1,459 research outputs found

    Soft Handoff and Uplink Capacity in a Two-Tier CDMA System

    Full text link
    This paper examines the effect of soft handoff on the uplink user capacity of a CDMA system consisting of a single macrocell in which a single hotspot microcell is embedded. The users of these two base stations operate over the same frequency band. In the soft handoff scenario studied here, both macrocell and microcell base stations serve each system user and the two received copies of a desired user's signal are summed using maximal ratio combining. Exact and approximate analytical methods are developed to compute uplink user capacity. Simulation results demonstrate a 20% increase in user capacity compared to hard handoff. In addition, simple, approximate methods are presented for estimating soft handoff capacity and are shown to be quite accurate.Comment: To appear in IEEE Transactions on Wireless Communication

    Motorized cart

    Get PDF
    Motorized cart is known as an effective tool and timeless that help people carry heavy loads. For farmers, it has an especially vital tool for moving goods. Oil palm farmers typically uses the wheelbarrow to move the oil palm fruit (Figure 10.1). However, there is a lack of equipment that should be further enhanced in capabilities. Motorized carts that seek to add automation to wheelbarrow as it is to help people save manpower while using it. At present, oil palm plantation industry is among the largest in Malaysia. However, in an effort to increase the prestige of the industry to a higher level there are challenges to be faced. Shortage of workers willing to work the farm for harvesting oil palm has given pain to manage oil palm plantations. Many have complained about the difficulty of hiring foreign workers and a high cost. Although there are tools that can be used to collect or transfer the proceeds of oil palm fruits such as carts available. However, these tools still have the disadvantage that requires high manpower to operate. Moreover, it is not suitable for all land surfaces and limited cargo space. Workload and manpower dependence has an impact on farmers' income

    Mobility-aware QoS assurance in software-defined radio access networks: an analytical study

    Get PDF
    Software-defined networking (SDN) has gained a tremendous attention in the recent years, both in academia and industry. This revolutionary networking paradigm is an attempt to bring the advances in computer science and software engineering into the information and communications technology (ICT) domain. The aim of these efforts is to pave the way for completely programmable networks and control-data plane separation. Recent studies on feasibility and applicability of SDN concepts in cellular networks show very promising results and this trend will most likely continue in near future. In this work, we study the benefits of SDN on the radio resource management (RRM) of future-generation cellular networks. Our considered cellular network architecture is in line with the recently proposed Long-Term Evolution (LTE) Release 12 concepts, such as user/control plane split, heterogeneous networks (HetNets) environment, and network densification through deployment of small cells. In particular, the aim of our RRM scheme is to enable the macro base station (BS) to efficiently allocate radio resources for small cell BSs in order to assure quality-of-service (QoS) of moving users/vehicles during handovers. We develop an approximate, but very time- and space-efficient algorithm for radio resource allocation within a HetNet. Experiments on commodity hardware show algorithm running times in the order of a few seconds, thus making it suitable even in cases of fast moving users/vehicles. We also confirm a good accuracy of our proposed algorithm by means of computer simulations

    An Overview of Vertical Handoff Decision Algorithms in NGWNs and a new Scheme for Providing Optimized Performance in Heterogeneous Wireless Networks

    Get PDF
    Because the increasingly development and use of wireless networks and mobile technologies, was implemented the idea that users of mobile terminals must have access in different wireless networks simultaneously. Therefore one of the main interest points of Next Generation Wireless Networks (NGWNs), refers to the ability to support wireless network access equipment to ensure a high rate of services between different wireless networks. To solve these problems it was necessary to have decision algorithms to decide for each user of mobile terminal, which is the best network at some point, for a service or a specific application that the user needs. Therefore to make these things, different algorithms use the vertical handoff technique. Below are presented a series of algorithms based on vertical handoff technique with a classification of the different existing vertical handoff decision strategies, which tries to solve these issues of wireless network selection at a given time for a specific application of an user. Based on our synthesis on vertical handoff decision strategies given below, we build our strategy based on solutions presented below, taking the most interesting aspect of each one.Vertical Handoff, Genetic Algorithms, Fuzzy Logic, Neural Networks, AHP

    Mobile Networking

    Get PDF
    We point out the different performance problems that need to be addressed when considering mobility in IP networks. We also define the reference architecture and present a framework to classify the different solutions for mobility management in IP networks. The performance of the major candidate micro-mobility solutions is evaluated for both real-time (UDP) and data (TCP) traffic through simulation and by means of an analytical model. Using these models we compare the performance of different mobility management schemes for different data and real-time services and the network resources that are needed for it. We point out the problems of TCP in wireless environments and review some proposed enhancements to TCP that aim at improving TCP performance. We make a detailed study of how some of micro-mobility protocols namely Cellular IP, Hawaii and Hierarchical Mobile IP affect the behavior of TCP and their interaction with the MAC layer. We investigate the impact of handoffs on TCP by means of simulation traces that show the evolution of segments and acknowledgments during handoffs.Publicad

    On Certain Large Random Hermitian Jacobi Matrices with Applications to Wireless Communications

    Full text link
    In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These matrices are known to describe certain communication setups. In particular we are interested in an uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint multicell decoding. Considering rather general fading statistics we provide a closed form expression for the per-cell sum-rate of this channel in high-SNR, when an intra-cell TDMA protocol is employed. Since the matrices of interest are tridiagonal, their eigenvectors can be considered as sequences with second order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth of products of two by two matrices. For the case where KK users are simultaneously active in each cell, we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate, which are considerably tighter than previously known bounds

    Scheduling start time in CDMA burst admission

    Get PDF
    Burst transmission protocols have been proposed in the next generation CDMA cellular systems to support short-time high-speed data communications. The existing burst admission algorithm considers only the current interference condition in the system. The burst transmission request will be rejected if the interference in the system will exceed the acceptable level with the burst admitted. In this paper we propose a new burst admission algorithm where a currently-unacceptable burst request can be assigned to start at a later time when the system interference level is lower. The interference prediction is based on the establishing, updating, and exchanging the load and burst scheduling tables among the neighboring cells. Simulations show that our method can reduce the burst blocking probability and improve the system resource utilization.published_or_final_versio

    4. generĂĄciĂłs mobil rendszerek kutatĂĄsa = Research on 4-th Generation Mobile Systems

    Get PDF
    A 3G mobil rendszerek szabvĂĄnyosĂ­tĂĄsa a vĂ©gĂ©hez közeledik, legalĂĄbbis a meghatĂĄrozĂł kĂ©pessĂ©gek tekintetĂ©ben. EzĂ©rt lĂ©tfontossĂĄgĂș azon technikĂĄk, eljĂĄrĂĄsok vizsgĂĄlata, melyek a következƑ, 4G rendszerekben meghatĂĄrozĂł szerepet töltenek majd be. Több ilyen kutatĂĄsi irĂĄnyvonal is lĂ©tezik, ezek közĂŒl projektĂŒnkben a fontosabbakra koncentrĂĄltunk. A következƑben felsoroljuk a kutatott terĂŒleteket, Ă©s röviden összegezzĂŒk az elĂ©rt eredmĂ©nyeket. SzĂłrt spektrumĂș rendszerek KifejlesztettĂŒnk egy Ășj, rĂĄdiĂłs interfĂ©szen alkalmazhatĂł hĂ­vĂĄsengedĂ©lyezĂ©si eljĂĄrĂĄst. SzimulĂĄciĂłs vizsgĂĄlatokkal tĂĄmasztottuk alĂĄ a megoldĂĄs hatĂ©konysĂĄgĂĄt. A projektben kutatĂłkĂ©nt rĂ©sztvevƑ Jeney GĂĄbor sikeresen megvĂ©dte Ph.D. disszertĂĄciĂłjĂĄt neurĂĄlis hĂĄlĂłzatokra Ă©pĂŒlƑ többfelhasznĂĄlĂłs detekciĂłs technikĂĄk tĂ©mĂĄban. Az elĂ©rt eredmĂ©nyek Imre SĂĄndor MTA doktori disszertĂĄciĂłjĂĄba is beĂ©pĂŒltek. IP alkalmazĂĄsa mobil rendszerekben TovĂĄbbfejlesztettĂŒk, teszteltĂŒk Ă©s ĂĄltalĂĄnosĂ­tottuk a projekt keretĂ©ben megalkotott Ășj, gyƱrƱ alapĂș topolĂłgiĂĄra Ă©pĂŒlƑ, a jelenleginĂ©l nagyobb megbĂ­zhatĂłsĂĄgĂș IP alapĂș hozzĂĄfĂ©rĂ©si koncepciĂłt. A tĂ©makörben Szalay MĂĄtĂ© Ph.D. disszertĂĄciĂłja mĂĄr a nyilvĂĄnos vĂ©dĂ©sig jutott. Kvantum-informatikai mĂłdszerek alkalmazĂĄsa 3G/4G detekciĂłra Új, kvantum-informatikai elvekre Ă©pĂŒlƑ többfelhasznĂĄlĂłs detekciĂłs eljĂĄrĂĄst dolgoztunk ki. Ehhez Ășj kvantum alapĂș algoritmusokat is kifejlesztettĂŒnk. Az eredmĂ©nyeket nemzetközi folyĂłiratok mellett egy sajĂĄt könyvben is publikĂĄltuk. | The project consists of three main research directions. Spread spectrum systems: we developed a new call admission control method for 3G air interfaces. Project member Gabor Jeney obtained the Ph.D. degree and project leader Sandor Imre submitted his DSc theses from this area. Application of IP in mobile systems: A ring-based reliable IP mobility mobile access concept and corresponding protocols have been developed. Project member MĂĄtĂ© Szalay submitted his Ph.D. theses from this field. Quantum computing based solutions in 3G/4G detection: Quantum computing based multiuser detection algorithm was developed. Based on the results on this field a book was published at Wiley entitled: 'Quantum Computing and Communications - an engineering approach'
    • 

    corecore