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1. Introduction

It is very common in engineering society to optimize certain objective functions under the

worst scenario among a set of possible scenarios, i.e.,

minx maxi f (x)

s.t. x ∈ S(pi),

i = 1, 2, . . . , (1)

where pi are the parameters that control the feasible region S of x. For example, in the

contingency analysis of power systems, pi is a vector of 0-1 variables, indicating which of

the branches are open. Each pi corresponds to one contingency situation. Another example

is the decoupling capacitance budgeting for very large scale integrated (VLSI) circuits and

systems, where pi can be different load current profile.

When the number of possible scenarios are small, we can use enumeration to find out the

worst case. But when it is large or even infinite, enumeration becomes computationally

expensive, sometimes even infeasible, and accordingly, we need some elegant algorithms that

can efficiently solve the problem. In this chapter, we will use the decoupling capacitance

budgeting problem in very large scale integrated (VLSI) circuits and systems to illustrate one

recently developed algorithm when the Pi’s are correlated.

The continuous semiconductor technology scaling leads to growing process variations

(Agarwal & Nassif, 2007), and statistical optimization has been actively researched to cope

with process variations. Recent examples include stochastic gate sizing for power reduction

(Bhardwaj & Vrudhula, 2005; Mani et al., 2005) and for yield optimization (Davoodi &

Srivastava, 2006; Sinha et al., 2005), stochastic buffer insertion to minimize clock delay (He

et al., 2007), and adaptive body biasing with post-silicon tuning (Mani et al., 2006). However,

all these papers ignore operation variation such as crosstalk difference over input vectors, power

supply noise fluctuation over time, and processor temperature variation over workload. We
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argue that a better design could be achieved by considering both operation and process

variations.

The P/G network has to provide large currents within a short period of time but without

causing considerable IR-drop and Ldi/dt noises. The noises on the P/G network can degrade

signal integrity of the whole design, causing longer path delay, reduced noise margin, and

even logic failures. In the presence of process variation, a fraction of chips after manufacturing

may fail to meet the given power noise constraints, even though they were predicted to do so

by the deterministic techniques, thus causing unnecessary yield loss. This observation has

also been confirmed in recent studies on both statistical timing analysis (Chang & Sapatnekar,

2003; Visweswariah et al., 2004) statistical power network analysis (Ghanta et al., 2005;

Kouroussis et al., 2005; Pant, Blaauw, Zolotov, Sundareswaran & Panda, 2004).

Decap budgeting is one of the most effective techniques to reduce the noise in P/G

network. Assuming the netlist and the initial placement is given, decap budgeting assigns

the right amount of decap to the right location. To solve the decap budgeting problem,

most work employs a sensitivity-based optimization technique, such as those solved by

either linear programming (Zhao et al., 2006), quadratic programming (Su et al., 2003),

or conjugate gradient method (Fu et al., 2004; Li et al., 2005). At each iteration step

during optimization, sensitivities of the objective function with respect to various decaps

are obtained by running circuit simulations on the adjoint network followed by time-domain

convolution (Li et al., 2005; Su et al., 2003). Because both simulation and convolution are

time-consuming operations, the overall runtime is high and suffers from the scalability

problem for large P/G networks. To mitigate this runtime issue, different techniques have

been proposed. For example, (Su et al., 2003) employed piecewise-linear approximation

for the time-domain waveforms so that convolution can be carried out faster with bounded

accuracy loss. (Fu et al., 2004) exploited regular structures of P/G networks, and reduced

circuit sizes by equivalent circuit transformation (such as Y-∆ transformation). Because

of the reliance on special P/G structures, the applicability of this technique to large P/G

networks is limited and the reduction ratio is not high in general. (Li et al., 2005) employed

a divide-and-conquer approach that partitioned a P/G network into a number of sub-circuits

so that decap budgeting can be solved efficiently for each sub-circuit. But to consider the

inter-dependence between different sub-circuits, an artificial boundary condition has to be

imposed, hence the accuracy of the solution cannot be guaranteed. Recently, (Zhao et al., 2006)

used macromodeling and linear programming based approaches to solve the decap problem.

However, same as the previous studies (Fu et al., 2004; Li et al., 2005; Su et al., 2003), it assumed

a maximum current load at every port to guarantee the worst-case design scenario.

The maximum current model is over pessimistic as it ignores operation variation. Specifically,

current loads at different ports are correlated and cannot reach the maximum at the same

time due to the inherent logic dependency for a given design, hence exhibiting logic-induced

correlation; and the current at a port also exhibits temporal correlation, i.e., the current cannot

attain maximum all the time, and depending on the functionality being performed, the current

variations for certain periods of clock cycles are correlated.

Unfortunately, few research has been conducted on how to extract these operation

correlations. The stochastic modeling of IR drop with respect to given correlated current loads

for a P/G network was studied in (Pant, D.Blaauw, Zolotov, S.Sundareswaran & Panda, 2004).

However, the paper did not discuss how to extract the correlation of those current loads.
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Moreover, it is still not clear how to use the correlation to guide the P/G network design and

optimization such as decap budgeting.

In addition, the current loads are affected by process variations. (Ferzli & Najm, 2003)

has considered process variation induced leakage variation for power grid analysis. While

the leakage power is comparable to the dynamic power because not all components are

active simultaneously in a large system-on-chip, we believe that the dynamic peak current

is still dominant compared with the leakage current. However, how to design a reliable

P/G network in the presence of process variation (particularly Le f f variation) has not been

explicitly studied in existing work (Fu et al., 2004; Li et al., 2005; Su et al., 2003).

In this chapter, we develop a novel stochastic model for current loads, taking into account

operation variation such as temporal and logic-induced correlations and process variations

such as systematic and random Le f f variation. We propose a formal method to extract

operation variation and formulate a new decap budgeting problem using the stochastic

current model. We develop an effective yet efficient iterative alternative programming

algorithm and conduct experiments using industrial designs. We show that under the same

decap area and compared with the baseline model assuming maximum current peaks at all

ports, the model considering temporal correlation reduces the noise by up to 5×, and the

model considering both temporal and logic-induced correlations reduces the noise by up

to 17×. Compared with using deterministic process parameters, considering Le f f variation

reduces the mean noise by up to 4× and the 3σ noise by up to 13× when both applying

the current model with temporal and logic-induced correlations. Therefore, we convincingly

demonstrate the significance of considering both operation and process variations and open a

new research direction for optimizing signal, power and thermal integrity with consideration

of operation variation.

The remaining of the chapter is organized as follows. We introduce the decap budgeting

problem in Section 2, and develop the stochastic current model and parameterized MNA

formulation in Section 3. We discuss the algorithms to solve the variation-aware decap

budgeting problem in Section 4, and present experiments in Section 5. We conclude in

Section 6. An extended abstract of this chapter with less details and no sequential quadratic

programming (in Sections 4 and 5.3) was published by the 2007 International Conference on

Computer-Aided Design (Shi et al., 2007).

2. Problem formulation

The P/G network can be modeled as a linear RLC network with each segment and pad

modeled as a lumped RLC element from extraction. The behavior of any linear RLC network

with p ports of interests is fully described by its state representation following the modified

nodal analysis (MNA)

Gx + C
dx

dt
= Bu(t), (2)

y = LT
0 x, (3)

where x is a vector of nodal voltages and inductor currents, u is a vector of current sources

at all ports, G is the conductance matrix, C is a matrix that includes both inductance and
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capacitance elements, B and L0 are port incident matrices, and y is the output voltages of

interests at the p ports.

We model the P/G network noise based upon the response y(t) from (3). Because of the

duality between power and ground networks, in the following, we will focus our explanation

on the power network design. But it is understood that the same formulation applies to

the ground network design as well. Same as (Fu et al., 2004; Li et al., 2005; Su et al., 2003;

Visweswariah et al., 2000), we model the power network induced noise at a node as the

integral of the voltage drop below a user specified noise ceiling U over a certain period of

time:

zi =
∫

Ωi

(U − yi(t))dt, (4)

where Ωi is the time duration when voltage at port i, yi, drops below the noise ceiling U, i.e.,

Ωi = {t|yi(t) ≤ U}. (5)

The figure of merit that measures the qualify of the whole power network design is defined

as the sum of noise at all ports of interest, i.e.,

f =
p

∑
i=1

∫

Ωi

(U − yi(t))dt. (6)

We will call the noise measurement in (6) simply as noise in the rest of the chapter.

Based upon the noise modeling above, we can formulate the decap budgeting problem as the

following optimization problem:

Formulation: Decap Budgeting: Given a power network modeled as an RLC network with

specified power pads, time-varying current at different ports, and total available white

space W for decoupling capacitance, the DecapOpt problem determines the places to insert

decoupling capacitance and the sizes of each decoupling capacitance, such that the noise

defined in (6) is minimized, considering the time-varying current u(t) in (2) caused by

logic-induced variation, temporal variation and process variation.

3. Stochastic modeling

In this section, we first propose our stochastic current model for the current loads of the P/G

network in Section 3.1, where we extract the correlation from the extensive simulation of the

circuit and then apply ICA to get the parameterized model of the load current. Then in Section

3.2, based on the load current model, we propose the parameterized MNA formulation and

mathematically represent the variation-aware decap budgeting problem.

3.1 Stochastic current modeling

In this section, we propose our stochastic current modeling for current loads of the P/G

network, i.e., u(t) in (2). Similar to the vectorless P/G analysis in (Kouroussis et al., 2005),

we assume that the circuit is partitioned into blocks such that different blocks are relatively

independent. For each block, there are multiple ports connected to the power network,

and each port is modeled as a time-varying current load for the power network. We apply

extensive simulation to each block independently to get the current signatures. Because
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we ignore the interdependence between blocks, the obtained current signatures are still

conservative compared with the real current profiles.

For simplicity of presentation and similar to (Su et al., 2003) 1, we represent the current in

one clock cycle as a triangular waveform with rising time, falling time, and peak value Î. The

peak values vary in different clock cycles and over different ports. The correlation between

currents for different ports is called logic-induced correlation. In addition, the currents of the

same port in different clock cycles are also correlated. We call this type of correlation as

temporal correlation. For example, it might take a block several clock cycles to execute certain

functions and the current profile inside those clock cycles are dependent to each other. We

denote L, the correlation length, as the maximum number of clock cycles in which the peak

currents might be correlated and can be decided from the simulation results.

In the following, we devise a stochastic model which can efficiently capture the correlation

from both the logic-induced variation and temporal variation, as well as from process

variation.

3.1.1 Stochastic model to consider current interdependence

We record the peak currents at port k (1 ≤ k ≤ p with p as the total port number) at different

clock cycles, and put them into vectors, i.e.,

b
j
k = [ Î

j
k, Î

1+j
k , . . .], 1 ≤ k ≤ p, 1 ≤ j ≤ L (7)

where Îi
k is the peak currents at port k in clock cycle i, and b

j
k is the set of peak currents sampled

every clock cycles starting from cycle j. Properly truncation from the end of b
j
k is necessary

to make them of the same length for further processing. In other words, the corresponding

samples in vectors b
j1
k and b

j2
k are |j1 − j2| clock cycles apart. If the peak current at port k in

the first clock cycle is selected from the r-th element of b1
k , then the peak current in the second

clock cycle should be the r-th element of b2
k . As an example, if the peak values in each clock

cycle for port 1 are [0.1, 0.2, 0.3, 0.4], and for port 2 are [0.01, 0.02, 0.03, 0.04], and we choose

L = 2, then

b1
1 = [0.1, 0.2, 0.3], b1

2 = [0.01, 0.02, 0.03],

b2
1 = [0.2, 0.3, 0.4], b2

2 = [0.02, 0.03, 0.04]. (8)

We model the peak current at each port as a stochastic process. Then all the elements of b
j
k are

the samples for the stochastic variable B
j
k with its mean μ(B

j
k) and standard deviation σ(B

j
k).

We call the correlation between b
j1
k and b

j2
k as temporal correlation, and the one between b

j
k1

and b
j
k2

as logic-induced correlation.

With those stochastic variables B
j
k’s and their corresponding samples b

j
k’s, we can compute the

logic-induced correlation matrix ρ(j; k1, k2) which describes the correlation between the peak

1 Our noise verification in the experiment part does not depend on this assumption.
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currents at any two ports k1 and k2 in clock cycle j as

ρ(j; k1, k2) =
cov(B

j
ki

,B
j
k2
)

σ(B
j
k1
)σ(B

j
k2
)

, (1 ≤ k1, k2 ≤ p), (9)

where cov(B
j
k1

,B
j
k2
) are the covariance between B

j
k1

and B
j
k2

, and σ(B
j
k1
) and σ(B

j
k2
) are their

standard deviations, respectively. Similarly, the temporal correlation matrix ρ(j1, j2; k) which

describes the correlation between the peak currents between clock cycles j1 and j2 of a same

port k can be computed as

ρ(j1, j2; k) =
cov(B

j1
k ,B

j2
k )

σ(B
j1
k )σ(B

j2
k )

, (1 ≤ j1, j2 ≤ L). (10)

3.1.2 Extension to process variation with spatial correlation

(Orshansky et al., 2002) relates the current to the process parameters Le f f , tox and Vt as

Îi
k ∼ L−0.5

e f f t−0.8
ox (Vdd − Vt). (11)

As pointed out in (Cao & Clark, 2005), in 90nm regime the most significant variation

source is the effective channel length (Le f f ), and Le f f variation can be more than 30%.

Furthermore, Le f f variation is mostly spatially correlated but not random (Orshansky et al.,

2002). Therefore, we will use Le f f variation as an example to show how process variation can

be embedded into our stochastic modeling. It is understood that the process variation of other

parameters can be dealt with in a similar way.

We use the variation model for Le f f based on (Orshansky et al., 2002):

Le f f = L0 + Lprox + Lspat + ǫ, (12)

where L0 is the overall mean, Lprox is a discrete stochastic variable with a distribution

determined by the frequency of each gate, Lspat corresponds to the spatial variation, and ǫ

is the local random variation.

From (11), with Le f f variation, the sample Î
j
k becomes a set of samples

⎡

⎣ Î
j
k

√

√

√

√

L̄e f f ,k

L1
e f f ,k

, Î
j
k

√

√

√

√

L̄e f f ,k

L2
e f f ,k

, . . .

⎤

⎦ , (13)

where Li
e f f ,k with different i are the samples of Le f f ,k for the circuit block corresponding

to port k with the nominal value L̄e f f ,k, and Î
j
k are the peak current sample for B

j
k in the

deterministic case without Le f f variation in (7). In other words, if we have n samples for

Le f f ,k (L1
e f f ,k, L2

e f f ,k, . . . , Ln
e f f ,k), then every current sample I

j
k becomes n samples. Therefore,

the sample vector b
j
k becomes n times longer in the presence of Le f f variation, and we denote

this new vector as b̃
j
k. In addition, we denote the stochastic variable representing the set of b̃

j
k
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as B̃
j
k. In this case, the temporal correlation (9) becomes

ρ̃(j; k1, k2) =
cov(B̃

j
ki

, B̃
j
k2
)

σ(B̃
j
k1
)σ(B̃

j
k2
)

, (1 ≤ k1, k2 ≤ p), (14)

and the logic-induced correlation (10) becomes

ρ̃(j1, j2; k) =
cov(B̃

j1
k , B̃

j2
k )

σ(B̃
j1
k )σ(B̃

j2
k )

, (1 ≤ j1, j2 ≤ L). (15)

3.2 Parameterized problem formulation

3.2.1 Parameterized current via ICA

Directly considering the temporal and logic-induced correlation including process variation

as formulated in (14) and (15) is difficult for optimization. Therefore, we propose to remove

the correlation between B̃
j
k’s and build a parameterized current model in the following.

If all those variable B̃
j
k’s are Gaussian, we can apply principal component analysis (PCA) to

remove the interdependence between the stochastic variables B̃
j
k’s. However, this is not the

case for our stochastic current model. Therefore, we use independent component analysis

(ICA) that is applicable to non-Gaussian distribution (Hyvarinen et al., 2001). The input to ICA

is the samples b̃
j
k as well as their correlation matrices (14) and (15), and the output are a set of

independent stochastic variables ri and their corresponding coefficients ai(j, k) to reconstruct

each B̃
j
k, i.e.

B̃
j
k ≈

q

∑
i=1

ai(j, k)ri. (16)

The order q is determined for each design such that the relative error between the original

currents and model predicted currents is less than 5%. The probability density function (PDF)

for each ri is also given in the output of ICA as a one-dimensional lookup table, based on

which we can bound the range of ri as

ri ≤ ri ≤ ri, (17)

where ri and ri can be related to ri’s mean (μ) and variance (σ2). For example, we can take ri

as μ − 4σ and ri as μ + 4σ.

Therefore, assuming uniform rising and falling times across the chip for the triangular current

waveform within a clock cycle 2, together with ai(j, k) which represents the i-th component of

the peak current at port k in clock cycle j, we have all the necessary information to obtain the

i-th time-varying current waveform component ui(t; j, k). If we denote T as the clock period,

2 This uniform assumption does not affect the results in our experiments.
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then jT ≤ t ≤ (j + 1)T. Put those ui(t; j, k) at all ports in clock cycle j together as

ui(t; j) =

⎛

⎜

⎜

⎜

⎝

ui(t; j, 1)
ui(t; j, 2)
...

ui(t; j, p)

⎞

⎟

⎟

⎟



, jT ≤ t ≤ (j + 1)T, (18)

and then combine all the ui(t; j) in different clock cycles, we can get ui(t) with 0 ≤ t ≤ LT.

Finally, according to superposition theorem, we have

u(t) =
q

∑
i=1

ui(t)ri, 0 ≤ t ≤ LT. (19)

We call (19) as parameterized current load model.

3.2.2 Parameterized MNA for decap budgeting

Considering the inherent parasitics, we model the decap similarly to (Zheng et al., 2003) as

an equivalent series capacitor (ESC), and equivalent series resistor (ESR) and an equivalent

series inductor (ESL). When a decap with size wi is inserted into the power network at a

given location, its impact can be considered by adjusting matrices G and C in (2) based on the

location at the network and the size of the decap. Mathematically, it can be represented as

G = G0 +
M

∑
i=1

wi · Gw,i, (20)

C = C0 +
M

∑
i=1

wi · Cw,i, (21)

where G0 and C0 are the original matrices for the power network without decap, M is the total

number of decaps, and Gw,i and Cw,i provide the stamping of a unit width decap at the i-th

location. Due to the placement constraint, each wi has an upper bound, i.e., we have the local

constraints

0 ≤ wi ≤ wi. (22)

If only noise minimization is considered, then we can simply choose wi = wi (∀i), i.e., use

up all the white space from the physical placement constraints. However, there are two other

important issues we need to take into consideration: the leakage and the area overhead. With

those two constraints, we cannot add too much decap, and therefore we have the global decap

area constraint
M

∑
i=1

wi ≤ W. (23)

In practice we always have the following relationship between the local constraints (22) and

the global constraint (23)
M

∑
i=1

wi ≥ W, (24)
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which implies that (23) is always tight for the optimization problem, and (22) is not tight for

all i. In other words, we are given the total amount of decaps, and we want to allocate those

decaps to the proper locations, so that the noise is minimized while there is no violation to

(22).

The MNA equation of (2) with G given by (20), C given by (21), and u given by (19) can be

written as follows

(G0 +
M

∑
i=1

wi · Gw,i)x + (C0 +
M

∑
i=1

wi · Cw,i)
dx

dt

= B
q

∑
i=1

ui(t)ri, (25)

where 0 ≤ t ≤ LT and ri is a stochastic variable with ri ≤ ri ≤ ri. We call this MNA equation

as parameterized MNA formulation for decap budgeting. One of the major advantages in using

this parameterized MNA formulation is that it enables us to implicitly compute sensitivities

efficiently and accurately, which will become clearer in the later part of this chapter.

With the parameterized MNA, the variation-aware decap budgeting problem can be

mathematically represented as follows:

(P1) min
wi

sup
rk

f =
p

∑
i=1

∫

Ωi

(U − yi(wi, rk; t))dt (26)

s.t. rk ≤ rk ≤ rk 1 ≤ k ≤ q, (27)

0 ≤ wi ≤ wi, 1 ≤ i ≤ M (28)

M

∑
i=1

wi ≤ W, (29)

where voltage yi is a function of wi, rk, and time t and can be solved from (25) and (3).

Problem (P1) is a constrained min-max optimization problem. The sup operation over all

random variables rk is to find the worst-case noise violation measures for a given power

network design. This operation guarantees that all P/G network designs satisfy the given

design constrains while considering the temporal and logic-induced correlations as well as

Le f f variation among ports. This is of particular use for ASIC-style designs, where the

worst-case design performance has to be ensured for sign-off. The min operation over all

decap sizes wi is to find the optimal decap budgeting solution so that the worst-case noise

violation is minimized.

4. Algorithms

In this section ,we present our iterative alternative programming approach to solve the

problem (P1) stated in Section 3. In Section 4.1, we decompose the original min-max problem

into two alternative optimization sub-problems, which are solved in Section 4.2 by an efficient

sequential programming approach based. The detailed algorithm to compute sensitivities

from parameterized MNA for such sequential programming is zoomed into detail in Section

4.3.
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4.1 Iterative alternative programming with guaranteed convergence

Because there exists no general technique to solve the constrained min-max problem (P1)

optimally, we resort to an effective iterative optimization strategy, which we call iterative

alternative programming (IAP). That is, instead of solving the min-max problem (P1) directly,

we solve it by iteratively solving the following two sub-problems alternatively.

The first sub-problem assumes that all decaps’ sizes wi are known, hence the worst-case noise

can be obtained by solving the following optimization problem

(P2) max
rk

f =
p

∑
i=1

∫

Ωi

(U − yi(wi, rk; t))dt (30)

s.t. rk ≤ rk ≤ rk, 1 ≤ k ≤ q (31)

The second sub-problem assumes that all random variables rk have fixed values, hence

the decap sizes to achieve the minimum noise can be obtained by solving the following

optimization problem

(P3) min
wi

f =
p

∑
i=1

∫

Ωi

(U − yi(wi, rk; t))dt (32)

s.t. 0 ≤ wi ≤ wi, 1 ≤ i ≤ M (33)

M

∑
i=1

wi ≤ W, (34)

where W is the total white space available. Problem (P3) is exactly the deterministic version

of the original problem formulation (P1).

We illustrate our idea in Fig. 1 and the overall algorithm can be described in Algorithm 1,

where iter is the current iteration number and ǫ determines the stop criteria of the optimization

procedure. For each iteration, we increase the total available white space by ∆W until W̄.

The algorithm terminates when the change of objective function |∆ f | is sufficiently small

indicating the convergence of the solution, or we have reached the global decap constraint

(29). The first case corresponding to the situation where we have reduced noise below the

bound before all the white space are used up, while the second case indicates that we have

reached the global decap area constraint. In either case, the algorithm will terminates and

the convergence of our algorithm is guaranteed as long as the algorithms for solving (P2) and

(P3) converge, which will be discussed shortly. As shown in Fig. 2, the choice of ∆W reflects a

tradeoff between the runtime and the solution quality. Smaller ∆W can result in smaller noise

under the same decap area but the runtime is increased as well. Setting ∆W = 0.004W gives a

good balance in our experiment.

Find the optimal 
decap budgeting for 
the given max 
droop/bounce 

update the max droop/bounce 

update the decap budgeting 

Find the input corresponding 
to the max. droop/bounce for 
the given decap budgeting 

Fig. 1. Solve the min-max problem by iteratively solving two sub-problems.
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Algorithm 1 Iterative alternative programming.

INPUT: initial guess wi , rk , current white space W̄;
OUTPUT: final solution wi to problem (P1);
Initialize: The current white space available W = 0;
for iter = 0; |∆ f | ≤ ǫ and W ≤ W̄; iter ++ do

W = W + ∆W;
wi = solve-P3(iter, wi , rk , W);
rk = solve-P2(iter, wi , rk , W);
Compute objective function with new rk and wi ;

end for
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Fig. 2. The normalized runtime and noise w.r.t different ∆W
W̄

.

4.2 Efficient sequential programming

Both problems (P2) or (P3) are constrained nonlinear optimization problems, and there exits

no general technique to solve them efficiently. Because the constraints in both problems are

linear, if we can approximate the objective function f by a first-order linear function, the

original problems would become linear programming (LP). Or if we can approximate the

objective function f by a second-order quadratic function, they would become a quadratic

programming (QP) problem. Because efficient solvers exist for both LP and QP problems,

we can solve the approximated problems more efficiently than solving the original problems

directly. Therefore, we propose to solve the original (P2) or (P3) problem via sequential

programming, either through LP or QP in the following.

For now, let us assume that we know how to compute the first- and second-order sensitivities

of the objective function f with respect to changing variables, which will be discussed in

Section 4.3. Therefore, we can easily obtain the linear and quadratic approximations of the

objective function. For example, for the objective function in problem (P3), the changing

variables are all ∆wi. Therefore, we have the following linear and quadratic approximations

for the objective function
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flp ≈ f0 +
M

∑
i=1

∂ f

∂wi
∆wi , (35)

fqp ≈ f0 +
M

∑
i=1

∂ f

∂wi
∆wi +

M

∑
k=1

M

∑
j=1

∂2 f

∂wi∂wj
∆wi∆wj, (36)

where f0 is the current value of the objective function, and
∂ f
∂wi

and
∂2 f

∂wi∂wj
are the first- and

second-order sensitivities of f , respectively.

Apparently, (35) is a linear function of ∆wi, while (36) is a quadratic function of changing

variables ∆wi. By replacing (30) with (35), we obtain an approximated LP formulation for

(P3). Or by replacing (30) with (36), we obtain an approximated QP formulation for (P3). Both

LP and QP can be solved efficiently.

A high-level description of the sequential programming algorithm to solve either problem

(P2) or (P3) is shown in Algorithm 2, where iter2 is the current iteration number, ITER2 is the

maximum iteration bound. The iterations stop when the change of objective function |∆ f |
is smaller than ǫ2, which is dynamically adjusted according to the iteration number iter in

the outer-loop of Algorithm 1. We employ an exponential decreasing function to adjust ǫ2

in this work. The idea is that when the out-loop iteration is small (or we are far from the

optimal solution), we can have an early termination of the inner-loop optimization procedure

as shown in Algorithm 2 early. But when the outer-loop iteration becomes large enough (or we

are close to the optimal solution), we should spend more time in each inner-loop optimization

to find a better global optimal solution. Parameter η is used to control the efforts that we

should spend in the inner-loop’s optimization.

The convergence for Algorithm 2 is guaranteed by noting that though the iterations the

objective function is monotonically decreasing, and thus the loop must exit when a local or

global minimum/maximum is obtained.

Algorithm 2 Sequential programming (sLP or sQP) for solving (P2) and (P3).

INPUT: iter, wi , ri , W;
OUTPUT: updated wi for (P3) or ri for (P2);
ǫ2 = exp(-η·iter);
for iter2=0; |∆ f | ≤ ǫ2 or iter2 ≤ ITER2; iter2++ do

Compute the first- (and second-order) sensitivities of f ;
Formulate (P2) or (P3) as an LP (or QP) problem;
Call LP (or QP) solver to solve the above problem;
Compute objective function with new wi (P2) or ri (P3);

end for

Even though we can solve problem (P2) and (P3) via either sequential LP or QP programming

(sLP or sQP) as shown in Algorithm 2, there are several differences between these two

approaches. If we approximate the problem as an sLP, at each optimization iteration we

can find a guaranteed local optimal solution because of the convexity of LP formulation.

But because of the relatively poor first-order approximation quality, we may not find

a good final solution at the end. In contrast, if we approximate the problem as an

sQP, the approximation quality is improved because of the use of higher-order sensitivity

information. And each optimization iteration works more like a Newton step for solving

convex optimization problems. Thus we may find a better final solution compared to the

202 Stochastic Optimization - Seeing the Optimal for the Uncertain

www.intechopen.com



first-order LP approximation. Our experimental results will show that, in practice, sQP

solutions are indeed better than sLP’s for large test cases. Of course we notice that the QP

formulation at each iteration is not necessarily convex, as we cannot prove that the Hessian

of (36) is always positive semidefinite. In practice, however, we find that the solution quality

from sQP is high.

For practical use, the number of variables for the sLP or sQP can be huge. Luckily, promising

research results have been presented which show that by fully utilizing partitioning, parallel

computing and efficient data compression, problems with millions of variables and thousands

of constraints can be solved within several hundred seconds (Andersen & Anderson, 1998;

Karypis et al., 1994).

4.3 Sensitivity computation

To solve (P2) and (P3) via sLP or sQP, we need to compute the sensitivities of the objective

function f with respect to the design variables, i.e., either wi or ri. Because this computation

is similar for both (P2) and (P3), we will focus our discussion on (P3) in the following.
The first- and second-order sensitivities of the objective function f of problem (P3) are defined
as

∂ f

∂wi
= −

p

∑
i=1

∫

Ωi

∂yi

∂wi
dt = −

p

∑
i=1

∫

Ωi

LT
0i

∂x

∂wi
dt, (37)

∂2 f

∂wi∂wj
= −

p

∑
i=1

∫

Ωi

∂2yi

∂wi∂wj
dt = −

p

∑
i=1

∫

Ωi

LT
0i

∂2x

∂wi∂wj
dt. (38)

For simplicity of presentation, we have loosely applied the derivative notation on a vector for

component-wise derivative.

To compute the sensitivity of f w.r.t. wi, all we need to know is the sensitivity of the state

vector x with respect to wi. We use Taylor expansion to express x as follows

x = x0 +
M

∑
i=1

αi∆wi +
M

∑
i=1

M

∑
j=i

βij · ∆wi∆wj + . . . , (39)

where αi is the first-order sensitivity of x w.r.t. random variable wi, and βij is the second-order

sensitivity of x with respect to random variable wi and wj. In other words, we have

∂x

∂wi
= αi,

∂2x

∂wi∂wj
= βij. (40)

To compute these sensitivities, we recognize that x also satisfies the differential equation given

by the parameterized MNA formulation (25). By Laplace transformation, we re-write (2) as

follows

(G +
M

∑
i=1

∆wi · Gw,i)x + s(C +
M

∑
i=1

∆wi · Cw,i)x = Bu. (41)

By plugging (39) into (41), we obtain terms of ∆wi with different orders. By equating the

zero-order terms of ∆wi from both left and right hand sides in (41), we obtain a set of equations
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as follows

(G + sC)x0 = Bu. (42)

By equating the first-order terms of ∆wi, we obtain sets of equations as follows for all 1 ≤ i ≤
M

(G + sC)αi = −(Gw,i + sCw,i)x0. (43)

Similarly, by equating the second-order terms of ∆wi∆wj, we obtain another sets of equations

as follows for all 1 ≤ i ≤ M

(G + sC)βij = −(Gw,i + sCw,i)αj − (Gw,j + sCw,j)αi (44)

By applying the Backward Euler integration formula and assuming the time step as h, we can

re-write (42) and (43) as follows

(G +
C

h
)x0(t + h) = Bu(t + h) + x0(t)

C

h
, (45)

(G +
C

h
)αi(t + h) = −(Gw,i +

Cw,i

h
)x0(t + h)

+
x0(t)Cw,i + αi(t)C

h
, (46)

(G +
C

h
)βij(t + h) = −(Gw,i +

Cw,i

h
)αj(t + h)

−(Gw,j +
Cw,j

h
)αi(t + h)

+
αj(t)Cw,i + αi(t)Cw,j + βij(t)C

h
. (47)

Because all equations in (45) and (46) share the same left-hand side matrix, (G + C/h), we

only need to perform LU-factorization once, and then reuse the same factorization to solve

for x0, αi and βij sequentially at each time step. This computation is efficient because it only

involves some matrix-vector multiplications, and backward and forward substitutions.

The integral interval Ωi for port i is decided by x0. Once x0 is solved, we have y = LT
0 x0,

and then the corresponding interval can be decided from (5). By doing so we have assumed

that the incremental δwi is relatively small in each step and will not significantly influence the

integral interval. In summary, we can compute the first and second-order sensitivities of the

objective function f of problem (P3) by following the Algorithm 3.

5. Experimental results

In this section, we present experiments using four industrial P/G network designs. For

each benchmark, we randomly select 20% of total nodes as candidate nodes for decap

insertion, i.e., M = 20%N. For fair comparison, when comparing the runtime and noise,

the same white space is used up for different methods. We run experiments on a LINUX

workstation with Pentium IV 2.66G CPU and 1G RAM. We partition the circuits according

to the method in (Kouroussis et al., 2005). We use the package FASTICA (Hyvarinen & Oja,
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Algorithm 3 Sensitivity computation for (P3).

INPUT: wi , rk , h, T;
OUTPUT: f , αi and βij;
factorization: LU factorize G + C/h;
for t = 0; t + h ≤ T; t = t + h do

Solve (45) for x0(t + h);
end for
for i = 1; i ≤ p; i ++ do

Use (5) to compute Ωi from y(t) = LT
0 x0(t);

end for
for t = 0; t + h ≤ T; t = t + h do

Solve (46) for αi(t + h);

Solve
∂ f

∂wi
from (37);

end for
for t = 0; t + h ≤ T; t = t + h do

for 1 ≤ i ≤ K do
for 1 ≤ j ≤ K do

Solve (47) for βij(t + h);

Solve
∂2 f

∂wi∂wj
from (38);

end for
end for

end for

1997) to perform ICA. Finally, we use MOSEK as the linear/quadratic programming solver

(http://www.mosek.com, n.d.) and random walk based simulator (Qian et al., 2005) with

detailed (not triangular) input current waveform to obtain the noise reported in this section.

5.1 Decap budgeting with operation variation

We compare three current models as shown in Table 1: maximum current peaks at all ports3

(model 1), stochastic model (model 2) with logic-induced correlation only (L = 1), and

stochastic model (model 3) with both logic-induced and temporal correlation. For temporal

correlation, we always use L = 4 since all circuits tested take at most four clock cycles to

complete any one instruction. Table 1 reports the noise and runtime for the four benchmarks

with different number of nodes at the same decap area. Compared with the baseline model

with maximum current peaks at all ports 4, the model considering temporal correlation

reduces noise by up to 5×; and the model considering both temporal and logic-induced

correlations reduces noise by up to 17× (see bold in Table 1). This is because the first two

models cannot model the currents effectively and lead to inserting unnecessarily large decaps

in some regions. As for the runtime, model 2 needs about 1.5× more time than model 1, while

model 3 needs about 2.3× more. The runtime overhead is the price we have to pay in order to

achieve better designs.

In Fig. 3, we plot the time-domain responses at one randomly selected port for two

optimization iterations by alternatively solving the problem (P3) and (P2). The benchmark

has 1284 nodes. The initial waveform is denoted by “A0:initial”. After performing decap

sizing once by solving problem (P3) with a fixed choice of random variables rk, we obtain the

3 We still use the detailed waveforms for the currents, except that the maximum values of those
waveforms are always set to be the worst case values.

4 We solve it by iteratively solving (P3) without altering to (P2).
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Model 1 maximum current peaks at all ports
Model 2 stochastic model with logic-induced correlation
Model 3 Model 2 + temporal correlation

Node # Port # noise (V*s) runtime (s)
model model model model model model

1 2 3 1 2 3
1284 426 6.33e-7 1.28e-7 4.10e-8 104.2 161.2 282.3

10490 3398 5.21e-5 1.09e-5 4.80e-6 973.2 1430 2199
42280 13327 7.92e-4 5.38e-4 9.13e-5 2732 3823 5238
166380 42146 1.34e-2 5.37e-3 2.28e-3 3625 5798 7821

avg 1 1/3× 1/9× 1 1.50× 2.26×

Table 1. Noise, runtime and area comparison between the three models.

new waveform as denoted by “A1:(P3)”. We then switch to solve problem (P2) by varying the

values of those random variables rk, but with fixed decap sizes wi. We see that the waveform

of the final worst-case voltage drop becomes worse compared to the deterministic solution;

hence we obtain a new voltage drop waveform as denoted by “A2:(P2)”. We then switch

back to solve the decap sizing problem (P3) with fixed but newly updated choice of random

variables rk. At the end of this optimization, we arrive at a new voltage waveform as denoted

by “A3:(P3)”. Apparently, compared to “A1:(P3)”, the new solution has smaller voltage drop.

If we continue the same procedures by following the IAP algorithm given in Fig. 1, similar

sequences of time domain voltage drop waveforms would repeat as we have shown in Fig. (3)

until we converge to an optimal solution. Also, The voltage drop is reduced mostly in the

first optimization iteration denoted as “A1:(P3)”. Afterward, the voltage drop reduction is

relatively small. This observation is in agreement with the common knowledge about any

sensitivity-based optimization techniques. In this particular example, we find that the first

two iterations reduces the noise by 51.4%.

Fig. 3. Time domain waveforms at one port after sLP for different iterations.

5.2 Le f f variation aware decap budgeting

In the presence of process variation, we want to minimize the worst-case noise for Le f f

variation. We solve this via the proposed IAP technique in Algorithm 1. We denote our Le f f

variation aware approach as sLP + Le f f and the counterpart as sLP. Before we quantitatively

compare the two methods, we first use Fig. 4 to demonstrate the effectiveness of Le f f variation

aware decap budgeting. We use the same circuit with 15% Le f f variation and perform Monte

Carlo simulations with 14000 samples to obtain the noise histogram of the design from the sLP
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Node # Port # sLP sLP + Le f f
μ 3σ RT μ 3σ RT

(V*s) (V*s) (s) (V*s) (V*s) (s)
1284 426 9.28e-7 3.97e-7 184.2 6.14e-7 1.38e-7 332.8 (1.81×)
10490 3398 1.03e-4 4.79e-5 1121 7.22e-5 1.23e-5 3429 (3.06×)
42280 13327 2.29e-3 9.72e-4 2236 8.23e-4 1.01e-4 6924 (3.10×)

166380 42146 2.06e-2 9.91e-3 3824 5.31e-3 8.32e-4 11224 (2.93×)
avg 1 1 1 0.50× 0.20× 2.73×

Table 2. The mean value μ, 3σ variance of the noise and runtime (RT) comparison between
sLP + Le f f and sLP with 10% intra-die Le f f variation.

and sLP + Le f f , respectively. From the figure we can see that the noise from sLP + Le f f (mean

value 8.4× 10−9 V*s, 3σ value 0.4× 10−9 V*s) is much smaller than that from sLP (mean value

9.7 × 10−9 V*s, 3σ value 1.9 × 10−9 V*s), although both have the same decap area constraints.
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Fig. 4. The noise distribution for the an industry power mesh with decap budgeting using
sLP and sLP + Le f f .

Next we compare the mean value μ and 3σ value of the noise distribution with 10% Le f f

variation based on Monte Carlo simulation with 10,000 runs, and the results are reported in

Table 2. Compared with using deterministic Le f f , considering Le f f variation reduces the mean

noise by up to 4× and 3σ noise by up to 13× (see bold in Table 2), when both applying the

current model with temporal and logic-induced correlations. As for the runtime between sLP

and sLP + Le f f , the latter needs about 2.7× more time than the former on average.

5.3 Comparison between sLP and sQP

We study the difference between our sLP and sQP approaches in terms of noise and runtime

for five benchmarks with different number of nodes in Table 3 for deterministic case. The

same white space are used up for both methods. An interesting observation from Table3 is

that sQP almost always obtain smaller noise than sLP, particularly for those large test cases,

with longer runtime. This is expected, as higher-order sensitivities are used in sQP to guide

the optimization. In terms of noise, sQP is much better than sLP for large test cases and

slightly worse for the small test case. In terms of runtime, however, sLP is on average 3.25×
faster than sQP. Similar experimental results are presented in Table 4 in the presence of Leff

variation. We can see that not only the mean noise is reduced by 19%, the 3σ valude is also
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Node Port sLP sQP

# # noise (V*s) time (s) noise (V*s) time (s)

128 41 1.83e-9 2.4 1.85e-9 (1.01×) 8.3 (3.46×)

512 174 1.83e-9 23.8 1.81e-9 (0.99×) 66.0 (2.77×)

1280 477 1.85e-9 151 1.79e-9 (0.97×) 497 (3.29×)

5120 1731 1.91e-8 982 1.30e-8 (0.68×) 3779 (3.85×)

12800 3324 1.94e-4 1960 0.81e-4 (0.42×) 5658 (2.89×)

Avg 1 1 0.81× 3.25×

Table 3. Noise and runtime comparison between sLP and sQP.

Node # Port # sLP + Le f f sQP + Le f f

μ 3σ RT μ 3σ RT

(V*s) (V*s) (s) (V*s) (V*s) (s)

1284 426 6.14e-7 1.38e-7 332.8) 4.98e-7 7.70e-8 985.0 (2.96×)

10490 3398 7.22e-5 1.23e-5 3429) 5.91e-5 5.28e-5 11932.9 (3.48×)

42280 13327 8.23e-4 1.01e-4 6924) 6.77e-4 5.93e-5 18348.6 (2.65×)

166380 42146 5.31e-3 8.32e-4 11224 4.11e-3 4.71e-4 36365.8 (3.24×)

avg 1 1 1 0.81× 0.54× 3.08×

Table 4. The mean value μ, 3σ variance of the noise and runtime (RT) comparison between
sLP + Le f f and sQP + Le f f with 10% intra-die Le f f variation.

reduced by 46%. We believe both sLP and sQP are of practical value, and they provide good

trade-off between runtime efficiency and design quality. Note that no existing approach in the

literature leverages them for decap budgeting. Our sLP/sQP solution is the first of the kind.

6. Conclusions and discussions

This chapter studied a variation-aware decoupling capacitance (decap) budgeting problem for

reliable power network design. The major contributions of this work are two-fold: (1) a novel

method to solve the the deterministic decap budgeting problem efficiently; and (2) a new

variation-aware decap budgeting problem that takes into account process variation effects.

Experimental results show that compared to existing industrial quality decap budgeting

techniques as proposed in the literature, we achieve 13× speed-up while achieving similar

design quality. It also serves as an example for general stochastic optimization.
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