12 research outputs found

    Frequency shifting approach towards textual transcription of heartbeat sounds

    Get PDF
    Auscultation is an approach for diagnosing many cardiovascular problems. Automatic analysis of heartbeat sounds and extraction of its audio features can assist physicians towards diagnosing diseases. Textual transcription allows recording a continuous heart sound stream using a text format which can be stored in very small memory in comparison with other audio formats. In addition, a text-based data allows applying indexing and searching techniques to access to the critical events. Hence, the transcribed heartbeat sounds provides useful information to monitor the behavior of a patient for the long duration of time. This paper proposes a frequency shifting method in order to improve the performance of the transcription. The main objective of this study is to transfer the heartbeat sounds to the music domain. The proposed technique is tested with 100 samples which were recorded from different heart diseases categories. The observed results show that, the proposed shifting method significantly improves the performance of the transcription

    Automatic Heart Sounds Segmentation based on the Correlation Coefficients Matrix for Similar Cardiac Cycles Identification

    Get PDF
    This paper proposes a novel automatic heart sounds segmentation method for deployment in heart valve defect diagnosis. The method is based on the correlation coefficients matrix, calculated between all the heart cycles for similarity identification. Firstly, fundamental heart sounds (S1 and S2) in the presence of extra gallop sounds such as S3 and/or S4 and murmurs are localized with more accuracy. Secondly, two similarity-based filtering approaches (using time and time-frequency domains, respectively) for correlated heart cycles identification are proposed and evaluated in the context of professional clinical auscultated heart sounds of adult patients. Results show the superiority of the novel time-frequency method proposed here particularly in the presence of extra gallop sounds

    The Heart Auscultation. From Sound to Graphical

    Get PDF
    Heart sounds and murmurs have very small amplitude and frequency signals thus make it so difficult to hear without the correct tools. In clinical practice currently, physicians listen to the patient heart sound and murmurs by using the traditional technique as an example mechanical stethoscope which having low accuracy and could lead to the false diagnosis. Moreover, conventional method has no ability to record the sound measured. Worst still it is totally depending on the physician’s skills and experienced which this ability is decreased over time. This issue is highly important in early detection of heart sound abnormal. The stereo heart auscultation purposed in this research is to provide solutions rise from conventional technique. Furthermore, the sound signals produced from heart will be converted to the real-time graphically presented with time-frequency analysis, which provides more information about the heart conditions by sound produced. The system compromise hardware such as electrical transducer, electronic circuit, data-acquisition device, computer and also software for signal visualization or imaging. Database of heart sound and murmurs use to validate the developmental system replacing true patients. It has been demonstrated, in preliminary result, that heart sound classification according to on types of a valve problem such as aortic regurgitation, mitral regurgitation, tricuspid regurgitation, aortic stenosis and pulmonic stenosis could be differentiated using the development measurement system

    PCGCleaner: Development and implementation of an R package for heart sound signal preprocessing

    Full text link
    In our present study, we focused on developing an R package, PCGCleaner, for the preprocessing of PCG signals. We replicated parts of a well-established algorithm for heart sound analysis in MATLAB code and translated them into R. We also implemented this tool on a heart sounds database established by the University of Michigan.Master of ScienceInformation, School ofUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/162560/1/Fu_Mingzhou_Final_MTOP_Thesis_20200527.pd

    Strengthening of prism beam by using NSM technique with roots planted in concrete

    Get PDF
    This paper presents experimental results of four prismatic concrete reinforced beam and strengthened by NSM (Near surface mounted) FRP (Fiber Reinforced Polymer) reinforced technique, with additional roots planted in the concrete. The strengthening technique causes load capacity of beams to increase from (6%-8%).A decrease in mid-span deflection was also observed from (4%-5%).Using this technique gave increasing in flexural beam resistant under the same conditions and this increasing was also noted in shear beam resistant

    Design and development of wireless stethoscope with data logging functions

    Get PDF
    Stethoscope is a special device to hear heartbeat sound and monitor pulmonary disease. The most type of stethoscope used these days is the acoustic stethoscope. However, the problem with this acoustic stethoscope is the sound level very low. It is hard to analyze the heart sound and difficult to be diagnosed by a medical doctor. Therefore, this project was developed to monitor and display heartbeat sound using wireless digital stethoscope. The condenser microphone is used as a sensor to capture the low sensitivity of heart sound signal and transmit the signal using Antenna Arduino ZigBee Pro Series 1. Microcontroller Arduino Nano and Arduino Mega were used as a platform to process the signal and sent the result to the computer. Graphical User Interface (GUI) was developed using MATLAB software to monitor real time electrocardiogram (ECG) waveform and for data logging purpose. The result shows that this device able to transmit and receive ECG waveform wirelessly. The ECG signal can be recorded through data logging application for further analysis by the medical personnel

    An open access database for the evaluation of heart sound algorithms

    Full text link
    This is an author-created, un-copyedited version of an article published in Physiological Measurement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/0967-3334/37/12/2181In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.This work was supported by the National Institutes of Health (NIH) grant R01-EB001659 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and R01GM104987 from the National Institute of General Medical Sciences.Liu, C.; Springer, DC.; Li, Q.; Moody, B.; Abad Juan, RC.; Li, Q.; Moody, B.... (2016). An open access database for the evaluation of heart sound algorithms. Physiological Measurement. 37(12):2181-2213. doi:10.1088/0967-3334/37/12/2181S21812213371
    corecore