6 research outputs found

    Modeling Wireless Sensor Networks Using Finite-Source Retrial Queues with Unreliable Orbit

    Get PDF
    Abstract. Motivated by the need for performance models suitable for modeling and evaluation of wireless sensor networks, we introduce a retrial queueing system with a finite number of homogeneous sources, unreliable servers, orbital search, and unreliable orbit. All random variables involved in model construction are assumed to be independent and exponentially distributed. Providing a generalized stochastic Petri net model of the system, steady-state analysis of the underlying continuous-time Markov chain is performed and steady-state performance measures are computed by the help of the MOSEL-2 tool. The main novelty of this investigation is the introduction of an unreliable orbit and its application to wireless sensor networks. Numerical examples are derived to show the influence of sleep/awake time ratio, message dropping, and message blocking on the senor nodes' performance

    Investigating the mean response time in finite-source retrial queues using the algorithm by Gaver, Jacobs, and Latouche

    Get PDF
    In this paper, we discuss the maximum of the mean response time that appears in finite-source retrial queues with orbital search when the arrival rate is varied. We show that explicit closed-form equations of the mean response time can be derived by exploiting the block-structure of the finite Markov chain underlying the model and using an efficient computational algorithm proposed by Gaver, Jacobs, and Latouche. However, we also show that already for the discussed relatively simple model, the resulting equation is rather complex which hampers further evaluation

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    Annales Mathematicae et Informaticae (36.)

    Get PDF

    Energieeffizienz in Büroumgebungen

    Get PDF
    The increasing cost of energy and the worldwide desire to reduce CO2 emissions has raised concern about the energy efficiency of information and communication technology. Whilst research has focused on data centres recently, this thesis identifies office computing environments as significant consumers of energy. Office computing environments offer great potential for energy savings: On one hand, such environments consist of a large number of hosts. On the other hand, these hosts often remain turned on 24~hours per day while being underutilised or even idle. This thesis analyzes the energy consumption within office computing environments and suggests an energy-efficient virtualized office environment. The office environment is virtualized to achieve flexible virtualized office resources that enable an energy-based resource management. This resource management stops idle services and idle hosts from consuming resources within the office and consolidates utilised office services on office hosts. This increases the utilisation of some hosts while other hosts are turned off to save energy. The suggested architecture is based on a decentralized approach that can be applied to all kinds of office computing environments, even if no centralized data centre infrastructure is available. The thesis develops the architecture of the virtualized office environment together with an energy consumption model that is able to estimate the energy consumption of hosts and network within office environments. The model enables the energy-related comparison of ordinary and virtualized office environments, considering the energy-efficient management of services. Furthermore, this thesis evaluates energy efficiency and overhead of the suggested approach. First, it theoretically proves the energy efficiency of the virtualized office environment with respect to the energy consumption model. Second, it uses Markov processes to evaluate the impact of user behaviour on the suggested architecture. Finally, the thesis develops a discrete-event simulation that enables the simulation and evaluation of office computing environments with respect to varying virtualization approaches, resource management parameters, user behaviour, and office equipment. The evaluation shows that the virtualized office environment saves more than half of the energy consumption within office computing environments, depending on user behaviour and office equipment.Die steigenden Kosten von Energie und die weltweiten Bemühungen CO2-Emmissionen zu reduzieren, führt aktuell zu einer intensiven Untersuchung der Energieeffizienz von Informations- und Kommunikationstechnologien. Während ein großer Teil der aktuellen Forschung sich auf Rechenzentren fokussiert, betrachtet diese Arbeit Büroumgebungen mit ihren Rechnern und dem verbindenden Netzwerk. Eine energieeffiziente Architektur wird vorgeschlagen, die auf die Virtualisierung und Konsolidierung von Diensten setzt, ohne auf zentralisierte Rechenzentrumshardware oder Thin Clients angewiesen zu sein
    corecore