dynamic analysis.
Transactions on Software Engineering, 35(5):684–702, 2009.

[24] K. Crowston and J. Howison. The social structure of free and open source
software development. First Monday, 10(2), 2005.

[25] R. Daft and K. Weick. Towards a model of organizations as interpretation
systems. In Academy of Management Review, volume 9, pages 284–295,
1984.

70

[26] P. Dewan and R. Hegde. Semi-synchronous conflict detection and res-
olution in asynchronous software development. European Conference on
Computer Supported Cooperative Work, pages 158–179, 2007.

[27] N. Ducheneaut. Socialization in an open source software community: A
socio-technical analysis. Computer Supported Cooperative Work, 14(4):323–
368, 2005.

[28] K. Ehrlich, M. Helander, G. Valetto, S. Davies, and C. Williams. An analy-
sis of congruence gaps and their effect on distributed software develop-
ment. Proc. Socio-Technical Congruence Workshop at International Conference
on Softwafre Engineering Conf., 2008.

[29] A. Fink. The survey handbook. In Sage Publications, 2003.

[30] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual
tool for distributed software development teams. International Conference
on Softwafre Engineering, pages 387–396, 2004.

[31] A. Garcia, P. Greenwood, G. Heineman, R. Walker, Y. Cai, H. Y. Yang,
E. Baniassad, C. Lopes, C. Schwanninger, and J. Zhao. Assessment of
contemporary modularization techniques. ACM SIGSOFT Software Engi-
neering Notes, 35(5):31–37, 2007.

[32] D. M. German. Using software trails to reconstruct the evolution of soft-
ware. Journal of Software Maintenance and Evolution: Research and Practice,
16:367–384, 2004.

[33] E. Gilbert and K. Karahalios. Codesaw: A social visualization of dis-
tributed software development. Human-Computer Interaction - INTERACT,
pages 303–316, 2007.

[34] P. Gloor. Swarm Creativity. Oxford University Press, 2006.

[35] R. Glott, A. Groven, K. Haaland, and A. Tannenberg. Quality models for
free/libre open source software-towards the silver bullet? EUROMICRO
Conference on Software Engineering and Advanced Applications, pages 439–
446, 2010.

[36] M. Godfrey and Q. Tu. Evolution in open source software: A case study.
In International Conference on Software Maintenance, pages 131–142, 2000.

[37] M. Goeminne and T. Mens. A framework for analyzing and visualizing
open source software ecosystems. In International workshop on Principles of
software evolution, pages 42–47, 2010.

[38] J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor, and D. Ger-
man. Macro-level software evolution: A case study of a large software
compilation. Journal Empirical Software Engineering, 14(3):262–285, 2009.

[39] R. Grinter, J. Herbsleb, and D. Peffy. The geography of coordination:
Dealing with distance in r&d work. Proceedings of the international ACM
SIGGROUP conference on Supporting group work, pages 306–315, 1999.

71

[40] J. Gutsche. The evolution of open source communities. Topics in Economic
Analysis and Policy, 52(1):1000–1014, 2005.

[41] R. Henderson and K. Clark. Architectural innovation: the reconfiguration
of existing product technologies and the failure of established firms. In
Administrative Science Quarterly, volume 35, pages 9–30, 1990.

[42] J. Herbsleb. Global software engineering: The future of socio-technical
coordination. Future of Software Engineering, pages 188–198, 2007.

[43] J. Herbsleb and R. Grinter. Architectures, coordination, and distance:
Conway’s law and beyond. IEEE Software, 16(5):63–70, 1999.

[44] I. Herraiz. A statistical examination of the evolution and properties of
libre software. International Conference on Software Maintenance, pages
439–442, 2009.

[45] E. V. Hippel. Task partitioning: an innovation process variable. Research
Policy, 19(5):407–418, 1990.

[46] Q. Hong, S. Kim, S. Cheung, and C.Bird. Understanding a developer
social network and its evolution. In 27th International Conference on Software
Maintenance, pages 323–332, 2011.

[47] S. Jansen and G. van Capelleveen. Quality review and approval methods
for extensions in software ecosystems. Software Ecosystem, pages 187–217,
2013.

[48] A. Jedlitschka and D. Pfahl. Reporting guidelines for controlled experi-
ments in software engineering. In Proceedings of ACM/IEEE International
Symposium on Empirical Software Engineering, pages 95–104, 2005.

[49] W. Jingwei, R. Holt, and A. Hassan. Empirical evidence for soc dynam-
ics in software evolution. In IEEE International Conference on Software
Maintenance, pages 244–254, 2007.

[50] E. Kasanen, K. Lukka, and A. Siitonen. The constructive approach in man-
agement accounting research. Journal of Management Accounting Research,
1(5):243–263, 1993.

[51] C. Kemerer and S. Slaughter. An empirical approach to studying software
evolution. Transactions on Software Engineering, 25(4):493–509, 1999.

[52] B. A. Kitchenham. Procedures for performing systematic reviews. In Tech-
nical Report TR/SE-0401, Keele University, and Technical Report 0400011T.1,
National ICT Australia, 2004.

[53] B. A. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman. Systematic literature reviews in software
engineering- a tertiary study. Information and Software Technology, 52(8):792–
805, 2010.

[54] H. Klein and M. Myers. A set of principles for conducting and evaluating
interpretative field studies in information systems. MIS Quarterly - Special
issue on intensive research in information systems, 23(1):67–88, 1999.

72

[55] S. Koch. Software evolution in open source projects - a large-scale investi-
gation. Journal of Software Maintenance and Evolution: Research and Practice,
19(6):361–382, 2007.

[56] I. Kwan, M. Cataldo, and D. Damian. Conway’s law revisited: The
evidence for a task-based perspective. IEEE Software, 29(1):90–93, 2012.

[57] I. Kwan, A. Schröter, and D. Damian. Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project. Transactions on Software Engineering, 37(3):307–324, 2011.

[58] M. Lehman. Software evolution. Encyclopedia of Software Engineering, 2nd
Edition, John Wiley and Sons Inc., pages 1507–1513, 2002.

[59] W. Li and R. Shatnawi. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution.
Journal of Systems and Software, 80(7):1120–1128, 2007.

[60] M. Longu, M. Lanza, T. Gibra, and R. Robbes. The small project observa-
tory: visualizing software ecosystems. Science of Computer Programming,
75(4):264–275, 2010.

[61] K. Lukka. Konstruktiivinen tutkimusote: luonne, prosessi ja arviointi.
Rolin, K., Kakkuri-Knuutila, M.-L., Henttonen, E. (eds.) Soveltava Yhteiskun-
tatiede ja Filosofia, Gaudeamus, Helsinki, pages 111–133, 2006.

[62] K. Manikas and K. M. Hansen. Software ecosystems: A systematic litera-
ture review. Journal of Systems and Software, 86(5):1294–1306, 2013.

[63] D. Messerschmitt and C. Szyperski. Software ecosystem: Understanding
an indispensable technology and industry. MIT press book 1, London,
England., 2005.

[64] R. Milev, S. Muegge, and M. Weiss. Design evolution of an open source
project using an improved modularity metric. In International Conference
of Open Source Systems’09, pages 20–33, 2009.

[65] A. Mockus and J. Herbsleb. Expertise browser: A quantitative approach
to identifying expertise. International Conference on Softwafre Engineering,
pages 503–512, 2002.

[66] K. Nakakoji, K. Yamada, and E. Giaccardi. Understanding the nature
of collaboration in open-source software development. In Asia Pacific
Software Engineering Conference, pages 827–834, 2005.

[67] E. Nasseri and S. Counsell. System evolution at the attribute level: An
empirical study of three java international conference of open source
systems and their refactoring. In International conference on Information
Technology Interfaces, pages 653–658, 2009.

[68] K. Ngamkajornwiwat, D. Zhang, A. Koru, L. Zhou, and R. Nolker. An
exploratory study on the evolution of international conference of open
source systems developer communities. In Hawaii International Conference
on System Sciences, page 305, 2008.

73

[69] G. Olson and J. Olson. Distance matters. Human Computer Interaction, 15(2
and 3):139–178, 2007.

[70] H. Orsila, J. Geldenhuys, A. Ruokonen, and I. Hammouda. Update
propagation practices in highly reusable open source components. In
International Conference of Open Source Systems, pages 159–170, 2008.

[71] K. Piirainen and R. Gonzalez. Seeking constructive synergy: Design
science and the constructive research approach. Design Science at the
Intersection of Physical and Virtual Design, pages 59–72, 2013.

[72] G. Porruvecchio, S. Uras, and R. Quaresima. Social network analysis
of communication in open source projects. In Proceedings of 9th Inter-
national Conference on Agile Processes in Software Engineering and Extreme
Programming, pages 220–221, jun 2008.

[73] R. G. R, G. Lilien, and G. Mallapragada. Location, location, location: How
network embeddedness affects project success in open source systems.
Management Science, 52(7):1043–1056, 2006.

[74] E. Raymond. The cathedral and the bazaar. O’Reilly & Associates, Cam-
bridge MA, 1999.

[75] J. Roberts, I.-H. Hann, and S. Slaughter. Understanding the motivations,
participation, and performance of open source software developers: A
longitudinal study of the apache projects. Management Science, 52:984–999,
2006.

[76] G. Robles, J. Amor, J. Gonzalez-Barahona, and I. Herraiz. Evolution
and growth in large libre software projects. In International workshop on
Principles of software evolution, pages 165–174, 2005.

[77] G. Robles and J. Gonzalez-Barahona. A comprehensive study of software
forks: Dates, reasons and outcomes. In International Conference of Open
Source Systems, pages 1–14, 2012.

[78] C. Robson. Real world research. In John Wiley & Sons, 3rd Edition, 2011.

[79] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[80] R. Sangwan, P.Vercellone-Smith, and C. Neill. Use of a multidimensional
approach to study the evolution of software complexity. Journal of Innova-
tions in Systems and Software Engineering, 6(4):299–310, 2010.

[81] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb. Tesseract: In-
teractive visual exploration of socio-technical relationships in software
development. International Conference on Softwafre Engineering, IEEE, pages
23–33, 2009.

[82] A. Sarma, Z. Noroozi, and A. V. der Hoek. Palantr: Raising awareness
among configuration management workspaces. International Conference
on Softwafre Engineering, pages 444–454, 2003.

74

[83] W. Scacchi. Understanding open source software evolution: Applying,
breaking, and rethinking the laws of software evolution. Applying, Break-
ing, and Rethinking the laws of software evolution, John Wiley and Sons Inc.,
pages 1043–1056, 2003.

[84] S. Shah. Motivation, governance, and the viability of hybrid forms in open
source software development. Journal of Management Science, 52(7):1000–
1014, July 2006.

[85] A. Shenton. Strategies for ensuring trustworthiness in qualitative research
projects. Education for Information, 22(2):63–75, 2004.

[86] M. Simmons, P. Vercellone-Smith, and P. Laplante. Understanding open
source software through software archeology: The case of nethack. In
IEEE/NASA Software Engineering Workshop, pages 47–58, 2006.

[87] P. V. singh. The small-world effect: The influence of macro-level properties
of developer collaboration networks on open-source project success. ACM
Transactions on Software Engineering and Methodology, 20(2), 2010.

[88] M. Sosa, S. Eppinger, and C. Rowles. The misalignment of product ar-
chitecture and organizational structure in complex product development.
Management Science, 12(50):1674–1689, 2004.

[89] C. Souza, S. Quirk, E. Trainer, and D. Redmiles. Supporting collaborative
software development through the visualization of socio-technical depen-
dencies. ACM SIGGROUP Conference on Supporting Group Work, pages
147–156, 2007.

[90] C. D. Souza, D. Redmiles, L.-T. Cheng, D. Millen, and J. Patterson. How
a good software practice thwarts collaboration – the multiple roles of
apis in software development. 12 th Conference on Foundations of Software
Engineering, pages 221–230, 2004.

[91] K. Stewart, D. Darcy, and S. Daniel. Observations on patterns of develop-
ment in open source software projects. In Proceedings of the fifth workshop
on Open source software engineering, pages 1–5, 2005.

[92] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, and
C. Williams. Using software repositories to investigate socio-technical
congruence in development projects. International Workshop on Mining
Software Repositories, page 25, 2007.

[93] Y. Wang, D. Guo, and H. Shi. Measuring the evolution of open source soft-
ware systems with their communities. ACM SIGSOFT Software Engineering
Notes, 32(6), 2007.

[94] D. Watta. Networks, dynamics, and the small world phenomenon. Amer.
J. Sociology 105, pages 493–527, 1999.

[95] M. Wattenberg, S. Rohall, D. Gruen, and B. Kerr. E-mail research: Target-
ing the enterprise. Human-Computer Interaction, 20:139–162, 2005.

[96] M. Weiss, G. Moroiu, and P. Zhao. Evolution of open source communities.
International Conference of Open Source Systems, 203:21–32, 2006.

75

[97] H. Wen, R. D’Souza, Z. Saul, and V. Filkov. Evolution of apache open
source software. Modeling and Simulation in Science, Engineering and Tech-
nology, Springer, pages 199–215, 2009.

[98] R. Wendel, J. Bruijn, and M. Eeten. Protecting the virtual commons,
information technology & law series. In T.M.C. Asser Press, pages 44–50,
2003.

[99] R. Wieringa and H. Heerkens. Designing requirements engineering re-
search. In In Proceedings of the Fifth International Workshop on Comparative
Evaluation in Requirements Engineering, pages 36–48, 2007.

[100] C. Wohlin, P. Runeson, M. Höst, M. Ohlson, B. Regnell, and A. Wesslén.
Experimentation in software engineering: An introduction. In Kluwer
Academic, 2000.

[101] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida. Collaboration
with lean media: How open-source software succeeds. In Conference on
Computer supported cooperative work, pages 329–338, 2000.

[102] Y. Ye, K. Nakakoji, Y. Yamamoto, and K. Kishida. The co-evolution of
systems and communities in free and open source software development.
Free/Open Source Software Development. IGI Global, pages 59–83, 2005.

[103] R. Yin. Case study research: design and methods. Sage Publications, 2013.

76

77

[I] M.M. Syeed, I. Hammouda, and T. Systä. Evolution of Open Source
Software Projects: A Systematic Literature Review. Journal of Software, vol.
8, no. 11, 2013, pages 2815–2829. November, 2013.

Evolution of Open Source Software Projects: A
Systematic Literature Review

M.M. Mahbubul Syeed, Imed Hammouda, Tarja Systä
Department of Pervasive Computing, Tampere University of Technology, Tampere, Finland

Email: {mm.syeed, imed.hammouda, tarja.systa}@tut.fi

Abstract— Open Source Software (OSS) is continuously
gaining acceptance in commercial organizations. It is in
this regard that those organizations strive for a better
understanding of evolutionary aspects of OSS projects.
The study of evolutionary patterns of OSS projects and
communities has received substantial attention from the
research community over the last decade. These efforts
have resulted in an ample set of research results for which
there is a need for up-to-date comprehensive overviews and
literature surveys.

This paper reports on a systematic literature survey aimed
at the identification and structuring of research on evolution
of OSS projects. In this review we systematically selected
and reviewed 101 articles published in relevant venues. The
study outcome provides insight in what constitutes the main
contributions of the field, identifies gaps and opportunities,
and distills several important future research directions.

Index Terms— Open Source; Evolution; Systematic Litera-
ture Review.

I. I NTRODUCTION

Research on Open Source Software (OSS) has gained
momentum over the last decade as commercial use of OSS
components continues to expand [1]. Much of the research
has focused on evolutionary aspects of open source devel-
opment in answer to long-term sustainability and viability
concerns of community-based software projects [2].

Examples of such research include collecting experi-
ences and building theories of OSS adoption in terms of
planning, process improvement, community involvement
and software maintenance [3] [4]. Often well-established
theories of software evolution, such as Lehman’s law [5],
are studied in the context of OSS to assess evolutionary
and quality characteristics such as survivability, growth
potential, maintainability, and ease of adoption.

To keep track of the latest research findings in the
area of OSS evolution, there is a need for comprehensive
literature studies that summarize and structure the existing
body of knowledge. In this article, we present a study for
systematic selection, characterization and structuring liter-
ature that concerns evolution of open source projects. Our
objective, and thus contribution is to produce a systematic
reporting of what constitutes the key contributions, the
main research gaps, and potential future directions in the
field.

In order to perform the study, we have adopted a
systematic literature review (SLR) approach [6] for the

This work was supported in part by the Nokia Foundation Grantand
TiSE graduate school funding, Finland.

systematic selection and characterization of existing lit-
erature. SLR is a recommended methodology for aggre-
gating knowledge about a specific software engineering
topic or research question [7] [8], through the systematic
analysis of relevant empirical studies [6]. For example,
SLRs were popularly utilized to acquire, conceptualize
and structure knowledge in various fields of software
engineering including, dynamic analysis [9], fault predic-
tion [10], global software engineering [11], and business
process adoption [12].

To carry out this review we adopted a review protocol
following the guidelines suggested in [13] and the survey
process used in [9]. Keeping the research motivation in
mind, we posted 11 research questions in four categories,
e.g., target, approach, target group and outcome. Target
refers to the different facets and dimensions of OSS
projects explored; approach refers to the method, met-
rics, and tools used for the study; target group refers
to the domain of OSS projects studied with selection
motives, and finally the outcome refers to the findings
and validation of the results reported in the articles. We
also discuss the implications of the findings and provide
recommendations for future research. The data extracted
from the articles are documented under the attribute set
developed for answering the research questions. This data
is provided in the review website [14] and can be used
by the research community to get a holistic view on OSS
evolution studies.

The paper is organized as follows: In Section II we
discuss the review protocol and the research questions.
Answers to the research questions, and a discussion on
open areas in the field of OSS and evolution are presented
in Section III and IV respectively. Section V discusses
validity issues related to the review process. Finally,
concluding remarks are presented in Section VI.

II. REVIEW METHODOLOGY

Evidence-based Software Engineering (EBSE) relies
on aggregating the best available evidence to address
engineering questions posed by researchers. A recom-
mended methodology for such studies is Systematic Lit-
erature Review (SLR) [6]. Performing an SLR involves
several discrete tasks, which are defined and described by
Kitchenham in [13]. As a starting point, SLR recommends
to pre-define a review protocol to reduce the possibility of
researcher bias [13]. Along those guidelines and following

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2815

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2815-2829

Figure 1. Overview of systematic literature review

the review process described in [9], Figure 1 shows the
tasks involved in the review protocol of this study. The
tasks are discussed in the subsequent subsections.

A. Research Questions

The research questions we have defined fall within the
context of OSS projects and their evolution strategies. In
total we have formulated 11 questions, as presented in Ta-
ble I. These questions are proposed to portray the holistic
view of OSS evolution studies. This covers aspects like
the focus of the study, methodological detail, case study
projects, data sources, and validation mechanisms.

B. Article Selection

This section describes the article selection process
(phase (b) in Figure 1) that includes defining the
inclusion criteria for article selection, an automated
keyword search process to search digital libraries, a
manual selection from the initial set of articles, and the
reference checking of the listed articles.

Inclusion criteria . Along the research questions
shown in Table I, we have defined the following
selection criteria in advance that should be satisfied by
the reviewed articles:

• Subject area of the articles must unveil strong focus
on evolution of OSS projects. Authors must explic-
itly state the target of the study (e.g., software evolu-
tion, community evolution, co-evolution, prediction)
and provide detail evidence of research methodology,
data sets, and statistical detail of case study projects.

• Articles must exhibit a profound relation to OSS
projects and take into consideration those aspects that
are particularly attributed to the OSS community and
projects. Articles using OSS as a case study are taken
into account only if they satisfy the above criterion.

• Articles published in referred journals and confer-
ences are included for the review. Similar to most
SLRs, books are not considered for the review.

The suitability of the articles was determined against
the above mentioned selection criteria through a manual
analysis (discussed later in this section) of title, keywords,
abstract. In case of doubt conclusions are checked [15].

Automated keyword search. Automatic keyword
search is a widely used strategy in literature surveys [16]
[17]. Thus we performed a broad automated keyword
search to get the initial set of articles. First author of
this article was responsible for the search process. Seven
digital libraries were searched: IEEE Computer Society
Digital Library; ACM; ScienceDirect; SpringerLink;
Google Scholar; FLOSShub and Mendeley. These
libraries are the popular sources for open source related
research articles. All searches were based on the title,
keywords and abstract. The time period for this search
was from January, 2000 to January, 2013.

Knowing the fact that construction of search strings
varies among libraries, we first defined search terms
according to our inclusion criteria. Then to form the
search strings, we combined these search terms following
the guidelines of the digital library searched. The list of
search terms that were used is as follows.

2816 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE I.
RESEARCHQUESTIONS

Category Research Questions Main Motivation
Target Which facets of OSS projects were explored and what

statistical distribution the articles have in those facets?
To decompose the articles according to their study focus andintensity
of studies in each focus area.

What are the dimensions of OSS projects explored under
each study facet?

To determine the specific aspect(s) of OSS projects exploredin
evolution studies within each facet.

Approach What are the research approaches followed in the stud-
ies?

To identify the general research approach followed in evolution
studies (e.g., empirical studies with quantitative or qualitative data
analysis).

What are the datasets or data sources of OSS projects
mostly exploited in evolution studies?

To identify the data sources of an OSS project that are used for the
evolution studies.

What metric suits are evaluated and what tools are used
for metric data collection?

To explore the metric suits used for evolution study and the popularly
used tools for data extraction.

Target
group

What is the portfolio of projects analyzed for evolution
studies and what are their domains?

To determine the mode of evolution studies (e.g., horizontal or
vertical) by statistically measuring the studied OSS projects and their
domains.

Outcome Does the concern on “OSS evolution study” follow an
increasing trend?

To identify the beginning and growth of research interest inthe field
OSS project evolution.

What contributions are made in literature to analyze the
evolution of software?
What contributions are made in literature to analyze the
evolution of organization or community?

To explore what results are presented to enhance the understanding of
OSS projects evolution. (e.g., do evolution of OSS projectsconforms
to the theory of software evolution?)

What contributions are made in literature to analyze the
interdependency in the evolution of the software and
organization?
How are the research approaches and results of the
articles typically validated?

To identify the approaches employed to evaluate the research ap-
proaches and study results (e.g., internal validity, external validity,
construct validity).

Terms representing OSS: “Open source” or OSS or
“Open Source Software” or “Open Source Software
projects” or FLOSS or “Libre Software” or “F/OSS”.

Terms representing evolution study: “evolution” or
“structural evolution” or “evolution of software” or
“project evolution” or “project history” or “software
evolution” or “community evolution” or “co-evolution”.

Automated keyword search ended up with 181 articles
consisting of 46 journal articles and 135 conference
articles.

Manual selection. Recent studies [15] [9] pointed out
that (a) current digital libraries on software engineering
do not provide good support for automated keyword
search due to lack of consistent set of keywords, and
(b) the abstracts of software engineering articles are
relatively poor in comparison to other disciplines. Thus
it is possible that the 181 articles identified through
automated search process might contain irrelevant ones
and some relevant might be missing. Due to this fact the
first author performed a manual selection on these articles
by reviewing the title, keywords and abstract (and in
case of doubt, checking the conclusion [15]). To reduce
the researcher bias in this selection process, the domain
experts (second and third author) examined the selected
articles against the selection criterion. Any disagreement
was resolved through discussion. This process ended up
with 97 articles consisting of 21 journal articles and 76
conference articles.

Reference checking. To ensure the inclusion of
other relevant but missing articles (as mentioned above),
the first author performed a non-recursive search through
the references of the 97 selected articles. This process
identified 4 additional conference articles.

Final set of articles. The article selection process
finally ended up with 101 articles (21 journal and 80
conference articles). A complete list of these articles
along with year and venue wise distribution can be found
in our review website [14].

C. Attribute Framework

The next step in the review protocol was the
construction of an attribute framework (phase (c) in
Figure 1). This framework was used to characterize the
selected articles and to answer the research questions.
Following is a brief description of this process.

Attribute identification . The attribute set was derived
based on two criteria: (a) The domain of the review
(i.e., evolution of OSS projects) and (b) the research
questions. A pilot study was run for this step, as shown
in phase (c) of Figure 1. This phase consists of a number
of activities.

First, we performed an exploratory study on the struc-
ture of 10 randomly selected articles (from the pool of 101
articles). This study led to a set of eight general attributes
that can be used to describe the articles and to answer
the research questions. This attribute list is shown in the
Attribute column of Table II.

Second, this list of attributes was refined further
into a number of specific sub-attributes to get precise

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2817

© 2013 ACADEMY PUBLISHER

TABLE II.
ATTRIBUTE FRAMEWORK

Attribute Sub Attribute Brief Description
General Publication Type, Year of Publication
Study Type Empirical, comparative, case study, tool implementation.
Study Target Software evolution Code, architecture, bug/feature

Community evolution Developer and user community
Co-evolution Combined evolution of software and community
Prediction Studies on predicting evolution of OSS projects

Case Study OSS projects studied List of OSS projects studied
Programming language Target programming languages of OSS projects
Project size Size measure of OSS projects (in KLOC for latest release)
Project domain Application domain of the OSS projects covered

Data Source Source code Code base, CVS/SVN
Contributions Change log, bug tracking systems
Communication Mailing list archive, chat history
External sources Sourceforge, github, ohloh.

Methodology Methods Concrete methods applied
Metrics Type of metrics used
Tool implementation Tools implemented for the study
Tools used Existing tools, algorithms used for study

Results Growth rate Defines the growth rate of an OSS project during its evolution.
Measure of evolution Qualitative, Quantitative
Prediction classification
Summary Other findings

Evaluation / Validation Validation process for a study

description of each of the general attributes and fine
tune the findings on the research questions. To do this,
we made a thorough study of the same set of articles
and wrote down words of interest that could be relevant
for a particular attribute (e.g., “software evolution”,
or “community evolution” or “co-evolution” forStudy
target attribute). The result after reading all articles was
a (large) set of initial sub attributes. This data extraction
task was performed by the first author of this survey.

Attribute generalization and final attribute
framework . We further generalized the attributes
and sub-attributes to increase their reusability [9]. For
example, sub-attributes “mailing list archive” or “chat
history” are intuitively generalized toCommunication.
This final attribute list was then examined and validated
by the domain experts (second and third authors). This
reduces the change of researcher bias, as neither of the
domain experts had any connection with this process.
The final attribute framework is shown in Table II.

D. Article Assessment

The article assessment step consists of four distinct
activities as shown in phase (d) of Figure 1. In this
section we focus on the first two steps.

Attribute Assignment. Using the attribute framework
from the previous section, we processed all articles and
assigned the appropriate attribute sets to each of the
articles. These attributes effectively capture the essence
of the articles in terms of the research questions and
allow for a clear distinction between (and comparison
of) the articles under study.

The assignment process was performed by the first
author of this survey. During this process, authors’ claim
of contribution is assessed against the results presented

in the articles. For example, to validate the claim on
the target of the study (e.g., software or community
evolution), we assessed what relevant data sources are
explored, what metrics and methods are used, and the
duration and process of data collection. Also, we did not
draw any conclusions from what was presented in an
article if it was not explicitly mentioned. For example,
we left the attribute fieldstudy typeempty if it was not
mentioned in the article.

Characterization of the reviewed articles. Since
the attribute assignment process is subject to different
interpretations, different reviewers may predict different
attribute subsets for the same article [9]. As the attribute
assignment process is carried out by the first author of
this paper, the quality of the assignment needed to be
verified to avoid reviewer bias [9]. This verification task
was carried out by the domain experts who assessed the
data collection table against the reviewed articles. Any
disagreements were resolved through discussion. This
characterization of articles is presented in our review
website [14].

Next we discuss the results of this review by answering
the research questions and discussing open areas in this
field.

III. R EVIEW RESULTS

Given the article selection and attribute assignment
(as presented in review website [14]), the next step is to
present and interpret the study findings. We start with
discussing answers to the research questions based on
the study outcome. List of OSS projects that are studied
in the review articles are provided in the website [14].

RQ1. Which facets of OSS projects are explored

2818 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

and what statistical distribution the articles have in those
facets?

An in-depth study on the selected articles led us to
decompose the OSS evolution articles into four facets:

• Software evolution: articles under this facet explore
evolutionary behavior of OSS systems and derive
patterns of evolution to evaluate them against the
laws of software evolution. Such studies also mea-
sure the issues that concern the commercial world.
This includes for instance, study the evolutionary
patterns of code complexity, maintainability, sustain-
ability, and quality in an OSS project.

• Community evolution: articles under this facet stud-
ies how the social networks of developers and users
evolve over time while building the product.

• Co-evolution: articles under this facet examine the
evolution of OSS systems with the associated com-
munities, and explore relationship between the two
through different collaboration models.

• Prediction: articles under this facet deal with defining
and examining prediction models to simulate the
evolution of OSS projects. For instance, developing
methods to support error prediction for the purpose
of preventive maintenance and building quality soft-
ware.

Figure 2 shows the distribution of articles (published
in both journal and conferences) under each facet.

Figure 2. Article distribution under each facet of evolution study

From this figure it is evident that the facetsoftware
evolutiongot maximum attention over others. The reason
of such bias distribution of articles can be defended by
the fact that the development history of OSS projects is
relatively new compared to its proprietary counterpart
[18].

Software evolution is the most studied facet.

RQ2. Does the interest on“OSS evolution study”
follow an increasing trend?

OSS development has appeared and diffused
throughout the world of software technology, mostly

in the last ten to thirteen years. During this period, a
growth in interest for better understand the patterns of
OSS evolution has been noticed. The increasing trend in
number of publications between the year 2000 and 2012
(as shown in Figure 3) assist this claim.

Figure 3. Concern on ”OSS evolution study” over the decade

Research on OSS evolution follows an increasing
trend.

RQ3. What research approaches are followed in
the studies?

Research methodologies followed in the reviewed
articles can be categorized into four distinct approaches:
empirical study, case study, comparative study and
tool implementation. Each of these studies use OSS
project data for either quantitative analysis or qualitative
analysis. Figure 4 shows the count of published articles
according to this classification. As can be seen from
the Figure, 75% of the studies (76 articles out of 101)
followed empirical approach with either quantitative or
qualitative data analysis.

Figure 4. Distribution of articles under the classificationof research
approaches followed in the studies

Empirical research is the most frequent research
methodology used to study OSS evolution.

RQ4. What are the dimensions of OSS projects explored
under each study facet?

This research question gives a fine grained view on the
dimensions of OSS projects explored by the evolution
articles. Figure 5 provides a two dimensional view of
OSS projects, e.g., code and community dimensions with
their constituent parts. As can be seen from this figure,

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2819

© 2013 ACADEMY PUBLISHER

software evolution and prediction facets mostly utilize
the code dimension. Whereas the community evolution
facet puts more emphasis on developer community
than user community or their combination. The study
on co-evolution of the code and community mostly
explores the code base, bug reports, developer and user
community.

Figure 5. Dimensions of OSS projects that are explored to study a facet,
means not applicable

Code dimension (e.g., source code) is mostly studied
in the articles as compared to community dimension or
their combination.

RQ5. What is the portfolio of projects analyzed for
evolution studies and what are their domains?

In general, the study of evolutionary behavior and
patterns of OSS projects requires access to historical
data representing their development, growth and success
story. These studies thus delimited to flagship OSS
projects that are large in size with a large user and
developer community and belong to popular application
domains. In this regard, our findings reported that most
of the OSS projects studied are from the domain of
Operating Systems (OS), Application Software, Integrated
Development Environments (IDE), Application Servers,
Libraries, Desktop Environments and Frameworks.
Example projects under these domains include Linux,
Eclipse, Apache, Ant, Mozilla, GNOME, KDE, and
ArgoUML. These projects have more than 5 years of
development and evolution history. Figure 9 in the
appendix presents the domain wise classification of the
studied OSS projects with the count representing their
frequency of use in the evolution studies. This finding
gives support to the fact that OSS evolution studies are
mostly vertical and thus unable to put light on the whole
population of OSS projects, as vast majority of projects
are failures [19]. Only a few articles, according to our
study, report horizontal studies with a large and random
sample of OSS projects (ranging between 200 to 4000
OSS projects).

Large and successful OSS projects are often selected
as case study projects.

RQ6. What are the datasets or data sources of
OSS projects mostly exploited in evolution studies?

To analyze the evolutionary behavior of OSS projects,
information contained in project data sources need
to be explored. These data sources are termed as
repositories which contain a plethora of information on
the underlying software and its development processes
[20] [18]. Studies based on such data sources offer
several benefits: this approach is cost effective, requires
no additional instrumentation, and does not depend on
or influence the software process under consideration
[20]. Evolution studies on the OSS projects effectively
explored these repositories produced by the projects
as well as the external sources. Figure 6 presents the
OSS repositories in both categories and the count
of articles that utilizes those repositories. According
to this figure, repositories maintaining the code base
(e.g., CVS/SVN, change log) are the most explored
sources. This is obvious because most of the articles
(as discussed in RQ1) studied either the evolutionary
patterns or the prediction models for the evolution of the
system. Among the external sources, SourceForge.net is
the most popular repository hosting thousands of OSS
projects and having the maximum number of downloads.

Figure 6. Data sources of OSS Projects

Repository maintaining the source code of the projects
are mostly explored in the studies.

RQ7. What metric suits are evaluated, and what
tools are used for data collection and analysis?

The reviewed articles used metrics mostly to measure
the evolutionary patterns and antecedents of certain as-
pects of the studied projects, such as, code complexity,
structural complexity, architectural patterns, predicting
error proneness and maintainability, and collaboration pat-
terns within the community. Mostly empirically validated
metrics are selected for these studies. Widely used metric
suites are listed in Table III.

For metric data collection, synthesis and interpretation,
a number of existing tools are used. Figure 8 in the
appendix provides a list of such tools used along with

2820 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE III.
METRICS

Metric
Category

Example Metrics

Source code
metrics

source line of code, line of code, number of
functions

Code
complexity
metrics

interface complexity, Halstead suite of com-
plexity metric, cyclometic complexity, structural
complexity

Object oriented
metrics

Chidamber and Kemerer, L&K (Lorenz and
Kidd’s eleven metrics, Li’s metric suite for OO
programming, modularity metrics

Product level
metrics

product size, releases, application domain, ver-
sion frequency

Project metrics metrics related to the OSS community struc-
ture and communication, application domain,
number of developers, users, project popularity,
success, application domain, no of commits, no
of messages sent

their usage area and popularity count. As most of these
tools are third party applications, the accuracy of the data
collection and analysis is constrained by the performance
of these tools. This also puts impact on the validity of
the results.

Empirically validated metric suites to evaluate the
source code are mostly used in the articles.

RQ8. How are the research approaches and results
of the articles typically validated?

Threats to validity in experimental studies can be cat-
egorized into three types: external, internal and construct
validities [21]. External validity means to what extent the
results can be generalized to the whole population (or
outside the study settings). Internal validity means that
changes in the dependent variables can be safely attributed
to changes in the independent variables. Construct valid-
ity means that the independent and dependent variables
accurately model the abstract hypotheses.

Figure 7. Validation Process of the research approaches

Our survey results concerning these validity issues
reveal that 41% (42 out of 101) of the articles measured
and reported the validity threats of the underlying
research methodology and the research result. Figure
7 plots the number of articles that perfoms validity
measure under each category. In this figure, the

articles which took quantifiable measure to minimize
a validity threat are counted underaddressedfield and
the articles which admited the threats as a delinquent
to the study are counted underNeed to be addressedfield.

Almost all the studies (30 out of 34) suffers from
external validity threats and thus suffers from
generalizability of the results to the population of OSS
projects.

RQ9. What contributions are made in literature to
analyze the evolution of software?

Analysis of the selected articles identifies a good sam-
ple of empirical studies which were conducted to verify
the fitness of the Lehman’s law of software evolution
in the domain of OSS projects. These results have both
conformance (either complete or partial) and contradic-
tion with the laws of software evolution. In Table IV
we provide a comprehensive summary of these studies.
We believe this would provide a holistic view on the
suitability of these laws in OSS domain, and will create
the future pathway in deriving evolutionary patterns and
laws for OSS evolution.

Other empirical analysis on OSS projects reveal several
stimulating properties/characteristics of the system evolu-
tion. In Table V we summarizes these findings according
to their primary focus of study.

RQ10. What contributions are made in literature to ana-
lyze the evolution of organization or community?

OSS projects typically come with a highly distributed
community of developers and users. Members of such
community share a common interest in the project. They
often interact with one another to share knowledge, and
collaborate in contributing and developing the project
[50]. Communities are the core of OSS projects, and
for the successful evolution of a project, it should have
a large number of developers (authors and contributors)
[51]. Other studies to date, report distinct properties of
OSS communities. Such as, necessity of a critical mass
of the core developer team [52], motivation of joining a
project [50], change of roles of the community members
through contributions [53], social dynamics and pattern of
the community [54] [55]. These results are summarized
according to the study focus in Table VI.

RQ11. What contributions are made in literature to ana-
lyze the interdependency of the software and organization
evolution?

The successful evolution of OSS projects depends on
the co-evolution of the community (both developer and
user) and the software [5]. Related research in this track
identifies that the number of contributors grows with the
growth in product size [30]. This observation is replicated
in [65], with evidence that the increase of introduced
packages and reported bugs are highly coherent with the
increase of contributors and active users, respectively.
Also, the increase in documentation and modularization

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2821

© 2013 ACADEMY PUBLISHER

TABLE IV.
FITNESS OFLEHMAN ’ S LAW IN OSSPROJECTS

Ref Growth Rate Brief Description
[3] Super-linear growth. Super-linear growth pattern in system level is due to accumulated linear growth of the

large set of driver subsystems. Contradict with Lehman’s 4th law.
[22] Super-linear growth. The project has doubled in size in terms of SLOC and number of packages in every 2

years.
[23] Super-linear growth. Contradicts Lehman’s 1st and 3rd law.

[24] Linear or Super-linear growth. Majority of the large projects grow linearly with few havinga super linear growth. Both
contradict with Lehman’s law.

[25] Average growth in size is 17%,
while decreasing in structural
complexity on average 13%.

Contradicts Lehman’s second law.

[26] Super-linear growth. The growth is due to increase in time interval between subsequent releases in recent
past.

[27] Super-linear growth (for large
project). Linear or Sub-linear
growth (for small project).

Large projects are large in size (in LOC), more active in number of revisions, and have
more programmers than those are not.

[28] Linear and Super-linear growth. Linear pattern was noted for NOF, NOC, LOC and size measures.Super-linear growth
for plug-ins and downloadable source code.

[29] [30] [2]
[31]

Linear growth. Conformance to all six laws of Lehman considering the growthin size, coupling and
complexity.

[4] Linear growth.
• Conformance to Lehman’s 6th and 2nd law (growth pattern measured in source

code level, file level, module level and complexity).
• Conformance to Lehman’s 1st and 5th law holds (according to changing rate and

growing rate of handled uncommented line of code).
• Contradicts with Lehman’s 6th law (for file level growth).

[3] Linear or Sub-linear growth. 16 out of 18 studied systems follow a growth pattern linear orclose to linear.

[32] [33] Not mentioned. Conformance to Lehman’s 1st, 2nd, 3rd and 6th law.

[32] [33] Not mentioned. Contradicts with 4th,5th,7th and 8th law.

[34] Linear growth. A declining at linear rate was noticed at module level.

[35] Linear growth. Follows a pattern of stagnated growth with decrease in size at some points.

[36] Linear growth.
• The evolution pattern do not consistently conform to Lehmans laws.
• Decrease in structural complexity (e.g., McCabe cyclomatic complexity).
• Increase in calculation logic (e.g., Halstead complexity increased).
• Increase in modularity.

levels are obliged to rising number of developers and
their contribution in a project [59]. In this regard, more
presence of users in the community drives more changes
in the code base.

IV. AVENUE TO FUTURE RESEARCH

The final step of the survey (see Figure 1) consists
of formalizing the tacit knowledge acquired through the
study of the review articles in order to distill further
research directions. To conduct this step, we analyzed
the results reported in section III to identify gaps,
commonalities and contradictions, and look for most and
least frequently used research approach in each facet.

ON SOFTWARE EVOLUTION

Understanding the most common study facets (as
displayed in Figure 2) gives the impression thatopen
source software evolutionis the most widely investigated
field. Research under this facet has produced good

sample of analytical results which are available for
further examination, assessment and comparison [5].
Our review on this direction suggests following research
directions,

Law’s of evolution for Open Source Software.
The most common study topic under this facet is to
evaluate the fitness of Lehman’s law of evolution to
open source software. These results are summarized in
Table IV. A closer scrutinize to the table data reveals
that the results have both facsimile and contradicting
to the Lehman’s law. For instance, the growth rate of
OSS, presented in column 2 of Table IV varies between
super-linear (i.e., greater than linear) and sub-linear
(i.e., less than linear). This has both conformance and
contradiction with the second and sixth law of evolution.

Comprehension of these results suggest that the laws
and theory appear to be breaking down through non-
conforming data and findings (Table IV). Thus Lehman’s
laws of software evolution which is primarily based on the

2822 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE V.
EVOLUTION OF THE SOFTWARE

Focus of
Study

Results Reference

Code
Complexity
Evolution

Project size increases with an improvement on some quality measures, e.g. decrease in complexity of
the system.

[37]

The procedure and file level complexity remains unchanged. [38]

• Decline trend in structure complexity (e.g., McCabe cyclomatic complexity).
• Increase in calculation logic (e.g., Halstead complexity).
• Increasing trend in system’s modularity.

[39]

Increase in coupling, interface complexity and cyclomaticcomplexity. [2]
System level decay in terms of the underlying structure due to the addition of new folders and
functionalities.

[40]

Increase in complexity for large files as they undergo frequent changes. [41]
Decrease in modularity due to major architectural and implementation changes. [42]
There exists positive correlation between error probability across classes and the code bad smells. [43]

Code
Quality Im-
provement

Modularity of the software system increase due to periodic refactoring and cleanup activities after
major changes.

[42]

Periodical refactoring is needed to prevent system decay and stagnation, and to improve architectural
quality.

[41] [43]

The development strategies and practices of OSS projects support to maintain the reliability and quality
of the software.

[44]

OSS is less entropic than proprietary applications having low unit maintenance costs. [45]
Code
cloning

Code cloning (or code duplication) does not have a large impact on post-release defects (quality). [46]

Presence of duplicate code in the software does not make it more difficult to maintain. [47]
Documentation The documentation process often start with an initial upfront maintenance effort (to create the initial

documentation or writing a book), which is then updated according to the changes in the project.
[45]

Sub-project
Evolution
(projects
under a
project)

• Existing sub-projects might be merged or removed.
• New sub-projects might be introduced.
• Sub-projects might follow different trend models in the growth, complexity and changes. E.g.,

Eclipse.

[28]

OSS
Dynamics • SOC (Self Organized Criticality) occurs during the evolution of OSS.

• SOC can be used as a conceptual framework for understanding OSS evolution dynamics.

[48]

• The evolution dynamics of OSS may not follow SOC.
• The past of an OSS project does not determine its future except for relatively short periods of

time.

[49]

study of the large close source systems, is not sufficient
to justify or account for the evolutionary pattern and
behavior of the open source software. As none-the-less
these laws did not consider the community dimension of
the OSS projects which is an integral part of sustainable
evolution of the open source software.

To deal with this problem, a viable route would be to
examine the underlying ontologies for software evolution
[5] considering the OSS specific characteristics, and then
re-assess the laws of software evolution to fit in OSS
domain.

Metric set for software evolution. Software evolution
studies mostly utilize metrics that are empirically
validated in prior studies (as presented in Table III).
These metrics are derived for closed source projects, and
are primarily used to verify the Lehman’s law of software
evolution. Though these metrics provide valuable insight
to OSS evolution, they do not consider the community
dynamics. Thus an empirically validated set of metrics
in favor of explicit representation of the community is

required to complement the existing metric set.

Predicting the future. Prediction of OSS projects
is one area that is least popular among the study facets
(Figure 2). Yet future research should focus on developing
reliable prediction models and methods supporting error
prediction, measuring maintenance effort and cost of
OSS projects. Because, the commercial organizations,
for instance, requires such prediction models to assess
an open source component for adoption [66].

Study the existence of SOC.Another direction of
research would be to study the notion of SOC (Self
Organized Criticality) in OSS projects. SOC dynamics
articulate that the current state of a project is determined
(or at least, heavily influenced) by events that took place
long time ago. Existential exploration of SOC in the
domain of OSS projects reveals contradictory results
(Table V). Thus future research can take further step in
validating the existence of SOC and its implication on
the evolution of open source software.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2823

© 2013 ACADEMY PUBLISHER

TABLE VI.
ORGANIZATIONAL (OR COMMUNITY) EVOLUTION

Focus of Study Contribution Reference
Community
Formation

A group of core developers quickly emerges at the center of the community at the early stage of the
project and becomes the key contributors.

[54]

The OSS community evolution follows small world property with a strong community structure and
modularity. Initially it has fairly dynamic nature which gradually settles down into fixed groups.

[56]

During the evolution, the communication between core and peripheral developer’s decreases, and sub-
community of developers forms.

[57]

The growth of OSS community follows “rich gets richer” phenomenon. This means a healthy sized
community often attracts new developers.

[58]

Community
Structure and
Activity

• 57% of the studied projects has only one or two developers.
• Only 15% has more than 10 developers. This category constitutes only flagship projects.

[51]

• About 83% projects have only one or two stable developers.
• 16% of the projects attains the size of the core team.

[59]

Developers play different role ranging from core developers to passive users. These roles are implicit,
and are mainly defined and determined according to the level of contributions made to the project.

[53]

Developer’s role changes through accumulated contributions over a period of time. Changes in
developer roles and community structure are significantly associated with the quality of contributions,
but not with contribution quantity.

[53] [57]

A Pareto distribution on the size of the developer communitywas identified. That is a vast majority
of the OSS projects fail to take off and soon become abandoned. Probable reasons for such failure
include projects inability to attract developers to attaina critical mass of developers, and insufficient
communication and collaboration.

[60] [54]

Community
Migration • The migration of old developers from previous release to a new one is very high.

• Developer’s code maintenance activity increases with increase in experience.
• The community has a natural ‘regeneration’ process for its voluntary contributors. This process

increases the probability of code adoption that are left by the outgoing developers.

[32]

Core developers should promote community regeneration process by creating an organizational
ecosystem. The ecosystem will provide the openness of the system, process and communication which
will attract others to join.

[61]

Sustainability
• OSS development is prominently a community-based model.
• The community must be a sustainable community for the long term survivability of the project.

[62] [50]

• A stable and healthy core team in the community is essential for the sustainability of OSS
projects.

• Core developers introduce less structural complexity and remove existing structural complexity
from the code.

[2]

Sustainability can be credited to the following motivatingfactors: (a) people are benefited from
participating in a thriving OSS community, (b) improve technical competence as a developer, and
(c) projects have well-defined modular design and cheap means of communication.

[63]

It is important to maintain a balance composition of all the different roles in a community for
sustainability. For example, to an extreme, if most of the community members are passive users
then the system will not evolve.

[64]

Evolution of
Sub-communities
(Communities of
sub-projects)

• Ecology of the sub-communities are formed around the sub-projects.
• Sub-projects are often governed by a common governance, e.g. Apache.
• Members in sub-communities often collaborate due to mutualtask dependencies.
• Sub-communities also compete for the project resources.

[50]

ON COMMUNITY EVOLUTION

Study on the community evolution identifies several
key properties (reported in Table VI), which lay the
foundation for further research in this direction. We
propose the followings to be investigated.

Community building . Studies reported that the majority
of OSS projects failed to attract members to attain the
critical mass. Only few flagship projects are able to
attract developers. Factors influencing the motivation to

join a community has been studied (e.g., [62] [50]), and
several phenomena are proposed. For instance, rich gets
richer phenomenon. Yet it is not identified what exclusive
properties initiate the community building process at the
nebula stage of the project. Following research questions
can be considered relevant,

• Why some projects are able to attract contributors
during the nebula stage of the project, while most of
them can not?

• What formation of the community refers to a bal-
ance one, and how the community structure changes
towards a balance structure during its evolution?

2824 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

• Can a visible pattern be identified within the domain
of OSS projects for the above two cases?

Migration of responsibility and sustainability . It has
been reported that migration of developers from one re-
lease to the next is high and that the developers take more
responsibility as they gain experience. Yet it is a common
phenomenon in open source domain that developers freely
join or leave the project. And when a developer leaves,
his responsibilities must be assigned to someone else.
For instance, the codebase maintained by a outgoing
developer should be taken care of by others. Else it will be
abandoned and discarded from subsequent releases. Thus
it will be beneficial to explore the followings,

• How responsibility migrates among the developers?
Does this migration follow preferential-attachment?,
i.e., is the responsibility handed over to the devel-
opers who are in close connection to the outgoing
developer.

• What impact such migration has on the project
evolution?

ON CO-EVOLUTION

It is turned out from our review that the understanding
of co-evolution of the code and the community in OSS
projects has received little attention in literature (Figure
2). As a consequence, the community dimension and
corresponding communication channels (e.g., mailing
archives, bug tracking systems) are explored seldom, as
can be seen from Figure 5 and Figure 6 respectively.
Study on co-evolution in OSS projects, however, is
becoming increasingly popular. Because, in such projects
the code evolution is dependent on the contribution of
community members, and that a successful evolution of
the code is required for the survival of the community.
The following research directions can be considered
relevant.

Exploring socio-technical congruence. In the OSS
projects contributions made by the community members
not only drive the system evolution but also redefine
the role of these contributing members and thus
change the social dynamics of the OSS community
[53]. In this connection, it will be very interesting to
investigate the phenomenonsocio-technical congruence
in OSS projects. Socio-technical congruence which is
a conceptualization of Conway’s law [67] states that
there should exists a match between the coordination
needs established by the technical domain (i.e., the
architectural dependency in the software) and the actual
coordination activities carried out by project members
(i.e., within the members of the development team) [67].
This concept was already explored in closed source
projects, and reported a high correlation with software
build success, quality, and faster rate of modification
[68]. Thus socio-technical congruence plays a pivotal
role in conceptualizing the co-evolution in a project.
Surprisingly, this notion as a research area has not been

given much attention among open source researchers.
Although it is identified and reported as a desired
property for collaborative development activities like
OSS projects [69]. Considering the lack of focus in this
direction, we propose the following to investigate.

• Does the essence of socio-technical congruence as
a conceptualization of Conway’s law holds for OSS
project? Can it be stated as an implicit characteristics
or property of successful OSS project?

• What quantitative approach/method can be utilized
to verify the existence of socio-technical congruence
in OSS projects? What repositories can be used for
this purpose?

• What correlation can be derived between socio-
technical congruence and the quality/sustainability of
OSS projects?

Sub-project evolution with their community . Large
open source projects often encompass many sub-projects.
Such as, sub-projects in Eclipse, GNU, Linux, and
Apache. Often ecology of sub-communities formed
around these sub-projects, which are governed by a com-
mon governance [50]. Study on the formation and evolu-
tion of sub-projects and their communities have revealed
many key characteristics, which are listed in Table V
and Table VI, respectively. Yet the interdependency in
evolution between the two and their impact on the overall
project evolution remain untouched. The following would
be worth to investigate.

• Does there exist a correlation between the evolution
(growth, complexity, change) of the sub-projects and
their associated sub-communities? Does the commu-
nity change with the change in the sub-project?

• How does a community form around a newly added
sub-project?

• What attributes of a sub-project attract new develop-
ers to join?

• What happens to the sub-community when a sub-
project is deleted or merged to other sub-project?

• What dependencies lead to inter project communica-
tion?

• What kind and level of communication and collabo-
ration takes place between sub-communities?

• Does there exist a correlation between the project
evolution and the sub-project evolution?

ON RESEARCH METHOD

A number of issues related to the research approach can
be improved to increase the acceptability of the reported
results. We pointed out the followings,

External validity of the results. Empirical study
is the most popular research approach employed in
evolution studies (Figure 4). These studies, however, are
horizontal in nature (as reported in RQ5) considering
only flagship OSS projects. Due to this approach of
studying OSS projects, the reported results suffer from

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2825

© 2013 ACADEMY PUBLISHER

generalizability threat, as reported in Figure 7. Yet to
make these finding applicable and hold for the extended
region of OSS projects, explicit measure should be
taken. An interesting route to deal with this is to
categorize the findings (current or future) according to
the project domain, or similar organizational structure
and practices, or similar product size and complexity.
This will reveal the broader picture which can then be
compared and possibly merged for proposing a more
general evolutionary pattern and behavior for OSS.

Framework for the data collection and representation.
As discussed in RQ6, OSS projects often produce large
volume of data representing their development and
evolution history. Research to date, explores the
repositories that maintain these data, a list of which
is provided in Figure 6. However, data collection and
representation in these repositories vary significantly
from project to project. Furthermore, data from the
same source may have different formatting (e.g., emails
are often free of format even in listing the senders
credentials). Due to these facts, it is a challenging task
to collect relevant data following a standard format
from OSS repositories. In this context, researchers
often employ their own means to collect and represent
data for research. This reduces the compatibility and
comparability of the reported results even if they use
same data sources. Taking these issues in consideration, a
framework for uniform data collection and representation
can be developed to make the results cohesive and
comparable to each other.

V. THREATS TOVALIDITY

Carrying out a survey is mostly a manual task. Thus
most threats to validity relate to the possibility of re-
searcher bias [9]. To minimize this, we adopted guidelines
on conducting SLR suggested by Kitchenham [13]. In
particular, we documented and reviewed all steps we
made in advance, including selection criteria and attribute
definitions.

In what follows, the description related to validity
threats pertaining to the article selection, the attribute
framework, and the article characterization is discussed.

A. Article Selection

Following the advice of Kitchenham [13], the inclusion
criteria is set at the time of defining the review protocol,
and the criteria are based on the research questions. This
reduces the likelihood of bias. Articles satisfying this
selection criterion are considered. For collecting relevant
articles we first performed automated keyword search and
then performed manual selection. The first step condenses
the selection bias whereas the latter ensures the rele-
vance of the selected articles. Finally, a non recursive
search through the references of the selected articles
is performed. This increases the representativeness and
completeness of our selection. To further minimize the

selection bias and reviewer bias, domain experts (second
and third author) verified the relevance of the selected
articles against the selection criteria.

B. Attribute Framework

The construction of the attribute framework may be
the most subjective step [9]. Thus we take the following
steps to acknowledge this fact: the attribute set is derived
based on the research questions and domain of study.
Then a pilot study is carried out to further refine the
attribute framework. Furthermore, the representativeness
of the framework is examined by domain experts (second
and third author).

C. Article Assessment

Similar to the construction of the attribute framework,
the process of assigning the attributes to the research
articles is subjective and may be difficult to reproduce [9].
We address this validation threat through an evaluation
process where domain experts assess the collected data
against reviewed articles.

VI. D ISCUSSION

In this paper we have reported a systematic literature
review (SLR) on the evolution studies of Open Source
Software projects. To carry out this study we adopted
a review protocol following the guidelines presented in
[13] and [9]. A set of 101 articles (21 journal and 80
conference articles) were selected for the review. Through
a detailed reading of a subset of the selected articles,
we derived an attribute framework that was consequently
used to characterize the articles in a structured fashion.

We also posed a set of research questions in advance
that are investigated and answered throughout the study.
The attribute framework was sufficiently specific to char-
acterize the articles in answering the research questions.
The set of articles and collected data under this attribute
framework is presented in our review website [14]. None-
the-less, an elaborated discussion on the validity of the
review process is also presented.

The characterization of the reviewed articles will help
researchers to investigate previous studies from the per-
spective of metrics, methods, datasets, tool sets, and
performance evaluation and validation techniques in an
effective and efficient manner. We also put an elaborated
discussion on the most significant research results. In
summary, this article provides a single point reference
on the state-of-the-art of OSS evolution studies which
could benefit the research community to establish future
research in the field.

Related works in this track carried out a literature
review on open source software evolution [70]. This study
explores the software evolution, mostly emphasizing on
research methods, metrics, and data analysis. Contrast to
this, our review provides a holistic view of the evolution
of OSS projects, concerning all the facets studied to date.

2826 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Yet our reported result pertaining to the conflicting re-
porting of Lehman’s law of software evolution confirmed
the findings in [70]. This suggests that future work in
the area of OSS evolution should explore more to unify
the findings through comprehensive study on the the open
areas discussed in this paper.

REFERENCES

[1] R. Grewal, G. Lilien, and G. Mallapragada, “Location,
location, location: How network embeddedness affects
project success in open source systems,” inManagement
Science, vol. 52, no. 7, 2006, pp. 1043–1056.

[2] S. Suh and I. Neamtiu, “Studying software evolution
for taming software complexity,” inAustralian Software
Engineering Conference, 2010, pp. 3–12.

[3] G. Robles, J. Amor, J. Gonzalez-Barahona, and I. Herraiz,
“Evolution and growth in large libre software projects,” in
IWPSE’05, 2005, pp. 165–174.

[4] C. Roy and J. Cordy, “Evaluating the evolution of small
scale open source software systems,” inCIC 2006, 2006,
pp. 123–136.

[5] W. Scacchi, “Understanding open source software evo-
lution: Applying, breaking, and rethinking the laws of
software evolution,” inApplying, Breaking, and Rethinking
the Laws of Software Evolution. John Wiley and Sons Inc,
2003.

[6] B. A. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton,
M. Turner, M. Niazi, and S. Linkman, “Systematic litera-
ture reviews in software engineering- a tertiary study,”IST,
vol. 52, no. 8, pp. 792–805, 2010.

[7] B. Kitchenham and S. Charters, “Guidelines for perform-
ing systematic literature reviews in software,” inEngineer-
ing Technical Report EBSE-2007-01, 2007.

[8] M. Petticrew and H. Roberts, “Systematic reviews in the
social sciences: A practical guide,” inBlackwell Publish-
ing, 2005.

[9] B. Cornelissen, A. Zaidman, A. Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehen-
sion through dynamic analysis,”TSE, vol. 35, no. 5, pp.
684–702, 2009.

[10] C. Catal and B. Diri, “A systematic review of software
fault prediction studies,”Expert Systems with Applications,
vol. 36, no. 4, pp. 7346–7354, 2009.

[11] D. Łmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical
evidence in global software engineering: a systematic
review,” ESE, vol. 15, no. 1, pp. 91–118, 2010.

[12] A. Pourshahid, D. Amyot, A. Shamsaei, G. Mussbacher,
and M. Weiss, “A systematic review and assessment of
aspect-oriented methods applied to business process adap-
tation,” JSW, vol. 7, no. 8, pp. 1816–1826, 2012.

[13] B. A. Kitchenham, “Procedures for performing systematic
reviews,” in Technical Report TR/SE-0401, Keele Uni-
versity, and Technical Report 0400011T.1, National ICT
Australia, 2004.

[14] M. M. Syeed, “http://reviewossevolution.weebly.com/,”
2013.

[15] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,”
JSS, vol. 80, no. 4, pp. 571–583, 2007.

[16] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and
H. Sharp, “Motivation in software engineering: A system-
atic literature review,”IST, vol. 50, no. 9-10, pp. 860–878,
2008.

[17] T. Dyba and T. Dingsyr, “Empirical studies of agile soft-
ware development: A systematic review,”IST, vol. 50, no.
9-10, pp. 833–859, 2008.

[18] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using
version control data to evaluate the impact of software
tools,” in ICSE, 1999, p. 324333.

[19] C. B. K. Beecher, A. Capiluppi, “Identifying exogenous
drivers and evolutionary stages in floss projects,”The
Journal of Systems and Software, vol. 82, no. 5, pp. 739–
750, 2009.

[20] J. Cook, L. Votta, and A. Wolf, “Cost-effective analysis
of in-place software processes,”TSE, vol. 24, no. 8, p.
650663, 1998.

[21] D. Perry, A. Porter, and L. Votta, “Empirical studies
of software engineering: A roadmap,” inThe Future of
Software Engineering, Finkelstein A (ed.). ACM Press:
New York NY, 2000.

[22] J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor,
and D. German, “Macro-level software evolution: a case
study of a large software compilation,”Journal Empirical
Software Engineering, vol. 14, no. 3, pp. 262–285, 2009.

[23] M. Godfrey and Q. Tu, “Evolution in open source software:
A case study,” inICSM, 2000, pp. 131–142.

[24] A. Capiluppi, J. Gonzlez-Barahona, I. Herraiz, and G. Rob-
les, “Adapting the staged model for software evolution to
free/libre/open source software,” inIWPSE ’07, 2007, pp.
79–82.

[25] D. Darcy, S. Daniel, and K. Stewart, “Exploring com-
plexity in open source software: Evolutionary patterns,
antecedents, and outcomes,” inHICSS ’10, 2010, pp. 1–11.

[26] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and
J. Amor, “Mining large software compilations over time:
Another perspective of software evolution,” inMSR ’06,
2006, pp. 3–9.

[27] K. Stefan, “Software evolution in open source pro-
jectsa large-scale investigation,”Journal of Software Main-
tainance and Evolution: Research and Practice, vol. 19,
pp. 361–382, 2007.

[28] T. Mens, J. Fernndez-Ramil, and S. Degrandsart, “The evo-
lution of eclipse,” inInternational Conference on Software
Maintenance (ICSM), 2008, pp. 386–395.

[29] A. Bauer and M. Pizka, “The contribution of free software
to software evolution,” inSixth International Workshop on
Principles of Software Evolution, 2003, pp. 170–179.

[30] A. Capiluppi, “Models for the evolution of os projects,” in
ICSM ’03, 2003, pp. 65–74.

[31] S. McIntosh, B. Adams, and A. Hassan, “The evolution of
ant build systems,” inMSR’10, 2010, pp. 42–51.

[32] Y. Lee, J. Yang, and K. Chang, “Metrics and evolution in
open source software,” inQSIC’07, 2007, pp. 191–197.

[33] G. Xie, J. Chen, and I. Neamtiu, “Towards a better
understanding of software evolution: An empirical study
on open source software,” inICSM’09, 2009, pp. 51–60.

[34] S. Ali and O. Maqbool, “Monitoring software evolution
using multiple types of changes,” inICET’09, 2009, pp.
410–415.

[35] A. Capiluppi and J. Ramil, “Studying the evolution of open
source systems at different levels of granularity: Two case
studies,” inIWPSE, 2004, pp. 113–118.

[36] M. M. Simmons, P. Vercellone-Smith, and P. Laplante,
“Understanding open source software through software
archeology: The case of nethack,” in30th SEW, 2006, pp.
47–58.

[37] K. Stewart, D. Darcy, and S. Daniel, “Observations on
patterns of development in open source software projects,”
in 5th WOSSE, 2005, pp. 1–5.

[38] A. Capiluppi and J. Ramil, “Studying the evolution of open
source systems at different levels of granularity: Two case
studies,” inIWPSE’04, 2004, pp. 113–118.

[39] M. Simmons, P. Vercellone-Smith, and P. Laplante, “Un-
derstanding open source software through software arche-
ology: The case of nethack,” inSEW ’06, 2006, pp. 47–58.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2827

© 2013 ACADEMY PUBLISHER

[40] A. Capiluppi and T. Knowles, “Software engineering in
practice: Design and architectures of floss systems,” in
Open Source Ecosystems: Diverse Communities Interact-
ing, IFIP Advances in Information and Communication
Technology, vol. 299/2009, 2009, pp. 34–46.

[41] A. Capiluppi and J. Ramil, “Change rate and complexity
in software evolutions,” inWESS’04, 2004.

[42] R. Milev, S. Muegge, and M. Weiss, “Design evolution
of an open source project using an improved modularity
metric,” in OSS’09, 2009, pp. 20–33.

[43] W. Li and R. Shatnawi, “An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution,”Journal of Systems and Soft-
ware, vol. 80, no. 7, pp. 1120–1128, 2007.

[44] K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka,
B. Reeves, A. Takasbima, and Y. Yamamoto, “A case study
of the evolution of jun: an object-oriented open-source 3d
multimedia library,” in ICSE’01, 2001, pp. 524–533.

[45] B. Dagenais and M. Robillard, “Creating and evolving
developer documentation: understanding the decisions of
open source contributors,” inFSE’10, 2010, pp. 127–136.

[46] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou,
and A. Hassan, “An empirical study on inconsistent
changes to code clones at the release level,” inWCRE ’09,
2009, pp. 85–94.

[47] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate
code more frequently modified than non-duplicate code in
software evolution?: An empirical study on open source
software,” in IWPSE-EVOL ’10, 2010, pp. 73–82.

[48] W. Jingwei, R. Holt, and A. Hassan, “Empirical evidence
for soc dynamics in software evolution,” inIEEE Interna-
tional Conference on Software Maintenance (ICSM 2007),
2007, pp. 244–254.

[49] I. Herraiz, J. Barahona, and G. Robles, “Determinism and
evolution,” in Proceedings of the 2008 international work-
ing conference on Mining software repositories (MSR’08),
2008, pp. 1–10.

[50] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,”OSS, vol. 203, pp. 21–32, 2006.

[51] A. Capiluppi, P.Lago, and M. Morisio, “Evidences in the
evolution of os projects through changelog analysis,” in
Proceedings of the 3rd Workshop on Open Source Software
Engineering (ICSE03), 2003, pp. 19–24.

[52] A. mockus, R. Fielding, and J. herbsleb, “Two case stud-
ies of open source software development: Apache and
mozilla,” ACM Trans. Software Engineering and Method-
ology, vol. 11, no. 3, pp. 309–346, 2002.

[53] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye, “Evolution patterns of open-source software systems
and communities,” inIWPSE, 2002, pp. 76–85.

[54] K. Ngamkajornwiwat, D. Zhang, A. Koru, L. Zhou, and
R. Nolker, “An exploratory study on the evolution of oss
developer communities,” inHICSS, 2008, p. 305.

[55] Q. Hong, S. Kim, S. Cheung, and C. Bird, “Understanding
a developer social network and its evolution,” in27th
ICSM, 2011, pp. 323–332.

[56] Q. Hong, S. Kim, S. Cheung, and C.Bird, “Understanding a
developer social network and its evolution,” in27th ICSM,
2011, pp. 323–332.

[57] R. Chang, S. Yang, J. Moon, W. Oh, and A. Pinsonneault,
“A social capital perspective of participant contributionin
open source communities: The case of linux,” inHICSS,
2011, pp. 1–10.

[58] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,”OSS, vol. 203, pp. 21–32, 2006.

[59] A. Capiluppi, P. Lago, and M. Morisio, “Characteristics of
open source projects,” inCSMR ’03, 2003, p. 317.

[60] F. Hunt and P. Johnson, “On the pareto distribution of
sourceforge projects,” inProceedings of Open Source
Software Development workshop, 2002, pp. 122–129.

[61] Y. Yunwen and K. Kishida, “Toward an understanding of
the motivation open source software developers,” inICSE
’03, 2003, pp. 419–429.

[62] S. Shah, “Motivation, governance, and the viability of
hybrid forms in open source software development,” in
Management Science, vol. 52, pp. 1000–1014.

[63] J. Gutsche, “The evolution of open source communities,”
Topics in Economic Analysis and Policy, vol. 5, no. 1,
2005.

[64] G. Robles, J. M. Gonzalez-Barahona, and M. Michlmayr,
“Evolution of volunteer participation in libre software
projects: Evidence from debian,” in1st OSS, 2005, pp.
100–107.

[65] Y. Wang, D. Guo, and H. Shi, “Measuring the evolution
of open source software with their communities,”ACM
SIGSOFT Software Engineering Notes, vol. 32, no. 6, pp.
1–7, 2007.

[66] M. Syeed, T. Kilamo, I. Hammouda, and T. Systa, “Open
source prediction methods: a systematic literature review,”
in Proceedings of 8th. OSS, Springer, 2012.

[67] S. Bendifallah and W. Scacchi, “Work structures and shifts:
An empirical analysis of software specification teamwork,”
in 11th ICSE, 1989, p. 260270.

[68] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirical
case study,” inICSE, 2008, p. 521530.

[69] T. Browning, “Applying the design structure matrix to
system decomposition and integration problems: a review
and new directions,” inIEEE Transactions on Engineering
Management, vol. 43, no. 3, 2001, p. 292306.

[70] H. Breivold, M. Chauhan, and M. Babar, “A systematic
review of studies of open source software evolution,” in
APSEC, 2010, pp. 356–365.

M.M. Mahbubul Syeed received his B.Sc degree in Computer
Science and Information Technology from Islamic University
of Technology, Bangladesh in September, 2002 and his M.Sc
degree in Information Technology from Tampere University of
Technology, Finland in April, 2010. He is currently working
towards his Ph.D. degree and working as a researcher in the
same university. His current research interest includes study of
Open Source Software ecosystem.

Imed Hammouda is currently an associate professor at Tam-
pere University of Technology (TUT) where he is heading the
international masters programme at the Department of Pervasive
Computing. He got his Ph.D. in software engineering from TUT
in 2005. Dr. Hammouda’s research interests include open source
software, software architecture, software development methods
and tools, and variability management. He is leading TUTOpen
- TUT research group on open source software. He has been
the principal investigator of several research projects onvarious
open initiatives. Dr. Hammouda’s publication record includes
over fifty journal and conference papers.

Tarja Systä is a professor at Tampere University of Technol-
ogy, of Pervasive Computing Department. Her current research
interests include software maintenance and analysis, software
architectures, model-driven software development, and develop-
ment and management of service-oriented systems.

APPENDIX

2828 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 8. Tools (OSS and Proprietary) used for evolution studies

Figure 9. OSS Projects analyzed for evolution studies

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2829

© 2013 ACADEMY PUBLISHER

[II] M.M. Syeed, T. Aaltonen, I. Hammouda, and T. Systä. Tool Assisted
Analysis of Open Source Projects: A Multi-faceted Challenge. International
Journal of Open Source Software and Processes, vol. 3, no. 2, 2011, pages 43–78,
April-June, 2011.

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 43

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Computer Science, Open Source Software (OSS), Reverse Engineering, Social Network Analysis,
Software Repositories, Tool Support

INTRODUCTION

Open Source Software (OSS) is currently a
widely adopted approach to developing and
distributing software. Successful open source
projects are typically complex, both from
the point of view of the code base and with
respect to the developer and user community.
Such a project may consist of a wide range of

Tool Assisted Analysis of
Open Source Projects:

A Multi-Faceted Challenge
M.M. Mahbubul Syeed, Tampere University of Technology, Finland

Timo Aaltonen, Nokia Research Center, Finland

Imed Hammouda, Tampere University of Technology, Finland

Tarja Systä, Tampere University of Technology, Finland

ABSTRACT
Open Source Software (OSS) is currently a widely adopted approach to developing and distributing software.
OSS code adoption requires an understanding of the structure of the code base. For a deeper understanding
of the maintenance, bug fixing and development activities, the structure of the developer community also
needs to be understood, especially the relations between the code and community structures. This, in turn,
is essential for the development and maintenance of software containing OSS code. This paper proposes a
method and support tool for exploring the relations of the code base and community structures of OSS projects.
The method and proposed tool, Binoculars, rely on generic and reusable query operations, formal definitions
of which are given in the paper. The authors demonstrate the applicability of Binoculars with two examples.
The authors analyze a well-known and active open source project, FFMpeg, and the open source version of
the IaaS cloud computing project Eucalyptus.

components, coming with a large number of
versions reflecting their development and evolu-
tion history. While it is a challenge to acquire
knowledge from developers and users due to
their distributed nature, open source develop-
ment and user communities often produce a rich
software repository as a byproduct. In addition
to source code and other software artifacts, there
are repositories containing other sources of
information such as bug reports, mailing lists,
and revision history logs.DOI: 10.4018/jossp.2011040103

44 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

A variety of tools and techniques have
been proposed to study open source projects.
However, most of these techniques suffer
from fragmentation and lack of synergies. For
instance, many tools apply reverse engineering
techniques to study the software side of OSS
(Knab, Pinzger, & Bernstein, 2006; Zhou &
Davis, 2005). Other works have considered
social network analysis techniques to study
the social model of OSS (Martinez-Romo,
Robles, Ortuo-Perez, & Gonzalez-Barahona,
2008; Kamei, Matsumoto, Maeshima, Onishi,
Ohira, & Matsumoto, 2008).

We argue that the separation between the
two is artificial. The dimensions are comple-
mentary, not discrete categories. They can be
used together to provide a lot of useful informa-
tion. To make a decision about using OSS as a
part of a software product to be developed, it
is essential to be able to understand the role of
the developer community in the development
and maintenance of different parts of the OSS
code base. This would also help in estimat-
ing and planning the future development and
maintenance activities of the software product.
For instance, understanding the relations of the
code and developer community structures helps
in understanding where the expertise lay within
the developer community, which in turn helps
in deciding who to contact concerning issues
related to a specific part of the OSS code base.

In this paper we address such challenges
as follows: first, a compact and extensible
metamodel is proposed which captures both
the code base and the community dimension of
OSS projects; second, a set of reusable formal
descriptions of operations are given, which
allows the relationships between the code struc-
ture and the community structure to be queried
and third, a tool, Binoculars, corresponding to
both the metamodel and the defined operations
is implemented to study the feasibility of our ap-
proach. The tool, Binoculars is able to (a) merge
a community view with source code views; (b)
provide different perspectives to view the data
presented in the form of a graph. This feature
can be used, for example, to identify and study
the groups of developers working with the same

(or related) code fragments, or to study whether
communication structures of the developing
community conform to the architecture of the
software, or trace out the relationship between
the developer and the user community in the
context of the codebase; (c) render the graph
information at different levels of abstraction;
(d) provide query support for the graphs.

We also demonstrate the applicability of
our approach and the tool with two examples.
First, we analyze a well known and active open
source project FFMpeg (FFmpeg, 2010) and
show how to make queries essential from the
point of view of development and maintenance
of software relying on FFMpeg code. Then
we analyze the open source version of the
Eucalyptus project (Eucalyptus, 2011) and its
community, due to its emerging impact in the
field of cloud computing.

The paper is structured as follows. In Sec-
tion TOWARDS A GENERIC OSS ANALYSIS
TOOL we propose our approach. The tool,
Binoculars, is described in Section TOOL
SUPPORT. The applicability of Binoculars is
discussed in Section CASE STUDY. We review
known approaches and techniques for analyzing
OSS projects in Section RELATED WORK
and distinguish our work from that of existing
ones. Finally, some concluding remarks and
future development of the work are presented
in Section DISCUSSION.

TOWARDS A GENERIC
OSS ANALYSIS TOOL

Comprehension of a software project can be
addressed at different abstraction levels (Rosso,
2006). At the lowest level, the file system (code
base) can be analyzed and refactored by employ-
ing reverse engineering techniques to extract
code dependency and the architecture of the
system. At the next highest level of abstraction,
the community structure and people’s (develop-
ers and users) activities, communication, and
social interaction can be analyzed. It should be
noticed that dependency exists at each abstrac-
tion level as well as between the levels. For
example, code level dependency arises due to

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 45

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

interface dependency, inclusion, code depen-
dency and so on. Also at the community level,
interpersonal communication leads to social
dependencies among people in the organization.
Interlevel dependency arises due to the fact that
developers work on the project artifacts, fix-
ing reported bugs, incorporating new features
whereas users often posts bug reports, asking
for new features and so on.

Social network analysis (SNA) (Rosso,
2009) in this regard can be used to capture and
effectively model these dependencies through
graphs, where entities (e.g., developers, users,
code files, bugs) are presented as vertices and
the dependencies among the entities are modeled
as edges (or arcs). For example, social networks
can be dug from the model based on the persons
working on the same files (or issues) or we
can study who are working with the same bug
reports. Different measures and metrics in SNA
can be applied on these relationship graphs to get
an insight of the project. For instance, metrics
like density, centrality, closeness, betweenness
(Carrington, Scott, & Wasserman, 2005) can be
applied on the resultant graphs.

We approach the goal of building a generic
and customizable OSS analysis tool by starting
from a relatively simple metamodel that can later
be extended by the concepts needed to support
the different data sources and purposes (see e.g.,

Table 2 in Section RELATED WORK). This is
essential, since OSS projects like any software
projects, vary significantly. We believe that
a small metamodel that is widely applicable
through extensions is more useful than a com-
prehensive and detailed one, the use of which can
be either limited or unnecessarily cumbersome.

The Binoculars metamodel is divided into
domain independent and domain specific mod-
els. In the former, everything is modeled as
mathematical graphs, whereas the latter intro-
duces the open source related aspects. The
domain independent model consists of classes
Node and Arc, which are depicted in the upper
part of Figure 1.

The domain specific model introduces
concepts for modeling an open source project.
The abstract class FileSystemItem (on the right
hand side), whose concrete subclasses are File
and Directory, is used for modeling the ac-
tual implementation. Introducing the compo-
sition relationship between Directory and
FileSystemItem allows us to model the real
file system of the implementation. Objects of
the class Person (in the middle) form the open
source community.

Finally, Issues (Mails and Bug reports)
model the communication that takes place
during development.

Figure 1. The Binoculars metamodel

46 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Due to the fact that these are all subclasses
of the abstract class Node, they can have links
(instance of Arc) with any other types of
Nodes. This allows us to mine, combine and in
particular refine the information available for
the subject project. The domain specific model
could be more detailed and it could include
more aspects. For example, in many reverse
engineering activities the actual implementation
is modeled to the level of (member) functions,
or even programming-language-level state-
ments. Moreover, the class Issue has several
obvious derivations, like chat messages. Open
source development is often based on patches
delivered by the developers. The model could
be augmented with the class Patch. Then the
class File would have a composition relation
with the class Patch. For the purposes of this
paper we have selected a high level of abstrac-
tion for our demonstration purposes. Finally,
the other aspect of OSS projects, i.e., licensing,
may introduce new node types to be added to
the metamodel.

In order to instantiate the model we utilize
all available sources of information, like the
code base, mailing lists, bug tracking tools
and meta information from the project’s www
pages. The sources are the ones that fix the
domain specific model. In Binoculars each of
these sources are represented as repositories,
namely person, file and issue, corresponding
to the three subclasses of Node and their sub-
structures, depicted in Figure 1. The Binoculars
Metamodel. Extracted information is stored
in these repositories and are interpreted and
presented as graphs with nodes and edges. An
edge may have a weight, showing the strength
of a relationship. Also, an edge may be directed
depending on the relationship. In such cases we
denote edges as arcs.

We define a set of operations to operate on
repositories for generating relationship graphs.
The operations can also be performed on the
generated graphs to derive other relationship
graphs. To present these operations, we first
define the repository structure, and then discuss
the syntax of the operations which is followed
by their description with illustrative examples.

The formal definition of these operations with
detailed discussion is provided in the appendix.

Repository Structure

Let, r = { , , , }R R Rn1 2 � be the set of reposi-
tories. Where each repository, Ri=R r r ri i i

m
i= { , , },1 2 �

consists of repository elements rj
i . Each re-

pository element r c c cj
i

j
i

j
i

jx
i= { , , , }1 2 � consists

of attributes cjk
i describing it. Each attribute

element c cjk
i

jkp
i= { } consists of a number of

attribute values cjkp
i as shown in Figure 2.

For example, consider a set of repositories,
r = { , , }File Person IssueF P I where the
FileF repository contains a description of the
code files, the PersonP repository contains
detail of each person (either user or developer)
involved in the project and IssueI repository
contains information about the issues (e.g.,
reported bugs, feature requests) raised by the
project personnel. For this illustration consider
only the FileF repository. The repository FileF

File file file fileF F F
m
F= { , , , }1 2 � consists of code files

as repository elements. Each code file,

consists of six attributes referring to the
name of the file, its path, extension, a list of
the names of developers, included files and
copyright information. This repository structure
is shown in Figure 3.

Graph Operations

In this section the rationale and an abstract level
discussion of the graph operations are presented.
The syntax of these operations is presented in
Figure 4. The syntax follows Larch-like nota-
tions (Guttag & Horning, 1993). As shown in
Figure 4, we have four sorts, namely repository,
attributeName, graph and vertexSet based on
which graph operations are defined. Sort reposi-
tory contains repository elements of a certain
type, sort attributeName is the name of an at-

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 47

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

tribute in a repository, sort graph represents a
relationship graph, and finally sort vertexSet is
a set of vertices in a given graph.

Operations are categorized in repository
operations and graph operations (Figure 4).
Repository operations are used to explore and
combine information originating from different
sources. Since we aim at an approach and a tool
that can support studying both code and com-
munity dimensions of OSS projects, we need
a way to show relationships between elements
in two distinct repositories. So, we use the
concept of affiliation networks (Rosso, 2009)
for showing relationships between two sets of
components (or vertices). In an affiliation net-
work one set is called “actors” and the other is
called “events”. Thus an affiliation network is
called a “2-mode network” and represented as
a bipartite graph. In the context of Binoculars,
actors denote attribute values, and events rep-
resent the repository elements. The other types
of operations, graph operations, are used to
support more detailed analysis of the informa-
tion included in the graphs.

Repository operations are applied directly
to repositories. We have one such operation,
called the interConnect operation, which ac-
cepts a repository and an attribute name as
argument. For each repository element the at-
tribute contains one or more attribute values.
The interConnect operation creates relations
between repository elements and each of the
attribute values, thus generating an affiliation
network. For example, consider the File reposi-
tory presented in Figure 3. Each code file in
this repository has an attribute called developer
that consists of a list of developer names who
contributed to that file. Thus, it is quite natural
to have a relationship between that code file
and it’s developers. Applying interConnect
operation in this case would generate a bipartite
graph (Figure 5), which is a 2-mode affiliation
network showing the relationship between two
distinct sets of entities, as code files and their
developers. Thus, one can easily study the
relationship between two components (actors
and events) in a software project through such
graphs. A formal definition of the interConnect

operation is given in the appendix, section The
interConnect operation.

The second category of operation is the
graph operation. There are five operations
belonging to this category, namely intraConnect
operation and four set operations (Figure 4).
The intraConnect operation is used to transform
the 2-mode networks (generated by the inter-
Connect operation) into two 1-mode networks.
To do so, this operation accepts a graph gener-
ated by the interConnect operation and one of
the vertex sets (either actors or events) in the
input graph. Based on the vertex set, this op-
eration generates relationships among the
vertices in the other vertex set. Thus it is pos-
sible to investigate relationship from the per-
spective of the actors or the events. Let us
consider the example graph above (Figure 5),
which shows relationships between code files
(events) and developers (actors). Application
of the intraConnect operation on this graph
could generate either a graph showing the re-
lationship between developers (actors) based
on common code file sharing (Figure 6) or a
graph showing the relationship between code
files (events) based on common developer in-
volvement (Figure 7). Edge weights in these
graphs show the relationship strength between
pairs of nodes. For example, the edge weights
in the graph shown in Figure 6 reveal how many
code files are shared among the developers.

Here, the actors graph depicts collaboration
among the members (developers) within the
community based on common interest and
responsibilities (e.g., code file sharing). On the
other hand, the events graph can be used to
understand the degree of interlocks (Rosso,
2009) between events as created by actors. For
example, a developer working on two code files
simultaneously creates an interlock between
them. An interlock between the files thus rep-
resents the working area of the person involved
as well as revealing dependency among the
code files evolved due to common developer
interest. If multiple developers are involved,
then the interlock gets even stronger. This in-
formation would be useful for a new devel-
oper working on some part of the project. For

48 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

example, he can find out which developers
previously worked on a certain part of the code
base or what other files are significantly ma-
nipulated along with the file in question. The
formal definition and weight calculation of the
intraConnect operation are discussed in the
appendix, section The intraConnect operation.

Set operations are commonly applied to
graphs. Figure 4 lists four such set operations,
namely intersection, union, difference and sym-
metric difference. These set operations have
several implications for analyzing actors or
events graphs, which include analyzing a com-
munity from multidimensional perspectives,
identifying groups and their interrelationship
based on a certain criterion. For example, one

might wish to identify the group of people
who work as developers as well as bug fixers
in the community, or what are the groups in
the developer community according to their
responsibilities and how these groups are re-
lated to each other, or does the actual code file
dependency match the dependency evolved due
to common developer interest (an application of
Conways law (Conway, 1968)). Next, these set
operations are presented with an example from
the perspective of the developer community.

Consider the two actor graphs shown in
Figure 8. The graph in Figure 8(a) shows the
relationship among the developers due to com-
mon code base sharing and the graph in Figure
8(b) shows the developer relationship in the com-

Figure 2. Graphical representation of the repository model

Figure 3. An example of the file repository

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 49

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

munity due to common bug solving. The edge
weight in both the graphs shows how many code
files or bugs are shared among the developers.

The application of the intersection opera-
tion keeps the common section of the input
graphs, showing the region having multidimen-
sional exposure. For example, one might be
interested in identifying the community of
developers who work both as a developer as
well as an issue or bug solver in an OSS project.
An edge weight in the resultant graph is calcu-
lated by adding the edge weights between the
corresponding actor nodes in the input graphs.
The graph shown in Figure 9 is such a graph
generated by applying the intersection operation
on the graphs in Figure 8. This graph shows the
developer community who contribute to the
code base as well as in bug solving. Formal
definition and weight calculation of the inter-
section operation is also given in the appendix,
section Set operations.

Union operation retains both the input
graphs, thus showing at most three regions, one
that is common to both the input graphs (if any)
and the two that are present in either of the
input graphs. Hence this operation can be used
to exhibit the entire community with their focus
domains of activity in the project. For example,
the graph shown in Figure 10 is generated by
applying union operation on the graphs in
Figure 8. In this graph, the relation shown with
a thick solid line is involved in both code base
developments as well as in bug solving, but the
relations shown with the thin solid line and thin
dashed lines are the relations involved in code
development and bug solving, respectively. A
formal definition of union operation with the
weight calculation procedure is presented in
the appendix, section Set operations.

Difference and Symmetric difference op-
erations are only used for distinct regions in
the input graphs, excluding the common region.
Thus, these operations are most suitable for

Figure 4. List of operations implemented in Binoculars

Figure 5. 2-mode network showing relationship between developers and the code files

50 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

finding out about specialized regions in a com-
munity. For example, one might be interested
in finding out the group of people in the devel-
oper community working only as bug fixers or
as developers. Figure 11 shows the graph gen-
erated by applying difference operation on the
graphs shown in Figure 8. This graph shows
the part of the developer community that only
takes part in bug fixing. The formal definition
and weight calculation procedure for difference
and symmetric difference operations are given
in the appendix, section Set operations.

TOOL SUPPORT

Architecture

Binoculars supports visualization of informa-
tion through graphical representation. Emphasis
was given to extracting relevant information,
deriving relationships information which is
represented and rendered through graphs. Figure
12 shows the architecture of Binoculars.

Binoculars architecture is based on the
Eclipse RCP (Rich Client Platform) (Eclipse,
2010) and MVC (Model-View-Controller)
architecture. RCP provides a flexible means to
implement desktop applications either as pl-
ugins or as standalone applications. One of the
main characteristics of MVC architecture is its

ability to separate the business logic and ap-
plication data from its presentation. In this
architecture, the model stores data and during
the course of editing, undo, and redo, the
model is the only thing that endures. Thus all
operations are applied to the model data for
manipulation. Whereas Views are the way to
present the model data in different ways. When-
ever the underlying model changes, it would
be updated and reflected in the corresponding
views. And the interaction and synchronization
between the model and its view is maintained
by the Controller. Thus a controller is respon-
sible for intercepting the requests from view
and passing it to the model for appropriate ac-
tion, the result of which is then passed back to
the view for necessary updates.

In Binoculars, models are implemented in
the ContentProviders module, views are imple-
mented and maintained in the ViewGenerator
module, and the controller is implemented in
the Commands module as shown in Figure 12.

The ContentProviders models the graph
information that is generated and supplied by the
CreateEdge module. The CreateEdge module
digs up the repository information for generating
graph data. The underlying graph generating
methods (i.e., operations that are defined in
section Graph Operations and in the appendix)
are implemented in this module. Graph informa-

Figure 6. 1-mode network showing relationship among developers based on common code file
sharing

Figure 7. 1-mode network showing relationship among code files based on common developer
involvement

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 51

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

tion is generated as XML data which contains
the edge list, edge weight, details of the edge
weight and associated node information. To help
support mining the repositories and to gener-
ate XML data, the xmlParser module is used.
This module uses the DOM XML parser (W3
Schools, 2010) to extract as well as to create new
XML data for the graphs. The Repository mod-
ule is the one which implements the metamodel
presented in section TOWARDS A GENERIC
OSS ANALYSIS TOOL and parses required
information from different data sources.

The ViewGenerator module has two com-
ponent modules, Views and ViewSorter. The
Views module represents the data provided
by the ContentProviders. Views can present
model data in different ways, such as tabular,
chart, tree and graphs. The ViewSorter module
is utilized by the Views to organize its content
when displaying. It is possible to open mul-
tiple instances of a view with customized data
obtained from the same ContentProvider. This
kind of customized visualization is handled by
the Utility module.

There are many ways to customize a graph
and to generate a new one based on user set-

tings. For example, a graph can be customized
by (a) selecting specific nodes or edges of the
graph, (b) setting a weight range for the edges,
(c) selecting attribute values for nodes, and (d)
n-level nearest neighbor of a selected node. All
these customizations of a graph are carried out by
the commands implemented in the Commands
module (in the middle of Figure 12). Required
interfaces and a validation mechanism for the
user inputs are implemented in the Dialogs
module. Both Commands and ViewGenerator
modules use these interfaces for user interaction.
Appropriate command accepts the verified user
data and passes it to the ContentProvider. The
ContentProvider module updates the model
and returns it to the corresponding views. The
views are then updated accordingly.

The module Binoculars in Figure 12 con-
tains the basic components that are required to
run an RCP application. The most important
components are the RCP main application class
which implements the interface IApplication,
one Perspective which holds menus and three
place holders called folders, and a Workbench
Advisor which controls the appearance of the
application (menus, toolbars, perspectives, etc).

Figure 8. (a) Relationship among developers based on common code file sharing (b) Relation-
ship among developers due to common bug solving

Figure 9. Intersection operation applied on graphs shown in Figure 8

52 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Libraries and Platform Used

In what follows, the platform and libraries used
to implement Binoculars are introduced.

• Eclipse SDK: Eclipse SDK (http://www.
eclipse.org) is an open source, multi-lan-
guage software development environment
comprising an IDE and a plug-in system
to extend it. Eclipse is used for developing
Binoculars.

• The Java SE (version 6) Runtime Envi-
ronment is used for developing the tool
(Oracle, 2011).

• Eclipse RCP (Rich Client Platform): Eclipse
RCP (Eclipse, 2010) allows the Eclipse
platform to be used to create flexible and
extensible desktop applications. Eclipse is
built upon a plugin architecture, where a plu-
gin is defined as the smallest deployable and
installable software component of Eclipse.
This architecture allows developers to use

Figure 10. Union operation applied on graphs shown in Figure 8

Figure 11. Difference operation applied on graphs shown in Figure 8

Figure 12. Overall architecture of Binoculars

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 53

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

existing plugins, other third party extensions
and own custom-built ones.

• Zest: ZEST is a graph visualization Toolkit
built as an Eclipse plug-in. It provides
a convenient set of API’s for rendering
and manipulating graphs (http://www.
eclipse.org).

• JFree chart: JFreeChart (Gilbert & Mor-
gner, 2010) is a Java chart library with a
set of API’s supporting a wide range of
chart types. JFreeChart is open source
and distributed under the terms of LGPL
(GNU Lesser General Public License).
To use JFreeChart, the libraries (.jar) of
JFreeChart need to be added to the Java
classpath.

• Dom XML parser: The XML DOM (W3
Schools, 2010) defines a standard way
for accessing and manipulating XML
documents. It provides a convenient set of
API’s in Java for creating and manipulat-
ing XML documents.

• SWT (Standard Widget Toolkit): SWT is
an open source widget toolkit available
as an Eclipse plug-in and used to design
efficient, portable user-interfaces in Java.

Features

The features of Binoculars are implemented
to support the analysis of open source projects
from the perspective of both community and
code base. Figure 13 shows the main interface
of Binoculars.

As shown in Figure 13, Binoculars has
three panels (left, top and bottom), each of
which is used to hold and display multiple
views. Views are used to hold and display dif-
ferent representations of the data upon request.
Depending on the purposes, Binoculars has six
views. They are, project views, tabular graph
data view, graph view, tabular chart data view,
chart view and project data view.

The left panel is used to hold and display
the project view, the top panel is used to hold
tabular graph data view, project data view

and tabular chart data view, and the bottom
view holds and displays the graph view and
the chart view. What follows describes the
functionalities of each of these views and their
intercommunication.

Project View: This view lists the projects and
the graphs that are generated under each
project. This list is organized in a tree
structure as shown in Figure 13, item 1.
Clicking on a graph name under a project,
would display the tabular representation of
the graph in the top panel (Figure 13, item
2). Project view also has menu level com-
mands (Figure 13, item 3) that allows users
(a) to add new projects and graphs under
existing projects and (b) to remove exist-
ing graphs and projects. The list of graphs
that can be generated under a project are
listed in Table 1. Each graph in this table is
described by its unique name, purpose and
graph operation that is applied to generate
the graph.

Graph Data View [Tabular]: This view dis-
plays graphs as a list of edges and nodes.
It contains the following, (a) An edge list
table consisting of graph edges. Each edge
is described by source node, destination
node, edge weight and weight detail. (b)
A node list table which lists all nodes in
the graph with the number of connections
for each node. (c) A node description table
which shows information about a selected
node (Figure 13, items 4, 5, 6 respectively).
Table data can be searched and sorted based
on a selected column. For example, the
edge list table (Figure 13, item 4) is sorted
in descending order based on edge weight
and a search is made with the word fabrice.

Graph View: This view displays graphs in a
graphical way with detailed graph informa-
tion. This view consists of the following
components, (a) a graph display pane
which displays the graphs consisting of
nodes and edges. Edges might have weights
depending on the graph; (b) an edge detail

54 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

pane which consists of an edge list table,
a weight detail table and a graph option
table. The weight detail table displays
weight detail when an edge in the graph
is selected and the graph option provides
the graph summary data and searching
facility; (c) a node list pane which lists all
the nodes of the displayed graph; and (d) a
node detail pane which shows information
about a node selected from the displayed
graph. All these components are shown in
Figure 13, items 7, 8, 9, 10 respectively.

Both graph data view and graph view
consist of a comprehensive set of menu level
options to customize graph data and its visual-
ization. These options are discussed bellow.

Graph customization: Displayed graphs can be
customized in five different ways (Figure
13, item 11). These options are as follows,
(a) node nearest neighbor: n level nearest
neighbor of a selected graph node can
be viewed. For a given node this option
shows all the nodes that are nearest to it

by the selected level. The graph in Figure
13 shows the 2 level nearest neighbor for
the selected node marco gerards; (b) split
on edge weight: a graph can be customized
based on a given range of edge weights.
The edges satisfying the weight range are
displayed; (c) customize on selected nodes:
a list of nodes from the displayed graph can
be selected to draw a customized graph with
those nodes, provided they have relations
in the original graph; (d) customize on
selected edges: a customized graph can
be constructed by selecting a list of edges
from the original graph; (e) customize on
node attributes: this option gives the op-
portunity to customize a graph based on
a given attribute value. For example, the
graph in Figure 14 shows those developers
and their relationships in the Eucalyptus
community who live in the United States
of America. All the component panes in
the graph view are updated according to
the customization.

Save graph: The original graph or it’s custom-
ized version can be saved in XML files

Figure 13. Binoculars user interface

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 55

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

(Figure 13, item 12). It is also possible to
save the graph nodes and their associated
detail in XML files.

Layout Change and zooming: Four layout op-
tions (namely, spring, grid, tree, radial) are
provided for visualizing graphs (Figure 13,
item 13). The displayed graph can also be
zoomed between 50% and 400% (Figure
13, item 14).

Chart View: Charts are used to show summary
data of the project. Two charts are cur-
rently available, a pie chart and a bar chart.
Charts can be generated based on selected
attributes. For example, Figure 15 shows
a pie chart revealing bugzilla distribution
in the Eucalyptus project based on their
priority level.

Apart from these, Binoculars has three
more views for visualizing the project reposi-
tories. These are the project personnel view
which shows project personnel information
under their respective projects. Similarly proj-
ect code base view and project bugzilla view
respectively provide codebase information and
an issue history log of a project.

Feasibility and Scalability
of Binoculars

Binoculars requires repository information to
create a graph. Repository information is col-
lected from projects data management systems
as discussed in section Data Collection. Cus-
tomized parsers are built to fully automate this
data collection process. But due to the diverse
nature of data management systems of OSS
projects, it is really hard to have a generalized
parser for all the projects. Thus parsers are not
the part of Binoculars.

Both the repository information and the
created graphs are stored in XML files as dis-
cussed in section Architecture. For creating a
new graph, Binoculars extract information from
the related repositories and create and store the
graph in a XML file. For rendering an existing
graph, it simply uses the corresponding graph

XML file. Thus creating and rendering a graph
requires normal processing time.

One can extend an existing repository by
simply adding information in the XML files
with defined tags. Similarly, a new repository
can be added using the existing XML template.
Again, Binoculars operates on the repository
information, thus it is not dependent on the
programming language used in a project.

CASE STUDY

In this section, we demonstrate the use and appli-
cability of our approach and the tool Binoculars
by analyzing the selected open source projects,
FFMpeg (2010) and Eucalyptus (2011).

Short Description of FFMpeg

FFmpeg is a complete, cross-platform solution
to record, convert and stream audio and video in
numerous formats (FFmpeg, 2010). There are
more than 140 projects listed in the FFMpeg
official website which use programs from the
FFMpeg project (FFmpeg, 2010).

The name of the project comes from the
MPEG video standards group, together with
“FF” for “fast forward” (Bellard, 2006). Fabrice
Bellard is the originator of this project and
FFmpeg is his trademark.

FFmpeg is written in C and developed
under Linux. It is free software and is licensed
under the GNU Lesser General Public License
(LGPL) version 2.1 (FFmpeg, 2010) or later.
FFmpeg also incorporates several optional parts
and optimizations that are covered by the GNU
General Public License (GPL) version 2 or later.

In the FFmpeg project, information is
mainly maintained in a version control system,
a bug reporting system and a registered user
information system. These are the basic sources
of information for the analysis.

Short Description of Eucalyptus

Eucalyptus is a software platform which imple-
ments scalable IaaS (Infrastructure as a Service)

56 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 1. Graph visualization supported by binoculars

Graph Name Description

dev to file This graph shows the relationships between code files and the developers who are responsible
for those code files. Thus, this graph reveals how responsibilities are distributed over the de-
veloper community. To draw this graph, an interConnect File developerF(,) operation is
performed. A detailed description of this operation is presented in the appendix, The interCon-
nect operation.

Dev to issue This graph shows relationships between developers and user issues answered by the develop-
ers. From this graph, one can identify which developers are engaged in solving user issues and
to what extent. To draw this graph, an interConnect Issue developerI(,) operation is performed.

User to issue This graph shows relationships between issues and the users who posted those issues. From
this graph one can easily figure out the interest areas of users and their contributions, as subject
areas of the issues should be related to the purpose of use. To draw this graph, an
interConnect Issue userI(,) operation is performed.

file to
file_inclusion

This graph shows relationships between code files of the project based on the inclusion struc-
ture. Thus it can reveal how code files are dependent on each other. To draw this graph, an
interConnect File inclFileF(,) operation is performed.

dev to
dev_code

This graph shows relationships between developers based on a common code file use. The
edge weight between two developer nodes specifies how many code files they share in com-
mon. To draw this graph an intraConnect G FileFile Developer(,)- operation is performed. A detail
description of this operation is presented in the appendix, section The intraConnect operation.

dev to
dev_issue

This graph shows how developers are interacting with each other when working on issues. A
relationship exists between two developers if they worked on a common issue. The edge weight
between two nodes shows how many common issues exists between two developers. To draw
this graph an intraConnect G IssueIssue Developer(,)- operation is performed.

user to
user_issue

This graph shows relationships between users based on a common issue. Generally issues (such
as bug reporting, feature request) are posted by users and it is quite common that many users
have the same issue in common. Thus, there are relationships between them. The edge weight
in this graph again shows the multiplicity of such occurrences. To draw this graph an
intraConnect G IssueIssue User(,)- operation is performed.

file to file_dev This graph shows relationships between code files based on a common developer involvement.
That means if two code files are written or maintained by the same developer then there ex-
ists a relationship between them. To draw this graph an intraConnect(GFile-Developer , Developer)
operation is performed.

issue to
issue_dev

This graph shows relationships among issues based on common developers’ involvement,
which in turn reveals what subject area of these issues actually motivates developers’ in solving
them. To draw this graph an intraConnect(GIssue-Developer , Developer) operation is performed.

continued on following page

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 57

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

style private and hybrid cloud computing (Eu-
calyptus, 2011). The platform provides a single
interface that lets users access computing in-
frastructure resources (e.g., machines, network,
and storage). These resources are available in
private clouds implemented by Eucalyptus
inside an organization’s existing data center
as well as externally in public cloud services.
The software is designed to be modular and
the extensible web-services based architecture
enables Eucalyptus to export a variety of APIs
toward users via client tools. Currently Euca-
lyptus implements the Amazon Web Service
(AWS) API (Eucalyptus, 2011), which allows
interoperability with existing AWS-compatible
services and tools.

There are the enterprise edition and the
open-source edition of Eucalyptus. Version 1.5.2

was the first release as an open source. This
open source version of Eucalyptus is currently
available with most of the Linux distributions
including Ubuntu, Red Hat Enterprise Linux
(RHEL), CentOS, SUSE Linux Enterprise
Server (SLES), OpenSUSE, Debian and Fedora.

As cloud computing is an emerging phe-
nomenon and the Eucalyptus OSS community
makes a large contribution in this field, we are
thus particularly interested in the open source
version of Eucalyptus. For our purposes we
explore all the possible sources of informa-
tion provided by the open source version of
Eucalyptus. The sources are mainly available in
the following categories: the user information
system, the version control system and the bug
reporting system.

dev to
dev_Intersection

This graph shows the group of developers in the community who work as active developers
as well as issue solvers. Edge weights in this graph shows how frequently two developers in-
teract with each other while performing both the roles. To draw this graph an
intersection G Gdeveloper

F
developer
I(,) operation is performed. Details of this graph operation are

presented in the appendix, section Set operations.

dev to
user_issue

This graph shows relationships between developers and users of the software based on a com-
mon issue, as in a typical OSS project one of the major media of communication among the
developers and users is the issue tracking system. To draw this graph an
intersection G Gdeveloper

F
developer
I(,) operation is performed.

file to
file_Intersection

This graph shows to what extent the inclusion architecture of the code base matches that of the
file relationship due to the developers’ involvement. In other words it reveals whether the
community structure matches that of the product architecture, an application of Conways law
(Conway, 1968). To draw this graph an intersection G GFile

Dev
File
Inc(,) operation is performed.

dev to
dev_Union

This graph shows relationships among all the developers in the community based on their
working domain. So, this graph would answer questions like, who is doing what, to what extent
and in doing their jobs who are the other people they are interacting with. To draw this graph
a union G Gdeveloper

F
developer
I,() operation is performed. Details of this graph operation are pre-

sented in the appendix, section Set operations.

dev to
dev_Difference

This graph shows the relationships of that part of the developer community who work only as
developers. To draw this graph a difference G Gdeveloper

F
developer
I(,) operation is performed. Details

of this graph operation are presented in the appendix, section Set operations.

file to
file_Difference

This graph shows those parts of the code base that do not match with the file relationships due
to community involvement. To draw this graph a difference G GFile

Inc
File
Dev(,) operation is performed.

dev to
dev_SymmDiff

This graph portrays two groups (if exists) in the developer community, one of which performs
specifically as developers and the other only as issue solvers. To draw this graph a s
ymmdifference G Gdeveloper

F
developer
I(,) operation is performed. Details of this graph operation are

presented in the appendix, section Set operations.

Table 1. continued

58 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Research Questions

Following are the queries that are investigated
and answered using Binoculars. Primary focuses
of these queries are the community aspects,
the code base and their relationships in an
OSS project.

Q1. Where does the expertise lay within the
developer community?

Q2. Whom (developer) users should contact to
solve an issue?

Q3. How many people work on each software
component? Who are they?

Q4. Does the inclusion structure of the code
base conform to the organizational structure
(i.e., do Conway’s law apply)?

Q5. What are the critical issues related to the
performance of the software?

Figure 15. Pie chart showing bugzilla distribution according to their priority in Eucalyptus project

Figure 14. Graph customization on the attribute geo location with value “America”

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 59

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

These queries are motivated by the fact
that- software development is no longer a single
handed job (Rosso, 2009). Rather, it is a col-
laborative and distributed work in both form of
software development (closed source and open
source) process. Thus cultural, time zone, and
language differences among the community
members are obvious. Improving software
development in this context requires better
understanding and improved coordination and
communication (Mockus & Herbsleb, 2003;
Herbsleb, Moitra, & Lucent Technol., 2001).
This coordination and collaboration issues for
improving software knowledge are studied
in software engineering for quite a long time
(Cockburn, 2001; Schwaber & Beedle, 2001)
and was empirically validated (Bellini, Canfora,
Garcia, Piattini, & Visaggio, 2005). Likewise,
exploiting and understanding this collabora-
tion and coordination, and its relation with the
underlying software architecture has profound
impact both on software architecture evolution
(CYB, MacCormack, & Rusnak, 2008) and on
software quality (Ye, 2006; Herbsleb, 2007).
The queries stated are derived from these
needs. In Rosso (2009) some of these queries
are explored and answered from community
perspective using SNA measures and metrics.
But, for in-depth understanding on this issue
requires exploration of relationship between
community and the code base of an OSS project.

In what follows, the data collection process
and answer to the research questions using
FFMpeg and Eucalyptus. In answering the
queries, first a brief discussion on the context
and focus of the query is given.

Data Collection

The main sources of information for the two
projects, FFMpeg and Eucalyptus are, code
repository, bug tracking system, registered user
information system and mailing list. We take a
snapshot of the SVN code repository of FFMpeg
project on 20-09-2010 and use the code base
of Eucalyptus-1.6.2. Other information sources
(bug tracking system, user information system
and mailing lists) are extracted from the first
entry up to 20-09-2010. For extracting data

from the information sources described above,
we build parsers in java and represent the ex-
tracted data in XML files which constitute the
repositories for Binoculars.

As discussed, Binoculars contains three
repositories to store extracted information,
namely, Person, File and Issue repositories.
Person repository contains project personnel
information including, unique user name; real
name; role performed in the community (e.g.,
developer, user, active developer); date of join-
ing to the project; project or part of the project
working for; other detail such as, geographical
location, email address, communication me-
dium used, preferred language(s) and phone
number. File repository contains information
about the code files, which consists of file
name; its path to the svn; extension of the file;
developer(s) who implemented or maintain
the file; inclusion information, and copyright
information. Finally, Issue repository contains
information extracted from the bug repository
as well as from the mailing list. This repository
consists of issue id; title of the issue (subject of
a mail or a bug report); its priority level, and
current status; name of the persons who posted
and replied to the issue along with date and
time of posting, and the description of the issue.

To identify and distinguish personnel (ei-
ther developer or user) in a project, we adopted
the following approach; first we collected the
person information from the code repository for
each code file. Then we searched the registered
user information system to identify personnel
with their role defined as developer. These two
sources provide the developers list in a project.
Other personnel whose responsibility was men-
tioned as user in the registered user information
system or who are not in the developer list were
considered as users of the project. Also for code
files, it might be possible that two files have the
same name. To resolve this conflict, we used
absolute path for each code file.

Case Study: 1 FFMpeg

In this section we discuss how selected queries
are answered when analyzing an FFMpeg proj-
ect using Binoculars.

60 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Q1. Where does the expertise lay within the
developer community?

Description: Developers might have differ-
ent areas of interest and expertise with respect
to the code base and responsibilities should be
distributed accordingly. Thus, it is obvious that
developers having the same interest area would
share knowledge more frequently and they are
the main sources of information for that portion
of the code base. The main focus of this query
is to find out the expertise groups within the
developer community.

To answer this query an intraConnect
(GFile-Developer, File) operation is performed. The
resultant graph is shown in Figure 16.

According to this graph, developers MN
and FB share 65 code files between them.
However, developer FB shares about 49 code
files with 19 other developers. M.N. also shares
40 code files with another 15 developers. Thus,
it is quite clear that both MN and FB are the
central developers in FFMpeg and make a
significant contribution to different areas of the
code base.

Q2. Whom (developer) users should contact to
solve an issue?

Description: In an open source project de-
velopers play two types of roles: (a) developing
and maintaining the software and (b) dealing
with user issues, which may directly or indirectly
relate to the product. Depending on the area of
interest, developers may choose either or both of
these roles. Developers playing both roles and
exchanging ideas with each other form the core
of the developer community. This community
of developers has the in-depth knowledge of
the software and the user community as they
both deploy the software and solve user polled
issues. A user having some problem in hand may
find the proper person in the developer com-
munity whom he should contact. This question
was also polled in Anvik, Hiew, and Murphy
(2006) where a machine learning technique was
used to suggest a small number of developers
suitable to resolve a reported issue.

To answer this query an:

intersection G Gdeveloper
F

developer
I(,)

operation is performed. The resultant graph
contains only 13 developers but they have no
connection between them. This means that
the communication network in the developer
community which evolved due to the code de-
velopment is not the same as the one evolved
due to bug or issue solving. In other words,
developers who are responsible for a particular
portion of the code base are not necessarily the
same group of developers who are responsible
for solving related issues.

Q3. How many people work on each software
component? Who are they?

Description: The goal is to construct a
graph that actually reveals the relationships
between developers and the code files to which
they have contributed. This graph would help
to identify how responsibilities are distributed
over the community.

To answer this query an interConnect (FileF,
developer) operation is performed. The resultant
graph reveals that the distribution of the files
in not uniform in the FFmpeg project. Rather,
responsibilities are disseminated according to
seniority and experience. For example, as shown
in Figure 17, the top four developers contributed
to around 550 code files of which the developer
MN contributed to 227 code files alone.

Q4. Does the inclusion structure of the code
base conform to the organizational structure
(i.e., do Conway’s law apply)?

Description: The inclusion structure shows
the logical relationships and interdependen-
cies among the code files. Changes to such
files might affect other related ones. Thus
distribution of files among developers plays
an important role in software evolution. If de-
velopers working on the same or related code
files make changes to those files without the

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 61

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

other developers involved being aware, then
conflicting changes must occur. Due to this
lack of communication among the develop-
ers working on such inter-related files, these
conflicts are detected and resolved only during
commits. But this increases the cost of resolving
those conflicts.

To carry out this query, an intersection
intersection G GFile File File

F(,)- operation is performed. This
operation takes two graphs as argument. One
is a GFile-File graph which is generated by employ-
ing the interConnect(FileF, includeFile) opera-
tion, and the other is a GFile

F graph generated
by applying the intraConnect(GFile-Developer, De-
veloper) operation. The resultant graph contains
nodes and edges that are common to both the
graphs. This graph is shown in Figure 18.

The FFMpeg project consists of 1490 code
files, but the resultant graph (Figure 18) contains
only 765 code files and their relationships. Thus,
around 50% of the code files distributions are
concerned with the organizational structure in
the FFMpeg project.

Q5. What are the critical issues related to the
performance of the software?

Description: The main focus of this query
is to categorize the issues based on a particular
condition. As an example, we categorize the
issues based on the assumption that developers
invest their time on those issues that are closely
related to the performance of the software. It
is also desirable that these issues are related to
the code files for which these developers are
responsible. Again, if enough information is
provided by the repository, then these issues
would directly lead to the sections of the code
base that raise these issues.

To answer this query, an intraconnect
intraconnect G DeveloperDeveloper Issue(,)- operation is per-

formed. The resultant graph is shown in Figure
19. The edge weight in this graph shows how
many developers are involved when solving
two connected issues. A close look at this graph
reveals that there are a few issues in the FFM-
peg project that are referenced frequently by
the developers with other issues. For example,
issue1322 is referenced with 258 other issues
(Figure 19). Similarly, issue763 and issue272
are referenced with other 237 and 217 issues
respectively. This wide interconnection between
these issues and others reveals that they are

Figure 16. Developer relationship graph based on code file sharing in FFMpeg with top two
developers communication domain

62 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

critical for the project and have a deep impact
on the performance of the software.

Case Study: 2 Eucalyptus

In this section an analysis report of the Euca-
lyptus community is presented. The same set of
queries as in the FFMpeg project is investigated
in this case as well. The contexts of the queries
are the same as in the previous analysis.

Q1. Where does the expertise lay within the
developer community?

Description: The Eucalyptus commu-
nity currently has 12 active developers, who
participate in the project development. There
are also other developers who contribute to
the project. But, due to the fact that their
contributions are not maintained properly at
the code base level, the overall contribution of
the developer community cannot be measured.
Based on the partial information available, it
is apparent that three of the developers in the
Eucalyptus community have contributed more
than the others.

Figure 17. Developer and code file relationship graph in FFMpeg

Figure 18. File relationship graph generated based on common developer involvement and
inclusion structure

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 63

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Q2. Whom (developer) users should contact to
solve an issue?

Description: The outcome of this query is
quite similar to that of the FFMpeg, because
there is no distinct group of developers who
communicate while working on the project
as well as dealing with user issues. That is
developers who implement certain code files
are not necessarily the same ones who solve
issues related to those code files.

Q3. How many people work on each software
component? Who are they?

Description: The result of this query is also
similar to that of the FFMpeg project, where
responsibilities are not evenly distributed within
the developer community. For example, devel-
oper CZ alone contributed to 202 (out of 676)
code files in the Eucalyptus project.

Q4. Does the inclusion structure of the code
base conform to the organizational structure
(i.e., do Conway’s law apply)?

Description: It is found that around 39%
(266 out of 676) of the code files are distributed
according to the communication structure of
the Eucalyptus developer community. This is

significantly lower than that of the FFMpeg
community. This might be due to the fact that the

Eucalyptus community is a new and
growing one which is still converging towards
homogeneity.

Q5. What are the critical issues related to the
performance of the software?

Description: The result of this query in the
Eucalyptus project shows that while working
on one issue, developers the project consists of
402 issues, of which 350 issues are referenced
with more than 50 other issues. In other words,
in around 87% cases when developers show an
interest in one issue they have also worked on
at least 50 other issues. The graph in Figure 20
shows only those issues and their relationships
that were referenced with more than 300 other
issues by the developers.

This result is quite different from the
FFMpeg project where the rate of this cross
referencing is significantly lower.

RELATED WORK

The open source research community has
proposed several techniques and tools to study
open source projects. These tools, and the ap-
proaches behind them, can be classified along

Figure 19. Issue relationship graph generated based on common developer involvement

64 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

two main dimensions as shown in Table 2). The
first dimension is the purpose of the tool (why),
examples of which include social network
analysis, code analysis, licensing investigation,
project exploration, and conflict management.
The second dimension is the data source that is
used to extract information (what), examples of
which include the source code, revision history,
and mailing lists.

We chose to group the data sources into dif-
ferent categories. The software category refers
to software artifacts like the source code and
configuration files. Communication includes
data sources such as mailing lists, and chat
entries. Configuration refers to elements like
revision history and bug tracks. Knowledge
includes data sources such as user forums and
Wiki entries. Statistics cover data concerning
the number of downloads or web hits. Finally,
contribution covers patches and feature requests.

These categories are not orthogonal, for
example, communication overlaps with contri-
bution as mailing list entries are often referred
to feature requests. As can be seen in Table
2, every tool focuses on a specific purpose
and uses a set of data sources. For example,
in Beaver, Cui, St Charles, and Potok (2009)
communication and knowledge sources are used
to predict the success of open source projects.
Also in Mockus and Herbsleb (2002), configu-
ration and contribution are explored to identify
expertise within the project group, whereas in

Biehl, Czerwinski, Smith, and Robertson (2007)
and Sarma, Noroozi, and Van der Hoek (2003),
source code and configuration files were mined
to increase the developer’ awareness of each
others’ contribution within the project and to
effectively identify and resolve conflicts when
working on shared artifacts, respectively. This
gives the impression that (i) the purposes are
unrelated and (ii) certain data sources are ap-
plicable for certain purposes only.

We argue that the tool purposes shown
in Table 2 are in fact different functionalities
of a generic OSS analysis tool. We also argue
that the data sources are in fact complementary
and that one data source could be relevant for
several purposes. For example, source code
is used to perform traditional code analysis
(Knab, Pinzger, & Bernstein, 2006), social
network analysis (Martinez-Romo, Robles,
Ortuo-Perez, & Gonzalez-Barahona, 2008),
licensing investigation (Di Penta & German,
2009) and so on.

The tool that comes closest to our ap-
proach is the Tesseract (Sarma, Maccherone,
Wagstrom, & Herbsleb, 2009). This tool shows
simultaneously the social and technical aspects
of the relevant project, and cross links the two.
It also takes into account project evolution by
allowing interactive exploration of the data
in a selected time period. And it highlights
matches and mismatches among the technical
dependencies and communication patterns of

Figure 20. Issue relationship graph generated based on common developer involvement

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 65

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the developers. Still Tesseract has its limitations.
First, the main focus of this tool the commercial
software development projects and it tries to
accommodate the aspects that are similar to
open source software projects. Second, this
tool does not consider the user base of OSS
projects, which constitutes a large part of the
OSS community and contributes to the project
in many ways, such as bug reporting, asking for
new features, feedback, mail communication
and so on. Third, data collection for this tool is
more manual than automated. It requires cross-
checking and validation with project personnel.
This process might take months to prepare data,
which would hinder the usefulness of the tool.

Compared to these approaches, we pro-
posed a compact and extensible metamodel
(see section TOWARDS A GENERIC OSS
ANALYSIS TOOL), since particularly at a
more detailed level, the types of artifacts and
their relations to be analyzed differ from project
to project.

Correspondingly, support for the other
dimensions discussed above can be provided
either by extending the repositories or by
extending the metamodel. For example, to
integrate fault prediction of OSS projects, it is
sufficient to incorporate the measured metrics
in the corresponding repositories. On the other
hand to incorporate licensing we need to extend
the metamodel. It can be achieved by attaching
licensing details to FileSystemItem class shown
in Figure 1.

Our approach is currently aimed at the
software and community sides of OSS proj-
ects. Each of these dimensions are modeled
and implemented through repositories as dis-
cussed in section Repository Structure and in
the appendix. As SNA traditionally employs
mathematical graphs and metrics (Carrington,
Scott, & Wasserman, 2005) to render and
analyze relationships, we further define a set
of operations (see section Graph Operations
and appendix) which help support such graph
construction and analysis. For example, the
traditional 2-mode network in SNA can be easily
constructed using the interConnect operation
(section Graph Operations and in appendix, sec-

tion The interConnect operation). This 2-mode
network could then be easily transformed into
two 1-mode SNA networks through the intra-
Connect operation (section Graph Operations
and in appendix section The intraConnect
operation). Also for further querying, a group
of set operations are defined (section Graph
Operations and in appendix, section Set opera-
tions) and implemented. These operations are
reusable in the sense that if other dimensions of
OSS projects are mapped through repositories,
then these operations can be directly applied
to them as well. Thus our approach is more
formal, procedural and flexible for exploring
the socio-technical aspects of an OSS project
while keeping perfect alignment with SNA ap-
proaches as well as reverse engineering.

DISCUSSION

Conclusion

The research problem addressed in this paper
is what kind of infrastructure is needed to meet
the requirements of a generic OSS analysis tool.
Our approach in addressing this challenge is
as follows.

First, we proposed a meta-model based
approach for OSS analysis. We started the
development of the metamodel, given in sec-
tion II, focusing on two purposes, namely code
analysis and social network analysis, and in
particular combination of the two. The meta-
model includes concepts for the community
(Person), the software (FileSystemItem), and
communication (Issue). It is not complete, as it
could be augmented, for instance, with legality
issues (like License) and economical issues.

Second, we formally defined graph op-
erations (e.g., intra-Connect, interConnect,
intersection, union, difference and symmetric
difference), due to the fact that the abstract
metamodel is a mathematical graph. These
operations are discussed in section Graph Op-
erations and in the appendix. The analysis is
done by applying these operations.

Third, as a proof of the concept we devel-
oped the analysis tool Binoculars. This tool

66 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

incorporates the described metamodel, and the
analysis is carried out by applying the graph
operations on the model. The architecture and
features of this tool are discussed in TOOL
SUPPORT. Binoculars were used to analyze
two projects, FFMpeg and the open source ver-
sion of Eucalyptus (presented in section CASE
STUDY). We were able to answer questions like
“Whom should a user contact to solve an issue”
and “Who are the developers working on each
component”. During the trial the tool showed
promising functionality; we were able to find
answers to the enumerated questions. Despite
the fact that FFMpeg can be considered as a
large open source project, Binoculars worked
well and smoothly. The developed metamodel
proved to be excellent.

Finally, we gave a two-dimensional (pur-
pose of the tool and used data source) classifi-
cation for open source software analysis tools
(section RELATED WORK). Then we argued
that the tool purposes are actually different
functionalities of a generic OSS tool. Moreover,
the data sources are complementary and can be
used for different purposes. We also discuss
how our approach can be applied to fill this gap.

Ultimately, the kind of questions which the
Binoculars approach addresses is not limited
to open source projects. Other software devel-
opment settings such as globally distributed
projects may involve similar concerns such
as the impact of team distribution on software
architecture (Avritzer, Paulish, & Cai, 2008).
The only assumption which our approach makes
is that the subject project comes with relevant
development data such as team communication
and revision history. Even in single site devel-
opment setting, the binoculars approach can
be used for knowledge combination (Nonaka
& Takeuchi, 1995) by combining together vari-
ous elements of explicit knowledge (codified
in the development artifacts) in order to build a
bigger system of knowledge. A simple example
of combination is the merging of the results of
two developers’ development history to identify
overlapping efforts.

On the negative side: The GUI of Binocu-
lars is challenging. Namely, the size of large

projects tends to lead to huge graphs, which are
complex and slow to render on the screen. This
is a well-known challenge in the development
and application of reverse engineering and
program analysis tools, and is often tackled
with abstraction and slicing techniques. We are
studying such graph abstractions that would
preserve the interesting features, but produce
small enough graphs to be visualized.

Also, it is possible that two persons hav-
ing the same name in a project have different
responsibilities (e.g., one as a developer and
the other as a user). In such case, Binoculars
would not be able to distinguish between them
and may lead to inconsistent result.

FUTURE WORK

The most widely accepted reverse engineering
metamodel is The Dagstuhl Middle Metamodel
(DMM) (Lethbridge, Tichelaar, & Ploedereder,
2004), which is illustrated in Figure 21. DMM
includes various viewpoints to the system under
reverse engineering. Figure 21 illustrates the
file-oriented portion of the actual class diagram
of DMM. The idea behind the class structure is
to separate the abstract model from the concrete
source code. Therefore, the model has both
SourceObject and ModelObject.

Our goal is to augment DMM with open
source community related concerns. Figure 22
illustrates our current understanding of the
augmentation of DMM. Remember that the
Binoculars’ metamodel was given in Figure 1.
FileSystemItem has been left out from the
Binoculars metamodel. Due to the fact that open
source development is very code-oriented activ-
ity, we have chosen the subclasses of Source-
Object to points of augmentation. The left-hand
side of the figure shows the Binoculars
metamodel and the righthand side illustrates
the DMM. The four relations between the
models show how they are related.

Persons are either users or developers of
the system. Developers work with many
SourceUnits and one SourceUnit may be
coded by several developers. Therefore, Person

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 67

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 2. A two dimensional classification of open source analysis tools

- Software Communica-
tion

Configuration Knowledge Statistics Contribu-
tion

Code
analysis

(Knab, Pinzger, &
Bernstein, 2006; Sarma,
Maccherone, Wagstrom,
& Herbsleb, 2009)(Knab,

Pinzger, & Bernstein,
2006; Sarma, Maccherone,

Wagstrom, & Herbsleb,
2009)

(Sarma,
Maccherone,
Wagstrom,

& Herbsleb,
2009; Zhou

& Davis,
2005)(Sarma,
Maccherone,
Wagstrom,

& Herbsleb,
2009; Zhou &
Davis, 2005)

(Chacon,
2010)

SNA (Martinez-Romo, Robles,
Ortuo-Perez, & Gonzalez-
Barahona, 2008; Sarma,
Maccherone, Wagstrom,

& Herbsleb, 2009)
(Martinez-Romo, Robles,
Ortuo-Perez, & Gonzalez-
Barahona, 2008; Sarma,

Maccherone, Wagstrom, &
Herbsleb, 2009)

(Kamei,
Matsumoto,
Maeshima,

Onishi,
Ohira, &
Matsu-

moto, 2008;
Crowston

& Howison,
2005)

(Porruvec-
chio, Uras, &
Quaresima,

2008)

(Mller,
Meuthrath,

& Baumgra,
2008)

(Wiggins,
Howi-
son, &

Crowston,
2009)

Licensing (Di Penta & German,
2009; Tuunanen, Koski-

nen, & Karkkainen, 2006)

Prediction (English, Exton, Rigon, &
Cleary, 2009)

(Beaver, Cui,
St Charles,
& Potok,

2009)

(English, Ex-
ton, Rigon, &
Cleary, 2009)

(Beaver, Cui,
St Charles, &
Potok, 2009)

Evolution (Bouktif, Antoniol, Merlo,
& Neteler, 2006; Capiluppi
& Fernandez-Ramil, 2007)

(Bouktif,
Antoniol,
Merlo, &
Neteler,
2006)

(Bouktif,
Antoniol,

Merlo, & Ne-
teler, 2006;
Capiluppi &
Fernandez-

Ramil, 2007)

(Koch
& Stix,
2008)

(Desh-
pande &
Riehle,
2008)

Project
Exploration

(Souza, Quirk, Trainer, &
Redmiles, 2007; DeLine,

Khella, Czerwinski, &
Robertson, 2005)

(Mockus &
Herbsleb,

2002; DeLine,
Khella,

Czerwinski,
& Robertson,

2005)

(Mockus
& Herbs-
leb, 2002)

Awareness (Biehl, Czerwinski, Smith,
& Robertson, 2007; Froe-
hlich & Dourish, 2004)

(Froehlich
& Dourish,

2004)

Conflict
management

(Sarma, Noroozi, & Van
der Hoek, 2003; Schmmer

& Haake, 2001)

68 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

and SourceUnit are in many-to-many relation.
The SourcePart is used to model the code snip-
pets crafted by the developers. Therefore, User
and SourcePart are in a many-to-many relation.
Similarly, issues are related to SourceUnits.
Namely, most of the issues deal with the code-
oriented questions, like bugs in the system.
Therefore, Issue has a many-to-many relation
with both SourcePart and SourceUnit.

The described augmentation is our next
step in developing Binoculars. The relation
of the current Binoculars metamodel and the

more abstract parts of the DMM is worth a
more comprehensive study. Is it enough just
to relate our model to the code?

Current results of the tool support show
very promising results and thus are subject to
further study and research. As this current tool
is a prototype and mainly developed to study
how far it matches up to our expectations,
extensions to the tool would be a topic of fu-
ture work. Hence, the proposal is to develop a
generic OSS analysis tool that must conform
to the following.

Figure 22. The DMM augmented with the community dimension

Figure 21. The Dagstuhl Middle Metamodel (DMM)

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 69

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

It must support the traditional reverse
engineering concept along with a community
analysis mechanism.

• Customized visualization and rendering
of graphs along with different levels of
abstraction of data should be supported.

• From the architectural point of view:
the tool should have an architecture that
allows its extension, customization, and
tailoring for different needs. It should be
flexible enough to be tailored for other
purposes relevant to the analysis of open
source projects.

• The tool itself will be open source, which
further supports its easy customization.
The use needs of the tool should facilate
the following.

• Users of open source projects: the tool
can be used to get an understanding of an
open source project in order to assess its
relevance for the needs of the user.

• Developers of open source projects: since
the tool itself will be open source and
customizable, the developers can publish
a tailored version of the tool together with
the software itself which would better serve
the end users.

REFRENCES
Anvik, J., Hiew, L., & Murphy, G. (2006). Who
should fix this bug? 28th international conference
on Software engineering (pp. 361–370). New York,
NY, USA: ACM.

Avritzer, A., Paulish, D., & Cai, Y. (2008). Coordina-
tion implications of software architecture in a global
software development project. Seventh Working
IEEE/IFIP Conference on Software Architecture
(WICSA 2008) (pp. 107–116). Washington, DC,
USA: IEEE Computer Society.

Beaver, J., Cui, X., St Charles, J., & Potok, T. (2009).
Modeling success in floss project groups. Proceed-
ings of the 5th International Conference on Predictor
Models in Software Engineering, (pp. 1-8).

Bellard, F. (2006). Ffmpeg naming and logo. Re-
trieved from FFmpeg mailing list: lists.mplayerhq.
hu/pipermail/ffmpeg-devel/2006-February/

Bellini, E., Canfora, G., Garcia, F., Piattini, M., &
Visaggio, C. (2005). Pair designing as practice for
enforcing and diffusion design software. Journal
of Software Maintenance and Evolution: Research
and Practice, 17(6), 401–423. doi:10.1002/smr.322

Biehl, J., Czerwinski, M., Smith, G., & Robertson,
G. (2007). Fastdash: A visual dashboard for foster-
ing awareness in software teams. SIGCHI confer-
ence on Human Factors in computing systems, (pp.
1313–1322). San Jose, California, USA.

Bouktif, S., Antoniol, G., Merlo, E., & Neteler, M.
(2006). A feedback based quality assessment to sup-
port open source software evolution: the grass case
study. Proceedings of the 22nd IEEE International
Conference on Software Maintenance, (pp. 155–165).

Capiluppi, A., & Fernandez-Ramil, J. (2007). A
model to predict anti-regressive effort in open source
software. Proceedings of the IEEE International
Conference on Software Maintenance, (pp. 194–203).

Carrington, P., Scott, J., & Wasserman, S. (2005).
Models and methods in social network analysis.
Cambridge University press.

Cockburn, A. (2001). Agile software development.
Indianapolis, IN: Addison-Wesley Professional.

Conway, M. E. (1968). How do committees invent?
F. D. Thompson Publications, Inc. Reprinted by
permission of Datamation magazine.

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software develop-
ment. First Monday.

CYB. A., MacCormack, D., & Rusnak, J. (2008).
Exploring the duality between product and orga-
nizational architectures: A test of the mirroring hy-
pothesis. Working Papers, Harvard Business School.

DeLine, R., Khella, A., Czerwinski, M., & Robertson,
G. (2005). Towards understanding programs through
wear-based filtering. ACM Symposium on Software
Visualization, (pp. 183–192). St. Louis, Missouri.

Deshpande, A., & Riehle, D. (2008). Continuous
integration in open source software development.
Open Source Development, Communities and Qual-
ity, IFIP 20th World Computer Congress, Working
Group 2.3 on Open Source Software, (pp. 273–280).

Di Penta, & German, D. (2009). Who are source code
contributors and how do they change? Proceedings
of 16th Working Conference on Reverse Engineer-
ing, (pp. 11–20).

DOM XML parser. (2010). Retrieved from DOM
XML parser: www.w3schools.com

70 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Eclipse project. (2010). Retrieved from Eclipse
project: www.eclipse.org

English, M., Exton, C., Rigon, I., & Cleary, B. (2009).
Fault detection and prediction in an open-source
software project. Proceedings of the 5th Interna-
tional Conference on Predictor Models in Software
Engineering, (pp. 17-27).

Eucalyptus. (2011). Retrieved from The open source
cloud platform: http://open.eucalyptus.com

FFmpeg. (2010). Retrieved from FFmpeg project:
www.ffmpeg.org

Froehlich, J., & Dourish, P. (2004). Unifying artifacts
and activities in a visual tool for distributed software
development teams. International Conference on
Software Engineering, (pp. 387–396). Edinburgh,
UK. git version control system. (2010). Retrieved
from git version control system: www.git-scm.com

Guttag, J., & Horning, J. (1993). Larch: Languages
and tools for formal specification. New York, NY:
Springer-Verlag, New york, Inc.

Herbsleb, J. (2007). Global software engineering:
The future of socio-technical coordination. Future
of Software Engineering (pp. 188–198). Washington,
DC, U.S.A: IEEE Computer Society.

Herbsleb, J., Moitra, D., & Lucent Technol, I. (2001).
Global software development. IEEE Software, 18(2),
16–20. doi:10.1109/52.914732

Java runtime enviornment. (2011). Retrieved from
Java runtime enviornment: http://www.oracle.com/

JFreeChart. (2010). Retrieved from JFreeChart:
www.jfree.org

Kamei, Y., Matsumoto, S., Maeshima, H., Onishi,
Y., Ohira, M., & Matsumoto, K. (2008). Analysis
of coordination between developers and users in
the apache community. Proceedings of the Fourth
Conference on Open Source Systems, (pp. 81–92).

Knab, P., Pinzger, M., & Bernstein, A. (2006).
Predicting defect densities in source code files with
decision tree learners. Proceedings of the Interna-
tional workshop on Mining software repositories,
(pp. 119–125).

Koch, S., & Stix, V. (2008). Open source project
categorization based on growth rate analysis and
portfolio planning methods. Open Source Develop-
ment, Communities and Quality, IFIP 20th World
Computer Congress, Working Group 2.3 on Open
Source Software, (pp. 375–380).

Lethbridge, T. C., Tichelaar, S., & Ploedereder,
E. (2004). The dagstuhl middle metamodel: A
schema for reverse engineering. Electronic Notes in
Theoretical Computer Science, 7–18. doi:10.1016/j.
entcs.2004.01.008

Martinez-Romo, J., Robles, G., Ortuo-Perez, M.,
& Gonzalez-Barahona, J. M. (2008). Using social
network analysis techniques to study collaboration
between a floss community and a company. Pro-
ceedings of the Fourth Conference on Open Source
Systems, (pp. 171–186).

Mller, C., Meuthrath, B., & Baumgra, A. (2008).
Analyzing wiki based networks to improve knowl-
edge processes in organizations. Journal of Universal
Computer Science, 14(4), 526–545.

Mockus, A., & Herbsleb, J. (2002). Expertise
browser: A quantitative approach to identifying
expertise. Proceedings of International Conference
on Software Engineering, (pp. 503–512). Orlando.

Mockus, A., & Herbsleb, J. (2003). An empirical
study of speed and communication in globally dis-
tributed software development. IEEE Transactions on
Software Engineering, 29(6), 481–494. doi:10.1109/
TSE.2003.1205177

Nonaka, I., & Takeuchi, H. (1995). The knowledge-
creating company:How japanese companies create
the dynamics of innovation. New York: Oxford
University.

Porruvecchio, G., Uras, S., & Quaresima, R. (2008).
Social network analysis of communication in open
source projects. 9, pp. 220–221. Proceedings of
9th International Conference on Agile Processes in
Software Engineering and Extreme Programming.

Rich Client Platform. (2010). Retrieved from Rich
Client Platform: wiki.eclipse.org

Rosso, C. (2006). Continuous evolution through
software architecture evaluation. Journal of Software
Maintenance and Evolution: Research and Practice,
18(5), 351–383. doi:10.1002/smr.337

Rosso, C. (2009). Comprehend and analyze knowl-
edge networks to improve software evolution. Jour-
nal of Software Maintenance and Evolution: Research
and Practice, 21, 189–215. doi:10.1002/smr.408

Sarma, A. Maccherone, Wagstrom, & Herbsleb.
(2009). Tesseract: Interactive visual exploration of
socio-technical relationships in software develop-
ment. Proceedings of the 31st International Confer-
ence on Software Engineering, (pp. 23–33).

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 71

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Sarma, A., Noroozi, Z., & Van der Hoek, A. (2003).
Palantr: Raising awareness among configuration
management workspaces. Twenty-fifth International
Conference on Software Engineering, (pp. 444–454).
Portland, Oregon, USA.

Schmmer, T., & Haake, J. M. (2001). Supporting
distributed software development by modes of
collaboration. Seventh European Conference on
Computer Supported Cooperative Work, (pp. 79–98).

Schwaber, K., & Beedle, M. (2001). Agile software
development with Scrum. Englewood Cliffs, NJ:
Prentice-Hall.

Souza, C. d., Quirk, S., Trainer, E., & Redmiles, D.
(2007). Supporting collaborative software develop-
ment through the visualization of socio-technical
dependencies. International ACM SIGGROUP Con-
ference on Supporting Group Work, (pp. 147–156).
Sanibel Island, FL.

Tuunanen, T., Koskinen, J., & Karkkainen, T. (2006).
Asla: reverse engineering approach for software
license information retrieval. Proceedings of the 10th
European Conference on Software Maintenance and
Reengineering, (pp. 291–294).

Wiggins, A., Howison, J., & Crowston, K. (2009).
Heartbeat: Measuring active user base and poten-
tial user interes in floss projects. [IFIP Advances
in Information and Communication Technology.].
Open Source Ecosystems: Diverse Communities
Interacting., 299/2009, 94–104. doi:10.1007/978-
3-642-02032-2_10

Ye, Y. (2006). Supporting software development
as knowledgeintensive and collaborative activ-
ity. International Workshop on Interdisciplinary
Software Engineering Research, (pp. 15–22). New
York NY, U.S.A.

Zhou, Y., & Davis, J. (2005). Open source software
reliability model: an empirical approach. Proceed-
ings of the fifth workshop on Open source software
engineering, 30, pp. 1-6.

M. M. Mahbubul Syeed is a PhD student and working as a researcher in the department of
Software Systems, Tampere University of Technology. He obtained M.Sc degree in Information
Technology from the same department in 2010. His research area includes analysis of open
source systems and projects.

Timo Aaltonen is a principal researcher in Nokia Research Center. He got the doctoral degree in
2005 while studying formal methods. After the dissertation he initiated the open source research
in the department of software systems at Tampere University of Technology together with Imed
Hammouda. Aaltonen managed several open source related research projects during the years.
In 2010 Aaltonen left the university and joined Nokia Research Center.

Imed Hammouda is currently an adjunct professor at Tampere University of Technology (TUT)
where he is heading the international master’s programme at the department of software systems.
He got his PhD in software engineering from TUT in 2005. Dr. Hammouda's research interests
include open source software, community-driven software development, and software architecture.
He is co-leading TUTOpen - TUT research group on open source software. He has been leading
and involved in several research projects related to various open initiatives.

Tarja Systä is a professor at Tampere University of Technology, department of software systems.
Her current research interests include software maintenance and analysis, software architectures,
model-driven software development, and development and management of service-oriented systems.

72 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX

Repository Structure

Let, r = { , , , }R R Rn1 2 � be the set of repositories. Where each repository, R r r ri i i
m
i= { , , },1 2 �

consists of repository elementsrj
i . Each repository element r c c cj

i
j
i

j
i

jx
i= { , , , }1 2 � consists of

attributes cjk
i describing it. Each attribute element c cjk

i
jkp
i= { } consists of a number of attribute

values cjkp
i as shown in Figure 2.

For example, consider a set of repositories, r = { , , }File Person IssueF P I where the FileF
repository contains a description of the code files, the PersonP repository contains detail of each
person (either user or developer) involved in the project and IssueI repository contains informa-
tion about the issues (e.g., reported bugs, feature requests) raised by the project personnel. For
this illustration consider only the FileF repository. The repository File file file fileF F F

m
F= { , , , }1 2 �

consists of code files as repository elements. Each code file,

File f path extension developer incj
F

name j
F

j
F

j
F

j
F= { , , , , 1 2 3 4 lludes copyrightj

F
j
F

5 6, }

consists of six attributes referring to the name of the file, its path, extension, a list of the names
of developers, included files and copyright information. This repository structure is shown in
Figure 3.

The InterConnect Operation

The interConnect operation denoted by interConnect R attributeNamei(,) is performed between
the repository elements and corresponding attribute values. Let, R r r rm

1
1
1
2
1 1= { , , , }� be a re-

pository with its repository elements rj
1 and for each repository element rj

1 , there is an attribute
c cj j p4
1

4
1= { } with its attribute valuescj p4

1 .
interConnect R cj

1
4
1, () results in a graph with the following vertex and edge sets.

Vertices: Each rj
1 is added to vertex list vSetTypeA and each attribute value cj i4

1 is added to the
vertex list vSetTypeB if not already added.

Edges: For each rj
1 in R1 , create edges between rj

1 and each attribute valuecj i4
1 . Edges are then

added to edge list E.

The resultant graph will be a bipartite graph, G vSetTypeA vSetTypeB EvSetTypeA vSetTypeB− = ∪(,)vSetTypeB,E).
For example, consider the file repository where File file file fileF F F

m
F= { , , , }1 2 � . For each re-

pository element Filej
F , the attribute developerj

F
4 consists of one or more developer names,

developer dev dev devj
F

j
F

j
F

j z
F

4 41 42 4= { , , , � as attribute values.
Then interConnect File developerF

j
F(,)4 operation results in a graph with the following

vertex and edge sets.

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 73

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Vertices: filej
F is added to vertex list File and each attribute value devj i

F
4 is added to the vertex

list Developer if not already added.
Edges: For each filej

F in FileF , create edges between filej
F and each attribute value devj i

F
4 .

Edges are then added to edge list E.

The resultant bipartite graph G File Developer EFile Developer− = ∪(,) represents a 2-mode
SNA network. It portrays the relationship between two sets of vertices File and Developer. In
other words, this graph shows the relationship between the code files in the repository and the
developers who are responsible for those code files. Thus, the interconnect operation can be used
to generate graphs that reveal how people (i.e., developers or users) in an OSS project are re-
lated to different project artifacts (i.e., code files, issues, mail list).

The IntraConnect Operation

The intraConnect operation denoted by intraConnect G relationshipVertexSet(,) is performed
on graphs generated by the interConnect operation. Thus G is a 2-mode SNA network and is a
bipartite graph. The second argument in this operation denotes one of the two vertices sets in
the input bipartite graph. This operation is defined as follows.

Let G vSetTypeA vSetTypeB EvSetTypeA vSetTypeB− = ()∪ , be a graph generated by the inter-
Connect operation. The vertex set vSetTypeA = {vA1, vA2, ..., vAm} and vertex set
vSetTypeB vB vB vBn= { , , , }1 2 � . Then, intraConnect G vSetTypeAvSetTypeA vSetTypeB(,)- results
in a graph G V EvSetTypeB

A
vSetTypeB
A

vSetTypeB
A= (,) with the following vertex and edge set,

V vB vB vBvSetTypeB
A

n= { , , , }1 2 � and :

E vB vB vB vA E vB vA E j qvSetTypeB
A

j q j i q i= () () ∈ ∧() ∈ ≠{ }, , , , |

And the weight for each edge vB vBj q,() is calculated as follows,

W vB vB vA vB vA E vB vA E j qj q i j i q i, { , , , } |() = () ∈ ∧() ∈ ≠ , that is the weight for each

edge vB vBj q,() is the number of nodes vAi in vSetTypeA that are common between vBj and
vBq in the input graph.

For example, consider that the intraConnect operation will be performed on the graph
G File Developer EFile Developer− = ∪(,) . The vertex set File file file fileF F F

m
F= { , , , }1 2 � consists

of code file nodes, and vertex set Developer dev dev devn= { , , , }1 2 � consists of developer
nodes.

Then, the application of intraConnect G FileFile Developer(,)- operation results in a graph
G V Edeveloper
F

developer
F

developer
F= (,) where, V dev dev devdeveloper

F
n= { }1 2, , ,� and:

E dev dev dev file E dev file E j qdeveloper
F

j q j i q i= ∈ ∧ ∈ ≠{(,) | (,) (,) , }} .

The resultant graph Gdeveloper
F shows the relationship between developer nodes that have

edges to at least one common file node in the GFile Developer- . In other words, G V Edeveloper
F

developer
F

developer
F= (,)

graph shows the relationship between developers who contribute or are responsible for the same
code files. Hence, the intraConnect operation generates graphs that show how people (i.e., de-

74 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

velopers or users) are related to each other through project artifacts (i.e., code files, mailing list,
bug repository) and vice versa.

The weight for each edge is calculated as

W dev dev file dev file E dev file E j qj q i j i q i, | { | (,) (,) , } |() = ∈ ∧ ∈ ≠

Thus edge weight in the Gdeveloper
F graph shows how many code files each pair of developers

share in common. This in turn reflects how strongly a group of developers are related to each
other and share information and views while developing the project.

Set Operations

In this section, set operations are defined. As set operations are performed on graphs, we will
use the following two graphs generated by the intraConnect operation,

G V EvSetTypeB
A

vSetTypeB
A

vSetTypeB
A= (,) and G V EvSetTypeB

C
vSetTypeB
C

vSetTypeB
C= (,).

These graphs draw relationship among vertices in vSetTypeB based on vertex sets
vSetTypeA and vSetTypeC , respectively. As an example consider the following two graphs,
G V Edeveloper
F

developer
F

developer
F= (,) and G V Edeveloper

I
developer
I

developer
I= (,) . These graphs are generated by

the intraConnect operation and show the relationships between developers based on common
code file sharing and common user issues answered, respectively.

In what follows the definition of set operations is in terms of the above mentioned graphs.

Intersection: The intersection operation denoted by, intersection G GvSetTypeB
A

vSetTypeB
C(,) keeps

only those vertices and edges that are common to both GvSetTypeB
A and GvSetTypeB

C graphs. That
is, the resultant graph is G V EvSetTypeB

intersect
vSetTypeB vSetTypeB= (,) , where V V VvSetTypeB vSetTypeB

A
vSetTypeB
C= ∩

E E EvSetTypeB vSetTypeB
A

vSetTypeB
C= ∩ .

The weights for the edges are calculated as follows: let, WvSetTypeB
A and WvSetTypeB

C be the
weight sets for GvSetTypeB

A and GvSetTypeB
C respectively. Then the weight set WvSetTypeB for GvSetTypeB

intersect

is calculated as w e w e w e e e ei j
A

k
C

i j
A

k
C() = ()+ ()() = ={ , } where, w e Wj

A
vSetTypeB
A() ∈ , w ek

C()∈
WvSetTypeB
C and w e Wi vSetTypeB() ∈ .

That is, the weight of each edge in the GvSetTypeB
intersect graph is the summation of weights of the

same edge in the GvSetTypeB
A and GvSetTypeB

C graphs.
A careful look at the input graphs would show that each input graph reveals the relation-

ships among nodes for a specific domain. Thus the weights in the input graph reflect relationship
strengths for that domain. The resultant graph considers only those nodes and relationships that
are present in both the input graphs (i.e., present in both domains). Thus, the edge weight in this
resultant graph must show the overall impact of a relation in both the domains. This is why the
weights for the edges in the resultant graph are calculated by adding up weights from both the
input graphs.

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 75

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

For example, the intersection G Gdeveloper
F

developer
I(,) operation keeps only those developer

vertices and edges that are common to both the Gdeveloper
F and Gdeveloper

I graphs. That is, the resul-
tant graph is G V Edeveloper

intersect
developer developer= (,) , where

V V Vdeveloper developer
F

developer
I= ∩

E E Edeveloper developer
F

developer
I= ∩ .

The graph Gdeveloper
intersect shows those developers and their relationships that are responsible for

both code files and solving user issues. Thus, an intersection operation generates graphs show-
ing the multidimensional activities of people (i.e., users and developers) within the OSS project.

For the weight calculation, let W F
developer =W w e w e w edeveloper
F F F

n
F= () (){ , , , ()}1 2 � and W I

developer =

W w e w e w edeveloper
I I I

m
I= () (){ , , , ()}1 2 � be the weights for Gdeveloper

F and Gdeveloper
I respectively.

Then the weight W w e w e w edeveloper z= {)(, (), , ()}1 2 � for the graph Gdeveloper
intersect is calculated as

w e w e w e e e ei j
F

k
I

i j
F

k
I() = ()+ ()() = ={ , }

Thus, the weights in Gdeveloper
intersect show the overall interactions between developers during

development of the project as well as in solving issues.
Union: The union operation denoted by union G GvSetTypeB

A
vSetTypeB
C(,) includes all the nodes and

edges that are present in both input graphs. That is, the resultant graph isG V EvSetTypeB
union

vSetTypeB vSetTypeB= (,)
where,

V V VvSetTypeB vSetTypeB
A

vSetTypeB
C= ∪ ,

E E EvSetTypeB vSetTypeB
A

vSetTypeB
C= ∪ .

Thus this graph shows three regions, one that is common to both the input graphs and the
two that are present in either one or the other of the input graphs.

To calculate the edge weights, Let WvSetTypeB
A and WvSetTypeB

C be the weight sets for GvSetTypeB
A

and GvSetTypeB
C respectively. Then the weight set WvSetTypeB for GvSetTypeB

union is calculated as follows,
Weights for the common region of the graph are:

w e w e w e e e ei j
A

k
C

i j
A

k
C() = ()+ ()() = ={ , }

and weights for other two regions are

w e w e w e W w e W e ei j j vSetTypeB
A

j vSetTypeB
C

i j() = ∈ ∨ ∈ ={ () | () () , } , where, w e Wj
A

vSetTypeB
A() ∈ ,

w ek
C()∈WvSetTypeBC and w e Wi vSetTypeB() ∈ .

Thus the weights for the common region of the graph are calculated the same way as the
intersection operation and have the same rationale as the intersection operation. But the weights

76 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

for the other two regions of the graph retain their source graph weights. Because each of these
regions represents the relationships for a specific domain the weight should reflect the relation-
ship strength for that domain.

Now, applying the union operation to our example graphs would generate a graph
G V Edeveloper
union

developer developer= (,) , where

V V Vdeveloper developer
F

developer
I= ∪ ,

E E Edeveloper developer
F

developer
I= ∪ .

This graph Gdeveloper
union shows three regions within the developer community. The common

region shows group of developers who are interested in playing both roles (as developers and
issue solvers) and the other two regions show groups of developers who either work as develop-
ers or take part only as bug or issue solvers. This graph also shows the relationships among these
groups of people within the developer community. Thus, a comprehensive illustration of people’s
activity, interest area and contribution within the community can be visualized through this
operation.

For calculating the weights, let W F
developer =W w e w e w edeveloper
F F F

n
F= () (){ , , , ()}1 2 � and W I

developer =
W w e w e w edeveloper

I I I
m
I= () (){ , , , ()}1 2 � be the weights for Gdeveloper

F and Gdeveloper
I respectively.

Then the weight W w e w e w edeveloper z= {)(, (), , ()}1 2 � for the graph Gdeveloper
union can be calcu-

lated as follows. The weights for the common region of the graph are

w e w e w e e e ei j
F

k
I

i j
F

k
I() = ()+ ()() = ={ , } and the weights for the other regions are

w e w e w e W w e W e ei j j developer
F

j developer
I

i j() = ∈ ∈ =∨{ () | () () , }

That is, the edge weight for the common region is calculated as the sum of their source
weights. Therefore this would present the overall strength of the relationship between develop-
ers performing both roles (as developer and as issue solver). However, the edges that are from
either of the input graphs retain their source weights, showing their communication frequency
either as developers or as bug solvers.
Difference: The difference operation denoted by, difference G GvSetTypeB

A
vSetTypeB
C(,) results in a

graph which will contain only those nodes and edges that are present in GvSetTypeB
A but not in

GvSetTypeB
C . That is the resultant graph is G V EvSetTypeB

diff
vSetTypeB vSetTypeB= (,) , where

V V V v vvSetTypeB vSetTypeB
A

vSetTypeB
C

vSetTypeB vSetType= − = { | (BB vSetTypeB
A

vSetTypeB vSetTypeB
CV v V∈ ⊗ ∉) ()}

and

E E E e evSetTypeB vSetTypeB

A
vSetTypeB
C

vSetTypeB vSetType= − = { | (BB vSetTypeB
A

vSetTypeB vSetTypeB
CE e E∈ ⊗ ∉) ()}.

Edge weight is calculated as follows. Let WvSetTypeB
A and WvSetTypeB

C be the weight sets for
GvSetTypeB
A and GvSetTypeB

C respectively. Then the weight set WvSetTypeB for GvSetTypeB
diff would be,

International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011 77

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

w e w e w e W e ei j j vSetTypeB
A

i j() = ∈ ={ () | (()), } where w e Wi vSetTypeB() ∈ . That is, the weight
of each edge in the GvSetTypeB

diff graph retains its source graph weight. The reason is obvious. The
resultant graph contains edges from one of the input graphs which are not present in the other.

Thus they should retain their source weights.

For example, the differencedifference G Gdeveloper
F

developer
I(,) operation would result in the G V Edeveloper

diff
developer developer= (,)

(Vdeveloper, Edeveloper) graph, where:

V V V v vdeveloper developer
F

developer
I

developer develope= − = { | (rr developer
F

developer developer
IV v V∈ ⊗ ∉) ()} and

E E E e edeveloper developer
F

developer
I

developer develope= − = { | (rr developer
F

developer developer
IE e E∈ ⊗ ∉) ()} .

Thus the graph Gdeveloper
diff contains only those nodes and edges that are in Gdeveloper

F , excluding
all the nodes and edges that are common between the two input graphs or in the Gdeveloper

I graph.
In other words, this graph shows the group of people within the developer community who only
concentrate on development.

For the weight ca lcu la t ion , l e t W w e w e w edeveloper
F F F

n
F= () (){ , , , ()}1 2 � and

W w e w e w edeveloper
I I I

m
I= () (){ , , , ()}1 2 � be the weights for Gdeveloper

F and Gdeveloper
I respectively.

Then the weight W w e w e w edeveloper z= {)(, (), , ()}1 2 � for the graph Gdeveloper
diff can be calcu-

lated as w e w e w e W e ei j j developer
F

i j() = ∈ ={ () | (()), } . That is, the weight of each edge is taken
from source graph Gdeveloper

F . These weights show how strongly the developers are tied together
during development.

Symmetric Difference: The Symmetric Difference operation denoted by:

symmDifference G GvSetTypeB
A

vSetTypeB
C(,)

results in a graph which contains all the nodes and edges that are either in GvSetTypeB
A

etTypeB or in
GvSetTypeB
C

etTypeB, excluding the common nodes and edges. That is, the resultant graph is
G V EvSetTypeB
symmDiff

vSetTypeB vSetTypeB= (,) , where

V V V v vvSetTypeB vSetTypeB
A

vSetTypeB
C

vSetTypeB vSetType= ⊗ = { | (BB vSetTypeB
A

vSetTypeB vSetTypeB
CV v V∈ ⊗ ∉) ()}

 and
E E E e evSetTypeB vSetTypeB

A
vSetTypeB
C

vSetTypeB vSetType= ⊗ = { | (BB vSetTypeB
A

vSetTypeB vSetTypeB
CE e E∈ ⊗ ∉) ()}.

And the weights for the edges are calculated as:

w e w e w e W w e W e ei j j vSetTypeB
A

j vSetTypeB
C

i j() = ∈ ∨ ∈ ={ () | (()) (()), }} where w e Wi vSetTypeB() ∈ .

So, the edges in GvSetTypeB
symmDiff retain the source weights to which they actually belong because

the edges in this graph are from either of the input graphs which in turn represent distinct domain

78 International Journal of Open Source Software and Processes, 3(2), 43-78, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

of activities. Thus the edge weights should also reflect the relationship strength for that particu-
lar domain.

For example, the symmDifference G Gdeveloper
F

developer
I(,) operation would result in

G V Edeveloper
symmDiff

developer developer= (,) graph, where:

V V V v vdeveloper developer
F

developer
I

developer develope= ⊗ = { | (rr developer
F

developer developer
IV v V∈ ⊗ ∉) ()} and

E E E e edeveloper developer
F

developer
I

developer develope= ⊗ = { | (rr developer
F

developer developer
IE e E∈ ⊗ ∉) ()} .

Thus, for this example, graph Gdeveloper
symmDiff shows two groups within the developer community,

one performing as developers and the other only dealing with bugs or issues. Hence, this opera-
tion can be used to find out specialized groups within the community.

For calculating the weights Let, W w e w e w edeveloper
F F F

n
F= () (){ , , , ()}1 2 � and:

W w e w e w edeveloper
I I I

m
I= () (){ , , , ()}1 2 � be the weights for Gdeveloper

F and Gdeveloper
I respectively.

Then the weight W w e w e w edeveloper z= {)(, (), , ()}1 2 � for the graph Gdeveloper
symmDiff would be,

w e w e w e W w e W e ei j j vSetTypeB
F

j vSetTypeB
I

i j() = ∈ ∨ ∈ ={ () | (()) (()), }} . That is, the edges in Gdeveloper
symmDiff

retain their source weights.

[III] M.M. Syeed, and I. Hammouda. Socio-technical Congruence in OSS
Projects: Exploring Conway’s Law in FreeBSD. In Proceedings of the 9th
IFIP WG 2.13 International Conference of Open Source Systems (OSS’2013),
pages 109–126. Springer, June, 2013.

Socio-technical Congruence in OSS Projects:

Exploring Conway’s Law in FreeBSD

M.M. Mahbubul Syeed and Imed Hammouda

Tampere University of Technology, Finland
{mm.syeed,imed.hammouda}@tut.fi

Abstract. Software development requires effective communication, co-
ordination and collaboration among developers working on interdepen-
dent modules of the same project. The need for coordination is even
more evident in open source projects where development is often more
dispersed and distributed. In this paper, we study the match between
the coordination needs established by the technical domain (i.e. source
code) and the actual coordination activities carried out by the devel-
opment team, such hypothetical match is also known as socio-technical
congruence. We carry out our study by empirically examining Conway’s
law in FreeBSD project. Our study shows that the congruence measure
is significantly high in FreeBSD and that the congruence value remains
stable as the project matured.

1 Introduction

Investigating socio-technical congruence in software development projects has
become an active research area in the last decade [10]. Socio-technical congru-
ence can be defined as the match between the coordination needs established
by the technical domain (i.e., the architectural dependency in the software) and
the actual coordination activities carried out by project members (i.e., within
the members of the development team) [6]. This coordination need can be de-
termined by analyzing the assignments of people to a technical entity such as a
source code module, and the technical dependencies among the technical entities
[6]. Socio-technical congruence not only has been used as a measure for a number
of project properties such as software build success [8] but also as a means for
software engineering tasks like architecture recovery [23].

In most of research on socio-technical congruence, Conway’s law [4] is often
presented as a guide and a basis for the underlying study. Conway’s Law in its
purest form states that “the organizations that design systems are constrained
to produce systems which are copies of the communication structures of these
organizations” [1]. In other words, the product architecture often reflects the
organizational structure of the development team [1][6]. In [7], Conway’s law is
considered homomorphic and thus claimed to be true in reverse as well. This
means the communication pattern within developer community should reflect
the architectural dependency in the software. Thus, the notion of socio-technical
congruence is actually a conceptualization of Conway’s law.

E. Petrinja et al. (Eds.): OSS 2013, IFIP AICT 404, pp. 109–126, 2013.
c© IFIP International Federation for Information Processing 2013

110 M.M. Mahbubul Syeed and I. Hammouda

Studying socio-technical congruence in open source software has its own
questions and hypotheses, for those products are peer-produced, crowdsourced
systems where centralized planning and control of architecture is difficult. Fur-
thermore, the evolution of such systems, and their underlying architecture, is
not bound to any pre-defined plans [5]. Surprisingly, this research area has not
been given much attention among open source researchers [34].

In this paper, we study Conway’s Law and Reverse Conway’s Law, as a lens for
socio-technical congruence, in the context of open source development projects
by proposing a novel evaluation and measurement technique. We further ex-
plore the significance of socio-technical congruence as the project matures. To
investigate our research problem, we focused on a popular open source project,
FreeBSD, which is an advanced operating systems for computing platforms. We
carried out our study empirically by analyzing the software repository of the
project in a semi-automatic way.

The remaining of the paper is organized as follows. Section 2 introduces a
number of key concepts that this study uses. Motivation and related work is
presented in Section 3. We then introduce the research questions explored in
this paper and our study design in Section 4 and 5 respectively. Results are
reported and discussed in Section 6. Possible limitations and threats to validity
are highlighted in Section 7. Finally, Section 8 concludes the papers and shed
light on future research.

2 Definitions

In this paper we interpreted Conway’s law (and reverse Conway’s law) as a mea-
sure to verify the extent to which the communication pattern of the contributing
members is due to the communication needs established by the concrete archi-
tecture and vice versa. In examining this the following concepts are defined.

2.1 Developer Contribution

Developer contribution to the software can be defined as the code contribution
or any form of commit made to the code base.

2.2 Concrete Architecture

Concrete architecture of a software presents the relationship among components
of a software (e.g., modules, files or packages) based on the actual design and
implementation. In this work, header file inclusions dependency at code file level
were used to derive the concrete architecture. In this architecture two files, and
their corresponding packages, were linked if the two files have an inclusion de-
pendency.

Socio-technical Congruence in OSS Projects 111

2.3 Concrete Coordination Network

Concrete Coordination Network is a social network in which two developers have
a relationship if they have communication history as seen by the mailing archives
representing the social and technical interactions among the developers.

2.4 Derived Architecture

Derived architecture defines an architecture of the software where any two com-
ponents (e.g., packages or code files) are related if there are developer(s) who
have either (a) contributed to both the components, or (b) have communication
at organizational level (e.g., through email). For instance consider that developer
D1 has contributed to packages P1 and P2, and developer D2 has contributed
to package P3. Also consider that both developers has communication at orga-
nizational level as shown in Fig. 1(a). Thus according to the definition, packages
P1, P2 and P3 are linked to each others in the Derived Architecture (Fig. 1(b)).

Fig. 1. (a) Concrete Coordination Network with contribution to code base (b) Corre-
sponding Derived Architecture

2.5 Derived Coordination Network

Derived Coordination Network is the developer relationship network in which
two developers have a relationship if they have contributed either (a) to a com-
mon code file or (b) to the code files that have relationships in the concrete
architecture. For instance consider that developer D1 and D2 has contributed to
package P1 and developer D3 has contributed to package P2. Also consider that
P1 and P2 have an inclusion dependency as shown in Fig.2(a). Then, according
to the definition developers D1, D2 and D3 will have relationships in Derived
Coordination Network as shown in Fig. 2(b).

3 Motivation and Related Work

In this section we discuss the significance of Conway’s law and socio-technical
congruence in the field of software engineering citing related works from existing
literature.

112 M.M. Mahbubul Syeed and I. Hammouda

Fig. 2. (a) Concrete architecture with contributing developers (b) Corresponding De-
rived Coordination Network

3.1 Need for Conway’s Law and Socio-technical Congruence

Conway’s law was stated 30 years ago by Melvin Conway as the means to empha-
size the need of coordination in software development [1]. Until then researchers
have long argued that the mirroring effect of the software architecture and the
communication pattern of the developer community plays a pivotal role in co-
ordinating the development work [9]. A central question arises “Does Conway’s
law matter in the modern era of software development?”. As reported in [10],
Conway’s law still matters in the domain of software development and the prod-
uct quality is strongly affected by the organizational structure [11]. Also with the
advent of global software engineering where development teams are distributed
across the world, the impact of organizational structure on Conways law and its
implications on quality is significant [12].

In the domain of software engineering, socio-technical congruence as a concep-
tualization of Conway’s law was first coined in [13]. In this paper, socio-technical
congruence was employed as a fine-grained measure of coordination that can be
used to diagnose coordination problems in the development team. Also, evidence
from studies [13] shows that higher congruence leads to faster completion of mod-
ification requests. This concept has been identified as an important element for
product design in the field of engineering [14] and management science [15] as
well. Researchers also argued that such congruence is a natural consequence and
a desired property for collaborative development activities [14], such as software
engineering.

3.2 Socio-technical Congruence and OSS Development

In the epoch of OSS projects, there exists a significant number of successful
software systems whose volume and complexity are as compound as that of their
proprietary counterparts. Such large and successful OSS projects often consist
of hundreds and even thousands of developers contributing to the development
of the project. Developers working in such projects are not strictly bound to
any organizational rules, regulation and structure. Rather they voluntarily join
and contribute to the project. OSS developers belong to discrete geographical
locations of significant background, timezone, language and cultural distances.
Often an OSS project is developed and evolved through the collaboration among
the developers using simple communication media like email, wiki, chat [31] as

Socio-technical Congruence in OSS Projects 113

well as revision tracking systems (such as CVS, SVN) to store and access the
software code they produce [19].

This unconventional organizational structure and practices of OSS projects
combing with the inherent complexity of the software development (as discussed
above) brings forth the question, “why such projects succeed and can socio-
technical congruence be conceived as an implicit driving force for such success?”.
Surprisingly, socio-technical congruence as a research area has not been given
much attention among open source researchers. In this paper, we infer that socio-
technical congruence is an endogenous driver for successful OSS projects, and
examines its existence in OSS project though empirical evidences.

4 Research Questions

Our research objective in this paper is to study the applicability of Conway’s
law as a means of verifying the socio-technical congruence on large, distributed
and evolving OSS projects. In great part because of the specific characteristics of
the OSS projects and yet having revolutionary success, it is most likely that the
OSS development process implicitly encompasses the notion of socio-technical
congruence. Thus, we targeted the following research questions.

(a) How does the communication patterns of OSS developer com-
munity resemble the architecture of the software?
Conway’s law can be interpreted as the first explicit recognition that the com-
munication pattern of the organization has an inevitable impact on the product
[20]. Thus there must exist a correspondence between the community structure
and the software structure. Our point of interest here is that if such homomor-
phic force between the software model and its development organization exists
in OSS projects, then it could be effectively used to conceptualize the architec-
ture of legacy systems. It can also be used as a metric to assess the quality and
maintainability of the system as well.

(b) How does the architecture of the software resemble the collab-
oration patterns of OSS developer community?
Conway’s law pointed out [1] that only the organizational arrangements can be
optimized with respect to the system concept. This observation enforces the need
for a stable and modular design of the system in order to facilitate effective com-
munication, coordination among the developers. With geographically distributed
development setup, as in OSS projects, co-ordination becomes more challenging
due to location, time, and cultural differences, and the need for a stable design
becomes even more evident [9]. For this kind of organizational setup, a clearly
separable and stable architectural design would be the basis for assigning task
to the developers [9] and a key to the success of the project. In other words, the
collaboration pattern of the developer community should mirror the architecture
of the software which should remain stable during the evolution of the project.

114 M.M. Mahbubul Syeed and I. Hammouda

(c) Does the socio-technical congruence evolve as the project ma-
tures?
Our intension is to examine how the socio-technical congruence evolves as the
project matures. We are particularly interested in deriving any visible pattern
of such congruence during the evolution. But relating such trends in congruence
in OSS projects with its success parameters are out of the scope of this study.

5 Study Design

5.1 Case and Subject Selection

To investigate our research questions, we focused on a popular open source
project, FreeBSD, which is an advanced operating system for modern server,
desktop, and embedded computer platforms [24]. It is derived from BSD, the
version of UNIX developed at the University of California, Berkeley. Selection
of this project as a case study was influenced by the facts that FreeBSD’s code
base has undergone continuous development, improvement, and optimization
for thirty years [24]. The project has been developed and maintained by a large
team of individuals. Also, FreeBSD has gained considerable attention in earlier
research on the evolution of OSS projects [16] [17] [18].

5.2 Data Sources

In literature [10] a great emphasis was given to leveraging software repositories
along with the communication data for deriving technical dependencies as well as
developers coordination patterns. In OSS projects, repository data is stored and
maintained through different data management systems, e.g., source code repos-
itory (SVN or CVS), change logs, mailing archive, bug reporting systems, and
communication channels. These data sources are highly accepted and utilized
medium for empirical studies on OSS projects [25][26][27]. In FreeBSD project,
the development and communication history is maintained through SVN reposi-
tories and mailing archives. Following is the description of these sources and the
data extracted for this study.

1. Source code repository: FreeBSD has two release branches, stable and pro-
duction releases. In this study, SVN repositories of the stable releases were
collected. Fig. 3 provides detail of these stable releases and the data collected
from each release.

2. Mailing list archive: In OSS projects, email archives provide a useful trace of
the task-oriented communication and co-ordination activities of the devel-
opers during the evolution of the project [28]. In the FreeBSD project, email
archives are categorized according to their purpose. For instance, there are
email for project development (e.g., commits), stable release planning, chat,
user emails, bug reports. These archives contain all mailing lists since 1994
and are updated every week [24]. Fig. 4 provides detail on the FreeBSD email
archives that were extracted for this study. These email archives contain the

Socio-technical Congruence in OSS Projects 115

detail of the commit records made for each stable release and are only used
by the developer community. These archives thus give more accurate history
of contributions than the bug reporting system which is often used by the
the passive users for different purposes.

Fig. 3. Stable Releases of FreeBSD

Fig. 4. FreeBSD email archives used for this study

5.3 Data Collection Procedure

Data Collection from Source Code Repositories: Each stable release of
the FreeBSD project was downloaded from the SVN repository to the local
directory. Fig. 3 lists the stable releases and associated detail of each release.
To extract data from each of these releases, a parser was written in Java. This
parser searched through each directory of a stable release, read through the files
in a directory and parsed relevant data. The data that were parsed from each file
were listed in Fig. 3. As FreeBSD was written in C and C++, included header
files were identified from the #include directive in each code file. The parser
excluded all the library header files and kept only the user defined header files.
Also the copyright directive in a file contains information of the developer name,

116 M.M. Mahbubul Syeed and I. Hammouda

email and the copyright year. The parser extracted each of these information
from the copyright directive. The developers that were found in this process
were considered as the contributors to that file for that stable release.

The parsed data for each stable release was stored in excel files. To read/write
excel files Apache POI [29] was used. The number of code files and packages read
from each stable release was shown in Fig. 3.

Data Collection from Email Archives: The email archives that concern
CVS/SVN commits and general discussions (e.g., on stable releases and the
chat entries) were extracted from FreeBSD email archive as shown in Fig. 4. For
extracting data from each email entry, a data extraction program was written
in Java. This data extractor used the web interface of the email archives (link is
provided in Fig. 4). Thus each email was read as an HTML page and the data
was extracted using Jsoup html parser [30]. Data that was extracted from each
email entry is listed in Fig. 4. This data was then stored in excel files according
to the archive name and year. Then the email data was sorted according to each
stable release as follows: (a) emails were categorized into a specific release if the
release number was mentioned in email subject (e.g., SVN commit emails pro-
vide release number in email subject) and (b) other emails (e.g., freeBSD-stable,
freeBSD-chat and most of the CVS commit emails) for which the release numbers
were not mentioned, the posting dates were checked. In this case, for instance,
an email was categorized to stable release 3 if its posting date fall between the
release date of stable release 2 and 3. The rationale here is that developers would
commit to the code base and discuss on its release strategy before it is officially
released.

After categorizing emails to each stable release, the subject of a CVS/SVN
commit email was parsed. This subject mentioned the path to the repository
to which the commit was made. From this subject, the directory path, package
name, and if provided, the name of the modified code file and the stable release
number were identified. Sender name for each of these CVS/SVN commit email
was considered as a contributor to the code base for that release. Contributors
found in this process were combined with the contributors found from the code
base to get list of developers who contributed to each stable release. Fig. 5 lists
release wise distribution of the number of developers and email entries identified
through this process.

Fig. 5. Number of contributors and emails identified for stable releases

Socio-technical Congruence in OSS Projects 117

Data preprocessing: Data that was extracted and parsed following the above
process contained anomalies data in many cases. For instance, developer names
and email addresses might contain punctuation characters like, semi-colons, in-
verted comas, brackets, unnecessary white space, and hyphens. Furthermore,
parsers may parsed data inappropriately in some cases. For example, copyright
text “All rights reserved” can be treated as part of developer name while parsing
copyright directive from a code file. To clean such anomalies data and punctu-
ation characters, data cleaning programs were written in Java. To ensure the
correctness of this process, we performed a manual checking on a randomly se-
lected data to verify their correctness.

5.4 Analysis Procedure

This section discussed the methods used to construct the communication net-
works, architectures and to measure socio-technical congruence (defined in sec-
tion 2) utilizing the data collected from the FreeBSD project.

Developer Contribution: Release-wise developer contribution was measured
in two ways, (a) from the copyright information provided in each source code
file of a release and (b) from the commits made by a developer for a release.
Fig. 6(a) shows a sample contribution made by developer John Birrell in stable
release 3.

Fig. 6. (a) Sample contributions made by developer John Birrell (b) Sample relation-
ships in Concrete Coordination Network

Concrete Architecture: The concrete architecture of a stable release was con-
structed based on header file inclusion dependency as defined in section 2.2. This
inclusion dependency relation was used in earlier works [32] [35] to construct ar-
chitecture of legacy C/C++ software systems.

Then higher level abstraction of this architecture was built to get the pack-
age level concrete architecture. In this architecture, package p1 and p2 had a
relationship if file f1 in package p1 had an inclusion dependency with a file f2
in package p2 or vice-versa. Relationship between packages were weighted which
was the total number of inclusion relationships that exists between the files in
two packages. An example of file level concrete architecture and corresponding

118 M.M. Mahbubul Syeed and I. Hammouda

package level architecture of stable release 3 is shown in Fig. 7(a) and (b) re-
spectively. Package level concrete architecture was constructed for each stable
release.

Fig. 7. (a) Code file level Concrete Architecture (b) Package level Concrete Architec-
ture

Concrete Coordination Network: Common email conversation in FreeBSD
can appear in any of the email archives listed in Fig. 4. This relationship was
weighted, meaning that for each new instance of email conversation between the
same developers, the relationship weight would be increased by one. For each
stable release of FreeBSD, one such Concrete Coordination Network was con-
structed. Fig. 6(b) shows example relationships in the Concrete Coordination
Network of stable release 3. Weight column in this figure shows the number of
emails common between the two developers.

Derived Architecture: Derived Architecture was generated based on the defi-
nition in Section 2.4. Each package relationship in this architecture was weighted
and would increase if either of the two criteria hold for other developers. Both
package level and code file leave derived architectures were constructed for each
stable release. Fig. 8(a) shows the package level Derived Architecture for stable
release 3.

Derived Coordination Network: Derived Coordination Network was gen-
erated based on the package level Concrete Architecture and for each stable
release following the definition presented in Section 2.5. Each relationship was
weighted. Fig. 8(b) shows an example of this network for stable release 3.

Thus this network shows the actual communication need among the develop-
ers which is based on the design of the software (i.e., the concrete architecture).
This network is essential due to the fact that if two subsystems are to com-
municate, it is likely to have communication between the developers of the two
subsystems [1].

Socio-technical Congruence: To measure socio-technical congruence the fol-
lowing method was applied: common relationships are identified that exists be-
tween (a) Concrete Architecture and Derived Architecture, and between (b)

Socio-technical Congruence in OSS Projects 119

Fig. 8. (a) Derived Architecture (b) Derived Coordination Network

Concrete Coordination Network and Derived Coordination Network. The two
sets of relationships identified in this process is termed as congruence.

The former congruence illustrates the match between the architectural depen-
dency and the architecture produced due to the communication structure of the
community. And the latter congruence depicts the match between the actual co-
ordination activities in the community and the coordination need established by
the architectural dependency of the software. To be precise, these congruences
verify Conway’s law and the reverse Conway’s law, respectively. Both form of
congruences were determined for each stable release. A partial snapshot of the
congruence between Concrete and Derived Architectures of stable release 3 is
shown in Fig. 9.

Fig. 9. (a) Concrete Architecture (b) Derived Architecture (c) Congruence

To construct the networks and architectures and to measure socio-technical
congruence and Conway’s law, Java programs were written.

Result Interpretation: To measure the extent to which Conway’s law holds
for each stable release of the FreeBSD project, percentile value was calculated for
(a) the congruence value and the corresponding Concrete Architecture, and (b)
the congruence value and corresponding Coordination Network. These percentile
values were plotted in a graph against the stable releases to conceptualize the
evolution of the Conway’s law and socio-technical congruence in the FreeBSD
project.

120 M.M. Mahbubul Syeed and I. Hammouda

6 Results

6.1 Resemblance of Communication Pattern to Software
Architecture

Our study target in this work was to verify the extent to which the communica-
tion patterns of the members of the developer community resembles the actual
architectural dependencies. To achieve this, we collected historical data from the
FreeBSD project and measured such resemblance for each stable release. The re-
semblance process consists of determining the concrete architecture and derived
architecture for each stable release. Then, the congruence between the two archi-
tectures and corresponding percentile measure of Conway’s law for each release
was measured. The result of this process is reported in Fig. 10. Column 2 and
3 in this figure show the number of relations between packages identified by the
respective architectures. The congruence relationships and the percentile value
for each release indicate the extent to which the two architectures of the software
overlap with each other. Here the percentile value is measured between the con-
gruence and the concrete architecture, because the intension is to measure the
extent to which the derived architecture approximates the concrete architecture.

Fig. 10. Resemblance of communication pattern to software architecture

The percentile values suggest that around 76% to 82% overlap between the
two architecutres are found from stable release 3 onward. Whereas for the ear-
lier three releases it is between 66% to 73%. It is worth to mention here that
we noted considerable drift in the congruence value for the first three releases of
the FreeBSD project. Thus we excluded them from our observation, considering
this period as a restructuring and reformation period of FreeBSD after being
forked. However, this observation is a positive sign towards the socio-technical
congrucence, and can be an implicit charactersitcs of OSS development process.
From this result, we can safely say that to a considerable extent the communi-
cation of the contributing developers in the community is actually due to the
coordination need as identified by the architectural dependency.

Socio-technical Congruence in OSS Projects 121

Now the question is, does the derived architecture actually resembles the con-
crete architecture, and can it be used to recover the architecture of the legacy
software? By examining Fig. 10 it is evident that the derived architecture is over-
estimating the concrete architecture for all the releases. For instance, in stable
release 4, the derived architecture identifies 153 relations among the 19 packages,
whereas concrete architecture shows only 49. Thus, it is not possible to resem-
ble the concrete architecture from the derived architecture. Yet, the following
observation can be offered.

To a great part, the communication pattern of the contributing members within
the community is due to the communication needs established by the concrete
architecture.

The interdependency among the packages in the concrete architecture influ-
ences their contributors to communicate at community level. This supports the
existence of Conway’s law within the FreeBSD development process. None-the-
less, both the architectures overlap considerably. Thus the derived architecture
can be used in authenticating the architecture recovered by traditional reverse
engineering process.

This over estimation by the derived architecture can be justified in a way
that this architecture was derived from the communication record of their con-
tributing developers. And the developers in the community can communicate
and collaborate on issues that might be outside of the scope of the actual code
implementation and commits. For instance, FreeBSD-chat archive collects only
the email threads related to the general discussion. These discussions generate
additional relationships among the contributing developers which were not due
to only common contribution. In the derived architecture these relationships cre-
ate additional links between the packages. Yet it can also be possible that some
of the links between packages in the derived architecture reflect valid relation-
ships for the release, as the concrete architecture might not identify all the links
that actually exists for that release.

6.2 Resemblance of Software Architecture to Communication
Pattern

Conventional wisdom supports that the socio-technical congruence measured in
reverse (i.e., reverse Conway’s law) should hold as well. That is the communi-
cation pattern identified by the concrete architecture should simulate the actual
communication pattern of the contributing community members. To measure
this we constructed the coordination network and the derived coordination net-
work. These networks show the communication among the contributing devel-
opers identified by the actual communication through email and by the concrete
architecture, respectively. Then the congruence between these two networks and
corresponding percentile value was calculated for each stable release. The per-
centile value indicates the extent to which both networks overlap. Relationships
identified by each of these networks are presented in Fig.11.

122 M.M. Mahbubul Syeed and I. Hammouda

Fig. 11. Resemblance of software architecture to communication pattern

It can be noted that the architecture of FreeBSD remains quite stable in
terms of number of packages (Fig.3) and their interdependency as identified by
the concrete architecture (column 3 of Fig.10). Thus it can be ascertained that

The architectural design of the software remains stable during its evolution.

As can be seen from Fig. 11 the congruence values remain in-between 71% to
88% from stable release 3 to 9 (ignoring the first three releases as discussed in
section 6.1). This result is closely tied with the results reported in Fig. 10. This
implies that socio-technical congruence in reverse also holds for FreeBSD. And
the communication pattern of contributing developer community simulates the
underlying architectural dependency of the software to a gereat extent. Yet the
derived coordination network is not able to estimate the coordination network,
the former network overestimates the later one, similar to the derived architec-
ture. Instead the following observatioin can be offered.

The communication need defined by the architectural design and interdependency
among the modules of the software is effectively embedded within the communi-
cation pattern of the developer community of the FreeBSD project.

Again the over estimation by the derived coordination network can be vindi-
cated as follows, this network was derived from package level concrete architec-
ture. Thus developers contributing to a package or to the related packages were
considered to have communication among them. This lead to a number of rela-
tionships among developers in the derived coordination architecture who might
not have contributed to the same code files, but to the same packages. Yet these
relationships among contributing developers should be taken as a suggestion to
improve the coordination further in the community.

6.3 Evolution of Socio-technical Congruence in FreeBSD Project

To conceptualize the evolution of socio-technical congruence in FreeBSD we plot-
ted the congruence values in graph against the stable releases. As shown in

Socio-technical Congruence in OSS Projects 123

Fig. 12. Evolution of Conway’s law at architectural level

Fig. 12 the congruence values remains stable around 76% to 82% starting from
stable release 3.

Similar trend can be notified in Fig. 13 where the congruence value remains
stable within the range 71% to 88% starting from stable release 3. Based on these
observations it can be stated that with the maturation of the project, the com-
munication pattern among developers get more structured following the need of
communication based on their tasks. This socio-technical congruence pattern of
communication among the community memebrs becomes a traditional practice
as the project evolves. Thus it can be affirmed that

The socio-technical congruence in FreeBSD project remains stable during its evo-
lution.

7 Threats to Validity

The following aspects have been identified which could lead to threats to validity
of this study.

External validity (how results can be generalized): As case study subject, FreeBSD
project was selected, which has been used popularly in the OSS evolution studies.
Also, FreeBSD is a large and well established OSS project with over thirty years
of evolution history. Yet the findings may not generalize to other OSS projects.
This threat can only be countered by doing additional case studies with projects
from different domains, which is a part of our future work.

Internal validity (confounding factors can influence the findings): Missing his-
torical data - the study has been able to make use only of available data. It is
possible, for instance, that there are commit records and developer chat entries
other than that recorded in the emails. Also other email archives may contain

124 M.M. Mahbubul Syeed and I. Hammouda

Fig. 13. Evolution of Conway’s law at organizational level

relevant data. Thus, we make no claim on the completeness of the email entries
with relevance to this study target.

Construct validity (relationship between theory and observation): In this study,
part of the email entries were categorized to specific stable release according to
their date of post. The reasoning here is that developers commit and discuss on
release planning before the product is officially released. Yet, we do not claim
the perfection of this approach.

8 Conclusions

In this paper we evaluated the concept of Conway’s law as a means of verifying
the socio-technical congruence within the context of FreeBSD project. Accord-
ing to our judgment the congruence measure is significantly high in FreeBSD
project which has a stable evolution history for the last seven releases of the
project. In other words, the communication pattern of the contributing mem-
bers within FreeBSD community are due to the communication need established
by the concrete architecture. Having such high congruence between the code
and the community would resolve many contemporary questions that cannot
be answered otherwise. For instance, in identifying exact community member(s)
to contract for an specific issue [36], it is required to trace which community
members collaborates and exchange knowledge based on their task level respon-
sibility.

This congruence is a desired property for collaborative development activities
[14] and the reported result conforms the same for collaborative open source
community. This result also creates a favorable basis to explore its implications
on the OSS projects concerning the quality, success, and sustainability, which
were already examined and confirmed in closed source projects.

Also, the results reported in this work hold for a specific OSS project, hence
the study suffers from lack of generalizability. Thus a part of our future work is
to extend and examine the findings in other OSS project, preferably to the BSD
group and operating system domain.

Socio-technical Congruence in OSS Projects 125

References

1. Conway, M.E.: How Do Committees Invent? Datamation 14(4), 28–31 (1968)

2. Kwan, I., Schröter, A., Damian, D.: Does Socio-Technical Congruence Have an
Effect on Software Build Success? A Study of Coordination in a Software Project.
TSE 37(3), 307–324 (2011)

3. Ovaska, P., Rossi, M., Marttiin, P.: Architecture as a coordination tool in multi-site
software development. Soft. Process: Improvement & Prac., 233–247 (2003)

4. de Souza, C.R.B., Quirk, S., Trainer, E., Redmiles, D.F.: Supporting collaborative
software development through the visualization of socio-technical dependencies. In:
International ACM Conference on Supporting Group Work, pp. 147–156 (2007)

5. Scacchi, W.: Understanding the requirements for developing open source software
systems. IEE Proceedings Software 149(1), 24–39 (2002)

6. Bendifallah, S., Scacchi, W.: Work Structures and Shifts: An Empirical Analysis
of Software Specification Teamwork. In: 11th ICSE, pp. 260–270 (1989)

7. Jongdae, H., Chisu, W., Byungjeong, L.: Extracting Development Organization
from Open Source Software. In: 16th APSEC, pp. 441–448. IEEE (2009)

8. Raymond, E.S.: The new hacker’s dictionary, 3rd edn. MIT Press, Cambridge
(1996)

9. Nagappan, N., Murphy, B., Basili, V.R.: Architectures, Coordination, and Dis-
tance: Conway’s Law and Beyond. Journal IEEE Software 16(5), 63–70 (1999)

10. Kwan, I., Cataldo, M., Damian, D.: Conway’s Law Revisited: The Evidence for a
Task-Based Perspective. IEEE Software 29(1), 90–93 (2012)

11. Brooks, F.P.: The Mythical Man-Month, Anniversary Edition. Addison-Wesley
Publishing Company (1995)

12. Nagappan, N., Murphy, B., Basili, V.R.: The influence of organizational structure
on software quality: an empirical case study. In: ICSE 2008, pp. 521–530 (2008)

13. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M.: Identification of coor-
dination requirements: Implications for the design of collaboration and awareness
tools. In: CSCW, Banff, Canada (2006)

14. Browning, T.: Applying the design structure matrix to system decomposition and
integration problems: a review and new directions. IEEE Transactions on Engi-
neering Management 48(3), 292–306 (2001)

15. Sosa, M.E., Eppinger, S.D., Rowles, C.M.: The misalignment of product architec-
ture and organizational structure in complex product development. Management
Science 50(12), 1674–1689 (2004)

16. Jingwei, W., Holt, R.C., Hassan, A.E.: Empirical Evidence for SOC Dynamics in
Software Evolution. In: ICSM, pp. 244–254 (2007)

17. Herraiz, I.: A statistical examination of the evolution and properties of libre soft-
ware. In: ICSM, pp. 439–442 (2009)

18. Herraiz, I., Gonzalez-Barahona, J.M., Robles, G., German, D.M.: On the prediction
of the evolution of libre software projects. In: ICSM, pp. 405–414 (2007)

19. Fogel, K., Bar, M.: Open Source Development with CVS: Learn How to Work With
Open Source Software. The Coriolis Group (1999)

20. Herbsleb, J.D., Grinter, R.E.: Splitting the Organization and Integrating the Code:
Conway’s Law Revisited. In: ICSE, pp. 85–95. ACM Press, New York (1999)

21. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity. MIT (2000)

22. Colfer, L., Baldwin, C.Y.: The Mirroring Hypothesis: Theory, Evidence and Ex-
ceptions, Working paper. Harvard Business School (2010)

126 M.M. Mahbubul Syeed and I. Hammouda

23. Bowman, I.T., Holt, R.C.: Software Architecture Recovery Using Conway’s Law.
In: CASCON 1998, pp. 123–133 (1998)

24. FreeBSD (2013), http://www.freebsd.org/
25. Mathieu, G., Mens, T.: A framework for analyzing and visualizing open source

software ecosystems. In: IWPSE-EVOL, pp. 42–47 (2010)
26. Daniel, M.G.: Using software trails to reconstruct the evolution of software. Journal

of Software Maintenance and Evolution 16(6), 367–384 (2004)
27. Wang, Y., Guo, D., Shi, H.: Measuring the Evolution of Open Source Software

Systems with their Communities. ACM SIGSOFT Notes 32(6) (2007)
28. Zhang, W., Yang, Y., Wang, Q.: Network Analysis of OSS Evolution: An Empirical

Study on ArgoUML Project. In: IWPSE-EVOL, pp. 71–80 (2011)
29. Apache POI-Java API for Microsoft Documents (2013), http://poi.apache.org/
30. jsoup: Java HTML Parser (2013), http://jsoup.org/
31. Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with Lean

Media: How Open-source Software Succeeds. In: CSCW, pp. 329–338 (2000)
32. Dayani-Fard, H., Yu, Y., Mylopoulos, J., Andritsos, P.: Improving the build ar-

chitecture of legacy C/C++ software systems. In: Cerioli, M. (ed.) FASE 2005.
LNCS, vol. 3442, pp. 96–110. Springer, Heidelberg (2005)

33. Mahbubul Syeed, M.M.: Binoculars: Comprehending Open Source Projects
through graphs. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.)
OSS 2012. IFIP AICT, vol. 378, pp. 350–355. Springer, Heidelberg (2012)

34. Bolici, F., Howison, J., Crowston, K.: Coordination without discussion? Socio-
technical congruence and Stigmergy in Free and Open Source Software projects.
In: 2nd STC, ICSE (2009)

35. Kazman, R., Carrière, S.J.: Playing Detective: Reconstructing Software Architec-
ture from Available Evidence, Technical Re- p ort CMU/SEI-97-TR-010, Carnegie
Mellon University (1997)

36. Syeed, M.M., Altonen, T., Hammouda, I., Systä, T.: Tool Assisted Analysis of
Open Source Projects: A Multi-facet Challenge. IJOSSP 3(2) (2011)

http://www.freebsd.org/
http://poi.apache.org/
http://jsoup.org/

[IV] M.M. Syeed, and I. Hammouda. Socio-Technical Dependencies in Forked
OSS Projects: Evidence from BSD Family. Journal of Software, vol. 9, no. 11,
pages 2895–2909. May, 2014.

Socio-Technical Dependencies in Forked OSS
Projects: Evidence from the BSD Family

M.M. Mahbubul Syeeda, Imed Hammoudab
a Department of of Pervasive Computing, Tampere University of Technology, Finland.

Email: mm.syeed@tut.fi
b Chalmers and University of Gothenburg, Sweden.

Email: imed.hammouda@cse.gu.se

Abstract— Existing studies show that open source projects
may enjoy high level of socio-technical congruence despite
their open and distributed character. Such observation is
yet to be confirmed in the case of forking, where projects
originating from the same root evolve in parallel and are
typically lead by different development teams. In this paper,
we empirically investigate the endogenous and exogenous
characteristics of BSD family projects related to socio-
technical congruence. Our motivation is that BSD family,
as a representative example of forked projects, share a
common development ground for both the code-base and
the development community, which may influence their
evolution from a socio-technical perspective. Our study
results show that the BSD family maintain a certain level
of collaboration throughout the project history, mainly due
to a shared portion of the community. This partly explains
the relative harmony of socio-technical congruence levelsin
the BSD projects.

Index Terms— Open Source Software, Evolution, Conway’s
Law, Socio-Technical Congruence, Forking

I. I NTRODUCTION

SOFTWARE development requires effective commu-
nication, coordination, and collaboration among de-

velopers working on interdependent modules of the same
project. The need for coordination is even more evident in
Open Source Software (OSS) projects where development
is often more dispersed and distributed [1]. As argued
in the literature, such coordination and communication
may be influenced and guided by the cooperation needs
devised by the design of the software [2]. This suggests
that there might exist a two way mapping between the
communication patterns of the developer community and
the architectural dependencies among the components of
the software, in which one can be used to approximate
the other.

This collaboration can effectively be examined and
verified through the notion of socio-technical congruence
which defines the match between the coordination needs
established by the technical domain (i.e., the architectural
dependencies in the software) and the actual coordination
activities carried out by project members (i.e., within the
members of the development team) [3].

This work was supported in part by TiSE Graduate School, Tampere,
Finland and Nokia Foundation Grant, Finland.

In fact, socio-technical congruence provides an em-
pirical verification of a well-known but insufficiently
understood phenomenon known as Conway’s Law [4] and
describes to which extent the law is enforced in a given
software development project [3] [5]. Such empirical ver-
ification has been a primary motivation for many research
efforts in the realm of socio-technical congruence [6] [7].
However, research on the topic has always assumed that
development of a software project is performed by the
same organization or group of developers. In the case
of open source, projects may evolve in parallel, lead by
different development teams. This is known as “forking”
[8]. To the knowledge of the authors, no research has
been performed yet on socio-technical congruence in the
context of forked projects.

In an earlier work we have studied socio-technical
congruence, and the significance of Conway’s Law, in
the FreeBSD open source project [9]. Our previous study
showed that the congruence measure is significantly high
in FreeBSD and that the congruence value remains stable
as the project matured. In this work, we extend our
earlier study to cover the BSD project family, empiri-
cally investigating the endogenous and exogenous char-
acteristics of BSD projects. BSD projects are popularly
known in the research community. For instance, in [10],
change history information is extracted from BSD projects
for the visualization of change dependencies. Similarly,
FreeBSD project has been studied to verify the viability
of incremental development approach, and to identify the
common characteristics of successful OSS development
process in relation to their quality, in [11] and [12],
respectively.

Within the endogenous characteristics we investigated
the notion of socio-technical dependency through the
measure of socio-technical congruence in the individual
projects. In the technical domain, the architectural depen-
dencies have been constructed out of source code syntac-
tic information such as functional dependency, attribute
referencing and header file inclusion dependency. On the
social side, the coordination network has been built out
of email conversations between developers.

Among the exogenous characteristics, we examined to
what extent the forked projects collaborate and commu-
nicate with each other. As a measuring criteria of such

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2895

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2895-2909

collaboration, we quantitatively measured the alignment
among the source code and the developer community
of the forked projects. The rationale here is that forked
projects hold the same root for both the code-base and the
community, thus sharing a common development ground.
Hereof it is worth to empirically investigate the extent to
which such common ground is maintained during projects
evolution.

The remaining of the paper is organized as follows.
Section II introduces a number of key concepts that this
study uses. Section III introduces the research questions
explored and Section IV presents our study design. Re-
sults are reported and discussed in Section V, followed
by final discussion and related work in Section VI. The
overall impact of missing data on the reported results and
the replication guidelines are presented in Section VII.
Possible limitations and threats to validity are highlighted
in Section VIII. Finally, Section IX concludes the paper
and sheds light on future research.

II. D EFINITIONS

In this section we define a set of concepts used in this
study.

A. Conway’s Law

Conway’s Law in its purest form states that “organi-
zations which design systems are constrained to produce
systems which are copies of the communication structures
of these organizations” [4]. In other words, the software
product architecture reflects the organizational structure
of its development team [4] [3]. In [13], Conway’s
Law is considered homomorphic and thus claimed to be
true in reverse as well. This means the communication
pattern within a developer community should reflect the
architectural dependency in the developed software. Thus,
Conway’s Law can effectively be interpreted as the basis
for studying the social and technical interdependency
within a software project [14].

B. Socio-technical congruence

The contemporary phenomenon “Socio-technical con-
gruence” is actually the conceptualization of Conway’s
Law. Socio-technical congruence can be defined as the
match between the coordination needs established by the
technical domain (i.e., the architectural dependency in the
software) and the actual coordination activities carried
out by project members (i.e., within the members of the
developer community) [3]. This coordination need can
be determined by analyzing the assignments of people
to a technical entity such as a source code module, and
the technical dependencies among the technical entities
[3]. Accordingly, developers within the community should
communicate if there exists a communication need. For
example, developers working on the same module or on
the interdependent modules should be coordinating.

C. Developer Contribution

In this work, developer contribution to a software
project can be defined as code contribution or any form
of commit made to the code base.

D. Explicit Architecture

The explicit architecture of a software presents the rela-
tionship among components of a software (e.g., modules,
files or packages) based on the actual design and imple-
mentation. For this work, functional dependency, attribute
referencing and header file inclusion dependency at code
file level are used to derive the Explicit Architecture of a
software product.

E. Explicit Coordination Network

The explicit coordination network is a social network
in which two developers have a relationship if they have
direct communication history as seen by the mailing
archives representing the social and technical interactions
among the developers.

F. Implicit Architecture

The implicit architecture defines an architecture of the
software where any two components (e.g., packages or
code files) are related if there are developers who have
either (a) contributed to both components, or (b) have
direct communication at organizational level (e.g., a one
to one email conversation). For instance, consider that
developer D1 has contributed to packages P1 and P2, and
developer D2 has contributed to package P3. Also con-
sider that both developers have direct communication at
organizational level as shown in Fig. 1(a). Thus according
to the definition, packages P1, P2 and P3 are linked to
each other in the Implicit Architecture (Fig. 1(b)).

G. Implicit Coordination Network

The implicit coordination network is the developer rela-
tionship network in which two developers have a relation-
ship if they have contributed either (a) to a common code
file or (b) to the code files that have direct relationships
in the Explicit Architecture. For instance consider that
developers D1 and D2 have contributed to package P1
and developer D3 has contributed to package P2. Also
consider that P1 and P2 have a functional dependency
(i.e., a direct relationship) as shown in Fig. 2(a). Then,
according to the definition, developers D1, D2 and D3 are
linked to each other in the Implicit Coordination Network
as shown in Fig. 2(b).

H. Forking

In the context of open source development,forking
occurs when a part of a development community (or a
third party not related to the original project) starts a
completely independent line of development based on
the source code of the original project [8] [15]. To be
considered as a fork, a project should have:

2896 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 1. (a) Explicit Coordination Network with contribution to code base (b) Corresponding Implicit Architecture

Figure 2. (a) Explicit Architecture with contributing developers (b) Corresponding Implicit Coordination Network

• A new project name.
• A branch of the software.
• A parallel infrastructure (web site, version control

system, mailing lists, etc.).
• And a new developer community.

Based on this definition, we propose the following
set of relationships within a pair of forked projects: (a)
parent-child, in which one project is forked from the
other, (b) siblings, if two projects are forked from the
same parent project, and (c) lineages, for all descendant
relationships in which (a) and (b) do not hold. For exam-
ple, in Fig. 3, NetBSD and OpenBSD have a parent-child
relationship, FreeBSD and NetBSD are sibling projects,
whereas FreeBSD, and OpenBSD are the lineages of
386BSD.

III. R ESEARCHQUESTIONS

Our choice of research questions is motivated by
our agenda to measure the exogenous and endogenous
characteristics of forked OSS projects related to socio-
technical congruence.

(RQ1) How does the software architecture compare
and evolve across forked OSS projects?

When a project is forked, the source code of the
parent project is copied [8]. Thus it is natural that at the
initial stage the source code, and hence the architecture,
of both systems are similar. Based on this observation,
we are interested in exploring the extent to which the
forked projects share common architectural structure
during their evolution. In doing so, we calculated and
compared the architectures of the forked projects at
three abstraction levels. Namely, at package level, at
first directory level and atnth directory level (i.e., the
last directory where the files reside). We argue that
this three level comparison can provide a holistic view
of the architectural overlapping. For instance, it might

be possible that forked projects maintain homogeneous
architectural design at higher level of abstraction (e.g.,
in package level), yet getting liberated at detailed
architectural level (e.g.,nth directory level).

(RQ2) How does the community compare and
evolve across forked OSS projects?

Traditionally, the developer community divides when
a project is forked [8]. This is typically followed by
a community rebuild and restructuring process in both
projects. Community members in both projects might
communicate and coordinate in such circumstances in
making both projects survive. Thus, our intention here
is to examine how these fragmented communities act in
building the projects: do they contribute to both projects?
Does such collaboration sustain during the evolution of
the projects?

(RQ3) How does the socio-technical congruence
evolve within the forked OSS projects?

Socio-technical congruence is a natural consequence
and a desired property for collaborative development
activities, like OSS projects [16]. Conventional wisdom
suggests that correspondence between the social
and technical domain of a project may reduce the
communication overhead and may increase productivity
[7]. Furthermore, lack of collaboration is classified
as a negative stimuli to performance [17] and has an
influence on lowering productivity [5]. Consequently,
socio-technical congruence can be a decisive property of
a successful project [3] [5] [16]. With strong congruence
measure projects can get more cohesive, organized,
and self-dependent with higher productivity. Thus our
intention here is to stress these reported observations in
forked OSS projects by examining the extent to which
Socio-Technical Congruence holds in forked projects.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2897

© 2014 ACADEMY PUBLISHER

IV. STUDY DESIGN

This section presents in detail our study design, cover-
ing discussion on the case study selection, required data
sets, data acquisition, cleaning, and analysis process.

A. Case and Subject Selection

To explore the three research questions, we performed
a case study with three large (more than 1,414,641 LOC
[18]), long-lived (around 20 years of evolution history)
OSS projects that were forked from their predecessors.
These case study projects are FreeBSD [19], NetBSD [20]
and OpenBSD [21]. All three projects originate from the
386BSD project, which is the version of UNIX devel-
oped at the University of California, Berkeley. FreeBSD
and NetBSD were directly forked from 386BSD dur-
ing late 1993, and therefore have a sibling relationship.
OpenBSD was forked from NetBSD in 1995, thus having
a parent-child forking relationship. Whereas, FreeBSD
and OpenBSD are lineages of 386BSD. As a conse-
quence, the core of these projects encompass the code
base of 386BSD. The forked relationship among these
projects are shown in Fig. 3 and the lifetime of these
projects till 2013 are shown in Fig. 4.

Figure 3. Rough time line of the forked BSD projects

Our selection of the BSD project family was influ-
enced by the following factors: (a) the code base of
these projects have undergone continuous development,
improvement, and optimization for twenty years [19], (b)
these projects have been developed and maintained by
a large team of individuals [20], (c) the properties of a
forked project hold for these projects, (d) these projects
have extensively been used in earlier research on the
evolution of OSS projects [22] [23] [18], and (e) results
reported in this study can be stressed to OSS projects
having similar properties, e.g., forking history, domain,
community structure, and size.

B. Data Sets

OSS projects often consist of a number of software
development repositories. These repositories contain a
plethora of information on both the underlying software
and the associated communication and development
process [24] [25]. In the literature [26] a great

Figure 4. Life time of the BSD projects

emphasis was given to leveraging these repositories for
deriving technical dependencies as well as developers’
coordination patterns. The repository data are often
longitudinal, allowing for analysis along the whole
project evolution phases. Such data sources are highly
accepted and utilized medium for empirical studies on
OSS projects [27] [28] [29]. In this study we utilized the
following repositories.

Source code repository:We downloaded the source code
of each stable release of the three projects. FreeBSD
maintains its source code in Subversion version control
system, whereas NetBSD and OpenBSD use CVS. In
Fig. 5 we provide the details of the stable releases, the
data collected from each release, and the corresponding
download sources.

Mailing list archive: In OSS projects, email archives
provide a useful trace of task-oriented communication
and co-ordination activities of the developers during
project evolution [30]. In the studied projects, email
archives are categorized according to their purpose
including commit records, stable release planning, chat,
user emails, and bug reports. The archives contain the
commit history and the email conversations since the
initiation of the projects. In this study we used a complete
list of commit records and email conversations from the
beginning of each studied project. Consequently, data
from relevant email archives was extracted and refined
from each project, detail of which is presented in Fig. 6.

C. Data Collection

From source code repositories:The source code
of each stable release of the selected projects was
downloaded to a local directory. Fig. 5 lists the stable
releases that were downloaded for each project. To extract
data from each of the releases, a parser was written
in Java. The parser searched through each directory of
a stable release, read through the files in a directory
and parsed relevant data. Each code file in a release
contains a copyright directive. Under this directive the
contributing developer name, email, and the copyright
year is mentioned. The developers that were found in
the process were considered as the initial contributors
to that file. To get a complete list of contributors for
a stable release, developers names were extracted from
the commit history log and were merged with this
contributor list. This process is described in following

2898 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 5. Stable Releases of BSD Projects (FreeBSD, NetBSD and OpenBSD)

Figure 6. FreeBSD, NetBSD and OpenBSD email archives

sections. Information that was extracted using the parser
is listed in Fig. 5, column 5. The parsed data for each
stable release was then stored in a spreadsheet for further
analysis.

From email archives: Data that is maintained in
the email archives can be broadly classified into two
groups, (a) email archives that maintain CVS/SVN
commit records, and (b) archives that store general
community discussions (e.g., on stable release planning,
chat entries). Fig. 6 presents the total number of email
archives that were extracted for each project along
with specific names of archives containing the commit
records, data collection period, collected data, and their
analysis purpose.

For extracting data from each email entry, a data extrac-
tion program was written in Java. This data extractor used
the web interface of the email archives. Thus each email
was read as an HTML page and the data was extracted
using the Jsoup HTML parser [31]. Data extracted from
each email entry is listed in Fig. 6, column 4. This data
was then stored in spreadsheets according to the archive

name and year. After that, email data was sorted according
to each stable release as follows: (a) emails and commit
records were categorized into a specific release if the
release number was mentioned in email subject (e.g., SVN
commit emails provide release number in email subject
for FreeBSD) and (b) other emails for which the re-
lease numbers were not mentioned (e.g., freeBSD-stable,
freeBSD-chat and some of the CVS commit emails), the
posting dates were checked. In this case, for instance, an
email was categorized to stable release 3 if its posting
date falls between the release date of stable release 2 and
3. The rationale here is that developers would commit to
the code base and discuss on its release strategy before it
is officially released.

For the CVS/SVN commit email, we parsed the
commit path to the repository. The commit path was
either mentioned in the subject or in the email body
(in specified format). We extracted information like the
directory path, package name, and if provided, the name
of the modified code file(s) and the stable release number.
The name of the committer for each of these CVS/SVN
commit emails was considered as a contributor to the

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2899

© 2014 ACADEMY PUBLISHER

code base. Contributors found in this process were
combined with the contributors found in the code base
to get a complete list of contributing developers for each
stable release.

Data preprocessing: Data that was extracted and
parsed following the above process contained anomalies
in many cases. For instance, developer names and email
addresses might contain punctuation characters like
semi-colons, inverted comas, brackets, unnecessary white
space, and hyphens. Furthermore, parsers may have
parsed data inappropriately in some cases. For example,
the textcopyright rights reservedcan be treated as part
of developer name while parsing copyright directive from
a code file. To clean such anomalies data and punctuation
characters, data cleaning programs were written in Java.
To ensure the correctness of this process, we performed
a manual checking on a randomly selected data to verify
their correctness.

D. Data Analysis

This section is focused on topics related to the con-
struction of the communication networks, architectures,
and their use in measuring the socio-technical congruence
utilizing the collected data.

Data analysis is restricted to the stable releases of the
projects. This means, analysis point of this study is the
stable release dates for a project. This choice of analysis
point (instead of discrete time stamps) is made due to
the following reasons: (a) a stable release reflects clear
milestone for a project, which can also be counted as
a step towards successful evolution, and (b) the source
code for this study is available for stable releases only,
which makes it obvious choice to take release dates as
analysis points.

Developer Contribution: Developer contributions
were measured release-wise in two ways: (a) from the
copyright information provided in each source code
file of a release and (b) from the commits made by
a developer for a release. Fig. 7(a) shows a sample
contribution made by developerJohn Birrell in FreeBSD
stable release 3.

Explicit Architecture: The Explicit Architecture of
a stable release was constructed based on functional
dependency, attribute referencing, and header file
inclusion dependency at code file level. For doing
this, we used a tool named Understand [32]. This tool
takes a source code repository as input and generates
the corresponding Explicit Architecture. This tool has
been used in previous research, e.g., in [33] [34]. The
explicit architecture for each stable release of a project
was derived at two abstraction levels, e.g., at code file
level and at package level. An example of these two
architectures for FreeBSD release 3 is shown in Fig. 8.

Explicit Coordination Network:Following the definition

in Section II-E, the Explicit Coordination Network
was derived for each stable release of a project. Email
conversations for each stable release were used for
this purpose. Fig. 7(b) shows example relationships in
the Explicit Coordination Network of FreeBSD stable
release 3. The weight column in this figure shows the
number of email conversations that took place between
two developers.

Implicit Architecture: The implicit architecture was
generated following the definition in Section II-F. A
partial snapshot of the package level Implicit Architecture
for FreeBSD stable release 3 is shown in Fig. 9(a). In
this architecture, a link weight between two packages
designates the number of times the conditions (from
Section II-F) hold. The significance of this network lays
in the fact that developer communication patterns within
the community may simulate the actual architectural
dependency. That is, two developers should have
communication if they are contributing to same or
interrelated components of the software.

Implicit Coordination Network: This network was
generated according to the definition presented in Section
II-G. A snapshot of this network for FreeBSD stable
release 3 is shown in Fig. 9(b). The network shows
the actual communication need among developers,
based on the design of the software (i.e., the Explicit
Architecture). This network is essential due to the fact
that if two subsystems exchange information, it is likely
that communication among the developers of the two
subsystems exists [4].

Measuring concurring and congruence among
architectures and networks: Comparison among the
architectures and communities was measured for two
purposes: (a) to measure how the software architectures
and communities compare and evolve across forked
projects, and (b) to identify how the socio-technical
congruence evolve within each forked project.

We applied the following similarity measure to serve
both purposes. This approach is analogous to the fit
measure used in organizational theory method [5]. An
identical approach was applied in [9] for measuring the
congruence in FreeBSD project.

Concurring/Congruence =
RefA/N

⋂
AnalogousA/N

|RefA/N |
×

100) (1)

In the above equation,RefA/N is the reference
architecture or network (either explicit or implicit), and
AnalogousA/N it the analogous architecture or network
(either explicit or implicit) with which concurring or
congruence will be measured.

This equation measures concurring between the two
architectures or networks with respect to the reference
one,RefA/N . Therefore, the numerator of equation (1)
identifies the commonalities between the two given ar-

2900 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 7. (a) Sample contributions made by developer John Birrell (b) Sample relationships in Explicit Coordination Network

Figure 8. (a) Code file level Explicit Architecture (b) Package level Explicit Architecture

Figure 9. (a) Implicit Architecture (b) Implicit Coordination Network

Figure 10. (a) Explicit Architecture (b) Implicit Architecture (c) Congruence

chitectures or networks, then is divided by the size of the
reference architecture and expressed in a scale of 100.

The application of Equation (1) to specific cases is
presented next.

Comparing the Architecture:To measure and compare

the architectural concurring among the three projects,
we performed a stable release wise comparison of the
explicit architectures for each pair of forked projects.
Thus in this case, bothRefA/N and AnalogousA/N

represent two comparable explicit architectures taken
from two projects. To be comparable, the stable releases

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2901

© 2014 ACADEMY PUBLISHER

of two projects should be released around the same
time period. For instance, consider the stable releases
of FreeBSD and NetBSD projects. FreeBSD has 10
stable releases whereas NetBSD has 14 (Fig. 5, column
2). Thus to compare two releases, each taken from
the two projects, we determined the release date-wise
correspondence. Therefore, FreeBSD release 6 and
NetBSD release 3.0 have a correspondence as they
were released in November, 2005 and December, 2005,
respectively.

The intersection operation in numerator of equation (1)
is calculated at three abstraction levels of the explicit
architectures, namely, package level (p), first directory
level (d1) and code file directory level (dn). For package
level, the intersection operation results in the number of
packages that are common (by comparing the names of
the packages) between two releases. On the other hand,
for the directory level, e.g.,d1 and dn, the intersection
operation provides the total number of directories that
have the complete match in their directory paths. As
an illustrative example, consider FreeBSD release 6 and
NetBSD release 3.0 which have 19 and 22 packages,
respectively. Thus|FreeBSD − release− 6| = 19 and
|NetBSD − release− 3.0| = 22. The intersection oper-
ation between these two explicit architectures resulted in
16 packages having the same names.

Finally, the concurring value was calculated taking
each of these architectures as a reference architecture.
This value depicts the extent to which each of these
stable releases coincide with the other. In continuation
to the above example, FreeBSD release 6 has 84.21%
(16/19*100) and NetBSD release 3.0 has 72.72%
(16/22*100) concurring with each other. These values
were then plotted in a trend chart to visualize how such
concurring evolves with the projects. An example of this
process is presented in Fig.11 and discussed in Section
V-A.

Comparing the Community: To compare the
communities among the three forked projects using
the similarity measure in Equation (1), we carried out
the following: first, the release wise developer list was
generated for each project. This step was discussed
in section IV-C. Second, for a given pair of releases,
the union operation in the numerator identifies the
number of contributors in both releases whose names are
lexically identical. Finally, for each of the stable releases,
concurring value was calculated considering each as a
reference network. These values were then plotted in a
trend chart. An example of this process is presented in
Fig. 14 and discussed in Section V-B.

Socio-technical Congruence: To measure socio-
technical congruence using the similarity measure in
(1) the following approach was applied: the intersection
operation in numerator was carried out between (a)
Explicit Architecture and Implicit Architecture, and
between (b) Explicit Coordination Network and Implicit

Coordination Network. This operation identifies the
number of edges (or relationships) that are identical for
both the architectures or the networks.

The former measure (in (a)) illustrates the match
between the architectural dependency and the architecture
produced due to the communication structure of the
community. The latter measure (in (b)) in turn depicts
the match between the actual coordination activities in
the community and the coordination need established
by the architectural dependency of the software. These
measures verify Conway’s Law and the reverse Conway’s
Law, respectively. Both the measures were determined
for each stable release for all three projects. A partial
snapshot of the congruence between Explicit and Implicit
Architectures of FreeBSD stable release 3 is shown in
Fig. 10.

Then to identify the extent to which the implicit
architecture and implicit network approximate the
corresponding explicit one, we calculated the similarity
measure in (1), taking each of the explicit architecture and
network as the reference one. The resulting values were
plotted in a trend chart for each project to conceptualize
their evolution pattern. An example of this analysis is
presented in Fig. 17 and discussed in Section V-C.

E. Implementation and Verification

Tools Used In the Study:A number of existing tools
and OSS packages were used in this work. For instance,
we used the toolUnderstand (version: 3.1.659)[32] to
generate the Explicit Architectures. To read/write excel
files Apache POI [35] was used. Also, Jsoup HTML
parser [31] was used to parse the HTML files.

Implementation and Verification of the Developed
Programs: We implemented several data extraction,
cleaning, and analysis programs in Java for this work.
Data extraction programs were used to extract data from
relevant sources and cleaning programs were used for
removing the anomalies in the collected data. To verify
the correctness of these programs, a two pass evaluation
were conducted. First, the programs were tested with a
limited number of data samples taken from each of the
projects. Notified bugs (e.g., errors in the parsed data for
an HTML tag) were fixed accordingly. Second, a manual
checking on a random sample of the actual collected
data was done. The accuracy of collected data in the
second pass was reported to be over 97%.

Additionally, analysis programs were written for gener-
ating the architectures, communication networks, release-
wise comparisons, and for measuring congruence. These
programs in turn were tested following a similar method
as stated above.

V. RESULT ANALYSIS

The target of this study is three-fold. First, we verify
the extent to which the forked projects collaborate in

2902 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

both technical and social domain. Second, we measure
the socio-technical congruence in each project to concep-
tualize the socio-technical dependencies. Finally, we study
the projects’ pattern of evolution during their maturation.

A. Pattern of Architecture Evolution

In this section we present the results of the evolution
of the architectural design for each forked project in
relation to the other projects. In verifying this, pair-
wise comparison of the architectural designs (each taken
form the compared projects) were made at three abstrac-
tion levels. This action was performed according to the
procedure presented in Section IV-D. The result of this
comparison is presented in Figs. 11, 12 and 13, one for
each pair of projects. These figures show the concurring of
architectures (plotted in the Y-axis) for each comparable
stable release pair (plotted in the X-axis) of the projects.

Overall architectural evolution revealed similar patterns
for all three types of forking relationships, e.g., sibling
projects, parent-child projects, and lineages. At higher
abstraction level (e.g., package level) the architecturesof
the forked projects maintain high correspondence between
them, which remains consistent as the projects evolve.
However, at the detailed architectural level (e.g., at di-
rectory levelsd1 anddn), the design and implementation
became more disjoint and independent.

For instance, in Fig. 11, the package level concur-
ring between the architectures of FreeBSD and NetBSD
projects remain high throughout their release history. For
FreeBSD it remains between 61,9% and 84,21%, whereas
for NetBSD it is between 57,69% and 80% with slight
drifts between the ranges. Contrary to this, directory level
overlapping (d1 and dn) point out a different trend. In
both of these cases, a consistent decrease in concurring
can be noticed. For example, for NetBSD and FreeBSD
the overlapping atd1 directory level begins with 82,81%
and 56,1% respectively, which gradually decreases to
37,39% and 41.72% respectively. Likewise, atdn level,
the overlapping goes down to 3,63% and 3,34% from
29,77% and 10,82% respectively.

For the other two cases (Fig. 12 and 13), a similar trend
was noticed with minor distinction during the early stages
of the projects. For instance, in Fig. 13 the overlapping
of all three architectural level starts with a very low ratio,
which however had a sharp rise in the next release. For
the subsequent releases, the pattern remains similar to the
observations stated earlier.

Additionally, at any given point of the comparison,
the adherence to common architectural design falls off
significantly from abstract to detail level of the design. For
instance, in 2012, the FreeBSD package level overlapping
is 75%, which is however around 41,72% and 3,34% for
directory level overlappingd1 anddn, respectively. This
observation holds for all the three projects.

These observations indicate that the BSD forked
projects preserve a common structure at higher level of
design, which are however, get liberated progressively
at the detailed architectural design. However, thorough

analyses of architectural design need to be conducted to
fully affirm this claim.

B. Pattern of Community Evolution

Forking of a project causes a split in the community.
The fragmentation of the community is typically followed
by a rebuild and restructuring phases in both projects
(the original and the fork). However, both projects share
the same source of code-base, which could stimulate
the development communities of the two projects to
contribute to both. This observation lead us to investigate
the extent to which the community members (from each
project) contribute during the evolution of both projects.

The investigation was done according to the process
defined in Section IV-D. The results are presented in
Fig. 14, 15, and 16, one for each pair of projects.
The findings reveal that the level of participation of the
community members in the compared projects remains
consistent within a given range. Also, a similar pattern
of participation is noticed for the three types of forking,
confirming the earlier observation in Section V-A.

Relating these observations to individual cases show
that for the FreeBSD and NetBSD projects (Fig. 14),
the community overlapping remains between 23,49% and
44,9%, whereas for NetBSD it is between 26,47% and
44,23%. Within this range of participation there exist
several drifts. For instance, in 1999 and 2007 (Fig. 14), a
decrease in participation can be observed.

For the other two cases (Fig. 15, and 16), the pattern
of overlapping follows a similar trend, except for the first
two releases. This observation is similar to that discussed
in Section V-A. For instance, the level of contribution
rises sharply after having a low participation at the early
release. Apart from this, the participation level (in Fig.
15) for NetBSD remains between 42,69% and 50,3%, and
for OpenBSD between 34,42% and 38,31%. Similarly, for
FreeBSD and OpenBSD (Fig. 16) it is 30,58%-35,05%
and 27,18%-30,38%, respectively.

These results lead to the point that a certain group
of community members maintain contributions to all the
projects. The number of participation also remains stable
throughout the evolution.

C. Evolution pattern of Socio-technical Congruence

The measurement of Socio-technical Congruence for a
project is a two step process. First, the extent to which the
communication patterns of the members of the developer
community resemble the actual architectural dependencies
is verified. And then, the resemblance of the architecture
to the community communication is investigated. In doing
so, we derived both the implicit and explicit architectures
and community collaboration networks, and measured the
corresponding congruence. This process was discussed in
detail in Section IV-D.

The evolution of congruence at architectural level for
the three projects is shown in a trend chart in Fig. 17. In
this figure, the congruence approximation is plotted in the

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2903

© 2014 ACADEMY PUBLISHER

Figure 11. Architectural evolution between the sibling forked projects (FreeBSD and NetBSD)

Figure 12. Architectural evolution between parent-child forked projects (NetBSD and OpenBSD)

Y-axis (in percentile value) against each stable release of
the projects (plotted in the X-axis).

For FreeBSD (the blue line in Fig. 17), the approxima-
tion of the congruence consistently has risen starting from
60,5% at the first stable release and has gone up to 89,4%.
It had a sharp rise during the early five releases and got
stabilized for the later six releases. During this period the
congruence level remained between 84,83% and 89,4%.
We considered the first four congruence values as outliers
as a project usually goes under considerable restructuring
and reformation after it is being forked.

For OpenBSD (the green line in Fig. 17) we observed
a similar trend of congruence to that of FreeBSD. For the
initial two releases the approximation of congruence were
around 75%, that increased sharply to 88,38% on the third
stable release. Till then onwards it remained stable within

the range 85,56% and 88,78%.

In contrast to these two projects, NetBSD (the maroon
line in Fig. 17) had a different pattern. In NetBSD the
congruence approximation started with 85% and remained
stable around 80,77% to 87,5% for the first twelve re-
leases. Nevertheless, for the recent releases (e.g., the last
two stable releases), the project experienced a decrease in
congruence which has gone bellow 80%.

Accumulation of these results portrays that the approx-
imation of the Explicit Architecture by the congruence
is considerably high in all these three projects, which
remains stable throughout the evolution. This implies that
the architecture derived from the communication pattern
of the developer community effectively represents the ac-
tual architecture of the software. That is, to a considerable
extent the communication of the contributing developers

2904 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 13. Architectural evolution pattern between lineage forked projects (FreeBSD and openBSD)

Figure 14. Community concurring pattern between FreeBSD and
NetBSD projects

Figure 15. Community concurring pattern between NetBSD and
OpenBSD projects

in the community may actually be due to the coordination
needs as identified by the architectural dependencies.

On the other hand, the approximation level of the
congruence to that of the Explicit Coordination Network
reveals a similar pattern for the three projects. Fig. 18

Figure 16. Community concurring pattern between FreeBSD and
OpenBSD projects

shows the evolution of approximation against each stable
release of the projects.

For FreeBSD (the blue line in Fig. 18), the approx-
imation of the congruence remained between 70,63%
and 87,31% from the fourth stable release onwards. A
few drifts in congruence in the early three releases were
noticed, which can be justified with the same reasoning as
before. Yet, there was a decreasing trend of congruence
noticed for the last two stable releases.

In the case of OpenBSD (the green line in Fig. 18),
the approximation of the congruence to that of Explicit
Coordination Network started with 80%, and remained
stable between the value 73,35% and 87,77% during the
entire evolution of the project. Only for the last release the
congruence value went down to 39,58%, which is mainly
due to missing data.

For NetBSD (the maroon line in Fig. 18) the congru-
ence approximation started with a high value of 98,87%
and remained stable between 8139% and 98,87% as
the project progressed. Only for the tenth release (May
2005 in the chart) the congruence has gone as bellow as

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2905

© 2014 ACADEMY PUBLISHER

Figure 17. Evolution of Congruence at Architectural Level of the BSD Projects

Figure 18. Evolution of Congruence at Community Level of theBSD Projects

17,23%. But it can be treated as an outlier due to missing
data. Yet there was a slight decrease noticed for the last
three stable releases.

To summarize these results, it can be conceived that
the congruence approximation to that of Explicit Coordi-
nation Network is considerably high for the three projects.
That is, the communication pattern of the developer
community derived from the architectural dependency of
the components effectively resembles the actual com-
munication pattern. Thus, the communication pattern of
contributing developer community can be used to simulate
the underlying architectural dependency of the software
to a great extent.

VI. D ISCUSSION

In this section we hereby summarize the findings of
this study and possible implications in relation to prior
works.

A. Research Questions Revisited

The evidence presented provides a strong indication
that each forked project in the BSD family enjoys a
high level of Socio-technical congruence throughout their

evolution history. Thus, it can be affirmed that to a
considerable extent the communication of the contributing
developers in the BSD communities might be due to the
coordination needs as identified by the technical depen-
dency, and vice-versa. This observation is in-line with the
prior work that reported congruence as a desired property
and a natural phenomenon of collaborative development
works [16] [36].

Alongside these observations, communities of the
forked BSD projects have maintained a certain level of
collaboration throughout the project history. Our reported
model of collaboration shows that a portion of the com-
munity is mutual for both the projects. In literature, this
group of community members are termed as the bridge
between the projects [37], and a means of information
flow and collaboration [37] [38].

Moreover, the architectural design at higher abstrac-
tion level has remained homogeneous among the forked
projects. This might have supported the developer com-
munity with better understanding of the overall system
designs and have created a common ground for collabo-
ration and contribution. However contrary to this, at detail
architectural level these projects are progressively getting
liberated. This could be explained by the fact that the

2906 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

developer community of each fork has adopted their own
implementation strategies when it comes to fine grained
design decisions.

Finally, it was noticed that the pattern of community
and architectural evolution for all the three forking rela-
tionships (e.g., siblings, parent-child and lineages) have
followed similar patterns. This observation highlights the
point that forked projects that have originated from the
same root project would ideally share a common archi-
tectural design and a healthy inter-project collaboration.

B. Implications

It can be argued here that Socio-technical congruence
plays a pivotal role in forming cohesive and organized
community driven projects, which eventually leads to
their successful evolution with high quality. This argu-
ment is also affirmed in earlier literature conducted on
in-house projects: Higher congruence influences project
success [3] [5] [16], with improved productivity [39] [6],
maintainability [40], and quality [7].

This measure of socio-technical congruence would bet-
ter serve the purpose of software development process and
organization. Because it provides a quick index of how
well the organization is actually aligned with the current
and planned sub-division of responsibility in the project
[41]. Additionally, the Implicit Architecture can be used
as a complementary to the traditional reverse engineering
process [42] [43] to derive and validate the recovery of
the Explicit Architecture of legacy systems.

The identified pattern of collaboration among the three
projects could be one way to explain the sustainability of
the forked projects [44], particularly during their early
formation stages. Additionally, further study could be
initiated to verify the impact of such collaboration on
cross project porting and code cloning [45] [46].

Overall, based on our study results, we claim that
the traditional perception of forking in OSS projects,
which is thought to have negative stimuli for sustainable
evolution of the projects [8], can be effectively remedied
though (a) maintaining a consistent and cohesive abstract
architectural design to form a common ground of collabo-
ration among the forked projects, (b) adopt a collaboration
model in which members of a project could participate in
other forks, and (c) maintain a consistent and high socio-
technical congruence within the project.

None-the-less, this study puts a step forward in reason-
ing about the successful evolution of forked OSS projects,
as this perspective has rarely been studied in current
literature on OSS evolution analysis [8] [47].

VII. O N THE M ISSING DATA AND REPLICATION OF

THE STUDY

Data collection process for this study sufferers from
some missing data. The missing data constitutes the gen-
eral communication emails stored in the email archives.
Missing email conversations are encountered for NetBSD
and OpenBSD projects. To be specific, email conver-
sations during the period of April, 2005 to May, 2005

can not be extracted fully for NetBSD project. Whereas
for OpenBSD project, missing emails are noticed during
the period of September and October, 2012. In case of
NetBSD it is mainly due to broken links to the archives,
and for OpenBSD it is probably due to unavailability of
the data during that time period.

However, the volume of such missing data is not
massive, and thus, have little impact on the overall results.
Only at the two points of congruence measure (as dis-
cussed in Section V-C), such missing data injected drifts,
which however, do not hamper the overall trend of the
congruence.

Replication of the study depends on addressing several
issues, which includes, (a) data collection from the rele-
vant sources, (b) cleaning and representation of the data
and finally, (c) carrying out the analysis. In what follows,
a guideline to accomplish these tasks.

Data is collected from two sources, SVN/CVS reposito-
ries and email archives. A detail discussion on download-
ing and extracting data from these sources are presented
in Sections IV-B and IV-C. However, to ease this process
of data collection for interested researchers, we make
available the extracted data in the link given bellow1.
Further instructions on how to interpret and use the data
in replicating this study is discussed in the given link.

Finally, generating the architectures and networks, and
carrying out the congruence measure are done thorough
the implementation of scripts. There scripts are directly
derived from the definitions and analysis methods dis-
cussed in Sections II and IV-D, respectively. Tools and
packages listed in Section IV-E are used for script imple-
mentation. All the packages are open source and are avail-
able online for free downloading. However, the scripts
used in this study are not made available in the given
link. If researchers require assistance in implementing
the scripts, we could provide adequate guidelines and the
scripts upon request2.

VIII. T HREATS TOVALIDITY

The following aspects have been identified which
could lead to threats to validity of this study.

External validity (how results can be generalized):As
case study subject, projects from the BSD family were
selected, which are FreeBSD, NetBSD and OpenBSD.
All these projects belong to the operating system domain,
have large developer and user communities, and have
over twenty years of evolution history. Additionally, OSS
evolution studies often used these projects as case study.
Thus it might be possible to stress the results reported
in this article to the population of OSS projects having
similar properties, e.g., domain, project size, evolution
history. Yet, we cannot claim complete external validity
of the results.

1http://msyeed.weebly.com/replication-package.html
2Contact:rajit.cit@gmail.com

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2907

© 2014 ACADEMY PUBLISHER

Internal validity (confounding factors can influence
the findings):Missing historical data - the study has been
able to make use only of available data. It is possible,
for instance, that there are commit records and developer
chat entries other than that recorded in the emails.
Additionally, we encountered several broken URL links
for emails that could not be retrieved. Thus, we make
no claim on the completeness of the email entries with
relevance to this study target.

Construct validity (relationship between theory and
observation):There exist a few issues that concern the
construct validity of the study. First, part of the email
entries were categorized to a specific stable release
according to their date of post. The reasoning here is
that developers commit and discuss on release planning
before the product is officially released. Yet, we do not
claim the perfection of this approach. Second, the data
extraction programs written for this study provided an
accuracy of 97%, which was measured with random
sample of the collected data. This may affect the
construct validity.

IX. CONCLUSIONS

The current study provides empirical evidence that
successful OSS forked projects that are lineages of an
ancestor project may follow similar evolution patterns
in terms of (a) technical and social dependencies and
(b) achieving a high level of congruence that sustains
throughout their evolution. Though from a technical per-
spective the forked projects get more and more indepen-
dent by time, they may enjoy a sustainable level of cross
project collaboration. Keeping in line with prior evidence
[9], we can argue that congruence is an implicit character-
istic of successful forked OSS projects, and combining it
with inter project collaboration would portray the reason
behind the success of such projects. This claim however
needs further empirical evidence. As an alternative to the
qualitative argumentation approach taken in our study,
one could frame our research questions as hypotheses
and perform statistical analysis to evaluate them. This
constitutes our future work.

REFERENCES

[1] A. Mockus, R. Fielding, and J. Herbsleb, “Two case
studies of open source software development: Apache and
mozilla,” Journal of TOSEM, vol. 11, no. 3, pp. 309–346,
2002.

[2] G. Valetto, S. Chulani, and C. Williams, “Balancing the
value and risk of socio-technical congruence,”Workshop
on Sociotechnical Congruence, 2008.

[3] I. Kwan, A. Schrter, and D. Damian, “Does socio-technical
congruence have an effect on software build success? a
study of coordination in a software project,” inIEEE Trans.
Software Eng., vol. 37, no. 3, 2011, pp. 307–324.

[4] M. E. Conway, “How do committees invent?”Datamation,
vol. 14, no. 4, pp. 28–31, 1968.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley, “Identification of coordination requirements: Im-
plications for the design of collaboration and awareness
tools,” in ACM CSCW, 2006, pp. 353–362.

[6] L. Colfer and C. Baldwin, “The mirroring hypothesis: The-
ory, evidence and exceptions,” inworking paper, Harvard
Business School, 2010.

[7] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirical
case study,” inICSE ’08 Proceedings of the 30th inter-
national conference on Software engineering, 2008, pp.
521–530.

[8] G. Robles and J. Gonzalez-Barahona, “A comprehensive
study of software forks: Dates, reasons and outcomes,” in
OSS, IFIP AICT 378, 2012, pp. 1–14.

[9] M. Syeed and I. Hammouda, “Socio-technical congruence
in oss projects: Exploring conways law in freebsd oss
evolution,” inProceedings of 9th International Conference
of Open Source Systems (OSS), Springer, 2013.

[10] M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall, “Min-
ing evolution data of a product family,”ACM SIGSOFT
Software Engineering Notes, vol. 4, no. 30, pp. 1–5, 2005.

[11] J. Niels, “Putting it all in the trunk: incremental software
development in the freebsd open source project,”Informa-
tion Systems Journal, vol. 11, no. 4, pp. 321–336, 2001.

[12] T. Dinh-Trong and J. Bieman, “The freebsd project: A
replication case study of open source development,”Soft-
ware Engineering, IEEE Transactions on, vol. 31, no. 6,
pp. 481–494, 2005.

[13] J. Han, C. wu, and B. Lee, “Extracting development
organization from open source software,” in16th Asia-
Pacific Software Engineering Conference, IEEE., 2009, pp.
441–448.

[14] E. S. Raymond, “The new hacker’s dictionary (3rd ed.),”
in Cambridge, MA, USA: MIT Press, 1996.

[15] L. M. Nyman and T. Mikkonen, “To fork or not to fork:
Fork motivations in sourceforge projects,” inSource Sys-
tems: Grounding Research : IFIP Advances in Information
and Communication Technology, 2011, pp. 259–268.

[16] T. Browning, “Applying the design structure matrix to
system decomposition and integration problems: a review
and new directions,” inEngineering Management, IEEE
Transactions on, vol. 48, no. 3, 2001, pp. 292–306.

[17] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, “The
misalignment of product architecture and organizational
structure in complex product development,” inManage-
ment Science, vol. 50, no. 12, 2004, pp. 1674–1689.

[18] I. Herraiz, J. Gonzalez-Barahona, G. Robles, and D. Ger-
man, “On the prediction of the evolution of libre software
projects,” in ICSM, oct. 2007, pp. 405 –414.

[19] FreeBSD, “http://www.freebsd.org/,” 2013.
[20] NetBSD, “http://www.netbsd.org/about/,” 2013.
[21] OpenBSD, “http://www.openbsd.org/,” 2013.
[22] J. Wu, R. Holt, and A. Hassan, “Empirical evidence for soc

dynamics in software evolution,” inSoftware Maintenance,
2007. ICSM 2007. IEEE International Conference on, oct.
2007, pp. 244 –254.

[23] I. Herraiz, “A statistical examination of the evolution and
properties of libre software,” inSoftware Maintenance,
2009. ICSM 2009. IEEE International Conference on, sept.
2009, pp. 439 –442.

[24] J. C. JE, L. V. LG, and A. Wolf, “Cost-effective analysis
of in-place software processes,” inIEEE Transactions on
Software Engineering, vol. 24, no. 8, 1998, pp. 650–663.

[25] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using
version control data to evaluate the impact of software
tools,” in Proceedings 21st International Conference on
Software Engineering, vol. 24, no. 8, 1999, pp. 324–333.

[26] I. Kwan, M. Cataldo, and D. Damian, “Conway’s law
revisited: The evidence for a task-based perspective,”IEEE
Software, vol. 29, no. 1, pp. 90–93, 2012.

[27] M. Goeminne and T. Mens, “A framework for analysing
and visualising open source software ecosystems,” inPro-
ceeding IWPSE-EVOL ’10, 2010, pp. 42–47.

2908 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

[28] D. M. German, “Using software trails to reconstruct the
evolution of software,” inJOURNAL OF SOFTWARE
MAINTENANCE AND EVOLUTION: RESEARCH AND
PRACTICE, vol. 16, 2004, pp. 367–384.

[29] Y. Wang, D. Guo, and H. Shi, “Measuring the evolution
of open source software systems with their communities,”
in ACM SIGSOFT Software Engineering Notes, vol. 32,
no. 6, 2007.

[30] W. Zhang, Y. Yang, and Q. Wang, “Network analysis of
oss evolution: An empirical study on argouml project,” in
IWPSE-EVOL11, 2011.

[31] jsoup: Java HTML Parser, “http://jsoup.org/,” 2013.
[32] U. S. C. Analysis and Metrics, “http://www.scitools.com/,”

2013.
[33] D. Darcy, S. Daniel, and K. Stewart, “Exploring com-

plexity in open source software: Evolutionary patterns,
antecedents, and outcomes,” inProceedings of the 43rd
Hawaii International Conference on System Sciences,
2010, pp. 1–11.

[34] M. Simmons, P. Vercellone-Smith, and P. Laplante, “Un-
derstanding open source software through software ar-
chaeology: The case of nethack,” inProceedings of the
30th Annual IEEE/NASA Software Engineering Workshop,
2006, pp. 47–58.

[35] A. P.-J. A. for Microsoft Documents,
“http://poi.apache.org/,” 2013.

[36] J. Herbsleb and R. Grinter, “Architectures, coordination,
and distance: Conway’s law and beyond,” inJournal IEEE
Software, vol. 16, no. 5, 1999, pp. 63–70.

[37] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,” inIFIP International Federation
for Information Processing, Volume 203, Open Source
Systems, 2006, pp. 21–32.

[38] J. Gonzalez-Barahona, L. Lopez, and G. Robles, “Com-
munity structure of modules in the apache project,” in
Workshop on Open Source Software Engineering, 2004.

[39] C. Baldwin and K. Clark, “Design rules: The power of
modularity,” in MIT Press, 2000.

[40] F. P. Brooks, “The mythical man-month,” inAnniversary
Edition: Addison-Wesley Publishing Company, 1995.

[41] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Weg-
man, and C. Williams, “Using software repositories to
investigate socio-technical congruence in development
projects,” in ICSE Workshops MSR, 2007, pp. 25–25.

[42] H. Dayani-Fard, Y. Yu, J. Mylopoulos, and A. Periklis,
“Improving the build architecture of legacy c/c++ software
systems,” in8th FASE, 2005.

[43] R. Kazman and S. Carrire, “Playing detective: Recon-
structing software architecture from available evidence,” in
Technical Report CMU/SEI-97-TR-010, Carnegie Mellon
University, 1997.

[44] J. Gamalielsson and B. Lundell, “Sustainability of open
source software communities beyond a fork: How and why
has the libreoffice project evolved?”Journal of Systems
and Software, vol. 89, pp. 128–145, 2014.

[45] B. Ray and M. Kim, “A case study of cross-system porting
in forked projects,” inProceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Soft-
ware Engineering. ACM, 2012, p. 53.

[46] D. German, M. D. Penta, Y.-G. G. éhéneuc, and G. An-
toniol, “Code siblings: Technical and legal implications of
copying code between applications,” inMSR’09. IEEE,
2009, pp. 81–90.

[47] M. Syeed, I. Hammouda, and T. Systa, “The evolution
of open source software projects: a systematic literature
review,” Journal of Software, vol. 8, no. 11, pp. 2815–
2829, 2013.

M.M. Mahbubul Syeed received his B.Sc degree in Computer
Science and Information Technology from Islamic University

of Technology, Bangladesh in September, 2002 and his M.Sc
degree in Information Technology from Tampere University of
Technology, Finland in April, 2010. He is currently working
towards his Ph.D. degree and working as a researcher in the
same university. His current research interest includes study of
Open Source Software ecosystem, ecosystem enabling architec-
ture, project evolution, experimental software development, and
big data mining and knowledge extraction.

Dr. Imed Hammouda joined University of Gothenburg in
September 2013. Before that, he was Associate Professor of
software engineering at Tampere University of Technology
(TUT), Finland. At TUT, he was heading the international
masters programme at the Department of Pervasive Computing.
He got his Ph.D. in software engineering from TUT in 2005. Dr.
Hammouda’s research interests include open source software,
software architecture, software development methods and tools,
and variability management. He was a founding member and
leader of TUTOpen - TUT research group on open source
software. He has been the principal investigator of several
research projects on various open initiatives. Dr. Hammouda’s
publication record includes over fifty journal and conference
papers.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2909

© 2014 ACADEMY PUBLISHER

[V] M.M. Syeed, K. Marius Hansen, I. Hammouda, K. Manikas. Socio-
Technical Congruence in the Ruby Ecosystem. In Proceedings of the 10th
International Symposium on Open Collaboration (OpenSym), pages 2. ACM,
August, 2014.

Socio-Technical Congruence in the Ruby Ecosystem

M. M. Mahbubul Syeed
Department of Pervasive

Computing
Tampere University of

Technology
Tampere, Finland

mm.syeed@tut.fi

Klaus Marius Hansen
Department of Computer

Science (DIKU)
University of Copenhagen

Copenhagen, Denmark
klausmh@di.ku.dk

Imed Hammouda
Department of Computer
Science and Engineering

Chalmers and University of
Gothenburg

Gothenburg, Sweden
imed.hammouda@cse.gu.se

Konstantinos Manikas
Department of Computer

Science (DIKU)
University of Copenhagen

Copenhagen, Denmark
kmanikas@di.ku.dk

ABSTRACT
Existing studies show that open source projects may enjoy
high levels of socio-technical congruence despite their open
and distributed character. Such observations are yet to be
confirmed in the case of larger open source ecosystems in
which developers contribute to different projects within the
ecosystem. In this paper, we empirically study the relation-
ships between the developer coordination activities and the
project dependency structure in the Ruby ecosystem. Our
motivation is to verify whether the ecosystem context main-
tains the high socio-technical congruence levels observed in
many smaller scale FLOSS (Free/Libre Open Source Soft-
ware) projects. Our study results show that the collabora-
tion pattern among the developers in Ruby ecosystem is not
necessarily shaped by the communication needs devised in
the dependencies among the ecosystem projects.

1. INTRODUCTION
A software ecosystem has been defined as“a set of businesses
functioning as a unit and interacting with a shared market
for software and services, together with relationships among
them. These relationships are frequently underpinned by
a common technological platform and operate through the
exchange of information, resources, and artifacts” [15]. The
technological platform is often a software system providing
various levels of openness for developers.

In the case of FLOSS (Free/Libre Open Source Software)
ecosystems, the software platform is typically organized into
smaller inter-dependent projects attracting a developer com-
munity consisting of a large number of volunteers in addition
to paid developers. Popular examples of such ecosystems in-

clude GNOME [10], Eclipse [7] and Ruby [26].

FLOSS ecosystems have been the subject of much socio-
technical research (cf. e.g [14]) studying the possible rela-
tionships between their social domain represented by devel-
oper community and their technical domain associated with
the software produced. It is in this context that the paper
seeks to explore the mapping between the communication
patterns of the developer community and the architectural
dependencies among the projects within an FLOSS ecosys-
tem.

In this work, we examine the mapping through the notion of
socio-technical congruence that puts into test a well-known
but insufficiently understood phenomenon known as Con-
way’s Law [5]. We present an empirical evaluation of the
law to show to what extent developers’ activities within an
FLOSS ecosystem can be used to approximate dependencies
between the ecosystem projects. As our unit of study, we
use the Ruby FLOSS ecosystem.

The study builds on top of an earlier work where we have
verified Conway’s Law in the context of a single FLOSS
project [31]. Thus the contribution of this work is to take
such empirical evaluation to an ecosystem level that may
consist of thousands of interrelated projects and explore the
extent to which Conway’s law may hold.

The remaining of the paper is organized as follows. Section
2 introduces a number of key concepts that this study uses
and the research questions explored. Section 3 presents our
study design. Results are reported and discussed in Sec-
tion 4, followed by a discussion of related work in Section 5.
Possible limitations and threats to validity are highlighted
in Section 6. Finally, Section 7 concludes the paper and shed
light on future research.

2. DEFINITIONS AND RESEARCH QUES-
TIONS

In this section we define the set of concepts used in this
study.

1

2.1 Conway’s Law
Conway’s Law, in its purest form, states that “organizations
which design systems are constrained to produce systems
which are copies of the communication structures of these
organizations” [5]. In other words, the software product ar-
chitecture reflects the organizational structure of its devel-
opment team [5, 19]. In [12], Conway’s Law is considered
bidirectional and thus claimed to be true in reverse as well.
This means the communication pattern within a developer
community should reflect the architectural dependency in
the developed software. Thus, Conway’s Law can effectively
be interpreted as the basis for studying the social and tech-
nical interdependency within a software project [24].

2.2 Socio-technical congruence
The recently defined phenomenon of ‘socio-technical con-
gruence’ is an operationalization of Conway’s Law. Socio-
technical congruence can be defined as the match between
the coordination needs established by the technical domain
(i.e., the architectural dependency in the software) and the
actual coordination activities carried out by project mem-
bers (i.e., within the members of the developer community)
[19]. This coordination need can be determined by analyz-
ing the assignments of persons to a technical entity such as a
source code module, and the technical dependencies among
the technical entities [19]. Accordingly, for socio-technical
congruence to be present, developers within the community
should communicate if there exists a communication need
indicated by technical dependencies. For example, develop-
ers working on the same module or on the interdependent
modules should be coordinating.

2.3 Explicit Architecture
In general, the ‘Explicit Architecture’ of a software system
is defined as the system structure as present in technical
entities and dependencies among technical entities. In our
study, the explicit architecture presents relationship among
the gems in the Ruby ecosystem — a gem is a software
package that contains a Ruby application or library. A rela-
tionship in this architecture represents the development and
runtime dependency between two gems.

2.4 Explicit Coordination Network
The ‘Explicit Coordination Network’ is a social network in
which two developers have a relationship if they have di-
rect communication history, either social or technical. In
the Ruby study, the communication history is deduced us-
ing the communication traces for Ruby gems hosted on the
GitHub[9] software development hosting site issue tracking
system.

2.5 Implicit Architecture
The ‘Implicit Architecture’ of a software system is defined by
the elements of the Explicit Architecture and the relation-
ships of the Explicit Coordination Network. More specifi-
cally, in the implicit architecture we identify a relationship
between two elements (technical entities) if there is direct
communication between any of the developers of the two
elements.

In the Ruby ecosystem study, we define the Implicit Archi-
tecture of the complete Ruby ecosystem. Here, two gems

are related if there are developers who have either (a) con-
tributed to both the gems, or (b) have direct communication
(e.g., one to one issue related conversation). For instance,
consider that developer D1 has contributed to gems G1 and
G2, and developer D2 has contributed to gem G3. Also
consider that both developers has direct communication at
organizational level as shown in Fig. 1(a). Thus according
to the definition, gems G1, G2 and G3 are linked to each
other in the Implicit Architecture (Fig. 1(b)).

2.6 Research questions
In this work, we study socio-technical congruence in the
Ruby ecosystem by addressing two research questions:

1. Does the study of socio-technical congruence has any
significance at the ecosystem level?

2. To what extent developer’s interaction within the Ruby
ecosystem can approximate the actual relationship (or
dependencies) among the ecosystem gems?

In order to perform a study required by Research Question 1,
data should be available related to inter-developer commu-
nication, developer contribution to the ecosystem projects,
and dependencies between the individual projects. While,
Research Question 2 will be given in terms of a socio-technical
congruence level.

In order to address these questions, we use social network
analysis techniques to analyze data collected from the RubyGems.org
and GitHub repositories (see Section 3).

3. STUDY DESIGN
This section presents in detail our study design, covering
discussion on the case study selection, required data sets,
data acquisition, cleaning, and analysis process.

3.1 Case and Subject Selection
We use the Ruby gems ecosystem as a case in order to
explore our research questions. The Ruby gems website,
RubyGems.org [27], hosts packages (“gems”) for the Ruby
programming language. A gem contains code, documenta-
tion, and a specification. For this study, we use the specifi-
cation only. Gem developers can create gems and push these
to RubyGems.org while gem users (typically application de-
velopers) can install gems using RubyGems.org. Pushing
and installing is typically done via the gem command line
tool that interacts with RubyGems.org.

Two properties of RubyGems.org makes it appropriate for
studying soci-technical dependencies in an ecosystem. First,
RubyGems.org is very widely used: on 2014-05-02 it stated
that 3,020,455,028 downloads had been made of 74,800 gems
since July 2009. Secondly, RubyGems.org makes it possible
to couple gems with data on the development process since
most gems use GitHub[9] as a source code repository and
for collaboration. In our data set (see Section 3.2), 72% of
the specifications of gems referenced GitHub.

2

Figure 1: (a) Explicit Coordination Network with contribution to code base (b) Corresponding Implicit
Architecture

3.2 Data Sets
We collect data for i) the Ruby ecosystem architecture and
ii) the Ruby ecosystem coordination network.

To collect data for i), we use the specifications of gems from
RubyGems.org. The specification contains metadata that
include the gem name, dependencies to other gems, and
URIs for the gem. The following listings shows an excerpt
of the aasm gem specification in JSON format. The gem’s
development dependencies (that are needed to further de-
velop the gem) include the mime-types gem (in a version
greater than or equal to 1.25.0 and less than 2.0) and the
rake gem (in any version). The aasm gem has no runtime
dependencies (that are needed to run the gem). Finally, the
gem’s homepage is https://github.com/aasm/aasm.

{
"name": "aasm",
"info": "AASM is a continuation of the acts as state

machine rails plugin, built for plain Ruby objects
.",

"dependencies": {
"development": [
{

"name": "mime-types",
"requirements": "~> 1.25"

},
{

"name": "rake",
"requirements": ">= 0"

}
...

],
"runtime": []

},
"homepage_uri":"https://github.com/aasm/aasm"
...

}

To collect data for ii), we use GitHub. In the example above,
the GitHub project related to the gem can be identified as
aasm (with owner aasm). On GitHub, collaboration is facil-
itated via among others issues and pull requests created by
GitHub users. To, e.g., suggest fixes to aasm, a developer
may create a branch, make modifications, and create a “pull
request” for the aasm members to merge the modifications
into the main aasm repository. For the aasm gem, e.g.,
there were (on 2014-04-28), 119 issues for the aasm. In the
listing below, issue number 62 for aasm shows an example
of two GitHub users collaborating. The issue is created via
a pull request by the user Nitrodist and suggest a “minor
fix” that is closed by the user alto.

{
"number": 62,
"title": "Fix migration example in README",
"user": {

"login": "Nitrodist",
...

}
"comments": 1,
"body": "Minor fix! :heart: ",
"closed_by": {
"login": "alto",
...

}
...

}

3.3 Data Collection
Data collection was done in three steps: i) retrieve a list of
gems from RubyGems.org, ii) identify GitHub project for
gems, iii) retrieve issues from GitHub projects.

Regarding i), data was collected from RubyGems.org using
the command line API. Gems starting with the numbers 0
to 9 and ASCII characters a-z were collected using the gem
list command. For example, the command

gem list -r a

retrieves (for the gem tool used in this study), a list of gems
starting with the letter “a”. Using this list, we used the
RubyGems.org HTTP API to fetch specifications of the lat-
est version of the gem. For example, the specification of
the latest version of the aasm gem is available at https://
rubygems.org/api/v1/gems/aasm.json. In this way,
we retrieved 60,286 gem specifications on 2013-08-19.

Based on the list of gems, for step ii), we scanned the URIs
of the gem specifications to find GitHub URIs. We assume
that if a URI contains a GitHub URI, it is the URI of
the gem project. We prioritized source_code_uris and
project_uris. We were able to retrieve GitHub issues
(possibly an empty set) from 33,960 GitHub projects in step
iii).

For step iii), we retrieved all open and closed issues and
comments for identified projects using the GitHub API. Be-
cause the GitHub API is rate limited we retrieved GitHub
data over several days. Since we cannot link gem versions
to GitHub, we assume that the data collected at GitHub
represent the full history of collaboration up until the latest
version of the gem. For 56% of Ruby gems, we could find
GitHub data. For the remaining gems, we were either un-
able to identify a GitHub URL using the method described
above or the gem was not developed using GitHub.

3

https://rubygems.org/api/v1/gems/aasm.json
https://rubygems.org/api/v1/gems/aasm.json

3.4 Data Refining and Structuring
In order to initiate data analysis, we refined and restruc-
tured the collected data as follows: for each Ruby gem for
which we could find GitHub data, a record was created in
JSON format that contains, the gem and owner names, the
list of gems it depends on, and pair-wise communication be-
tween developers of the gems. Records created for the gems
were collected in a single JSON file, which contains 42,803
gem records. The following listings shows the record format
taking rumember gem as an example.

{
"gem_name": "rumember",
"github_owner": "tpope",

"dependencies": [
"json",
"launchy",
"rspec"

],

"relationships": [
[
"mofus",
"tpope"

],
[
"kevincolyar",
"tpope"

],
...

]
}

In this listing, the Ruby gem rumember is owned by tpope.
The gem has dependencies to three other gems, namely, json,
launchy, spec, denoted by the dependencies structure. Pair-
wise developer login names presented in relationships struc-
ture shows their communication. For instance, the developer
mofus has communicated with tpope.

Among the 42,803 Ruby gems record listed in the JSON file,
12,520 Ruby gems records have developer communication
records in GitHub. Thus, for further analysis, we restricted
the data set to 12,520 Ruby gems records.

3.5 Data Analysis
This section is focused on topics related to construction of
the architectures (both explicit and implicit), explicit coor-
dination network and their use in measuring socio-technical
congruence utilizing the data presented in Section 3.4.

Explicit Architecture: The Explicit Architecture shows
relationships among the gems. Relationships were gener-
ated based on the development and runtime dependencies
that exists between Ruby gems (presented in Section 2.3
and 3.2). At implementation level, this architecture is gen-
erated by creating edges between a gem and gems to which
it has dependency by utilizing the dependency list of that
gem. For instance, Figure 2(a) presents an Explicit Archi-
tecture that corresponds to the dependency record presented
in Section 3.4 for the gem rumember. The complete archi-
tecture consists of 141,029 edges among the 12,520 gems,
edge weights of which ranges between 1 and 33. A partial
snapshot of this architecture is shown in Figure 2(b).

Explicit Coordination Network: Following the definition
in Section 2.4, the Explicit Coordination Network was de-

rived among the developers contributing to the gems. At im-
plementation level, an edge is created between each pair of
developer names listed in the gem records presented in Sec-
tion 3.4. For instance, Figure 3(a) presents an Explicit Co-
ordination Network that corresponds to the developer rela-
tionships present in the relationship structure for the record
of the gem rumember. The complete network consists of
186,136 edges among the 55,454 developers, edge weights of
which ranges between 1 and 46. A partial snapshot of this
network is shown in Figure 3(b).

Implicit Architecture: The Implicit Architecture was gen-
erated following the definition in Section 2.5. For doing this,
we restricted the edge weight of the Explicit Coordination
Network to ≥ 2. This is done because an edge weight of 1
in this network represents only one instance of interaction
between two developers, which is insignificant to consider
it as a collaboration between developers. This filtering re-
duces the size of Explicit Coordination Network to 59,562
edges. Furthermore, we generated seven Implicit Architec-
tures based on seven edge weight thresholds of the Explicit
Coordination Network. This weight categorization of the
coordination network is shown in the second column of Ta-
ble 1 and the size of corresponding Implicit Architecture
is presented in column 4. This catagorization was done to
comprehend how congruence values change with the changes
in coordination strength seen in Explicit Coordination Net-
work.

Measuring Congruence:

Congruence was measured following the similarity measure
presented in equation (1). This measure is analogous to fit
/ congruence measure used in organizational theory method
[4], and already been applied in [31] for measuring congru-
ence in FreeBSD project.

Congruence =
|RefA

⋂
AnalogousA|
|RefA|

× 100 (1)

In the above equation, RefA is the reference architecture
(either explicit or implicit), and AnalogousA it the anal-
ogous architecture (either explicit or implicit) with which
congruence will be measured.

This equation measures congruence between the two archi-
tectures with respect to the reference one, RefA. Therefore,
the numerator of equation (1) identifies the commonalities
between the two given architectures, then divided by the size
of the reference architecture and expressed as a percentage.

To compute socio-technical congruence using the similarity
measure in (1), following approach was applied: the explicit
architecture was taken as the reference architecture (RefA)
and the implicit one was taken as the analogous architecture
(AnalogousA). The intersection operation in numerator was
carried out between the explicit architecture and each of the
7 implicit architectures that were generated for the 7 weight
categories in explicit coordination network. This operation
identifies the number of edges (or relationships) that are
identical for both the architectures. Result of this process
is presented in column 5 of Table 1. Therefore, this mea-
sure illustrates verification of Conway’s law, that reveals the

4

Figure 2: (a) Example Explicit Architecture for gem rumember (b) A partial snapshot of the Explicit Archi-
tecture

Figure 3: (a) Example Explicit Coordination Network for gem rumember (b) A partial snapshot of the Explicit
Coordination Network

match between the dependency among the Ruby gems and
the gems dependency produced due to the communication
and collaboration structure of the developers.

Then to identify the extent to which the implicit architec-
tures approximate the explicit, we calculated the similarity
measure in (1). The resulted congruence measures are pre-
sented in column 6 of Table 1.

4. RESULT ANALYSIS
In this section we investigate the research questions primar-
ily based on the data analysis presented in Section 3.

4.1 Social and Technical Dependencies in the
Ruby Ecosystem

Socio-technical congruence has often been studied within
a project to determine coordination quality and its conse-
quences. Such studies make sense, because, a project often
organizes itself around the products’ architecture. In this
setup, the main components of the product define the orga-
nization’s key subtasks [13] and become the source of most
relevant information pertinent to the task dependencies that
define coordination need among the developers [6].

However, the term ’software ecosystem’ is used in FLOSS
software to refer to a collection of software projects that
are developed and evolve together in the same environment
[21]. Thus, initiating the study of socio-technical congru-
ence within an ecosystem, can only be feasible if the projects
within that ecosystem have dependencies and cooperation,
both from technical and social perspectives. In other words,
projects should have technical dependencies among them,
while the developers working on those projects have com-
munication and collaboration.

This verification in the case of the Ruby ecosystem was done
by examining the explicit architecture and the explicit coor-
dination network. The explicit architecture reveals 141029
number of edges among the 12520 gems. Each edge in
this architecture shows either development or runtime de-

pendency between two gems. Similarly, the explicit coor-
dination network generates 186136 number of relationship
edges among 55454 developers. Each edge in this network
shows communication between two developers as shown by
the GitHub issue tracking system. This quantity of rela-
tionships among the projects, both from social and techni-
cal domains, sets the favorable ground for undertaking the
socio-technical congruence measure in Ruby ecosystem.

4.2 Socio-Technical Congruence in the Ruby
Ecosystem

Result obtained from the socio-technical congruence mea-
sure carried out for Ruby gems ecosystem is reported in
Table 1. Observed results positioned this study to offer the
following insights:

The congruence measure, as a whole, is significantly low
for all the 7 edge weight categories of explicit coordination
network, as shown in the trend chart in Figure 4. This chart
plots the congruence measure against the edge weight limit
of the coordination network. According to this chart, for
edge weight ≥ 2, the congruence measure is 76.2%, which
drops sharply with the increasing edge weight limit. For
instance, congruence value drops to 46.3% for edge weight
≥ 8, which goes down as low as 36.1% for weight ≥ 19.

As explained in Section 2.4, the edge weight in the explicit
coordination network depicts the strength of collaboration
among the developers. Thus, communication and collabo-
ration get strongly tied with the increased edge weight in
this network. The stated congruence measure, in this con-
nection, shows that congruence measure decreases with the
increased developer collaboration. This observation led us
to infer that

The collaboration pattern among the developers in Ruby ecosys-
tem is not necessarily shaped by the communication needs
devised in the dependencies among the gems.

The following explanations can be offered in support to this

5

Table 1: Socio-Technical Congruence in Ruby Ecosystem
Constraints Edge count of the Architectures Congruence

No of
Gems
Selected

Weight limit
for Explicit
Coordination
Network

Explicit Ar-
chitecture
(RefA)

Implicit Ar-
chitecture
(AnalogousA)

Intersection count
(RefA

⋂
AnalogousA)

Congruence =
RefA

⋂
AnalogousA

|RefA| × 100)

12520 ≥ 2 28361 10472491 21604 76.2
≥ 8 28361 3283494 13121 46.3
≥ 9 28361 2765429 12269 43.3
≥ 10 28361 2448552 11737 41.4
≥ 12 28361 2283553 11488 40.6
≥ 14 28361 1948130 10613 37.5
≥ 19 28361 1843492 10211 36.1

Figure 4: Socio-Technical Congruence in Ruby
Ecosystem

inference. Interdependency among projects in an ecosys-
tem often exist at a higher abstraction level. For instance,
in the case of the Ruby ecosystem, the gems’ dependencies
are due to development and runtime dependencies. A de-
velopment dependency defines a gem that is necessary at
development time for further development, whereas a run-
time dependency represents a gem that is necessary at run-
time. Therefore, such dependencies can not define the con-
crete task dependencies at the development level that could
necessarily devise the coordination needs among developers
responsible for those tasks. It is thus possible that the de-
velopers who have extensive collaboration (as seen in the
Explicit Coordination Network) belong to the same gem or
related gems that have dependency at development level.
For instance, the Explicit Coordination Network that have
edge weight ≥ 19 contains 362 developers. Around 79% of
these developers (285 developers out of 362) works for the
same gem jdbc-jtds. Therefore, it is obvious that these 285
developers should have extensive communication and collab-
oration, as their development tasks are bound to have tech-
nical dependencies. Thus strong socio-technical congruence,
as proposed by [20], might imply better coordination among
the developers, which can give ground to better support the
management of changes and maintain quality.

However, Socio-Technical congruence within an FLOSS project
have already been measured in [31]. In this paper, Socio-
Technical congruence has been measured using equation (1)
during the entire lifespan of FreeBSD project. Reported re-
sult identified that congruence is significantly higher in the
FreeBSD project which has a stable evolution history for the
last seven stable releases of the project. This implies that

the collaboration pattern of the FreeBSD developers are due
to the communication need established by the dependen-
cies within the software components that are contributed by
them. We argue that similar congruence measure may be
seen for a gem (e.g., jdbc-jtds) in the Ruby ecosystem.

In summary, this discussion lead us to conclude that strong
socio-technical congruence exists among developers within a
project, which, however, decreases significantly at ecosystem
level.

5. RELATED WORK
In this section we highlighted the prior works that fall within
the scope of this research.

5.1 Socio-Technical Congruence
In literature it has been stated that high degree of congru-
ence between the social and technical domain is a natural
consequence and a desired property for collaborative devel-
opment activities [2],e.g., software engineering. Such claim
has also been accredited in other studies: for instance, stud-
ies that identified that effective Socio-Technical alignment
in a project offers faster completion of modification requests
[4] with higher build success [20] and product quality [1].

On the other hand, lack of Socio-Technical congruence is of-
ten subjected to lower productivity with increased number
of code changes [3][8] and negative performance level [30]
within the organization. It is, thus, advised to measure con-
gruence to evaluate the actual coordination quality within
the organization [3].

5.2 Study of OSS Ecosystems
Social interaction in open source software ecosystems, i.e.
the interaction and dependencies between developers, and
the effect it has to the software produced but also to the
ecosystem as a whole, is a perspective of software ecosystems
that has been the focus in a number of studies. In this con-
text, Kabbedijk and Jansen [17] analyze the Ruby Git repos-
itory, graph the developer and gem interaction and define
three developer roles according to their analysis. Scacchi [28,
29] analyses different perspectives of free and open source
software development (FOSSD) underlining the concept of
multi-project (FOSSD) software ecosystem, a set of different
FOSSD projects under the same repository. He states that
software evolution in this kind of ecosystems depends on a
number of parameters, people (developers) and their inter-
action being one of them. Raj and Srinivasa [18] analyze the

6

developer contribution in sourceforge.net to reveal the ten-
dency of developers to contribute to single projects in the
repository. Jergensen et al. [16] study GNOME developer
participation and showed that the onion model hypothesis
of new contributors in FOSS projects does not apply to this
project. While Ververs et al. [32] study how development
activity changes before and after events (e.g. commits) in
the Debian ecosystem and argue that frequent events in the
ecosystems ensure developer commitment.

Moreover, the literature reports on a number of tools for
analyzing open source ecosystems where the analysis mainly
focuses on user interaction and software evolution [22, 23,
11]. Software evolution in ecosystems is also addressed by
Yu et al. [33, 34] where they analyse the evolution of software
from the biological viewpoints: evolution in term of symbio-
sis and in terms of darwinism. While, Robbes et al. [25]
study the evolution of OSS software in terms of the Ripple
effect, i.e. the effects to software when APIs change.

6. THREATS TO VALIDITY
The following aspects have been identified which could lead
to threats to validity of this study.

External validity (how results can be generalized): This pa-
per disseminates an empirical study of the Conway’s Law in
an ecosystem level. Our empirical data are collected from
the Ruby ecosystem, where we apply the theory. The fact
that we only study the Ruby ecosystem and that this is the
only study of this of the Conway’s Law in an ecosystem level,
at least to our knowledge, allow for questioning the extent
to which our results can be generalised. Our study intends
to trigger additional studies of this kind, in different ecosys-
tems, in order to reach closer to a conclusion that can be
generalised.

Internal validity (confounding factors can influence the find-
ings): When examining the empirical data of our study, we
note that we could only retrieve the GitHub issues for 56%
of the total Ruby gems, although 72% of the gem specifica-
tion referenced GitHub, successfully extracted the issues of
a total of 33, 960 GitHub projects. This is either because our
method was unable to identify a valid GitHub URL or the
gems were not developed using GitHub. The high number
of unidentified issues can pose threats to the validity of the
study.

Construct validity (relationship between theory and observa-
tion): Among the identified GitHub gems we limited our
study to 12,520 gems, as only for those gems we were able
to identify developer communication data. The reasoning
here is that implicit architecture that was generated based
on explicit coordination network, would only contain rela-
tionships among these 12520 projects. Thus considering the
whole population of gems would lead to biased observation.
This might pose threat to construct validity to this study.

7. CONCLUSIONS
In this paper, we studied the socio-technical congruence,
and the significance of Conway’s Law, in the context of the
Ruby FLOSS ecosystem. Our study shows that the con-
gruence measure in Ruby is relatively low, which indicates
that the collaboration pattern among the developers in the

Ruby ecosystem is not necessarily shaped by the communi-
cation needs devised in the dependencies among its ecosys-
tem projects. In contrast, the individual ecosystem projects
themselves still enjoy higher levels of congruence.

Our findings can be explained by the fact that developers
often communicate with peers involved in the same projects,
which offer a narrow enough context for collaboration. In
the case of Ruby, the ecosystem level turns out be too broad
for such communication activities. From ecosystem heath
perspective, a low congruence level could mean that devel-
opers might be unaware of important project dependencies
or might have missed opportunities to collaborate with other
relevant ecosystem developers.

As future, work we plan to investigate the inverse Conway’s
Law in the Ruby ecosystem examining whether the projects
dependency structures can themselves be used to approxi-
mate the coordination network between developers.

8. ACKNOWLEDGEMENTS
This work has been partially funded by the TUT Graduate
school, Finland.

9. REFERENCES
[1] F. P. Brooks. The mythical man-month. Anniversary

Edition: Addison-Wesley Publishing Company, 1995.

[2] T. Browning. Applying the design structure matrix to
system decomposition and integration problems: a
review and new directions. IEEE Transactions on
Engineering Management, 48(3):292–306, 2011.

[3] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley.
Identification of coordination requirements:
Implications for the design of collaboration and
awareness tools. In Proceedings of the 2006 conference
on Computer Supported Cooperative Work, pages
353–363. ACM, 2006.

[4] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and
K. M. Carley. Identification of coordination
requirements: Implications for the design of
collaboration and awareness tools. CSCW’06, 2006.

[5] M. E. Conway. How do committees invent?
Datamation, 14(4):28–31, 1968.

[6] R. Daft and K. Weick. Towards a model of
organizations as interpretation systems. In Academy of
Management Review, volume 9, pages 284–295, 1984.

[7] Eclipse – the eclipse foundation open source
community website. http://www.eclipse.org.
Accessed 2014-05-02.

[8] K. Ehrlich, M. Helander, G. Valetto, S. Davies, and
C. Williams. An analysis of congruence gaps and their
effect on distributed software development. Proc.
Socio-Technical Congruence Workshop at ICSE Conf.,
2008.

[9] GitHub. Build better software, together.
https://www.github.com. Accessed 2014-05-02.

[10] GNOME. http://www.gnome.org. Accessed
2014-05-02.

[11] M. Goeminne and T. Mens. A framework for
analysing and visualising open source software
ecosystems. In Proceedings of the Joint ERCIM
Workshop on Software Evolution (EVOL) and

7

http://www.eclipse.org
https://www.github.com
http://www.gnome.org

International Workshop on Principles of Software
Evolution (IWPSE), IWPSE-EVOL ’10, pages 42–47,
New York, NY, USA, 2010. ACM.

[12] J. Han, C. Wu, and B. Lee. Extracting development
organization from open source software. In 16th
Asia-Pacific Software Engineering Conference, IEEE.,
pages 441–448, 2009.

[13] E. V. Hippel. Task partitioning: an innovation process
variable. In Research Policy, volume 19, pages
407–418, 1990.

[14] S. Jansen, S. Brinkkemper, and M. A. Cusumano.
Software Ecosystems: Analyzing and Managing
Business Networks in the Software Industry. Edward
Elgar Publishing, 2013.

[15] S. Jansen, A. Finkelstein, and S. Brinkkemper. A
sense of community: A research agenda for software
ecosystems. In Software Engineering-Companion
Volume, 2009. ICSE-Companion 2009. 31st
International Conference on, pages 187–190. IEEE,
2009.

[16] C. Jergensen, A. Sarma, and P. Wagstrom. The onion
patch: migration in open source ecosystems. In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, ESEC/FSE ’11, pages 70–80,
New York, NY, USA, 2011. ACM.

[17] J. Kabbedijk and S. Jansen. Steering insight: An
exploration of the ruby software ecosystem. In
B. Regnell, I. Weerd, O. Troyer, W. Aalst,
J. Mylopoulos, M. Rosemann, M. J. Shaw, and
C. Szyperski, editors, Software Business, volume 80 of
Lecture Notes in Business Information Processing,
pages 44–55. Springer Berlin Heidelberg, 2011.
10.1007/978-3-642-21544-5 5.

[18] R. P. M. Krishna and K. G. Srinivasa. Analysis of
projects and volunteer participation in large scale free
and open source software ecosystem. SIGSOFT Softw.
Eng. Notes, 36:1–5, March 2011.

[19] I. Kwan, A. Schroter, and D. Damian. Does
socio-technical congruence have an effect on software
build success? a study of coordination in a software
project. In IEEE Trans. Software Eng., volume 37,
pages 307–324, 2011.

[20] I. Kwan, A. Schröter, and D. Damian. Does
socio-technical congruence have an effect on software
build success? a study of coordination in a software
project. IEEE Transactions on Software Engineering,
37(3):307–324, 2011.

[21] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes. The
small project observatory: visualizing software
ecosystems. In Science of Computer Programming,
volume 75, pages 264–275, 2010.

[22] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes. The
small project observatory: Visualizing software
ecosystems. Science of Computer Programming,
75(4):264 – 275, 2010. Experimental Software and
Toolkits (EST 3): A special issue of the Workshop on
Academic Software Development Tools and
Techniques (WASDeTT 2008).

[23] J. Pérez, R. Deshayes, M. Goeminne, and T. Mens.
Seconda: Software ecosystem analysis dashboard. In
Software Maintenance and Reengineering (CSMR),

2012 16th European Conference on, pages 527 –530,
march 2012.

[24] E. S. Raymond. The new hacker’s dictionary (3rd ed.).
In Cambridge, MA, USA: MIT Press, 1996.

[25] R. Robbes and M. Lungu. A study of ripple effects in
software ecosystems (nier track). In Proceedings of the
33rd International Conference on Software
Engineering, ICSE ’11, pages 904–907, New York, NY,
USA, 2011. ACM.

[26] Ruby programming language.
https://www.ruby-lang.org. Accessed
2014-05-02.

[27] RubyGems.org. Your community gem host.
https://www.rubygems.org. Accessed 2014-05-02.

[28] W. Scacchi. Free/open source software development:
recent research results and emerging opportunities. In
The 6th Joint Meeting on European software
engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering:
companion papers, ESEC-FSE companion ’07, pages
459–468, New York, NY, USA, 2007. ACM.

[29] W. Scacchi. The future of research in free/open source
software development. In Proceedings of the FSE/SDP
workshop on Future of software engineering research,
FoSER ’10, pages 315–320, New York, NY, USA,
2010. ACM.

[30] M. Sosa, S. Eppinger, and C. Rowles. The
misalignment of product architecture and
organizational structure in complex product
development. Management Science, 12(50):1674–1689,
2004.

[31] M. Syeed and I. Hammouda. Socio-technical
congruence in oss projects: Exploring conway’s law in
freebsd oss evolution. In Proceedings of 9th
International Conference of Open Source Systems
(OSS), Springer, pages 109–126, 2013.

[32] E. Ververs, R. van Bommel, and S. Jansen. Influences
on developer participation in the debian software
ecosystem. In Proceedings of the International
Conference on Management of Emergent Digital
EcoSystems, MEDES ’11, pages 89–93, New York,
NY, USA, 2011. ACM.

[33] L. Yu, S. Ramaswamy, and J. Bush. Software
evolvability: An ecosystem point of view. In Software
Evolvability, 2007 Third International IEEE
Workshop on, pages 75 –80, oct. 2007.

[34] L. Yu, S. Ramaswamy, and J. Bush. Symbiosis and
software evolvability. IT Professional, 10(4):56 –62,
july-aug. 2008.

8

https://www.ruby-lang.org
https://www.rubygems.org

[VI] M.M. Syeed, and I. Hammouda. Who Contributes to What? Exploring
Hidden Relationships Between FLOSS Projects. In Proceedings of the 10th
IFIP WG 2.13 International Conference of Open Source Systems (OSS’2014),
pages 21–30. Springer, May, 2014.

Who Contributes to What?

Exploring Hidden Relationships between FLOSS
Projects

M.M. Mahbubul Syeed1 and Imed Hammouda2

1 Department of Pervasive Computing,
Tampere University of Technology, Finland

mm.syeed@tut.fi
2 Department of Computer Science and Engineering,
Chalmers and University of Gothenburg, Sweden

imed.hammouda@cse.gu.se

Abstract. In this paper we address the challenge of tracking resembling
open source projects by exploiting the information of which developers
contribute to which projects. To do this, we have performed a social
network study to analyze data collected from the Ohloh repository. Our
findings suggest that the more shared contributors two projects have,
the more likely they resemble with respect to properties such as project
application domain, programming language used and project size.

1 Introduction

With the exponential increase of Free/Libre Open Source (FLOSS) projects [6],
searching for resembling open source components has become a real challenge for
adopters [7]. By resemblance, we mean similarity factors between projects such
as features offered, technology used, license scheme adopted, or simply being of
comparable quality and size levels.

In this paper we exploit the information of ’which developers contribute to
which FLOSS projects’ to identify resembling projects. Our assumption is that if
a developer contributes to several projects, simultaneously or at different times,
then there might be implicit relationships between such projects. For example,
one FLOSS project may use another as part of its solution [17] or two projects
could be forks of a common base [16].

The idea of collecting and studying data of who contributes to which FLOSS
projects is not new. The question has been the focus of many studies due to its
relevance from many perspectives. For instance, the question has been significant
for companies who want to identify who influences and controls the evolution
of a specific project of interest[2], or to explore the social structure of FLOSS
development [1], or simply to study what motivates people to join open source
communities [3]. In this work, we address the following research questions:

L. Corral et al. (Eds.): OSS 2014, IFIP AICT 427, pp. 21–30, 2014.
c© IFIP International Federation for Information Processing 2014

22 M.M.M. Syeed and I. Hammouda

1. How do FLOSS project development communities overlap?
2. To what extent can developer sharing in FLOSS projects approximate re-

semblance between the projects themselves?

For answering these questions, we used social network analysis techniques to
analyze data collected from the Ohloh repository [4].

2 Study Design

This section presents in detail our study design, covering discussion on the data
sources, required data sets, data acquisition, cleaning, and analysis process along
with validation and verification of the analysis process.

2.1 Data Source

For this study we selected Ohloh data repository [4], which is a free, public
directory of open source software projects and the respective contributors.

Ohloh collects and maintains development information of over 400 thousand
FLOSS projects, and provide analysis of both the codes history and ongoing up-
dates, and attributing those to specific contributors. It can also generate reports
on the composition and activity of project code bases. These data can be ac-
cessed and downloaded through a set of open API which handles URL requests
and responses [4]. The response data is expressed as an XML file, an example of
which is shown in Fig. 1.

Our selection of Ohloh data repository is predominantly influenced by the
following factors: (a) Ohloh data can be publicly reviewed, which in turn makes
it one of the largest, most accurate, and up-to-date FLOSS software directo-
ries available; (b) the use of Ohloh repository makes FLOSS data available in
a cleaned, unified and standard platform independent format. This makes the
process of data analysis and visualization independent of technology, and data
repository.

2.2 Data Collection

The following information has been collected from Ohloh repository in relation
to this study:

Developer Account Information: An Account represents an Ohloh mem-
ber, who is ideally a contributor to one or more FLOSS projects. Ohloh records
a number of properties (or attributes) for an account.Among thousands of reg-
istered members, we collected account information of top 530 contributors ac-
cording to assigned kudo rank of 10 and 9. Kudo rank is a way of appreciation
to the FLOSS contributors through assigning a number between 1 and 10 for
every Ohloh account [5].

Project Data: A Project represents a collection of source code, documenta-
tion, and web site data presented under a set of attributes, a list of which can

Exploring Hidden Relationships between FLOSS Projects 23

Fig. 1. (a) Project Information (b) Developer Position Information

be found in Fig. 1(a). We collected information of 4261 projects to which a total
of 530 developers have contributed.

Position Information: A position is associated with each Ohloh account,
which represents the contributions that the account holder has made to the
project(s) within Ohloh. Information maintained in a position repository can be
found in Fig. 1(b). We collected the position information for each of the 530
contributors.

For downloading these repository data, we have implemented Java programs,
one for each repository. Each Java program implements the API corresponding
to a repository by combining the repository URL’s and the unique API key to
query the database. The result data set is in XML format.

2.3 Data Processing

From the collected repository data (i.e., the XML files as presented in Section
2.2), we parsed only the information that has significance to this study. The
parsed information is recorded under a defined set of attributes/tags in XLSX
files, one for each XML repository file.

Collected information is then merged to built a complete database required for
data analysis. A partial snapshot of this database can be visualized in Fig. 2. Each

24 M.M.M. Syeed and I. Hammouda

row presents detailed information about (a) a contributor, (b) a project in which
he/she contributed, and (c) the record of contribution to that project.

To automate data parsing and merging, parsers and data processors were
written in Java. These programs use Jsoup HTML parser [9] and Apache POI
[8] for parsing the XML files and to create database in XLSX format, respectively.

Fig. 2. Partial Snapshot of the database

2.4 Data Analysis

Data analysis targeting to answer the research questions composed of two steps:
First, we created an Implicit Network in which two projects have a rela-

tionship if both are contributed to by the same contributor. An edge weight in
this network represents the number of such common contributors between two
projects. As an illustration, consider contributors Stefan Küng and XhmikosR
in Fig. 2. The former contributor has contributed to 4 FLOSS projects as listed
under the projectName column, while the latter has contributed to 5 projects.
Both developers contributed to projects TortoiseSVN, CryptSync, and Commit-
Monitor. In total, Fig. 2 lists 6 distinct projects. An implicit network among
these 6 projects is shown in Fig. 3. Projects TortoiseSVN, CryptSync, and Com-
mitMonitor are linked with edge of weight 2 (i.e. 2 shared developers). All other
edges have weight 1 as those project pairs have only one shared contributor.
For example, FFmpeg and CommitMonitor have only developer XhmikosR in
common.

The complete network is composed of 194424 edges between 4261 projects,
with edge weight varies between 1 and 41. Complete edge list of this network
can be found in [10].

Second, we measured the extent to which this implicit network comply with
the factors often used to classify projects. For this study we selected five factors
that are often cited by popular forges (e.g., SourceForge [11]) for categorizing
FLOSS projects. These factors include programming language, project size, li-
cense, project rating [4] and project domain. Project size was further categorized

Exploring Hidden Relationships between FLOSS Projects 25

Fig. 3. An illustration of the implicit network

into very large (500K SLOC), large (50K-500K SLOC), medium (5K-50K SLOC)
and small (<5K SLOC), according to current literature [19]. Similarly, project
rating was classified into top (≤ 4), high (≤ 3 and <4), medium (≤ 2 and <3)
and low (<2) on a scale of 5.

For each factor, we identified from the implicit network the number of edges
in which both projects have the same value. Due to the large size of the implicit
network, we limited this investigation to top ranked 262 edges (the edges that
have weight greater than 10) and least ranked edges (random selection of 500
edges from the edges that have weight of 1).

The result of this analysis is reported in Table 2. As an illustration of this
approach, consider the project factor Language in Table 2. Among the top 262
edges, projects in 228 edges (87.03%) use same programming language, whereas
among the bottom 495 edges, projects in 233 edges (47%) have same languages.

2.5 Program Verification

Two pass evaluations were conducted to verify the correctness of the imple-
mented programs. First, the programs were tested with limited number of data
samples taken from the collected data. Notified bugs (e.g., errors in parsed data
for an HTML tag) were fixed accordingly. Second, a manual checking on a ran-
dom sample of the actual collected data was done. The correctness of collected
data in the second pass was reported to be over 98%.

3 Result Analysis

In this section we investigate the research questions primarily based on the
implicit network (described in Section 2.4) revealing projects relationships based
on common contributor(s), and by evaluating its compliance with the project
factors (presented in Table 2) often used to classify FLOSS projects.

26 M.M.M. Syeed and I. Hammouda

1. How do FLOSS project development communities overlap?
In this study we examined the implicit relationships among 2641 FLOSS

projects that are contributed to by 530 contributors. Based on common con-
tributor(s) as a relationship criterion, the implicit network reveals 194424 edges
(implicit relations) between 4261 projects. Edge weight lays between 1 and
41, which simply reflects the total number of common contributors between
projects. A partial snapshot of this network is shown in Figure 4, in which, for
instance, projects Debian and x.Org have a relationship edge with weight 17.
This is because 17 contributors contributed to both projects. This result, all to-
gether, portrays the collaborative nature of contribution by FLOSS community
members.

Fig. 4. Partial snapshot of the Implicit Network

To dig further and reason about such large deviation of edge weight, we
counted the edges within a certain weight range, result of which is shown in
Table 1. As presented in the table, the majority of the edges has low edge weight
count (192559 edges out of 194424 have weight bellow 5). Investigating the cause,
we observed that projects in these relationships are either medium or small size
projects. Even in case where both projects have similar project sizes (3rd row of
Table 2), 30% of the projects are medium or small sized. Hence, it is reasonable
that communities of such projects should be small. Contrary to this, projects
that are within the high edge weight count (e.g., edge weight over 10), are among
the very large or large project groups, thus justifying the large overlapping com-
munity of contributors.

The above observation is analogous to the richer gets rich phenomenon in
FLOSS projects collaboration [12], which states that communities that already
had a high population would effectively attract more contributors.

Additionally, this structure of sharing contributors among multiple projects
is supported by the small-world phenomenon [13]. In a small-world structure

Exploring Hidden Relationships between FLOSS Projects 27

several projects are connected with each other through one or more links, e.g.,
common contributors. In this setup, with increasing number of common contrib-
utors, the communities of related projects (as realized by the implicit network)
become strongly interconnected. We argue that this in turn may affect project
success: The productivity of the contributors is boosted by providing them a
dense communication channel to acquire more quantity and variety of informa-
tion and knowledge resources [14].

Table 1. Edge count under edge weight category

Edge Weight Category Edge Count

Less than 5 192559

Between 5 and 10 1603

Between 10 and 20 252

Greater than 20 10

Furthermore, contributors often participated in projects that belong to the
same domain or are sub-projects to a larger one, and that utilizes same program-
ming language(s) as development medium. High percentage of commonalities in
implicit network under these two categories (as reported in row 6 and 2 of Table
2) vindicated the claim. This complies with the fact that contributors develop
relationships on the common ground of interest [15].

Based on the above observation and discussion it can be affirmed that
FLOSS communities often prefer to participate in related projects with
participation count varies with the size of the projects.

2. To what extent can developer sharing in FLOSS projects approxi-
mate resemblance between the projects themselves?

Within the scope of this investigation, we rationalized the projects relationship
in implicit network against the actual factors that relate FLOSS projects. In
doing so, we measured the extent to which the implicit network comply with
the factors often used to classify projects. This approach is explained in detail
in Section 2.4, and the result of which is presented in Table 2.

Among the five project factors, implicit network could effectively approximate
three of them, namely, project domain, programming language and project size.
Column six in Table 2 shows high percentage of compliance of the implicit rela-
tionships to these project factors.

Contributors are most often attracted towards projects that fall within the
same project domain or are the sub-projects of a larger one. As can be seen in
row six of Table 2, among the top listed 262 edges, 257 (98%) has conformance
to same project domain. Similar observation holds (with 70% of conformance)
for bottom 500 edges as well. This implies that similar project domain most
effectively creates favorable ground for attracting contributors to participate in
them.

28 M.M.M. Syeed and I. Hammouda

Table 2. Compliance of the edges in Implicit Network to that of project factors

Project
Factor

Edge Selection
Category

Selected
edges
within the
category

No of Edges
in which both
nodes have at-
tribute value

Edges having
same attribute
value for the
nodes

(%)
count

Additional Info

Language Top
[Edge weight >10]

262 262 228 87.03%

Bottom
[Edge weight = 1]

500 495 233 47%

Project Size Top
[Edge weight >10]

262 262 168 64.13% Very large: 139
Large: 29

Bottom
[Edge weight = 1]

500 500 150 30% Very large: 25
Large: 70
medium: 35
Small: 20

License Top
[Edge weight >10]

262 214 84 39.26%

Bottom
[Edge weight = 1]

500 290 96 33.1%

Project
Rating

Top
[Edge weight >10]

262 182 124 68.14% Top: 107
High: 17

Bottom
[Edge weight = 1]

500 145 130 89.66% Top: 120, High:
10

Project
Domain

Top
[Edge weight >10]

262 262 257 98%

Bottom
[Edge weight = 1]

500 500 350 70%

Language similarity is found to be one of the major selection factors for con-
tributors participation. According to the data in the second row of Table 2,
87.03% of the top ranked 262 edges have language similarity in contrast to only
47% similarity for the bottom 500 edges. This observation approves that lan-
guage similarity among projects offers strong support to attract large number of
contributors.

The factor project size also imitate analogous results to that of language factor
(row three in Table 2). Projects that are very large or large in size (64.13%) are
able to manage larger collaborative contributor community than medium or
smaller sized projects (30%).

Additionally, results on project rating show that contributors are more at-
tracted towards highly rated projects than low rated ones (row 5 of Table 2).

However, contributors participation to the projects is not constrained by the
licenses of the respective projects. Our investigation reported that very low per-
centage of projects in implicit network have same license terms (only 39.26% of
the top ranked edges and 33.1% of the bottom edges as presented in row 4 of
Table 2).

Projects that are linked in the implicit network with high edge weight count
most likely belong to the same domain, use the same programming languages,
or have similar project size.

The following aspects have been identified which could lead to threats to
validity of this study.

Exploring Hidden Relationships between FLOSS Projects 29

External validity (how results can be generalized): This study includes 4261
FLOSS projects that are contributed by 530 contributors. Though, these projects
cover a wide spectrum of FLOSS territory according to project size, domain, used
languages and licenses, we cannot claim completeness of this justification.

Internal validity (confounding factors can influence the findings): The data used
in this study is limited to the one provided by Ohloh and may raise trust
concerns.

Construct validity (relationship between theory and observation): Data analysis
programs written for this study produce data accuracy of over 98%, which was
measured with random sample of collected data. This may affect the construct
validity.

4 Conclusions

This paper studied to what extent resembling FLOSS components can be tracked
based on community activities. Based on our findings, we claim that the pro-
posed approach could approximate to a satisfactory degree resemblance between
projects with respect to project domain, programming language and project
size. Contrary to these factors, license terms of the projects came out as the
least influential factor among all. This finding points out the fact that individ-
ual contributors may not be concerned about the licensing issues while selecting
projects for contribution. These claims however, need further study. In this re-
gard, a questionnaire to the open source community could be planned and carried
out.

Acknowledgement. This work is funded by the Nokia Foundation Grant, 2013
and the TiSE Graduate school, Finland.

References

1. Crowston, K., Howison, J.: The social structure of Free and Open Source Software
development. First Monday 10(2) (2005)

2. Aaltonen, T., Jokinen, J.: Influence in the Linux Kernel Community. In: Feller,
J., Scacchi, B.F.W., Sillitti, A. (eds.) Open Source Development, Adoption and
Innovation. IFIP, vol. 234, pp. 203–208. Springer, Boston (2007)

3. Bonaccorsi, A., Rossi, C.: Altruistic individuals, selfish firms? the structure of
motivation in open source software. First Monday (1-5) (2004)

4. Ohloh, http://www.ohloh.net/ (last accessed November 2013)

5. Ohloh kudo rank, http://meta.ohloh.net/kudos/ (last accessed November 2013)

6. Deshpande, A., Riehle, D.: The Total Growth of Open Source. In: Russo, B., Dami-
ani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Development, Com-
munities and Quality. IFIP, vol. 275, pp. 197–209. Springer, Boston (2008)

http://www.ohloh.net/
http://meta.ohloh.net/kudos/

30 M.M.M. Syeed and I. Hammouda

7. Rudzki, J., Kiviluoma, K., Poikonen, T., Hammouda, I.: Evaluating Quality of
Open Source Components for Reuse-Intensive Commercial Solutions. In: Proceed-
ings of EUROMICRO-SEAA 2009, pp. 11–19 (2009)

8. Apache POI-Java API for Microsoft Documents, http://poi.apache.org/ (last
accessed September 2013)

9. jsoup: Java HTML Parser, http://jsoup.org/
10. Research Data, http://datasourceresearch.weebly.com/
11. Source Forge, http://sourceforge.net (last accessed November 2013)
12. Weiss, M., Moroiu, G., Zhao, P.: Evolution of Open Source Communities. In: Dami-

ani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.) Open Source Sys-
tems. IFIP, vol. 203, pp. 21–32. Springer, Boston (2006)

13. Vir Singh, P.: The Small-World Effect: The Influence of Macro-Level Proper-
ties of Developer Collaboration Networks on Open-Source Project Success. ACM
TOSEM 20(2), Article 6 (2010)

14. Watta, D.: Networks, dynamics, and the small world phenomenon. Amer. J. Soci-
ology 105, 493–527 (1999)

15. Madey, G., Freeh, V., Tynan, R.: The open source software development phe-
nomenon: An analysis based on social network theory. In: Americas Conf. on In-
formation Systems, pp. 1806–1813 (2002)

16. Robles, G., González-Barahona, J.M.: A Comprehensive Study of Software Forks:
Dates, Reasons and Outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scac-
chi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 1–14. Springer, Heidelberg (2012)

17. Orsila, H., Geldenhuys, J., Ruokonen, A., Hammouda, I.: Update Propagation
Practices in Highly Reusable Open Source Components. In: Russo, B., Damiani,
E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Systems. IFIP, vol. 275,
pp. 159–170. Springer, Boston (2008)

18. Gonzalez-Barahona, J.M., Robles, G., Dueñas, S.: Collecting Data About FLOSS
Development: The FLOSSMetrics Experience. In: Proceedings of FLOSS 2010,
Cape Town, South Africa, pp. 29–34 (2010)

19. Scacchi, W.: Understanding Open Source Software Evolution: Applying, Breaking,
and Rethinking the Laws of Software Evolution. John Wiley and Sons (2003)

http://poi.apache.org/
http://jsoup.org/
http://datasourceresearch.weebly.com/
http://sourceforge.net

[VII] M.M. Syeed, I. Hammouda, and C. Berko. Exploring Socio–Technical
Dependencies in Open Source Software Projects — Towards an Automated
Data-driven Approach. In Proceedings of 17th the Academic MindTrek
Conference, pages 273–280. ACM, September, 2013.

Exploring Socio-Technical Dependencies in Open Source
Software Projects

Towards an Automated Data-driven Approach

M.M. Mahbubul Syeed
Tampere University of

Technology
mm.syeed@tut.fi

Imed Hammouda
Tampere University of

Technology
imed.hammouda@tut.fi

Csaba Berko
Tampere University of

Technology
csberko@yahoo.com

ABSTRACT
Comprehension of Open Source Software (OSS) projects is
traditionally driven by the plethora of data produced and
maintained by these projects. The data, in one hand, encap-
sulates the tacit knowledge on the evolution of the software
itself. And, on the other hand, provides the history of com-
munication and collaboration of the community. Acquisition
and analysis of such data has been mostly manual or semi-
automated and error-prone, mainly due to unstructured and
substandard data representation. This increases the valid-
ity threat of the reported results and makes it incompa-
rable across the studies. With the advancement of data
management tools and technologies, many third party data
providers are putting serious effort to provide OSS project’s
data in a standard and platform independent format. In
this paper, we propose a framework to fully automate the
analysis and visualization of OSS evolution data through
the use of existing data services. As a proof of concept we
implemented a tool named POMAZ. We demonstrate the
applicability of the tool in the context of two related open
source projects FFmpeg and GStreamer.

Keywords
Open Source Software, Data Analysis, Socio-Technical Con-
gruence

1. INTRODUCTION
For the past couple of decades, the research community

has been studying the open source movement from a range
of perspectives including economy [12], law [39], technology
[33], sociology [30], and information systems [20]. These di-
mensions are not independent of each other, and decisions
regarding any one may be influenced by the decisions taken
for the other dimensions. For example dual-licensing [26]
is often regarded as both a legality and business model.
Another example is the evolution pattern of Open Source

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Academic MindTrek ’2013, October 1-4, 2013, Tampere, FINLAND.
Copyright 2013 ACM 978-1-4503-1992-8/13/10 ...$15.00.

Software (OSS) projects, which is often regarded as a socio-
technical issue [18]: The way a project community operates
may affect the way the project source code is maintained,
and vice versa. There are plenty of similar hidden patterns
and dependencies that represent both opportunities for ac-
tion and for reflection. Indeed, mining and exploring such
implicit and hidden patterns is an important step supporting
the comprehension and the evaluation of OSS projects.

For examining the various patterns and dependencies in
OSS projects, researchers often resort to public project data.
Projects are typically associated with rich repositories con-
taining various sources of information such as source code,
bug reports, mailing lists, and revision history logs. How-
ever, working with such data is both an opportunity and
challenge. On the one hand, data offer a nice tool for a
rich and more objective decision making process. On the
other hand working with heterogeneous and big data might
be a challenging task related to acquisition, exploration, and
analysis activities [19]. For example, acquisition of such data
has been mostly manual or semi-automated and error-prone,
mainly due to unstructured and substandard data represen-
tation.

In this paper, we argue that such challenges can be partly
circumvented through the use of third party data collection
services of OSS projects. These data are openly available to
analyze and can be used with simple API’s. This advance-
ment opens the door to fully automate the data analysis and
visualization process, and overcoming the deficiencies of ear-
lier works. Researchers would then focus on implementing
techniques and tools using ready available and structured
data. Within the wide spectrum of open source dimensions,
the main focus of this paper is to examine the socio-technical
perspective as an important explanatory factor for many in-
teresting comprehension questions. We also take this per-
spective merely from a pragmatic point of view: most OSS
project data deal with community and source code related
information.

The contribution of the paper is threefold: First, we re-
view the social and technical dimensions of open source soft-
ware. Second, we introduce a tool concept for automated
data-driven exploration approach of OSS projects. Third,
we present a generic tool named POMAZ implementing the
proposed approach. The tool uses existing and new methods
for measuring evolving project attributes and for querying
statistical information from project repository. Using the
tool, it is possible to monitor the evolution of OSS projects
from different viewpoints and set forecasts up regarding their

future development. We discuss the applicability of the tool
in the case of two competitive projects FFmpeg [7] and
GStreamer [11].

The rest of the paper is structured as follows. In Section
2, we review the socio-technical perspectives of open source.
In Section 3, we set the stage for our proposed approach and
tool concept. A concrete tool environment implementing the
approach is then presented in Section 4. In Section 5, we
demonstrate the feasibility of the approach by discussing a
number of scenarios applied to two OSS projects. Finally,
in Section 6, we draw some final conclusions and point out
directions for future work.

2. BACKGROUND
In this section, we present a holistic view on the research

of OSS Projects through identification and definition of the
targeted perspectives of OSS projects that were explored in
current literature. Subsequently our motivation behind the
work is portrayed.

Research towards OSS projects can be classified along sev-
eral distinct facets, namely, Social [40][30], Technical [31][4],
Socio-Technical [36][3], Legal [39], and Economical [12]. In
this paper, however we focus on the first three facets, i.e.,
Social, Technical and Socio-Technical. Because these facets
have been found central when considering studies pertaining
evolution of OSS projects [37].

In what follows we discuss the three facets and current
research within. Representative inquiries within these facets
are also presented, which are investigated in this study.

2.1 Social
OSS development is a perceptible example of the collab-

orative community-based model [35]. The communities are
at the core of the social dimension of OSS projects which
comprises of the community of developers and users [40].

Based on the level of participation, the role of the commu-
nity members can be classified within the range of project
leaders (maintainers) and core members (contributors) to
active and passive users [42][43][45]. Project leaders are the
ones who usually initiate the project and make the major de-
velopment decisions. Core members often make significant
contributions to a project over time. Depending on task allo-
cation, core members can further be subdivided into creators
(leaders), communicators (managers), and collaborators [8].
Active users are the part of the community who often re-
port bugs, but do not fix them. Finally, passive users are all
remaining users who just use the system.

Community members contributing to an OSS project are
not strictly bound to any organizational rules, regulation
and structure. Rather they voluntarily join and contribute
to the project. These people belong to discrete geographical
locations having significant difference in background, time-
zone, language and cultural distances [36]. Often simple
communication media like email, wiki, chat [44] are used to
establish communication, collaboration among the commu-
nity members. To develop, share and contribute to the soft-
ware code, revision tracking systems (such as CVS, SVN),
change logs, bug tracking systems (like bugzilla) [14], and
project hosting cites like, sourceforge, github [46] are used.

Research directing towards social dimension mostly ex-
plored the social interaction data stored in the communica-
tion archives such as email, chat, wikis [10]. The plethora
of data stored in these archives are effectively utilized to

build the significant body of knowledge that comprises: (a)
the understanding of motivations, participation, and perfor-
mance of the community members [30], (b) formation of the
community structure, and practices, (c) the communication
and collaboration patterns [40], and (d) the success factors
[10].

Within this facet, the following issue, for example, would
be worth exploring: how does open source community change
during project evolution? Can we perceive any community
evolutionary patterns?

2.2 Technical
The technical domain of an OSS project often constitutes

the software code-base, and activity traces concerning its
development and maintenance, such as, change log/revision
history log, commit records, and bug reports. In maintain-
ing the code-base and associated data over the releases of
the software, several data management tools are used for in-
stance CVS/SVN to maintain the code-base, and bugzilla,
jira bug reporting systems for fault/feature request manage-
ment.

Research within the technical domain have contributed
heavily in understanding the complexity of the software de-
velopment through exploration of the sources listed above.
Focus of such research can be classified along two dimen-
sions, namely, intra-project analysis and inter-project anal-
ysis.

Inter-project studies can be classified further into macro
and micro level studies. For instance, macro level studies
explores how the different versions of the code-base evolve,
e.g., in case of forked projects [32]. Whereas, micro level
studies include (but not limited to) the followings, (a) un-
derstanding the software growth in size [31] (e.g., lines of
code, commits, comments, commit total), complexity (e.g.,
cyclomatic complexity, halstaed complexity) [33], and mod-
ularity; (b) study the quality aspects of the software [4], and
(c) predict the evolution [41], maintainability (e.g., refactor-
ing) [24], defect density [16] of the code base.

Inter-project studies are mostly exploring relationships
and dependencies among related projects, for instance study-
ing update propagation patterns among different OSS projects
[27].

A example inquiry within this domain would be to investi-
gate how the technical documentation within the code base
evolve with the growth of the software.

2.3 Socio-Technical
The Socio-technical perspective of an OSS project bonds

the social and the technical dimensions, e.g., the people, arti-
facts, computational environments, and enables to develop
a method, or taxonomy, to analyze, and understand OSS
development [23]. A high degree of correspondence between
the two dimensions, termed as socio-technical dependency
in literature, is a natural consequence and desired property
for a collaborative development environment, such as OSS
projects [2].

Understanding socio-technical dependency through the anal-
ysis of congruence between the social and technical dimen-
sion is vital for supporting collaboration and coordination in
OSS projects [36][3]. For instance, developers who are mod-
ifying interdependent code modules but not communicating
may introduce potential future integration problems.

Though the topic is relatively new for the research com-

munity, yet there exists encouraging results in current liter-
ature. To be precise, higher level of socio-technical congru-
ence increases the efficiency of software development process
[3]. Also the success of software build process and the qual-
ity is dependent on the congruence level [18][22]. Measure-
ment of congruence using data mined from OSS repositories
reported high and consistent congruence between the two
domains during the evolution of such projects [36]. And it
is suggested that for OSS projects, socio-technical congru-
ence can be measured at different points in time in order to
optimally guide software development activity [6].

A classical scenario to investigate within this facet would
be to study the effect of the community on the software, for
example studying the correlation between the growth of the
community and the software in terms of size.

3. TOWARDS AN AUTOMATED DATA
DRIVEN ANALYSIS

Studies falling within the three facets (discussed in Sec-
tion 2) are predominantly influenced and driven by high-
confidence data on the structure of OSS [41]. These data
present a sheer volume of information comprising both the
development (i.e., technical) and communication (i.e., so-
cial) history of the project [1]. This alleviates the study of
Socio-Technical dependencies through mining and examin-
ing the tacit knowledge buried in these artifacts.

This section provides a holistic view on the benefactor of
such artifacts, associated challenges in exploiting the sources,
and a methodological classification that are effectively used
for such exploration.

3.1 Data Repositories in OSS Projects
Traditionally, each OSS project maintains its data through

different data management tools and made them publicly
available through public interfaces, e.g., Internet. Addition-
ally, many of these projects are nowadays moving to third
party hosting facilities which provide efficient data manage-
ment and communication support.

Accumulation of the tacit knowledge from these data sources
requires several activities, such as, data acquisition, clean-
ing, analysis and interpretation (e.g., visualization). A key
concern of this process is that most of the activities requires
manual effort, specially data acquisition and cleaning. Be-
cause, data offered by the above sources are heterogeneous
in nature, as different projects use different data manage-
ment tools, have different data representation, and that the
data might be scattered in different archives. Thus it is a
challenging task to ensure the quality of the collected data,
even following standard data collection process.

3.2 OSS Project Analysis Approaches
Different analysis approaches and methods have been us-

ing the public data differently. We argue that such ap-
proaches can be categorized into three generations, as pre-
sented in [9]. These generations are distinct from each other
according to the degree of automation they offer in exploring
and analyzing the data sources.

For the first generation approaches, the task of data gath-
ering and evaluation are mostly manual. For instance, first
generation quality models for OSS (e.g., OpenBRR, QSOS)
falls within this category [9]. The second generation ap-
proaches offer semi-automated process. A representative ex-

ample would be the second generation quality models (e.g.,
QualOSS) [9].

Following the trend towards the automation of OSS data
analysis approaches, it can be argued that eventually the
third generation approaches would endeavor fully automated
methods and techniques [9]. To elevate this process of au-
tomation, we present in this paper, a methodological frame-
work to articulate the analysis of the collaborative design
of the OSS projects. We further argue that our frame-
work would portray unified and comparable analysis of OSS
projects by establishing links between the heterogeneous
components of a project’s hybrid data sources.

3.3 The Framework
In this section we present a generic three-layer frame-

work to fully automate the data driven analysis of the OSS
projects. Taking the advantage of highly generic and stan-
dard representation of OSS data, provided by the third party
data providers, this framework will seamlessly integrate the
three layers to serve the purpose of data analysis and visu-
alization. The proposed framework is presented in Figure
1.

The key considerations for deriving this framework in-
cludes, data independence, re-usability of the data, and in-
crease of the validity measure and comparability of results
produced by the research community. In this regard, data
independence ensures the fact that methods derived for OSS
data analysis should be independent of OSS data, and can be
applied across OSS projects. Re-usability should enforce log-
ging of data to local repositories to minimize costly request
over Internet for subsequent access. Additionally, a stan-
dard representation and access mechanism of data across
OSS projects would produce cohesive research results, with
greater validity, confidence, and comparability.

Figure 1: Framework for third generation data ana-
lyzers

As shown in Figure 1, the first layer of this framework
consists of the raw data sources offered by the hosting sites.
For instance, most OSS projects provides public interfaces
for each of the data sources to be accessed and downloaded.

None-the-less, hosting cites, such as sourceforge and github
provide similar facilities for the projects hosted by them.

The second layer constitutes the third party data providers,
a representative example would be OHLOH [25]. We pro-
pose three essential components for this layer. First, the
data storage. The purpose of this storage is to perform data
acquisition, essentially from all available sources provided by
the first layer. Additionally, it will perform adequate data
cleaning, and provide categorical representation of data with
unified and standard format. Second, the data analyzer and
viewer module, which would provide high level data analysis
and visualization of selected projects. For instance, visualiz-
ing project activity for a selected period. Third, a platform
independent interface, which would be built to provide ac-
cess to the data. For instance, a set of API’s can be build
to query the database, which will return the resultant data
set in a platform independent format, such as XML. Thus
methods and tools implemented on top of these interfaces
would essentially produce unified results that are coherent
and comparable to each other.

The third layer in the framework is the front end data an-
alyzers. This layer consists of a set of customized tools and
methods, and the local data storage unit. The methods will
support the need of different parties, e.g., research works tar-
geting to understand different perspectives of OSS projects.
These tools make use of the unified data provided by the
second layer through standard set of API’s. This stan-
dardization of data removes the burden of semi-automated
data gathering and preprocessing activities, and facilitate
researchers to concentrate more on the soundness of the un-
derlying data analysis methodologies. Also the data storage
unit could cache the data collected through the API’s and
as well as store the processed one for further use.

Within this framework, the second layer implements the
data independence for the tools and methods built in third
layer, whereas, the data storage in the third layer offers
reusability of data.

4. PROOF OF CONCEPT
In exploring the effectiveness of the framework, a concep-

tual architecture encompassing the proposals of the frame-
work is derived. Corresponding tool support is built and
evaluated through multiple case studies.

4.1 The Architecture
The proposed architectural design presented in Figure 2.

The data provider in this reference architecture is the OHLOH
repository, thus corresponds to the second layer of the frame-
work. An elaborated discussion on OHLOH is presented in
Section 4.2. The other modules presented within this ar-
chitecture (modules within the rectangle box in Figure 2)
are the implementation of the third layer in the framework.
The Connector module in this layer is responsible for the
low-level connection and data collection. This module also
handles problems concerning missing data, false data or un-
availability of the data provider repository.

Data holder module implements the reusability of the
data. This module stores already collected data in local
disk, thus minimizing expensive server communication for
repeated use of the same data.

The analyzer accepts the user query, identifies and collect
the required data from the Data holder, and carries out nec-
essary computing. The resulting information is represented

Figure 2: The architecture

in a format in which the chart can show it.
The Chart module handles all GUI operations (such as

events) in the application, it communicates with the user
what kind of charts do they need, and asks the analyzer for
the information. As soon as it arrived, Chart displays the
information using the open source JFreeChart library [13].

4.2 OHLOH: the Third Party Data Provider
The OHLOH [25] repository was selected as the third

party data provider for OSS project data. This consti-
tute the second layer of our proposed framework. OHLOH
collects development information about OSS projects and
makes them available on their homepage. OHLOH main-
tains data collected from 400 thousand projects. These data
can be accessed through a set of open API which handles
URL requests and responses. The response data is expressed
as an XML file, an example of which is shown in Figure 3.

Figure 3: An example of XML content

The use of OHLOH repository makes OSS data available
in a clean, unified and standard format. This makes the
process of data analysis and visualization independent of
technology and data repository, which in turn took off the
burden of data acquisition, collection, and cleaning from het-
erogeneous sources of OSS projects.

For the purpose of this study the following metrics, rep-
resentative of the three dimensions are selected: Lines of
code, lines of comments, commits (monthly, yearly and to-
tal), and contributors (active contributors and total contri-
butions). To aid fine grained research with the data, having
the derivate of the different data sequences is also possible;
it makes determining inflexion points easier for example.

4.3 Pomaz: the Tool Demonstration
POMAZ is a prototype tool implemented on top of the

architecture presented in Figure 2. Figure 4 depicts the user
interface of the tool applied to two OSS projects FFmpeg
and MPlayer. Data of each project is shown using bubbles
of certain color information. The tool is capable to represent
four evolution attributes in addition to timeline information
shown in the lower bar of the figure. The timeline bar has
a manual time adjustment slider and an animation speed
adjuster slider to control time information. The four project
attributes are in turn shown by the X axis, the Y axis, the
size of the bubble, and color of the bubble, as shown in
the right top part of the figure. Using POMAZ, it is also
possible to visualize monthly changes in the attributes by
taking the derivative of the data. This can be done by ticking
the checkboxes shown in front of the four dimensions. It is
possible to visualize as many projects as desired. The last
visited projects are maintained in the tool GUI. Zooming
functionality on visualized data is also available.

Figure 4: The user interface of POMAZ

5. CASE STUDY
As stated earlier, FFmpeg [7] and GStreamer [11] have

been selected as case study OSS projects. The two projects
can be considered as competing, though the two communi-
ties do cooperate with each others. FFmpeg is more widely
used and popular. GStreamer provides compatibility with
FFmpeg through an own developed plug-in.

5.1 Conceptualization of OSS Dynamics
In this section we illustrate the applicability of the tool

by analyzing the example scenarios presented in Section 2
within the contest of the selected case study projects.

Q1. How does the community affect the software?

Investigation of this question is two fold. First, the growth
pattern of the community (in size) to the that of the growth
of software (in terms of both total lines of code and total
commits) is measured. Second, the community activity is
studied with respect to volume of contribution and contri-
bution quality. The acquired knowledge of this investigation
is as follows,

Software growth vs community growth. Using POMAZ, we
plotted the total Lines of code (in X-axis), total Lines of
commit (in Y-axis), active contributors (in Bubble size) for
the two case study projects. The analysis result is shown in
Figure. 5.

Figure 5: Growth pattern of the community in re-
lation to the software.

According to the results (in Figure 5), in FFmpeg, a sharp
increase in number of active contributors was noticed along
with higher number of commits. But relatively less lines of
code were contributed. The scenario is however different in
the case of GStreamer. The increase in number of active
contributors is associated with an increase in both commits
and lines of code.

Community activity. In POMAZ we plotted the derivative
of the commits data (in Y-axis), the derivative of the lines
of code data (in X-axis) and active contributors (in Bubble
size), the result of which is illustrated in Figure. 6.

It is observed that in most cases (in Figure. 6), when
GStreamer has high contributor activity (bubble is big), it
either has more commits or makes a significant change in
code size (either in plus or minus). This observation contra-
dicts with FFmpeg. In this case, the big bubbles are mostly
centered around the the vertical baseline, which indicates
that the high contributor activity does not necessarily re-
sult neither in change of line count, nor in commits count.
It is also noticed that especially in many cases a positive
growth in commits is associated with a negative growth in
lines of code. This indicates that a significant amount of re-
structuring and refactoring might be carried out during this
period of the projects.

Additionally, both projects maintain a linear growth in
number of line of codes and number of comments. This can
be noticed from Figure. 7 in which we plotted total Lines of

Figure 6: Community activities

code (in X-axis), total Lines of comments (in Y-axis), active
contributors (Bubble size).

Figure 7: Community activity in relation to the soft-
ware.

The liner growth in both code and comment might be an
indication of quality software development process. Case-
wise analysis showed that in FFmpeg, when the comment
ratio jumped, the contributor activity jumped as well. After
that, comment ratio and contributor activity did not change
a lot. GStreamer also followed the similar trend with a slight
exception in later phase, where the comment ratio dropped
a bit.

Q2. How does community changes with the project
evolution?

To conceive the community change over the evolution of the
project, we plotted the total line of codes (in X-axis), the
growth of active contributors (in Y-axis). The bubble size
in the chart denotes the most recent data. The chart is
shown in Figure. 8. From the figure it is hard to derive
any pattern of change in community size. Yet, the change
in community size follows the traditional notion of freedom
in the OSS project. That is, people in OSS projects are
free to join or leave at any given time. This can be observed

from the figure that for both the projects people are jointing
or leaving in adhoc basis, without following any particular
pattern, starting from the early stage of the projects. This
asynchronous change in community size can effectively be
justified with the degree of freedom the community mem-
bers enjoy in participating to an OSS project.

Figure 8: Community Growth pattern

Q3. How does documentation follow the growth of
software?

In observing how the documentation (e.g., commenting) of
the source code evolves with the code contribution, we plot-
ted the derivative of the line of codes (in X-axis) and the
derivative of the line of comments (in Y-axis). The result
reveals interesting observations (Figure. 9). First, in both
projects, the growth of comment follows the growth of code.
In case of GStreamer, this growth pattern is more linear
than FFmpeg. For FFmpeg, in many occasion, there are
more comments committed than the code. Second, in FFm-
peg, comment grows with the negative growth of code base.
Third, for GStreamer, there are occasions when both code
and comment have declined. Accumulation of these results
shows a healthy coding practice within both the projects, in
which comments on the code only decreases along with the
decrease of the code size.

6. DISCUSSION
In this paper we presented a methodological framework to

perform fully automated analysis and visualization of OSS
projects. We also offered an architectural design built on top
of the framework, and correspondingly provide tool support
to demonstrate the applicability.

The software community has proposed a wide range of
analysis tools for open source projects. Examples of such
tools are listed in Table. 1. As observed, the example tools
address different dimensions of open source, such as, techni-
cal, social and licensing. Furthermore, the tools use raw data
extracted from the publicly available repositories. This is in
contrast to our approach which uses data from third party
data providers. Both approaches to data access come with
own advantages and limitations.

In this regard, our proposed framework would help achiev-
ing unified research results taking advantage of already avail-

Figure 9: Documentation and code size

Table 1: A two dimensional classification of OSS
analysis tools

- Software Communication Configuration
Code
analysis

[17] [34] [47] [34]

SNA [21] [34] [15][5] [34] [29]
Licensing [28][38]

able data collected and presented in a standard and platform
independent format. Additionally, the time consuming and
erroneous process of data acquisition process are eliminated,
stipulating higher validity on the collected data. This ap-
proach is also in line with recent approaches of big data
analysis, such as social network services.

On the contrary, the limiting factor of this approach in-
cludes the trust issue on the data provided by the third party
data provider, and at the same time studies are limited to
the data provided by the data provider. For example, geo-
graphical developer distribution and some other information
are impossible due to lack of data in current OHLOH’s sys-
tem.

The proposed approach in this paper represents only a
small step towards a full fledged solution framework for au-
tomated analysis of open source projects. We argue that,
similar to the rise of data services such as OHLOH, future
analysis tools would be developed as plug-ins loaded online
in third party service containers. This is analogous to so-
cial network sites like Facebook, which acts as an open con-
tainer for custom applications in addition to providing API
for hosted data.

7. ACKNOWLEDGMENTS
This work was partially funded by TiSE and Ulla Tuomisen

säätiö, Finland.

8. REFERENCES
[1] A. Al-Ajlan. The evolution of open source software

using eclipse metrics. In NISS, pages 211–218, 2009.

[2] T. Browning. Applying the design structure matrix to
system decomposition and integration problems: a
review and new directions. IEEE Transactions on
Engineering Management, 48(3):292–306, 2011.

[3] M. Cataldo, P. Wagstrom, and J. D. Herbsleb.
Identification of coordination requirements:
Implications for the design of collaboration and
awareness tools. In ACM CSCW, pages 353–362, 2006.

[4] D. Challet and Y. L. Du. Microscopic model of
software bug dynamics: Closed source versus open
source. IJRQSE, 12(6), 2005.

[5] K. Crowston and J. Howison. The social structure of
free and open source software development. In First
Monday, 2005.

[6] K. Ehrlich, G. Valetto, and M. Helander. Using
software repositories to investigate socio-technical
congruence in development projects. In ICGSE, 2007.

[7] FFmpeg. http://ffmpeg.org/. accessed March 2013.

[8] P. Gloor. Swarm Creatitity. Oxford Uni. Press, 2006.

[9] R. Glott, A.-K. Groven, K. Haaland, and
A. Tannenberg. Quality models for free/libre open
source software-towards the silver bullet? In
EUROMICRO, pages 439–446, 2010.

[10] M. Goeminne and T. Mens. A framework for
analyzing and visualizing open source software
ecosystems. In IWPSE-EVOL, pages 42–47, 2010.

[11] GStreamer. http://gstreamer.freedesktop.org/. Last
accessed March 2013.

[12] F. Hecker. Setting up shop: The business of
open-source software. IEEE Software, 16(1):45–51,
2009.

[13] JFreeChart. http://www.jfree.org/jfreechart/. accessed
March 2013.

[14] M. B. K. Fogel. Open source development with cvs:
Learn how to work with open source software. In The
Coriolis Group, 1999.

[15] Y. Kamei, S. Matsumoto, H. Maeshima, Y. Onishi,
M. Ohira, and K. Matsumoto. Analysis of
coordination between developers and users in the
apache community. In OSS, pages 81–92, 2008.

[16] C. Kemerer and S. Slaughter. An empirical approach
to studying software evolution. TSE, 25(4):493–509,
1999.

[17] P. Knab, M. Pinzger, and A. Bernstein. Predicting
defect densities in source code files with decision tree
learners. In MSR, pages 119–125, 2006.

[18] I. Kwan, A. Schrter, and D. Damian. Does
socio-technical congruence have an effect on software
build success? a study of coordination in a software
project. TSE, 37(3):307Ű324, 2011.

[19] M. Lehman and J. Ramil. Rules and tools for software
evolution planning and management. In Annals of
Software Engineering, volume 11, pages 15–44, 2001.

[20] J. Ljungberg. Open source movements as a model for
organising. European Journal of Information Systems,
9(4):208–216, Dec. 2000.

[21] J. Martinez-Romo, G. Robles, M. Ortuño-Perez, and
J. M. Gonzalez-Barahona. Using social network
analysis techniques to study collaboration between a
floss community and a company. In OSS, pages
171–186, 2008.

[22] N. Nagappan, B. Murphy, and V. R. Basili. The
influence of organizational structure on software
quality: an empirical case study. In ICSE, page
521Ű530, 2008.

[23] K. Nakakoji, K. Yamada, and E. Giaccardi.
Understanding the nature of collaboration in
open-source software development. In APSEC, pages
827–834, 2005.

[24] E. Nasseri and S. Counsell. System evolution at the
attribute level: An empirical study of three java oss
and their refactorings. In ITI, pages 653–658, 2009.

[25] OHLOH. https://www.ohloh.net/. Last accessed
March 2013.

[26] M. Olson. ual licensing. In Open Sources 2.0,
OŠReilly, 2005.

[27] H. Orsila, J. Geldenhuys, A. Ruokonen, and
I. Hammouda. Update propagation practices in highly
reusable open source components. In OSS, pages
159–170, 2008.

[28] M. D. Penta and D. German. Who are source code
contributors and how do they change? In WCRE,
pages 11–20, 2009.

[29] G. Porruvecchio, S. Uras, and R. Quaresima. Social
network analysis of communication in open source
projects. In Int. Conf. on Agile Processes in Software
Engineering and Extreme Programming, pages
220–221, June 2008.

[30] J. Roberts, I.-H. Hann, and S. Slaughter.
Understanding the motivations, participation, and
performance of open source software developers: A
longitudinal study of the apache projects.
Management Science, 52:984–999, 2006.

[31] G. Robles, J. Amor, J. Gonzalez-Barahona, and
I. Herraiz. Evolution and growth in large libre
software projects. In Principles of Software Evolution,
pages 165 – 174, 2005.

[32] G. Robles and J. Gonzalez-Barahona. A
comprehensive study of software forks: Dates, reasons
and outcomes. In OSS, pages 1–14, 2012.

[33] R. Sangwan, P.Vercellone-Smith, and C. Neill. Use of
a multidimensional approach to study the evolution of
software complexity. Journal of Innovations in
Systems and Software Engineering, 6(4):299–310, 2010.

[34] A. Sarma, L. Maccherone, P. Wagstrom, and
J. Herbsleb. Tesseract: Interactive visual exploration
of socio-technical relationships in software
development. In ICSE, pages 23–33, May 2009.

[35] S. Shah. Motivation, governance, and the viability of
hybrid forms in open source software development.
Journal of Management Science, 52(7):1000–1014,
July 2006.

[36] M. M. Syeed and I. Hammouda. Socio-technical
congruence in oss projects: Exploring conways law in
freebsd oss evolution. In 9th OSS, pages 109–126.
Springer, June 2013.

[37] M. M. Syeed, I. Hammouda, and T. Systa. The
evolution of open source software projects: a
systematic literature review. Journal of Software, May
2013.

[38] T. Tuunanen, J. Koskinen, and T. Karkkainen. Asla:
reverse engineering approach for software license
information retrieval. In CSMR, pages 291–294, Mar.
2006.

[39] M. Välimäki. The Rise of Open Source Licensing. A
Challenge to the Use of Intellectual Property in the

Software Industry. Turre Publishing, 2005.

[40] M. Weiss, G. Moroiu, and P. Zhao. Evolution of open
source communities. In IFIP, pages 21–32, 2006.

[41] H. Wen, R. DŠSouza, Z. Saul, and V. Filkov.
Evolution of apache open source software. Modeling
and Simulation in Science, Engineering and
Technology, Springer, pages 199–215, 2009.

[42] R. Wendel, J. Bruijn, and M. Eeten. Protecting the
virtual commons, information technology & law series.
In T.M.C. Asser Press, pages 44–50, 2003.

[43] J. Xu and G. Madey. Evolution of open source
communities. In NAACOSOS, 2004.

[44] Y. Yamauchi, M. Yokozawa, T. Shinohara, and
T. Ishida. Collaboration with lean media: How
open-source software succeeds. In CSCW, pages
329–338, 2000.

[45] Y. Ye and K. Nakakoji. The co-evolution of systems
and communities in free and open source software
development. pages 59–82.

[46] M. Zanetti. The co-evolution of socio-technical
structures in sustainable software development:
Lessons from the open source software communities.
In ICSE, pages 1587 – 1590, 2012.

[47] Y. ZHOU and J. DAVIS. Open source software
reliability model: an empirical approach. In WOSSE,
volume 30, pages 1–6, July 2005.

[VIII] M.M. Syeed. Binoculars: Comprehending Open Source Projects through
graphs. In Proceedings of 8th IFIP WG 2.13 International Conference of Open
Source Systems (OSS’2012), pages 350–355. Springer, September, 2012.

Binoculars: Comprehending Open Source

Projects through Graphs

M.M. Mahbubul Syeed

Tampere University of Technology, Finland
mm.syeed@tut.fi

Abstract. Comprehending Open Source Software (OSS) projects re-
quires dealing with huge historical information stored in heterogeneous
repositories, such as source code versioning systems, bug tracking sys-
tem, mailing lists, and revision history logs. In this paper, we present
Binoculars, a prototype tool which aims to provide a platform for graph
based visualization and exploration of OSS projects. We describe the is-
sues need to be addressed for the design and implementation of a graph
based tool and distill lessons learned for future guideline.

1 Introduction

Open Source Software (OSS) has gained interest in both commercial and aca-
demic world over the past decade due to its high quality. Successful OSS projects
produce a rich set of software repositories, coming with a large number of versions
reflecting their development and evolution history. These repositories consist of
the source code, change logs, bug reports and mailing lists.

To know the facts related to such OSS project development, composition, and
the possible risks associated with its use, one has to explore the huge information
stored in the repositories. But often such repository contains heterogeneous in-
formation with different data representation, which also varies significantly from
project to project. Thus a tool support for uniform data representation and cus-
tomizable visualization mechanism is required to ease the comprehension of OSS
projects.

In this paper, we present the tool Binoculars as the first step towards a graph
based platform to comprehend and visualize OSS projects. Video demonstration
of the tool Binoculars can be seen from [11].

2 Tool Support for Comprehending OSS Projects:
A Review

This section presents a review on tool supports that offer different visualization
approaches for comprehending OSS projects.

The tool, CodeSaw [10] provides a time series representation of social inter-
action data in juxtaposed displays. This tool explores links between one’s con-
tributions to that of social interactions. In this context, the tool Tesseract [10]

I. Hammouda et al. (Eds.): OSS 2012, IFIP AICT 378, pp. 350–355, 2012.
c© IFIP International Federation for Information Processing 2012

Binoculars: Comprehending Open Source Projects through Graphs 351

explores the multi-perspective relationships in a project for a user-selected time
period (i.e., the evoluiton), and represents them via four juxtaposed displays.

In [10], FASTDash was proposed as an interactive conflict management tool
which provides a spatial representation of the shared code base by highlighting
team members current activity. The tool CollabVS [10] addresses this issue at
editing time, and provides a visual representation of conflicting code and a com-
munication mechanism. The tool Palantir [10] performs similar task by graphi-
cally displaying the shared workspace to the developers with the information of
what others are doing, and calculating the severity of such activities. Also the
tool Augur [10] provides a line oriented view of the source code with colors for
each pixel line indicating the location of the modification work and how recently
it was conducted. This visualization allows to see how much activity has taken
place recently and where that activity has been located.

In [10], the tool Ariadne utilizes call-graph approach to visualize social de-
pendency of the developers due to code sharing. Similarly, the tool Expertise
Browser [10] determines developers expertise from historical contributions.

Though the tools discussed above provide useful insight of OSS projects
through different visualization approaches, yet none effectively explores graph
based visualization of OSS projects. We thus add another dimension towards
the comprehension of OSS projects by providing a graph based data representa-
tion and visualization. The principal argument here is that graph structures are
most suitable for analyzing data that exhibits inherent relationships. In this con-
text, the repository data produced by OSS projects exhibit strong relationships
among them due to common work space sharing and exchange of information.
For example, community members often share many technical competencies,
values, and beliefs over online discussion forums. Similarly, code artifacts have
interrelationships due to architectural dependency as well as due to contribu-
tions from multiple community members. Thus, OSS projects can be effectively
comprehended through graph based representation and visualization.

3 Graph Based Visualization

In this section we concentrate on the available methods and techniques exploited
in literature for graph based data representation and visualization. We also put
a discussion on pros and cons of such techniques.

Graph based data representation and visualization can be effectively utilized
when there exists inherent relations among data elements [3]. In such visualiza-
tion, one can generate any number of links (i.e., edges) between two data points
(i.e., nodes), and can easily traverse a given path through the data. This visual
experience can be enhanced further by using layout algorithms, navigation and
interaction methods, and incremental exploration mechanisms [3].

A significant amount of libraries, frameworks and toolkits are developed to
support such visualization. To mention a few, GraphEd [4],the Tom Sawyer Soft-
ware Graph Editor Toolkit [5], Graphlet [6], JUNG [1] provide APIs with dif-
ferent layout algorithms, customization, generic graphics and interprocess com-
munication to create task-specific tools. Libraries and frameworks like GTL,

352 M.M.M. Syeed

LINK, GFC, GDT, and GVF provide support for both general and specific pur-
pose graph visualization [3]. Within open source domain, Graphviz [10] and Zest
[10] provides comprehensive set of APIs to support such visualization. Although
there is no widely used standard for graph description formats, GML [7] and
GraphXML [8] are available.

Despite of such benefits and supports for graph visualization, there are inher-
ent shortcomings to such techniques. This includes, (a) difficulties in visualizing
and comprehending large graphs. For example, a graph with thousands of nodes
would cause performance bottleneck of the platform used and decrease the viewa-
bility (or usability) of such visualization significantly. In general, comprehension
and detail analysis of data in graph structures is easiest when the size of the
displayed graph is small [3]; (b) efficiency of a graph layout algorithm may be
scale upto several hundred nodes, not beyond that; (c) time complexity for visu-
alization, interaction and update of a graph is relatively high and increases with
increase in graph size.

So far no single toolkit or framework mentioned above has proved to be suf-
ficient to cope with these problems. Thus design decision for implementing an
efficient graph visualization tool should ruminate the followings, (a) provide ap-
propriate level of data abstraction. This keeps the graph structure small enough
for effective comprehension and increase the efficiency of layout algorithms. To
explore the graph, incremental exploration mechanism should be implemented,
(b) time complexity of an algorithm should be measured accurately.

4 Binoculars: A Graph Based Platform

This section describes the requirements to design and implement a graph based
visualization tool and presents Binoculars as a representative example. These
requirements are derived considering the characteristics of OSS projects and
the shortcomings of graph visualization techniques. The usability features of
Binoculars are also presented. Fig. 1 shows the main interface of Binoculars.

First requirement is to provide an architectural model supporting well defined
extension points for extending functionalities. As OSS analysis tools of this kind
operate on project data, thus a good starting point is to model a generalized
and standard data representation. This forms the system kernel and provides
interfaces to build functionalities over it. The conceptual architecture of Binoc-
ulars is shown in Fig.2. In Binoculars, we defined a data repository structure to
store both project and graph data (Fig.2), and use XML data format for rep-
resentation (Fig.3(a)). XML is chosen over others due to (a) its inherent power
of extensibility with new tags, (b) standard formating, and (c) graph generation
and manipulation seems flexible with XML.

Having modeled such a repository, the next step is to decide what data to
represent and how. For current implementation of Binoculars, we explored CVS
or SVN checkouts, bug reporting system and mailing list. To represent data we
adopt the following approach- first identified each entity within an OSS project
which plays a role (either active or passive). For example, a community member

Binoculars: Comprehending Open Source Projects through Graphs 353

Fig. 1. User interface of Binoculars

(e.g., developer, user as active entities), and a code file, a single thread of mail
and bug report (as passive entities). Then we identified unique set of attributes
to describe each entity and provide values with the data mined from the sources
presented above. In XML each such attribute is presented as a tag. Fig.3(a)
shows an example of a code file representation.

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Binoculars Architecturepackage Data []

Repository

Project RepositoryGraph Repository

GraphView

GraphicalViewTabularView

CustomizeGraph

StatisticalView

CreateGraph

ProjectView

QueryGraph

«use»

«use»

Fig. 2. Conceptual architecture of Binoculars

Third, a set of methods should be derived to transform repository data into
graphs. These methods and the graph data should be reusable in a sense that
one or more graph data can be reused by a method to generate new graphs.
In Binoculars, graph data are stored using XML representation (example, Fig.
3(b)). As the methods operates on XML tags, thus one interface works for all

354 M.M.M. Syeed

repository data. As shown in Fig 2, CreateGraph module implements these graph
generation methods, which are discussed in [9].

Fourth, provide a GUI support to visualize, render and manipulate graph
data. This GUI design for graph visualization is often constrained by the lim-
iting factors of the available visualization techniques discussed in section 3. To
cope with these issues we took the following measures. We provided a two-way
visualization of a graph, e.g., tabular and graphical (Fig.1 items 1,2). Tabular
view provides complete graph information consisting of (a) Graph with nodes
and (weighted) edges; (b) Node list with degree count for each node; (c) descrip-
tion of each node; (d) Summary data on graph; and (e) Options to render a
graph (Fig.1, item 3,4,5,6, respectively). Thus user can get complete graph data
with detail information in real time for large graphs with thousands of nodes.
Then, depending on the option selected for rendering a graph, a modified (or
abstracted) version of the graph (in tabular view) can be viewed in graphical
form. As shown in Fig.1 item 2, a single level nearest neighbor graph showing
the developers to whom developer “Konstantin” has direct communication in
FFMpeg project [10]. Hence the graphical view (Fig.1 item 2) always shows a
tailored version of the complete graph provided in tabular view (Fig.1 item 1),
thus minimizing the performance bottleneck of layout algorithms.

Fig. 3. (a) XML representation of a code file repository in FFMpeg project. (b) XML
presentation of a developers relationship graph generated from (a).

Other options for rendering a graph includes (Fig.1, item 6), customization
based on (a) given range of edge weights, (b) selected set of nodes or edges from
the original graph, (c) a given attribute value (e.g., gio-location= “america”).

None-the-less, searching, sorting, zooming, and saving graph data in XML
format can also be performed. As in Fig. 2, rendering mechanisms are imple-
mented in QueryGraph and CustomizeGraph module, and the visualization are
handled by ProjectView, GraphView and StatisticalView modules.

Fifth, selection of platform and packages for implementation should be steered
by it’s easy extension and distribution. Our choice in this issue is to release

Binoculars: Comprehending Open Source Projects through Graphs 355

Binoculars as an OSS. Thus we utilized well established and maintained OSS
platforms and packages, e.g., Eclipse, Eclipse RCP, ZEST, DOM, and JFreeChart.
Reference to these platforms can be found here [10].

5 Discussion and Future Work

In this paper we put a discussion on the requirements to model and implement
a graph based platform for comprehending OSS projects, and present the tool
Binoculars as a first step towards establishing such a platform. Our starting point
is the design of a repository to capture the essence of OSS projects and then
built tool functionalities over it to operate on repository data. We also discuss
the inadequacy of graph visualization techniques and distill possible solution.

Future extension of this tool includes, (a) visualization on the evolution of
socio-technical aspects of OSS projects, (b) Incremental exploration mechanism
on the displayed graph, and (c) a formal language query support.

References

1. Souza, C.R.B., Quirk, S., Trainer, E., Redmiles, D.F.: Supporting collaborative
software development through the visualization of socio-technical dependencies.
In: ACM SIGGROUP Conference on Supporting Group Work, pp. 147–156 (2007)

2. Mockus, A., Herbsleb, J.: Expertise browser: A quantitative approach to identifying
expertise. In: ICSE, pp. 503–512 (2002)

3. Herman, I., Melancon, G., Marshall, M.S.: Graph visualization and navigation in
information visualization: A survey. In: TVCG, IEEE, vol. 6(1), pp. 24–43 (2000)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

5. Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing Network Data. In: TVCG, IEEE,
vol. 1(1), pp. 16–28 (1995)

6. Argawal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi–Planar Graphs
Have a Linear Number of Edges, pp. 1–7. Springer, GD (1995)

7. Himsolt, M.: GML — Graph Modelling Language. University of Passau (1997)
8. Herman, I., Marshall, M.S.: GraphXML. Reports of the Centre for Mathematics

and Computer Sciences (1999)
9. Syeed, M.M., Aaltonen, T., Hammouda, I., Systä, T.: Tool Assisted Analysis of

Open Source Projects: A Multi-Faceted Challenge. IJOSSP 3(2), 43–78 (2011)
10. References (2012), http://rajit-cit.wix.com/syeed#!refrences
11. Binoculars Demo (2012), http://www.youtube.com/watch?v=cMoYq6JOpQE

http://rajit-cit.wix.com/syeed#!refrences
http://www.youtube.com/watch?v=cMoYq6JOpQE

	III.pdf
	Socio-technical Congruence in OSS Projects:
Exploring Conway’s Law in FreeBSD
	1 Introduction
	2 Definitions
	2.1 Developer Contribution
	2.2 Concrete Architecture
	2.3 Concrete Coordination Network
	2.4 Derived Architecture
	2.5 Derived Coordination Network

	3 Motivation and Related Work
	3.1 Need for Conway’s Law and Socio-technical Congruence
	3.2 Socio-technical Congruence and OSS Development

	4 Research Questions
	5 Study Design
	5.1 Case and Subject Selection
	5.2 Data Sources
	5.3 Data Collection Procedure
	5.4 Analysis Procedure

	6 Results
	6.1 Resemblance of Communication Pattern to Software Architecture

	6.2 Resemblance of Software Architecture to Communication Pattern

	6.3 Evolution of Socio-technical Congruence in FreeBSD Project

	7 Threats to Validity
	8 Conclusions
	References

	V.pdf
	Introduction
	Related Work
	Studies on Socio-Technical Congruence
	Studies of OSS Ecosystems

	Definitions and Research Questions
	Conway's Law
	Socio-technical congruence
	Explicit Architecture
	Explicit Coordination Network
	Implicit Architecture
	Research questions

	Study Design
	Case and Subject Selection
	Data Sets
	Data Collection
	Data Refining and Structuring
	Data Analysis

	Result Analysis
	Social and Technical Dependencies in the Ruby Ecosystem
	Socio-Technical Congruence in the Ruby Ecosystem

	Future Work
	Threats to Validity
	Conclusions
	Acknowledgements
	References

	VI.pdf
	Who Contributes to What?
Exploring Hidden Relationships between FLOSS
Projects

	1 Introduction
	2 Study Design
	2.1 Data Source
	2.2 Data Collection
	2.3 Data Processing
	2.4 Data Analysis
	2.5 Program Verification

	3 Result Analysis
	4 Conclusions
	References

	VIII.pdf
	Binoculars: Comprehending Open Source Projects through Graphs
	Introduction
	Tool Support for Comprehending OSS Projects: A Review
	Graph Based Visualization
	Binoculars: A Graph Based Platform
	Discussion and Future Work
	References

	PV.pdf
	Introduction
	Definitions and Research Questions
	Conway's Law
	Socio-technical congruence
	Explicit Architecture
	Explicit Coordination Network
	Implicit Architecture
	Research questions

	Study Design
	Case and Subject Selection
	Data Sets
	Data Collection
	Data Refining and Structuring
	Data Analysis

	Result Analysis
	Social and Technical Dependencies in the Ruby Ecosystem
	Socio-Technical Congruence in the Ruby Ecosystem

	Related Work
	Socio-Technical Congruence
	Study of OSS Ecosystems

	Threats to Validity
	Conclusions
	Acknowledgements
	References

