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Abstract

Interconnects are an important constituent of any large scale integrated circuit, and ac-

curate interconnect analysis is essential not only for post-layout verification but also for

synthesis. For instance, extraction of interconnect capacitance is needed for the prediction

of interconnect-induced delay, crosstalk, and other signal distortion related effects that are

used to guide IC routing and floor planning. The continuous progress of semiconductor

technology is leading ICs to the era of 45 nm technology and beyond. However, this progress

has been associated with increasing variability during the manufacturing processes. This

variability leads to stochastic variations in geometric and material parameters and has a sig-

nificant impact on interconnect capacitance. It is therefore important to be able to quantify

the effect of such process induced variations on interconnect capacitance.

In this thesis, we have worked on a methodology towards modeling of interconnect ca-

pacitance in the presence of geometric uncertainties. More specifically, a methodology is

proposed for the finite element solution of Laplace’s equation for the calculation of the per-

unit-length capacitance matrix of a multi-conductor interconnect structure embedded in a

multi-layered insulating substrate and in the presence of statistical variation in conductor

and substrate geometry. The proposed method is founded on the idea of defining a single,

mean geometry, which is subsequently used with a single finite element discretization, to

extract the statistics of the interconnect capacitance in an expedient fashion. We demon-

strate the accuracy and efficiency of our method through its application to the extraction of

capacitances in some representative geometries for IC interconnects.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

Interconnects are an important constituent of any large scale integrated (LSI) circuit. The

continuous progress of semiconductor technology is leading ICs to the era of 45 nm technol-

ogy and beyond. This nanometer technology scaling has enabled designers to integrate more

functionality on the chip. Active device counts are reaching hundreds of millions. Intercon-

nect dimensions are being scaled with the devices whenever possible. However, this scaling

has created problems with signal integrity and interconnect delay. Furthermore, the use of

new device structures and an increasing number of metal layers are introducing millions of

new parasitic effects in designs. Interconnect, which was once considered just a parasitic, can

now be a dominant factor for integrated circuit performance. For instance, interconnect and

device parasitic effects are estimated to account for over 60 percent of the delay at 28 nm.

Consequently, accurate interconnect analysis has become essential not only for post-layout

verification but also for synthesis. For instance, extraction of interconnect capacitance is

needed for the prediction of interconnect-induced delay, crosstalk, and other signal distor-

tion related effects that are used to guide IC routing and floor planning. Over the past

decade there have been a number of advances in modeling and analysis of interconnect that

have facilitated the continual advances in design automation of systems of increasing size

and frequency.

With migration of VLSI circuits toward deep submicron dimensions, variability during

manufacturing processes has assumed significant importance. Interconnect variability arises
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in the lithography process and other processes such as etching and chemical mechanical pol-

ishing (CMP). Such process-induced variations lead to random variations in geometry and

material properties of the interconnect. To determine the extent of such effects, the distribu-

tion of various electrical parameters, such as interconnect resistances and capacitances, must

be determined. Such distribution can then be used for considering interconnect variability

in a design flow, particularly in parasitic extraction [22], [19] and signal-integrity [18] and

timing analyses [28], [6].

In general, there are three broad ways of handling randomness or uncertainty in physi-

cal domains: Monte Carlo based approaches, orthogonal polynomial chaos expansions and

stochastic collocation based methods. These are briefly reviewed in the following.

A standard way to capture the impact of random variations in conductor geometry and

material properties on capacitance value is through brute-force Monte Carlo computation

[12]. In such an approach, one considers a large number (typically greater than 10000) of

realizations (or samples) of the geometry, and a deterministic problem is solved for each one

of these realizations. The generated data is then used for the development of the statistics,

such as the mean and standard deviation, of the capacitance. Clearly, such an approach is

time-consuming, with a convergence rate in obtaining reliable statistics of O(N−1/2), where

N is the number of samples used. Several techniques have been developed for improving

convergence of the Monte Carlo process. Among them we mention the Latin hypercube

sampling [23],[30], the quasi-Monte Carlo (QMC) method, [13], [26], [27], and the Markov

chain Monte Carlo method (MCMC) [15]. In [4], the standard random-walk based solver

was extended to take into account the statistical models of these variations. The variations

were handled by additional Monte Carlo sampling.

In terms of non-statistical approaches, Ghanem and Spanos [14] developed the polyno-

mial chaos approach. Polynomial chaos is a spectral expansion of the stochastic processes

in terms of the orthogonal polynomials as given by Wiener’s homogeneous chaos theory.

When the underlying random variables are Gaussian, a homogeneous chaos expansion us-
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ing Hermite polynomials leads to fast convergence. The idea was generalized by Xiu and

Karniadakis to account for uncertainty in the numerical modeling of a variety of physical

phenomena, such as diffusion [35] and fluid flow [36]. More recently, [1] [2], the polynomial

chaos theory was used in the context of a Lagrangian boundary element method (BEM) for

performing electrostatic and coupled electro-mechanical analysis of MEMS systems. One

of the shortcomings of polynomial chaos is that the dimension of the problem grows very

quickly as the number of random inputs increases. Also, the resulting system of determin-

istic equations that constitutes the approximate problem is coupled and this adds to the

computational overhead of the solution. In [11], a novel statistical capacitance extraction

method for interconnects considering process variations was proposed. The new method,

called statCap, was based on the spectral stochastic method where orthogonal polynomials

are used to represent the statistical processes in a deterministic way. In [16], a fast-multipole

method (FMM) was presented for a parallel and incremental full chip capacitance extrac-

tion considering stochastic variation, namely piCAP. In this approach, the process variations

were modeled using stochastic orthogonal polynomials.

The stochastic collocation method [34],[8],[3] tries to combine the advantages of both

stochastic Galerkin methods and classical Monte Carlo approaches. The key idea is to

use a “decoupled” polynomial interpolation in multi-dimensional random space. Lagrange

interpolation is one such example; thus, what is required is a run of the deterministic solver

for each point in the multi-dimensional parameter space. These interpolation points in

random space can be generated using various algorithms such as Strouds cubature and

Smolyak sparse grids [29]. Compared to stochastic Galerkin methods, collocation methods

generally result in a larger number of equations; however, these equations are easier to

solve as they are completely decoupled and require only repetitive runs of a deterministic

solver. Stochastic collocation is also more efficient than brute force Monte Carlo due to

the smart choice of the interpolation points. A spectral stochastic collocation method was

proposed for the capacitance extraction of interconnects with geometric stochastic variations
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in [38]. Boundary element method (BEM) was the method used for deterministic capacitance

extraction. In [37], an efficient method was proposed to consider the process variations with

spatial correlation, for chip-level capacitance extraction based on the window technique. In

each window, an efficient technique of Hermite polynomial collocation (HPC) was presented

to extract the statistical capacitance.

In [21], an efficient methodology was presented for generating explicit statistical repre-

sentations of parasitic capacitances. The methodology makes use of principle factor analysis

to reduce the number of random variables while preserving the dominant global/local factors

that induce the conductor surface fluctuation due to process variations. In [39], an approach

to account for the impact of conductor surface roughness on capacitance was presented.

1.2 Thesis Objectives and Contributions

The method presented in this paper is aimed at the extraction of the per-unit-length ca-

pacitance matrix, in the presence of geometric uncertainty, of multi-conductor interconnect

geometries embedded in multi-layered, dielectrics. A number of numerical methods are

used for computation of deterministic capacitance. We review these in Chapter 2. Integral

equation solvers, accelerated through the use of fast iterative techniques like the multipole

method, have been among the most popular solvers [25]. However, for the case of conduc-

tors embedded in inhomogeneous dielectrics, the efficiency of random walk-based methods

[20],[10] has made them a popular method of choice. Arbitrary material inhomogeneity is

also handled efficiently by finite element methods. For the purposes of this thesis, the finite

element method will be used for the solution of the electrostatic BVP [32]. The objective

of this work is to demonstrate a finite-element based methodology for the fast extraction of

the per-unit-length capacitance matrix of a multi-conductor interconnect in the presence of

stochastic variations in its cross-sectional geometry.

As already mentioned above, in the context of stochastic collocation or Monte Carlo,
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the solution of the boundary value problems (BVPs) in the presence of statistical variations

in geometry and material parameters requires the solution of a number of deterministic

problems for a set of samples of the uncertain geometry. Thus, in the context of finite

element methods, for each sample, a new finite element mesh and a corresponding system

of linear equations has to be generated. This makes the stochastic analysis computationally

expensive. The methodology proposed is aimed at overcoming this complexity hurdle. The

main idea of the proposed method is to use one or two deterministic runs of the underlying

problem for generating sufficient information for performing stochastic analysis. Toward this

objective we need to rely on the definition of a single “reference” geometry, the one that will

be discretized using the finite element method, and then develop “mappings” from each of

the random samples to the reference geometry. This way we eliminate the need to generate

a new finite element model for each one of the sample problems to be solved. Also, the

deterministic problem to be solved is the one on the reference geometry and it is uncoupled.

We describe this methodology in Chapter 3.
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Chapter 2

Deterministic Capacitance Extraction

In this chapter, we begin with an introduction to the basics of capacitance extraction of

interconnects. It is followed by a brief survey of various methods for modeling interconnect

capacitance. Finally, we present the formulation for finite element based computation of

interconnect capacitance.

2.1 Basics of Capacitance Extraction

An interconnect is a wire that provides a conductive path between different functional ele-

ments such as gates, devices etc. Ideally it should not affect design performance. However,

real wire has resistance, inductance and capacitance. Wiring forms a complex geometry and

introduces resistive, inductive and capacitive effects that impact delay, energy consumption

and power distribution. It is therefore important to be able to model these effects. The

focus of this thesis is on interconnect capacitance.

The simplest model to describe capacitance is using a parallel plate capacitor. It consists

of two metal plates seperated by a distance d and at potentials of Φ1 and Φ2 (Fig. 2.1). The

medium between the two metal plates is a dielectric of permittivity ǫ. A charge of +Q and

−Q is distributed on the two plates. Capacitance, which is defined as the capacity to store

charge, is then calculated as

C =
Q

V
(2.1)
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Figure 2.1: Parallel plate capacitor.

In terms of geometric and material parameters, it is obtained as

C = ǫ
A

d
(2.2)

This simple relationship reveals a lot of information for developing an intuitive understand-

ing of capacitance. For example, it describes how the geometry of the two metal plates

impacts capacitance. It is clear that a stochastic variation in area A or the gap d can cause

a stochastic variaton in capacitance.

In practice, the interconnect structures are very complicated (Fig. 2.2). Shown in Fig.

2.3 are top views and cross-sectional views of the interconnect structure. For an N conductor

system, a capacitance matrix is defined,

[Q] = [C] [V ] (2.3)

where [C] is the capacitance matrix, Cii represents self-capacitance while Cij represents

mutual capacitance.

In the next section, we will look at various techniques used for computing the capacitance

matrix.
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Figure 2.2: Schematic of a 3D interconnect structure.

(a) cross-sectional view (b) top view

Figure 2.3: Cross-sectional and top views of interconnect.

2.2 Survey of Capacitance Extraction Techniques

There are many techniques for computing the interconnect capacitance matrix. They can

be subdivided into geometrical and numerical methods. Geometrical methods have evolved

from simple parallel-plate calculations into elaborate geometric models to include more and

more fringing effects [5]. Basically, they are fitting formulas, of which the coefficients are

determined by numerical calculations or sometimes by measurements. All modern extrac-

tors (e.g.[33],[24],[7]) use such methods, and the fitting coefficients can be determined by

automated procedures from a file with layer thicknesses and permittivities. Because of their

ability to model certain coupling capacitances, these methods are sometimes called quasi-3D
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methods. Such methods are fast, and to a certain extend they can predict the capacitances

fairly well. However, designers sometimes want to check the results of those quasi-3D cal-

culations against numerical calculations that start from first principles. Although it might

not be feasible to do this for a full chip, some critical parts of the layout can be analyzed in

more detail.

Common numerical techniques include the finite-difference method (FDM) [17], the finite-

element method (FEM) [9] and the boundary-element method (BEM) [25]. In both the

FDM and the FEM, the external field is discretized. Because this field in principle extends

to infinity, it has to be truncated using a bounding box. These methods typically lead to

large but sparse systems of equations.

In the BEM, on the other hand, only the boundary of the field region is discretized.

Hence, the 3D problem is effectively reduced to a 2D problem. The resulting matrix is

therefore much smaller, but full. Boundary element methods are most effective when the

medium is regular, or in the capacitance extraction case, when the chips have a stratified

dielectric structure. To a certain extent, this is usually the case because of planarization.

However, for the case of conductors embedded in inhomogeneous dielectrics, the efficiency

of random walk-based methods [20],[10] has made them a popular method of choice.

Arbitrary material inhomogeneity is also handled efficiently by finite element methods. In

this thesis, we make use of the finite element method for modeling interconnect capacitance.

In the following section, we describe its formulation.

2.3 Finite Element Based Capacitance Extraction

As depicted in Fig. 2.4, the geometry under consideration consists of a number of conductors

embedded in a stack of dielectric layers. Capacitance extraction for the multi-conductor

geometry involves the solution of a set of electrostatic boundary value problems. To fix

ideas, consider a configuration of N active conductors and one or more conductors used as
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reference conductors, with respect to whom the potential of each one of the N conductors

is defined. For such a configuration, N electrostatic boundary value problems are solved

for the extraction of the so-called N × N short-circuit capacitance matrix of the N active

conductors. For the i-th boundary value problem, active conductor i is set at potential of

1 V, with all remaining active conductors, along with the reference conductors, set at zero

potential.

As the geometry in Fig. 2.4 suggests, the geometric and material properties of the

structures considered in this paper are assumed to be invariant in one of the three directions

in the reference Cartesian coordinate system. Thus, the boundary value problem of interest

is a two-dimensional (2-D) one and its solution necessitates the discretization of the cross-

sectional geometry of the structure on a plane perpendicular to the axis of invariance.

Figure 2.4: Cross-sectional geometry of a configuration of a set of parallel conductors em-
bedded in a multi-layer dielectric domain.

Without loss of generality, we choose to present the mathematical formulation of our

methodology for the simple configuration depicted in Fig. 2.5. The objective is the solution

of Laplace’s equation

∇2φ = 0 (2.4)
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Figure 2.5: A two-conductor configuration with conductor C1 taken as the active conductor,
while conductor C2 is taken as the reference.

for the electrostatic potential φ, subject to the following three types of boundary conditions

T1, T2 and T3 on various segments of the problem domain:

φ = 1 on T1 (2.5)

φ = 0 on T2 (2.6)

∂φ

∂n
= 0 on T3 (2.7)

Thus, for this configuration, conductor C1 is the active conductor while C2 is the refer-

ence conductor. In addition to the aforementioned boundary conditions, the conditions of

potential and electric flux density (−ǫ∇φ) continuity at dielectric interfaces are imposed.

The numerical solution of the aforementioned boundary value problem (BVP) will be ob-

tained using FEM. The per-unit-length capacitance, C, is calculated, subsequently, through

the integral

C = −

∫

S

ǫ
∂φ

∂n
dl (2.8)

where the integration is carried out over an appropriate Gaussian contour S that encloses

the active conductor and is placed in its immediate vicinity. The unit normal, n̂, is taken to

be pointing outwards from the Gaussian contour.
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Chapter 3

Stochastic Capacitance Extraction

In this chapter, we present our proposed method for extraction of interconnect capacitance

under uncertainty.

3.1 Mathematical Formulation

In this section we describe the physical motivation and mathematical foundation for the

proposed approach. First, we describe a method for developing a “mapping” from a random

sample to a reference geometry. As we will describe in the following, the reference geometry

is the mean geometry. This mapping allows us to compute the solution for the electrostatic

problem for each one of the samples from the solution in the mean geometry. We describe

how the stochastic electrostatic analysis is performed. Finally, a simple example geometry

is considered that provides a visualization of the “mapping.”

3.1.1 Mapping

Our approach for the development of the mapping is the one first described in [31] in the

context of electrostatic modeling of MEMS devices. We will facilitate the discussion with

the aid of Fig. 3.1. The figure depicts the cross-sectional geometry of a two-conductor

interconnect structure, where the assumption is made that the cross-sectional geometry

remains constant along the interconnect axis. Hence, the BVP under consideration is the

one for calculating the per-unit-length capacitance of the interconnect. Without loss of

generality the reference conductor is taken to be a ground plane with fixed cross-sectional
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geometry. However, as the numerical examples demonstrate, the proposed methodology is

general and allows for variability in all conductor geometries. The conductors are embedded

in a dielectric medium, with position-dependent relative permittivity over the interconnect

cross section. Two different cross-sectional geometries are shown for the conductor. The one

with the solid line denotes the mean conductor cross section while the one with the dotted

line denotes the cross section of one random sample. This random sample is the result of

statistical variation in the cross section of the conductor and/or its position with respect

to the reference ground plane. Also shown in the figure are electric flux lines, one for each

one of the two cross-sectional geometries, starting from the conductor and terminating on

the ground plane. At both ends each flux line is perpendicular to the conducting surfaces.

Furthermore, the starting point P ′ of the flux line on the random sample cross section is

taken to be the point at which the flux line starting from point P on the mean cross section

intersects the random sample cross section.

(

( r o)

( r o)

ε

conductor

random sample

mean
geometry

(X,Y)

L(ro)

ro)(v

P

ro)

(r)

P

L

P (x,y)P

Figure 3.1: Definition of the mean cross section and the cross section of one random sample
geometry.

Consider the electric flux line L′ (Fig. 3.1) starting at point P ′(~r0
′)(x, y) on the random

sample conductor. Let V0 be the conductor voltage with respect to the ground. Along the

electric flux line the magnitude of the electric flux density ~D′(~r′) is constant, equal to | ~Dc|.
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Hence, we can write

∫

L′

~E.~dl = V0 (3.1)

∫

L′

~D′(~r′). ~dl′

ǫ(~r′)
= V0 (3.2)

∣∣∣ ~Dc

∣∣∣
∫

L′

1

ǫ(~r′)
dl′ = V0 (3.3)

∣∣∣ ~D′(~r0
′)
∣∣∣ =

∣∣∣ ~Dc

∣∣∣ =
V0∫

L′

1
ǫ(~r′)

dl′
(3.4)

In a similar manner, the line integral of the electric field along a flux line L between the

ground plane and point P (~r0)(X,Y ) on the surface of the mean cross section conductor

yields the following:

∣∣∣ ~D(~r0)
∣∣∣ =

V0∫
L

1
ǫ(~r)

dl
(3.5)

From (3.4) and (3.5) we have

∣∣∣ ~D′(~r0
′)
∣∣∣ = Q

∣∣∣ ~D(~r0)
∣∣∣ (3.6)

Q =

∫
L

1
ǫ(~r)

dl
∫

L′

1
ǫ(~r)

dl′
(3.7)

It is noted that the above equation, which is exact, establishes a linear relationship between

the charge density at a point on the surface of the mean cross section of the conductor and

that at a point on the surface of the cross section of one of the random samples. Furthermore,

it is important to note that, under the assumption of sufficiently small perturbations of the

random sample cross section from the mean cross section, and provided that the points

P ′(~r0
′) and P (~r0) are selected in a manner such that P ′(~r0

′) is the point at which the flux

line L starting at point P (~r0) intersects the surface of the cross section of the random

sample, the above expressions can be manipulated in a manner such that the ratio Q can be
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approximated in an accurate and expedient fashion. The way this is done is described next.

Using (3.5) a position-dependent, flux line length, G(~r0), associated with each point along

the boundary of the mean cross section, may be defined as

G(~r0) = ǫ(~r0)
V0∣∣∣ ~D(~r0)

∣∣∣
(3.8)

where ǫ(~r0) is the electric permittivity adjacent to the conductor at point P (~r0), while
∣∣∣ ~D(~r0)

∣∣∣

is the magnitude of the electric charge density on the conductor at that point. It is noted

that G(~r0) can be computed for all points on the mean cross section from the solution of the

electrostatic BVP with the voltage on the mean conductor cross section set at V0.

Returning to the random sample cross section, the length L′(~r0
′), in view of the discussion

above, may be approximated as

L′(~r0
′) ≈ L(~r0) − v(~r0) (3.9)

where, as depicted in Fig. 3.1, v(~r0) is the length of the flux line L between points P (~r0)

and P ′(~r0
′). Using (3.4),(3.5) and (3.8), we have

∫

L

1

ǫ(~r)
dl =

G(~r0)

ǫ(~r0)
(exact) (3.10)

∫

L′

1

ǫ(~r′)
dl′ ≈

∫

L−v

1

ǫ(~r)
dl (3.11)

∫

L′

1

ǫ(~r′)
dl′ ≈

∫

L

1

ǫ(~r)
dl −

∫

v

1

ǫ(~r)
dl (3.12)

=
G(~r0)

ǫ(~r0)
−

v(~r0)

ǫ(~r0)

Thus, (3.7) becomes

∣∣∣ ~D′(~r0
′)
∣∣∣ ≈

∣∣∣ ~D(~r0)
∣∣∣

G(~r0)

G(~r0) − v(~r0)
(3.13)
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This is the final expression relating charge density on the random sample conductor surface

to the charge density on the mean conductor surface. It describes the required, position-

dependent mapping from a random sample to a mean geometry. Clearly, G′(~r0
′) = G(~r0) −

v(~r0) can be interpreted as the approximation of the position-dependent, flux line length in

the random sample conductor cross section. The accuracy of this approximation is discussed

in detail in [31].

The capacitance per unit length of the random sample cross section is calculated through

the integral

C ′ =

∫

Crs

| ~D′(~r′)|dl′ (3.14)

C ′ =

∫

Cmean

G(~r)

G(~r) − v(~r)
| ~D0(~r)||J |dl (3.15)

where J is the Jacobian of the map between the random sample cross section and the mean

cross section. Crs, Cmean denote, respectively, the contour of the random sample cross section

and the mean cross section. The Jacobian can be computed using

J =




∂x
∂X

∂y
∂X

∂x
∂Y

∂y
∂Y


 (3.16)

Thus, we have a way to compute capacitance of the random sample from the solution

for charge density on the mean sample.

3.1.2 Visualization of the position-dependent flux line

In order to visualize how the flux lines change as the geometry undergoes small statistical

variations, let us consider a simple example. The geometry is depicted in Fig. 3.2. The

problem consists of a unit square conductor embedded in a dielectric within another square

conductor with sides of dimension 2. The unit square is at a potential 1.0 while the enclosing
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conductor is at potential 0. Also shown in Fig. 3.2 is the location of the unit square under

two configurations: the mean configuration, shown in blue circles, and a random sample

realization, shown in red squares. Let us now consider two points A and B at two different

sections of the mean geometry. At point A, the mean geometry has a displacement that

takes it closer to the boundary (A′). We would thus expect an increase in the electric field

at point A or decrease in flux length, L > L′. From the numerical solution of the electrostatic

problem in the two configurations we obtain L = 0.49, L′ = 0.45 while v = 0.05. At point B,

the mean geometry has a displacement that takes it away from the boundary B′. We would

thus expect a decrease in the electric field at point B or increase in flux length, L < L′.

Numerically, L = 0.49, L′ = 0.53 while v = 0.05. These results are consistent with (3.9).

While points A and B represent “most” of the points on the mean geometry, there are points

particularly near the corners, where (3.9) will not be very accurate. Since the capacitance

involves an averaging effect over the entire cross section, some of these errors are numerically

canceled while some contribute to the error.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
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φ=0

φ=1

A

A’

B
B’

Figure 3.2: Position-dependent flux-line lengths in mean and random geometry.
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3.2 Computer Implementation

In order to implement the proposed “mapping” approach in a computer simulation, we

have to consider different methods of representing random geometry. In the following two

subsections we consider an orthogonal polynomial chaos expansion and a statistical approach,

such as Monte Carlo or stochastic collocation.

3.2.1 Polynomial chaos approach

Consider a deterministic domain D in ℜd, d = 1, 2 and let ~r ∈ D. Let (Ω,ℑ, P ) denote a

probability space, where Ω is the set of all possible events, ℑ is the σ − algebra of events

and P is the probability measure. The symbol θ represents an event in Ω. Then, all real

valued functions ξ(θ) defined on Ω are known as random variables, while functions u(~r, θ)

defined on D ⊗ Ω are known as random processes.

The polynomial chaos expansion is a spectral expansion of the random process in terms

of the orthogonal polynomials in multi-dimensional random variables. For the purpose of

this study, and without loss of generality, we assume that all inputs are Gaussian random

variables. Thus, we consider Hermite polynomials of Gaussian random variables for expan-

sion. Let {ξi(θ)}
∞

i=1 be a set of orthonormal Gaussian random variables. Using this, the

polynomial chaos expansion of a second-order random process u(~r, θ) is given as [14]

u(~r, θ) =
∞∑

i=1

µi(θ)gi(~r) (3.17)

u(~r, θ) = a0(~r)Γ0 +
∞∑

i1=1

ai1(~r)Γ1(ξi1(θ)) (3.18)

+
∞∑

i1=1

∞∑

i2=1

ai1i2(~r)Γ2(ξi1(θ), ξi2(θ)) + ... (3.19)

where Γn(ξi1 , ξi2 , ..., ξin) denotes the polynomial chaos of order n in terms of the multi-

dimensional Gaussian random variables ξ = (ξi1
, ξi2

, ..., ξin
). For convenience, Eqn. (3.18) is
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often rewritten as

u(~r, θ) =
∞∑

i=0

âi(~r)Ψ(ξ(θ)) (3.20)

where there is a one-to-one correspondence between the functions Γ[.] and Ψ[.] and between

the associated coefficients. For the case of one-dimensional Hermite polynomial chaos, ξ1 = ξ,

and Ψ are the one-dimensional Hermite polynomials given as [14]

Ψ0(ξ) = 1, Ψ1(ξ) = ξ, Ψ2(ξ) = ξ2 − 1, (3.21)

Ψ3(ξ) = ξ3 − 3ξ, Ψ4(ξ) = ξ4 − 6ξ2 + 3, ... (3.22)

In practice, a finite number of random variables are used in the expansion to represent

finite number of random parameters in the system. Also, the order of the polynomial used

in the expansion is restricted to p. Thus, the expansion in Eqn. (3.19) can now be written

as

u(~r, θ) =
N∑

i=0

âi(~r)Ψ(ξ(θ)) (3.23)

The total number of terms included in the polynomial chaos expansion (N + 1) depends

both on the dimensionality n and the highest order p of the multi-dimensional polynomials

used, and is given as

N + 1 =
(n + p)!

n!p!
(3.24)

Thus, a stochastic quantity is expanded in terms of orthogonal polynomials of random vari-

ables. The coefficients of these polynomials are functions of space. The stochastic quantity

is well-defined once these coefficients are computed.

As discussed in Section 3.1.1, a random geometry can be modeled in terms of the mean
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geometry and a random displacement v(~r, θ). Mathematically,

G̃(~r, θ) = G(~r) − v(~r, θ) (3.25)

Recall from Eqn. (3.13), the relationship

∣∣∣ ~D′(~r
′

)
∣∣∣ ≈

∣∣∣ ~D0(~r)
∣∣∣

G(~r)

G(~r) − v(~r)
(3.26)

Using Taylor series expansion on the right-hand side above,

∣∣∣ ~D′

(~r)
∣∣∣ ≈ (1 +

v(~r)

G(~r)
+

v(~r)2

G(~r)2
+

v(~r)3

G(~r)3
+ ....)

∣∣∣ ~D0(~r)
∣∣∣ (3.27)

Thus, in terms of stochastic quantities (Eqn. (3.23)),

∣∣∣∣ ~̃D(~r)

∣∣∣∣ ≈ (1 +
v(~r, θ)

G(~r)
+

v(~r, θ)2

G(~r)2
+

v(~r, θ)3

G(~r)3
+ ....)

∣∣∣ ~D0(~r)
∣∣∣ (3.28)

From (3.15) and above, the stochastic capacitance can be written as

C̃ =

∫

S

(1 +
v(~r, θ)

G(~r)
+

v(~r, θ)2

G(~r)2
+

v(~r, θ)3

G(~r)3
+ ....)|J | ~D0. ~ds (3.29)

The random displacement can be modeled using polynomial chaos,

v(~r, θ) =
N∑

i=0

vi(~r)Ψ(ξ(θ)) (3.30)

Using the same expansion for capacitance C̃,

C̃ =
N∑

i=0

Ci(~r)Ψ(ξ(θ)) (3.31)

The coefficients Ci can be easily computed using the above three relations. The important
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point is that only a single deterministic run, the one for the mean geometry to compute ~D0,

is required. Once that is obtained, calculating the coefficients Ci is straightforward. The

statistics of capacitance can be easily computed once these coefficients have been obtained.

In the numerical examples section, the pertinent process will be explained in more detail

with the help of an example.

3.2.2 Monte Carlo or stochastic collocation approach

In this section, we will look at how our proposed approach can be used in conjunction with

other methods for representing random geometry - statistical approaches such as Monte

Carlo or stochastic collocation. In these approaches, one considers many realizations of

random geometry. For our proposed method, we consider the mean geometry and perform

finite element solution on this mean geometry to compute position-dependent G(~r). Next,

for each random realization of the geometry, we compute v(~r) which is the displacement of

the random geometry from the mean. It is important to note that this calculation does not

require any finite element discretization. Thus, for each random geometry, capacitance is

computed using (3.15). Once all capacitances Ci have been computed, it is easy to compute

the desired statistics such as mean and standard deviation. Use of statistical methods such as

Monte Carlo or stochastic collocation is particularly useful when the number of input random

variables is large, because for such cases, the orthogonal polynomial expansion grows in size

and complexity. We demonstrate this approach in the numerical studies section using one

example.

3.3 Numerical Studies

In this section, we consider some representative problems for demonstrating the accuracy

and efficiency of our proposed method. All geometries considered are two-dimensional;

hence, their cross-sectional geometry remains constant along one of the space directions.
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Thus, the calculated capacitances are per unit length. For the first three examples, the

orthogonal polynomial chaos expansion is used while a Monte Carlo approach is used for the

last example.

3.3.1 Example 1: Single conductor over a ground plane

We consider a rectangular strip conductor embedded in a three-layer substrate above a

ground plane. The problem consists of determining the effect of variations in conductor

width, L, and its distance from the ground plane, H, on per-unit-length capacitance. The

mean dimensions and the material properties of the cross-sectional geometry are specified

in Fig. 3.3(a).

First, we consider the distance from the ground, H, to be a random variable, and express

it as

H(θ) = H0(1 − νξ(θ)) (3.32)

where H0 = 0.2 µm is the mean or average distance, ξ is a Gaussian random variable with

unit variance and ν is the variation in H. This, basically, may be considered as a random

displacement, νξ(θ)H0, applied to the conductor at mean height H0 above ground. Following

(3.20),(3.27)-(3.29),

v(~r, θ) = νξH0 (3.33)

C̃ =

∫

S

(
1 +

(
νH0

G(~r)

)
ξ +

(
νH0

G(~r)

)2

ξ2 + ...

)
|J || ~D0|dl (3.34)

G(~r) is the position-dependent flux length as defined in (3.8). Using up to quadratic terms
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Figure 3.3: (a) One conductor over a ground plane. (b) Probability distribution function of
the capacitance for a 10% variation in distance from ground plane.

in the expansion for stochastic capacitance,

C̃ = C0 + C1ξ + C2(ξ
2 − 1) (3.35)
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Then, the coefficients can be obtained from

C0 =

∫

S

(
1 +

(
νH0

G(~r)

)2
)
|J || ~D0|dl (3.36)

C1 =

∫

S

(
νH0

G(~r)

)
|J || ~D0|dl (3.37)

C2 =

∫

S

(
νH0

G(~r)

)2

|J || ~D0|dl (3.38)

Since the volume of the geometry does not change, |J | = 1. G(~r) and | ~D0| are obtained from

the solution of the deterministic problem in the mean geometry. Thus, only one deterministic

problem needs to be solved. The mean of the capacitance is given by C0, while the standard

deviation is given by
√

C2
1 + 2C2

2 .

We use standard Monte Carlo method for generating the reference solution. In the

standard Monte Carlo approach we consider a number of realizations of the random geometry

and carry out a finite element solution for each geometry to compute capacitance. To obtain

the pdf of capacitance depicted in Fig. 3.3(b) (for 10% change in gap), 10 000 solutions

were used. The mean and standard deviation obtained with our proposed method is in close

agreement with that obtained using Monte Carlo (Table 3.1). Note that performing 10 000

simulations took approximately 15 000 seconds. This is in contrast to the 2 seconds required

by the proposed alternative approach.

We repeat this exercise for random variation in the conductor width L and the results

are summarized in Table 3.2. Once again, the results show that our proposed method is

very accurate and extremely efficient.

Table 3.1: Example 1 (self-capacitance in pF/cm): Statistical change in G
%change in H Monte Carlo Proposed method

mean std. dev mean std. dev
10% 3.29 0.115 3.29 0.114
20% 3.31 0.236 3.31 0.233

24



Table 3.2: Example 1 (self-capacitance in pF/cm): Statistical change in L
%change in L Monte Carlo Proposed method

mean std. dev mean std. dev
10% 3.31 0.073 3.29 0.075
20% 3.31 0.15 3.29 0.15

3.3.2 Example 2: Strip conductor interconnect in a

multi-layered dielectric substrate

For this example we consider, once again, a strip interconnect embedded in a multi-layered

insulating substrate. Fig. 3.4 describes the geometric and material properties of the cross-

sectional geometry. The objective is to investigate the impact of variations in thicknesses

of the insulating layers on the per-unit-length capacitance of the structure. The procedure

for modeling uncertainty is similar to that described in Example 1 and will not be repeated

here. Shown in Table 3.3 is a comparison between our approach and standard Monte Carlo

for mean and standard deviation of capacitance. The results demonstrate the accuracy of

the proposed approach.

Figure 3.4: Strip conductor embedded in multiple dielectrics.
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Table 3.3: Example 2 (self-capacitance in pF/cm): Statistical change in thicknesses
%change in thickness for each layer Monte Carlo Proposed method

mean std. dev mean std. dev
10% 2.68 0.067 2.68 0.063
20% 2.69 0.135 2.67 0.125

3.3.3 Example 3: Two strip conductors over a ground plane

In this example we consider two conductors over a ground plane. The dielectric properties

of the multi-layered substrate are similar to those in Example 1. The specific details of the

cross-sectional geometry and material parameters are shown in Fig. 3.5. The objective in

this example is to investigate the combined impact of variations in height above ground and

spacing between the two conductors on the self-capacitance of one of the conductors. Table

3.4 summarizes the results for 10% and 20% variation in these parameters.

Once again, the comparison of results obtained using the proposed method with those

generated through a standard Monte Carlo approach demonstrates the accuracy of the pro-

posed method.

Table 3.4: Example 3 (self-capacitance in pF/cm): Statistical change in H and S
%change in H and S Monte Carlo Proposed method

mean std. dev mean std. dev
10% 3.68 0.13 3.68 0.14
20% 3.70 0.26 3.70 0.28

3.3.4 Example 4: A three-conductor interconnect over a ground

plane

In this example, we consider three conductors over a ground plane. The details of the cross-

sectional geometric and material parameters are shown in Fig. 3.6. The objective in this

example is to investigate the combined impact of variations in heights H1 (mean 0.2) and H2
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Figure 3.5: Two conductors over a ground plane.

Figure 3.6: Three conductors over a ground plane.

(mean 0.5) above ground and spacing between the two conductors S (mean 2.0). One could

use a polynomial chaos expansion approach as used in the previous examples. However, since

three random variables are involved, the form of the expansion becomes complicated. Thus,

we consider, instead, an alternative implementation using Monte Carlo as was described

in Section 3.2. In this, we consider 10 000 Monte Carlo random samples of the geometry.

For standard Monte Carlo, we use a finite element solution for each random realization,

whereas for the proposed approach we carry out a single finite element solution on the

mean geometry only, along with displacements of random samples from the mean geometry.

Table 3.5 summarizes the results for mean capacitance matrix for 10% variation in these
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parameters. Table 3.6 summarizes the results for standard deviation for self-capacitance.

Once again, the comparison of the results obtained using the two approaches demonstrates

the accuracy of the proposed method.

Table 3.5: Example 4: Mean capacitance in pF/cm using standard Monte Carlo and our
proposed approach

Monte Carlo Proposed method
1 2 3 1 2 3

1 4.66 -0.222 -0.227 4.68 -0.226 -0.226
2 -0.222 1.84 -0.013 -0.226 1.84 -0.013
3 -0.227 -0.013 1.84 -0.226 -0.013 1.84

Table 3.6: Example 4: Standard deviation of self-capacitance in pF/cm using standard
Monte Carlo and our proposed approach

Monte Carlo Proposed method

C11 0.116 0.111
C22 0.082 0.078
C33 0.082 0.079

3.4 Summary

In summary, we have proposed a method for expediting the stochastic extraction of inter-

connect capacitance. This was accomplished through the development of a “mapping” from

a random sample to a mean geometry. This mapping is developed through the approximate

calculation of charge density on the conductor in the random geometry in terms of charge

density in the mean geometry. This definition is based on the ratio of two line integrals. The

line integrals involve a displacement, which is interpreted as a displacement of the random

geometry from the mean geometry.

The accuracy and efficiency of the proposed method were demonstrated through its
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application to a few representative examples of capacitance extraction for interconnects in

multi-layer dielectrics. The proposed approach was shown to be more than three orders of

magnitude faster than a standard Monte Carlo approach.

Finally, we would like to comment on the versatility of the proposed method. The

proposed “mapping” is independent of which particular approach is used for representing

randomness in the geometry. More specifically, it was shown that the proposed method

can be coupled with both polynomial chaos expansion based approaches and statistical

approaches such as Monte Carlo or stochastic collocation.
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