613 research outputs found

    Integrated Circuits Parasitic Capacitance Extraction Using Machine Learning and its Application to Layout Optimization

    Get PDF
    The impact of parasitic elements on the overall circuit performance keeps increasing from one technology generation to the next. In advanced process nodes, the parasitic effects dominate the overall circuit performance. As a result, the accuracy requirements of parasitic extraction processes significantly increased, especially for parasitic capacitance extraction. Existing parasitic capacitance extraction tools face many challenges to cope with such new accuracy requirements that are set by semiconductor foundries (\u3c 5% error). Although field-solver methods can meet such requirements, they are very slow and have a limited capacity. The other alternative is the rule-based parasitic capacitance extraction methods, which are faster and have a high capacity; however, they cannot consistently provide good accuracy as they use a pre-characterized library of capacitance formulas that cover a limited number of layout patterns. On the other hand, the new parasitic extraction accuracy requirements also added more challenges on existing parasitic-aware routing optimization methods, where simplified parasitic models are used to optimize layouts. This dissertation provides new solutions for interconnect parasitic capacitance extraction and parasitic-aware routing optimization methodologies in order to cope with the new accuracy requirements of advanced process nodes as follows. First, machine learning compact models are developed in rule-based extractors to predict parasitic capacitances of cross-section layout patterns efficiently. The developed models mitigate the problems of the pre-characterized library approach, where each compact model is designed to extract parasitic capacitances of cross-sections of arbitrary distributed metal polygons that belong to a specific set of metal layers (i.e., layer combination) efficiently. Therefore, the number of covered layout patterns significantly increased. Second, machine learning compact models are developed to predict parasitic capacitances of middle-end-of-line (MEOL) layers around FINFETs and MOSFETs. Each compact model extracts parasitic capacitances of 3D MEOL patterns of a specific device type regardless of its metal polygons distribution. Therefore, the developed MEOL models can replace field-solvers in extracting MEOL patterns. Third, a novel accuracy-based hybrid parasitic capacitance extraction method is developed. The proposed hybrid flow divides a layout into windows and extracts the parasitic capacitances of each window using one of three parasitic capacitance extraction methods that include: 1) rule-based; 2) novel deep-neural-networks-based; and 3) field-solver methods. This hybrid methodology uses neural-networks classifiers to determine an appropriate extraction method for each window. Moreover, as an intermediate parasitic capacitance extraction method between rule-based and field-solver methods, a novel deep-neural-networks-based extraction method is developed. This intermediate level of accuracy and speed is needed since using only rule-based and field-solver methods (for hybrid extraction) results in using field-solver most of the time for any required high accuracy extraction. Eventually, a parasitic-aware layout routing optimization and analysis methodology is implemented based on an incremental parasitic extraction and a fast optimization methodology. Unlike existing flows that do not provide a mechanism to analyze the impact of modifying layout geometries on a circuit performance, the proposed methodology provides novel sensitivity circuit models to analyze the integrity of signals in layout routes. Such circuit models are based on an accurate matrix circuit representation, a cost function, and an accurate parasitic sensitivity extraction. The circuit models identify critical parasitic elements along with the corresponding layout geometries in a certain route, where they measure the sensitivity of a route’s performance to corresponding layout geometries very fast. Moreover, the proposed methodology uses a nonlinear programming technique to optimize problematic routes with pre-determined degrees of freedom using the proposed circuit models. Furthermore, it uses a novel incremental parasitic extraction method to extract parasitic elements of modified geometries efficiently, where the incremental extraction is used as a part of the routing optimization process to improve the optimization runtime and increase the optimization accuracy

    Uncertainty quantification for integrated circuits: Stochastic spectral methods

    Get PDF
    Due to significant manufacturing process variations, the performance of integrated circuits (ICs) has become increasingly uncertain. Such uncertainties must be carefully quantified with efficient stochastic circuit simulators. This paper discusses the recent advances of stochastic spectral circuit simulators based on generalized polynomial chaos (gPC). Such techniques can handle both Gaussian and non-Gaussian random parameters, showing remarkable speedup over Monte Carlo for circuits with a small or medium number of parameters. We focus on the recently developed stochastic testing and the application of conventional stochastic Galerkin and stochastic collocation schemes to nonlinear circuit problems. The uncertainty quantification algorithms for static, transient and periodic steady-state simulations are presented along with some practical simulation results. Some open problems in this field are discussed.MIT Masdar Program (196F/002/707/102f/70/9374

    Investigation into voltage and process variation-aware manufacturing test

    No full text
    Increasing integration and complexity in IC design provides challenges for manufacturing testing. This thesis studies how process and supply voltage variation influence defect behaviour to determine the impact on manufacturing test cost and quality. The focus is on logic testing of static CMOS designs with respect to two important defect types in deep submicron CMOS: resistive bridges and full opens. The first part of the thesis addresses testing for resistive bridge defects in designs with multiple supply voltage settings. To enable analysis, a fault simulator is developed using a supply voltage-aware model for bridge defect behaviour. The analysis shows that for high defect coverage it is necessary to perform test for more than one supply voltage setting, due to supply voltage-dependent behaviour. A low-cost and effective test method is presented consisting of multi-voltage test generation that achieves high defect coverage and test set size reduction without compromise to defect coverage. Experiments on synthesised benchmarks with realistic bridge locations validate the proposed method.The second part focuses on the behaviour of full open defects under supply voltage variation. The aim is to determine the appropriate value of supply voltage to use when testing. Two models are considered for the behaviour of full open defects with and without gate tunnelling leakage influence. Analysis of the supply voltage-dependent behaviour of full open defects is performed to determine if it is required to test using more than one supply voltage to detect all full open defects. Experiments on synthesised benchmarks using an extended version of the fault simulator tool mentioned above, measure the quantitative impact of supply voltage variation on defect coverage.The final part studies the impact of process variation on the behaviour of bridge defects. Detailed analysis using synthesised ISCAS benchmarks and realistic bridge model shows that process variation leads to additional faults. If process variation is not considered in test generation, the test will fail to detect some of these faults, which leads to test escapes. A novel metric to quantify the impact of process variation on test quality is employed in the development of a new test generation tool, which achieves high bridge defect coverage. The method achieves a user-specified test quality with test sets which are smaller than test sets generated without consideration of process variation

    Field solver technologies for variation-aware interconnect parasitic extraction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 207-213).Advances in integrated circuit manufacturing technologies have enabled high density onchip integration by constantly scaling down the device and interconnect feature size. As a consequence of the ongoing technology scaling (from 45nm to 32nm, 22nm and beyond), geometrical variabilities induced by the uncertainties in the manufacturing processes are becoming more significant. Indeed, the dimensions and shapes of the manufactured devices and interconnect structures may vary by up to 40% from their design intent. The effect of such variabilities on the electrical characteristics of both devices and interconnects must be accurately evaluated and accounted for during the design phase. In the last few years, there have been several attempts to develop variation-aware extraction algorithms, i.e. algorithms that evaluate the effect of geometrical variabilities on the electrical characteristics of devices and interconnects. However, most algorithms remain computationally very expensive. In this thesis the focus is on variation-aware interconnect parasitic extraction. In the first part of the thesis several discretization-based variation-aware solver techniques are developed. The first technique is a stochastic model reduction algorithm (SMOR) The SMOR guarantees that the statistical moments computed from the reduced model are the same as those of the full model. The SMOR works best for problems in which the desired electrical property is contained in an easily defined subspace.(cont.) The second technique is the combined Neumann Hermite expansion (CNHE). The CNHE combines the advantages of both the standard Neumann expansion and the standard stochastic Galerkin method to produce a very efficient extraction algorithm. The CNHE works best in problems for which the desired electrical property (e.g. impedance) is accurately expanded in terms of a low order multivariate Hermite expansion. The third technique is the stochastic dominant singular vectors method (SDSV). The SDSV uses stochastic optimization in order to sequentially determine an optimal reduced subspace, in which the solution can be accurately represented. The SDSV works best for large dimensional problems, since its complexity is almost independent of the size of the parameter space. In the second part of the thesis, several novel discretization-free variation aware extraction techniques for both resistance and capacitance extraction are developed. First we present a variation-aware floating random walk (FRW) to extract the capacitance/resistance in the presence of non-topological (edge-defined) variations. The complexity of such algorithm is almost independent of the number of varying parameters. Then we introduce the Hierarchical FRW to extract the capacitance/resistance of a very large number of topologically different structures, which are all constructed from the same set of building blocks. The complexity of such algorithm is almost independent of the total number of structures. All the proposed techniques are applied to a variety of examples, showing orders of magnitude reduction in the computational time compared to the standard approaches. In addition, we solve very large dimensional examples that are intractable when using standard approaches.by Tarek Ali El-Moselhy.Ph.D

    Modeling and Simulation of Advanced Nano-Scale Very Large Scale Integration Circuits

    Get PDF
    With VLSI(very large scale integration) technology shrinking and frequency increasing, the minimum feature size is smaller than sub-wavelength lithography wavelength, and the manufacturing cost is significantly increasing in order to achieve a good yield. Consequently design companies need to further lower power consumption. All these factors bring new challenges; simulation and modeling need to handle more design constraints, and need to work with modern manufacturing processes. In this dissertation, algorithms and new methodology are presented for these problems: (1) fast and accurate capacitance extraction, (2) capacitance extraction considering lithography effect, (3) BEOL(back end of line) impact on SRAM(static random access memory) performance and yield, and (4) new physical synthesis optimization flow is used to shed area and reduce the power consumption. Interconnect parasitic extraction plays an important role in simulation, verification, optimization. A fast and accurate parasitic extraction algorithm is always important for a current design automation tool. In this dissertation, we propose a new algorithm named HybCap to efficiently handle multiple planar, conformal or embedded dielectric media. From experimental results, the new method is significantly faster than the previous one, 77X speedup, and has a 99% memory savings compared with FastCap and 2X speedup, and has an 80% memory savings compared with PHiCap for complex dielectric media. In order to consider lithography effect in the existing LPE(Layout Parasitic Extraction) flow, a modified LPE flow and fast algorithms for interconnect parasitic extraction are proposed in this dissertation. Our methodology is efficient, compatible with the existing design flow and has high accuracy. With the new enhanced parasitic extraction flow, simulation of BEOL effect on SRAM performance becomes possible. A SRAM simulation model with internal cell interconnect RC parasitics is proposed in order to study the BEOL lithography impact. The impact of BEOL variations on memory designs are systematically evaluated in this dissertation. The results show the power estimation with our SRAM model is more accurate. Finally, a new optimization flow to shed area blow in the design synthesis flow is proposed, which is one level beyond simulation and modeling to directly optimize design, but is also built upon accurate simulations and modeling. Two simple, yet efficient, buffering and gate sizing techniques are presented. On 20 industrial designs in 45nm and 65nm, our new work achieves 12.5% logic area growth reduction, 5.8% total area reduction, 10% wirelength reduction and 770 ps worst slack improvement on average

    Interconnect capacitance extraction under geometric uncertainties

    Get PDF
    Interconnects are an important constituent of any large scale integrated circuit, and accurate interconnect analysis is essential not only for post-layout verification but also for synthesis. For instance, extraction of interconnect capacitance is needed for the prediction of interconnect-induced delay, crosstalk, and other signal distortion related effects that are used to guide IC routing and floor planning. The continuous progress of semiconductor technology is leading ICs to the era of 45 nm technology and beyond. However, this progress has been associated with increasing variability during the manufacturing processes. This variability leads to stochastic variations in geometric and material parameters and has a significant impact on interconnect capacitance. It is therefore important to be able to quantify the effect of such process induced variations on interconnect capacitance. In this thesis, we have worked on a methodology towards modeling of interconnect capacitance in the presence of geometric uncertainties. More specifically, a methodology is proposed for the finite element solution of Laplace's equation for the calculation of the per-unit-length capacitance matrix of a multi-conductor interconnect structure embedded in a multi-layered insulating substrate and in the presence of statistical variation in conductor and substrate geometry. The proposed method is founded on the idea of defining a single, mean geometry, which is subsequently used with a single finite element discretization, to extract the statistics of the interconnect capacitance in an expedient fashion. We demonstrate the accuracy and efficiency of our method through its application to the extraction of capacitances in some representative geometries for IC interconnects

    Calculation of Generalized Polynomial-Chaos Basis Functions and Gauss Quadrature Rules in Hierarchical Uncertainty Quantification

    Get PDF
    Stochastic spectral methods are efficient techniques for uncertainty quantification. Recently they have shown excellent performance in the statistical analysis of integrated circuits. In stochastic spectral methods, one needs to determine a set of orthonormal polynomials and a proper numerical quadrature rule. The former are used as the basis functions in a generalized polynomial chaos expansion. The latter is used to compute the integrals involved in stochastic spectral methods. Obtaining such information requires knowing the density function of the random input {\it a-priori}. However, individual system components are often described by surrogate models rather than density functions. In order to apply stochastic spectral methods in hierarchical uncertainty quantification, we first propose to construct physically consistent closed-form density functions by two monotone interpolation schemes. Then, by exploiting the special forms of the obtained density functions, we determine the generalized polynomial-chaos basis functions and the Gauss quadrature rules that are required by a stochastic spectral simulator. The effectiveness of our proposed algorithm is verified by both synthetic and practical circuit examples.Comment: Published by IEEE Trans CAD in May 201
    • …
    corecore