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Abstract

The increasing cost of energy and the worldwide desire to reduce CO2 emissions

has raised concern about the energy efficiency of information and communica-

tion technology. Whilst research has focused on data centres recently, this thesis

identifies office computing environments as significant consumers of energy.

Office computing environments offer great potential for energy savings: On one

hand, such environments consist of a large number of hosts. On the other hand,

these hosts often remain turned on 24 hours per day while being underutilised or

even idle. This thesis analyzes the energy consumption within office computing

environments and suggests an energy-efficient virtualized office environment. The

office environment is virtualized to achieve flexible virtualized office resources

that enable an energy-based resource management. This resource management

stops idle services and idle hosts from consuming resources within the office and

consolidates utilised office services on office hosts. This increases the utilisation

of some hosts while other hosts are turned off to save energy. The suggested

architecture is based on a decentralized approach that can be applied to all kinds

of office computing environments, even if no centralized data centre infrastructure

is available.

The thesis develops the architecture of the virtualized office environment together

with an energy consumption model that is able to estimate the energy consumption

of hosts and network within office environments. The model enables the energy-

related comparison of ordinary and virtualized office environments, considering

the energy-efficient management of services.

Furthermore, this thesis evaluates energy efficiency and overhead of the suggested

approach. First, it theoretically proves the energy efficiency of the virtualized of-

fice environment with respect to the energy consumption model. Second, it uses
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Markov processes to evaluate the impact of user behaviour on the suggested ar-

chitecture. Finally, the thesis develops a discrete-event simulation that enables the

simulation and evaluation of office computing environments with respect to vary-

ing virtualization approaches, resource management parameters, user behaviour,

and office equipment. The evaluation shows that the virtualized office environ-

ment saves more than half of the energy consumption within office computing

environments, depending on user behaviour and office equipment.
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Chapter 1

Introduction

Energy efficiency of information and communication technology has become an important

topic in enterprises and public administration. The bottleneck of cost has changed: while

hardware gets cheaper on one hand, the cost of energy is increasing on the other hand. In

addition, there are worldwide efforts to turn IT green and to reduce CO2 emissions.

1.1 Energy consumption within office computing environments

Data centres with their servers and network equipment are well-known and often discussed

consumers of energy, because the energy consumed by data centres runs in the billions of

Euros [1, 2]. Therefore, various solutions have been suggested to reduce the need for server

hardware and energy consumption. Service virtualization and consolidation, e.g., are widely

applied to data centres today, and also cloud computing has been introduced as an inherently en-

ergy efficient data centre architecture [3]. However, not only data centre equipment consumes

energy within enterprises and public administration. Also, end-devices located outside of data

centres are contributing to a large portion of the IT-based electricity consumption [4]. Accord-

ing to a report commissioned by the German government [5], the energy consumption of IT

equipment in German enterprise office environments summed up to about 6 TWh in 2007. This

amounts to 68% of the energy consumption caused by data centre equipment (about 9 TWh)

in the same year. These numbers indicate that office computing/IT environments are a highly

lucrative area to save energy. Within office environments, especially, office hosts contribute

significantly to the IT related energy consumption. On one hand, there are a high number of

such hosts because each employee typically has her or his own host. On the other hand, office
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hosts are often turned on without being utilised by a user. This happens for short time periods,

e.g., during lunch, meetings, or telephone calls, and also for longer time periods. Often, office

hosts even remain turned on 24 hours a day: Some hosts remain turned on outside of working

hours to process jobs, e.g., backups, security updates, or downloads. Other hosts remain turned

on to be remotely accessible. And some hosts remain turned on simply because users forget to

turn off their hosts when they leave the office. Webber et al. [6] have analyzed sixteen office

sites in the USA and reported that 64% of all investigated office hosts were running during the

nights. Even if such hosts are mostly idle (CPU usage of 0%) during the time they are running,

it is important to note that they still consume a considerable amount of energy. Measurements

that have been performed at the University of Sheffield [7] show that typical office hosts which

are idle still consume 49% to 78% of the energy that they need when they are intensely used,

leading to an immense waste of energy. However, not only idle hosts waste energy. Even when

users access hosts, the hosts remain often underutilised in terms of CPU load by typical office

applications. Text processing, web browsing, or mailing does not significantly load today’s

office hosts. This indicates that idle and underutilised hosts provide a high potential for energy

savings.

1.2 Solution approach

Several approaches have been suggested that deal with the high energy consumption of hosts

in office environments (see Section 2.2). Such solutions range from the enforcement of office-

wide power-management policies to thin-client/terminal server or virtual desktop infrastruc-

ture approaches, where the user’s services are consolidated within the data centre. However,

whereas the consolidation of office services within data centres is successfully applied today, a

consolidation of services within the office environment has not been considered yet. Therefore,

the consolidation of services on office hosts within office environments is the main research

topic of this thesis.

The thesis suggests a virtualized office environment that represents a comprehensive solu-

tion to save energy within office environments. It achieves both, an office wide power man-

agement and the consolidation of services on office hosts. In this approach the office environ-

ment is virtualized: Office services are encapsulated within virtual machines and a peer-to-peer

based virtualization approach enables the decentralized management of resources. The virtual-

ized office resources provide the flexibility to perform an energy-based management within the
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office environment. The virtualized office environment achieves energy efficiency by utilising

already available office hosts, instead of using costly and energy consuming data centre equip-

ment. It stops unutilised services from consuming resources, and consolidates utilised services

on a small number of office hosts. This increases the utilisation of some hosts, whereas other

hosts are automatically turned off to save energy. The management achieves a major reduction

of the overall energy consumption within the office, without interrupting the day-to-day work

of office users. The thesis constructs and verifies the following hypotheses according to the

virtualized office environment:

1. The proposed architecture reduces the energy consumption within office environments

considerably. The virtualized office environment consumes significantly less energy than

ordinary office environments in various user and office scenarios. It is applicable to office

environments with a high number of users as well as to small office environments without

centralized data centre equipment.

2. The proposed virtualized office environment achieves energy efficiency without consid-

erably interrupting the office users’ day to day work. Especially, the applied service

management reduces the availability of services only moderately in comparison to ordi-

nary office environments.

1.3 Contribution of this thesis

This thesis suggests a virtualized office environment that is able to provide office services

energy efficiently. The work builds on existing research, and proposes new methods according

to the development and the evaluation of energy-efficient office environment architectures. The

following specific contributions are presented in this thesis:

1. This thesis proposes design principles of an energy-efficient office environment and de-

fines the main requirements and challenges that have to be faced in the development of

a virtualized office environment. The design principles are based on an analysis of the

current energy consumption situation within office environments.

2. Furthermore, this thesis presents an office virtualization approach based on system vir-

tualization and a hybrid peer-to-peer overlay. The virtualization approach creates ex-

ecution environments for office services and enables the migration of services within

3



the office environment. Moreover, it establishes a distributed management that logically

interconnects office hosts, enables the mediation of services and office resources, and

manages resource access, without imposing any need for energy consuming data centre

equipment.

3. In addition, this thesis proposes an autonomic service and resource management within

the virtualized office environment that realizes an energy-efficient mapping of services to

resources. The management can be parameterised to achieve a trade-off between energy

savings and service availability (which are contradictory goals), according to specific

office and user scenarios.

4. This thesis defines energy-efficiency and service-availability metrics that quantify the

energy efficiency and the service availability within office environments. These metrics

can be used to optimize the service and resource management within virtualized office

environments.

5. Furthermore, this thesis presents an energy consumption model of office environments

that is based on host and network power consumption models. The model can be parame-

terised to model ordinary office environments as well as virtualized office environments.

It estimates the energy consumption of various office environments and enables their

energy-related comparison. The energy efficiency of the virtualized office environment

is theoretically proved with regard to the energy consumption model.

6. This thesis suggests a user model that models the behaviour of users within office en-

vironments from the service’s perspective. Markov processes are used to analyse the

impact of user behaviour on the virtualized office environment and to evaluate its energy

efficiency.

7. Finally, this thesis provides a discrete-event simulation of office environments. It en-

ables the simulation and evaluation of different office environments with respect to vary-

ing scenarios (e.g. varying virtualization approaches, management parameters, user be-

haviour, or office equipment). In particular, it enables the comparison of office environ-

ments with respect to energy consumption and service availability.
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1.4 Thesis structure

Chapter 2 reviews work related to the approach suggested in this thesis. First, virtualization

methods that are applicable to office environments are discussed. Then, distributed architec-

tures and methods that are able to achieve energy efficiency in office environments are investi-

gated. Finally, models that can be used to model the power consumption of office environments

are outlined and discussed.

Chapter 3 identifies the energy-saving potential within office environments. It analyzes

the energy consumption of hosts and network equipment, and defines design principles of an

energy-efficient office environment. The main properties and limitations of office environments

are discussed in distinction to other environments (specifically, data centres and home environ-

ments). This leads to a definition of requirements and challenges that need to be faced in the

development of an energy-efficient office environment. Chapter 4 develops the virtualized of-

fice environment architecture and covers all of the requirements and challenges that have been

defined in Chapter 3. First, the chapter presents the office virtualization approach that is based

on system virtualization and peer-to-peer overlay methods. It enables the migration of office

services within the office and a distributed management of services and resources. Second, the

chapter proposes an energy efficient and service-aware management of office services and re-

sources. The management can be parameterised to cover all states between an energy-optimal

mapping of services (lowest energy consumption) and a service-optimal mapping (highest ser-

vice availability). Furthermore, energy efficiency and service-availability metrics that enable

a fine-tuning of the management within the office environment are defined in this chapter. Fi-

nally, the chapter discusses resilience and security issues of the proposed approach. Chapter 5

presents an energy consumption model of office environments that extends related host and

network power consumption models. The model estimates the energy consumption of ordinary

and virtualized office environments with respect to office equipment and the virtualization ap-

proach. In particular, this model enables the comparison of different office environments with

regard to their energy consumption. Furthermore, the efficiency of the suggested approach is

theoretically proved, based on the proposed energy consumption model.

Chapter 6 evaluates the presented virtualized office environment based on an analytical

analysis and a discrete-event simulation. The analytical analysis is based on Markov pro-

cesses, where especially the impact of user behaviour on the virtualized office environment is

evaluated. Also, this chapter presents a discrete-event simulation that enables the simulation
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and evaluation of various office environments with changing parameter settings. The discrete-

event simulation illustrates on the one hand the fine-tuning of resource management parameters

(trade-off between energy efficiency and service availability) and verifies on the other hand the

energy efficiency of the proposed architecture. Moreover, this chapter illustrates measurements

that have been performed on physical hosts to validate the energy consumption model and to

illustrate the applicability of the proposed virtualization approach.

Finally, Chapter 7 concludes the thesis. It sums up the main contributions and results,

discusses the application of the proposed architecture, its limitations and possible extensions,

and the potential integration with other office related solutions.
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Chapter 2

Related Work

This chapter reviews the state of the art of work that is related to the virtualized office en-

vironment, presented in this thesis. First, virtualization methods that are applicable to office

environments are discussed in Section 2.1. Then, architectures and methods are presented in

Section 2.2 that are able to achieve energy efficiency in office environments. Finally, power

consumption models are discussed in Section 2.3 that can be used to model the power con-

sumption of office environments.

2.1 Virtualization

The virtualization of hardware resources can be used to achieve energy efficiency in distributed

environments. It creates manageable virtual resources and allows the migration of running

services between physical hosts. Several services can be consolidated on a single host and be

processed in parallel, other hosts are relieved from their duties and can be turned off. This

chapter reviews the state of the art of virtualization methods. The focus is set to virtualization

methods that are appropriate to virtualize hosts and networks of office environments.

There are two different approaches towards virtualization: the aggregation of hardware

resources (aka. clustering) and the splitting of hardware resources (aka. zoning, partitioning).

When hardware resources are aggregated, several hardware instances are clustered to a single

virtual environment. If, in contrast, hardware resources are split, a partitioning of a single

hardware resource into several virtual environments is achieved, where virtual environments

are fully isolated from each other. Aggregation and splitting of resources are illustrated in

Figure 2.1.
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Figure 2.1: Aggregation and splitting of hardware resources

2.1.1 Host virtualization

There are several different virtualization methods available [8, 9, 10] that virtualize resources

of hosts. This section discusses some main approaches that can be used to virtualize hosts

within office environments.

2.1.1.1 Process virtualization

Process virtualization has been in use for a long time to enable multiprogramming. It allows

several different processes to run in parallel within an Operating System (OS), while being

isolated from each other. Each process experiences full access to all available resources (e.g.,

CPU, RAM, disc, etc.) and isn’t aware of sharing these resources with other processes. In fact,

it only owns some time slices of the CPU, virtualized RAM, and shares peripheral devices with

other processes. The OS is allocating resources to processes as needed, following a resource

allocation algorithm. Another well-known example of process virtualization is the Java Virtual

Machine [11], where processes are executed within sandboxes independent from each other.

OS-level virtualization is a kind of process virtualization, where the virtualization is based

on containers or jails (e.g., Sun Solaris Containers [12], Linux V-Server [13], Free BSD Jails

[14], Open VZ, Virtuzzo or FreeVPS). In this virtualization approach, an OS creates separated

identical user environments for processes. A single OS controls the hardware, this avoids

overhead and achieves high performance. However, only instances of this OS (e.g., Linux) can

be provided to the virtualized services, the provisioning of different OSs isn’t possible. OS-

level virtualization is mainly used to separate applications (e.g., web services) from each other.

As an example, the Linux-VServer [13] provides a Linux kernel based OS-level virtualization.

A jail provides a set of resource limitations that are imposed on programs within the jail. This
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can include disc I/O and bandwidth caps, disc quotas, network access restrictions, or a restricted

file system namespace.

Although process virtualization methods (especially OS-level virtualization) provide high

performance and are applicable to office hosts, the virtualized office environment isn’t based

on this virtualization approach. OS-level virtualization limits the flexibility of choosing differ-

ent OSs: The virtualized user environments need to have the same OS than that of the host.

Furthermore, the migration of virtualized services without terminating running processes is an

important requirement of the virtualized office environment. This kind of migration is only

provided by a small number of solutions (e.g., Open VZ) and can only be performed between

identical OS environments.

2.1.1.2 System virtualization

System virtualization [15] is currently a very popular virtualization method that is used to

virtualize desktops and servers. Virtualized resources are easy to manage and aren’t bound

to specific hardware. A highly popular application scenario for system virtualization is the

consolidation of services in data centres1. Services often need only a small fraction of the

available hardware resources of a server host. However, even when run at a low utilisation,

server hosts typically need up to 70% [16] of their maximum power consumption. To achieve

service consolidation, virtualization methods are used to partition computational resources and

allow the sharing of hardware among data centre services. Several virtualized services can run

simultaneously on a single server host, increasing the utilisation on the virtualized host, while

other hosts can be turned off to save energy. Less hardware is needed overall, which reduces

energy that is wasted for cooling.

System virtualization takes the concept of resource virtualization one step further than

process virtualization. A Virtual Machine (VM) is created, i.e., the complete hardware of a

computer is virtualized. The VM consists of virtual CPUs, virtual RAM, virtual disc, virtual

network interface card, and includes a BIOS. A VM is a perfect recreation of a physical host in

such a way that an OS can be installed on it without being aware of the resource virtualization.

The software that provides VMs is usually called Virtual Machine Monitor (VMM). Exam-

ples of VMMs are Xen [17], VMWare ESX Server2, Kernel Based Virtual Machine3 (KVM),

1IBM Project Big Green: http://www-03.ibm.com/press/us/en/presskit/21440.wss
2Bare-Metal Hypervisor for Virtual Machines: http://www.vmware.com/products/vi/esx
3Kernel Based Virtual Machine: http://www.linux-kvm.org
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VMWare Workstation, Microsoft Virtual PC, Microsoft Hyper-V, Parallels Workstation, Vir-

tual Box, or Mac-on-Linux (MOL). A VMM is able to host several VMs that are operating in

parallel on a single host and allocates hardware resources to them. The VMs are independent of

each other and aren’t necessarily aware of the existence of other VMs that are processed on the

same host. Resource requirements of VMs and available hardware resources limit the number

of processed VMs on a host. It is important to see that the virtualization causes overhead, thus

not all of the available resources can be allocated to VMs. An OS which is installed within a

VM is often called guest OS.

Several functions are available to manage VMs: create VM, destroy VM, stop VM, boot

VM, suspend VM, resume VM, copy VM, or move VM [18]. When a VM is suspended, e.g.,

this can be done on different levels. Either the VM will not consume CPU cycles anymore

but remains resident in the RAM to be restarted in a very fast way, or it can be removed from

the RAM by storing its RAM contents on disc. Furthermore, VMs can be migrated from host

to host. Even live migration [19] is possible, where VMs are migrated without significantly

interrupting the service that is encapsulated within the VM. Several management solutions for

system virtualization are available, e.g., VMWare Infrastructure1, Citrix XenServer2, or open

source approaches as libvirt3.

Figure 2.2: Layers of system virtualization

There are different layers, where system virtualization can be applied. The VMM either

replaces directly the OS of the host (called full virtualization) or it runs on top of an OS (called

hosted virtualization). The VMM in the full virtualization approach is also called hypervisor

(classical hypervisors are, e.g., Xen or VMWare ESX Server). The main advantage of the full

1VMWare Infrastructure: http://www.vmware.com
2Efficient Virtual Server Software: http://citrix.com
3Libvirt virtualization API: http://libvirt.org
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virtualization approach is its performance because there is no additional layer to be crossed

between VMM and hardware. However, this also comes at a cost: The VMM has to be able

to communicate with the hardware in order to be able to handle requests from its hosted VMs.

This requires the VMM to provide its own drivers and schedulers, possibly leading to the

VMM becoming a full-blown OS of its own. In the hosted virtualization scenario, the VMM

runs as a simple piece of client software within the OS of the host. The VMWare Workstation,

e.g., uses this approach. In this approach the VMM doesn’t need its own drivers for all of the

hardware, as it can use the facilities provided by the host OS. However, performance will suffer,

as system calls have to be handed through yet another layer. Also, the VMM doesn’t have

special privileges regarding hardware resources. Instead, it competes for resources with other

processes running on the host OS, possibly leading to a further degradation of performance

for the hosted VMs. Figure 2.2 illustrates the different layers of virtualization. In (a) no

virtualization is applied, (b) illustrates hosted virtualization, and (c) shows full virtualization.

In (b) and (c) the VMM hosts three VMs in this example, where in each VM a guest OS is

installed.

System emulators emulate their own hardware environment by dynamically translating be-

tween different architectures. The Instruction Set Architecture (ISA) represents the interface

between software and hardware and depends on the hardware architecture (e.g., x86 32 bit,

x86 64 bit, or PowerPC), where each architecture requires specific OSs to run on. VMMs need

to provide an ISA within a VM that matches the hosted guest OS. There are two approaches

that can be implemented by a VMM: Either the VMM replicates the ISA from the host sys-

tem architecture to its VMs or it emulates different ISAs by translating system calls of VMs

into system calls that are compatible with the underlying hardware environment. In the first

case, a guest OS is limited to the ISA provided by the hardware (virtualization), while in the

second case any combination of host architecture and guest architecture is possible (emula-

tion). Classical hypervisors like Xen simply replicate the ISA of the host system. Emulators

as QEMU [20], DOSBox1, DOSEMU2, Microsoft Virtual PC for Mac, PearPC, or Wabi, in

contrast, emulate different ISAs. Emulation opens up the possibility to process OSs that have

been compiled for different ISAs, side by side on the same host. It becomes possible, e.g., to

keep legacy software running in VMs, even if the original hardware requirements can no longer

1DOSbox: http://www.dosbox.com
2DOSEMU: http://www.dosemu.org
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be met due to failing hardware or missing spare parts. The disadvantage of emulation lies in

the costs for emulation, leading to reduced performance.

Paravirtualization [17, 21] has been introduced to overcome the problem that some hard-

ware platforms lack specific support for hypervisor based virtualization. Paravirtualization, as

it is done, e.g., by Xen, VMWare ESX Server, Citrix Xenserver, or Virtual Iron, replaces crit-

ical system calls of the guest OS by hyper calls [22]. Without paravirtualization, system calls

of the virtualized guest OS cause exceptions that need to be handled by the VMM, which is a

time consuming process. The method of paravirtualization modifies the guest OS kernel: In-

stead of performing system calls, the guest OS performs hyper calls directly on the hypervisor,

which increases the performance of such calls significantly. This has the drawback, however,

that the guest OS is no longer oblivious to the fact that it is processed within a VM. In contrast,

the modifications of the guest OS are quite intrusive, prohibiting the use of this method with a

closed source OS.

Hardware supported virtualization approaches achieve high performance without using

paravirtualization. Current x86 CPUs, e.g., provide virtualization support: AMD’s AMD-V

(Pacifica) or Intel’s VT-x and VT-i (Vanderpool) technologies provide solutions to overcome

the system call problem: The logical ring structure of the CPU is extended [23] by an additional

privileged ring in which the hypervisor is able to operate. Hardware supported virtualization

seems currently to be a bit slower than paravirtualization, but has the big advantage of being

able to run unmodified OSs that aren’t aware of their virtualization.

Concluding, system virtualization is a highly interesting candidate to be adopted to office

environments, as it provides high flexibility in terms of guest OSs and the migration of VMs

between hosts. Hosts within office environments typically have CPUs with hardware support

for virtualization, increasing the performance of this virtualization approach. Otherwise also

paravirtualization solutions could be used to achieve good performance, which would restrict

the used OSs to open source solutions. However, it is important to see that although system vir-

tualization is successfully applied to data centres today, this concept needs to be extended to be

applied to office environments. Whereas data centres provide a centralized, homogeneous, and

controllable high-performance environment that eases up the application of system virtualiza-

tion and the management of virtual resources, office environments consist of loosely coupled

commodity hardware, are often distributed over several rooms, and are typically not connected

via high-performance networks. Therefore, the concept of system virtualization together with

its management as it is applied in data centres is extended in this thesis to be adapted to the
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virtualized office environment. The differences between data centres and office environments

and the complexity of adapting service consolidation to office environments is discussed in

detail in Section 3.3.

2.1.2 Network virtualization

Network virtualization [24][25] focuses on the virtualization of links, network elements, and

complete network infrastructures.

2.1.2.1 Virtualization of links and routers

Two forms of virtualized networks are widely used today: Virtual Local Area Networks (VLANs)

and Virtual Private Networks (VPNs). VLANs as IEEE 802.1Q [26] subdivide a switched Lo-

cal Area Network (LAN) into several distinct groups either by assigning the different ports of

a switch to different VLANs or by tagging link layer frames with VLAN identifiers and then

routing accordingly. VPNs as IPSec [27] establish a network layer tunnel to either connect two

networks (site-to-site), one network and a host (site-to-end) or two hosts (end-to-end) with an

encrypted and/or authenticated channel over the Internet.

Router virtualization is described in [25, 28] and its performance challenges are discussed

in [29, 30]. Wang et al. [31] discuss the prospect of having virtual routers that are movable

on physical hardware. They propose an architecture supporting dynamic migration of virtual

routers to decouple logical and physical configuration of a router. Virtualized routers have

also been examined in the context of programmable networks [32]. One of the main benefits

of router virtualization is that several virtual routers can be processed in parallel on a single

hardware, without being aware of each other. This provides an easy way to test new protocols

in networks or to drive different network protocols at the same time.

Link virtualization focuses on the aggregation and the splitting of link resources, whereas

router virtualization achieves to create parallel virtual network infrastructures on a physical net-

work substrate. The virtualized office environment that is presented in this thesis, in contrast,

needs to achieve an interconnection of office hosts and logical addressing of services and hosts

to enable the consolidation of services. Services and available resources need to be mediated

and the access to resources needs to be managed.
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2.1.2.2 Peer-to-peer overlays

A further approach towards network virtualization are Peer-to-Peer (P2P) overlays [33, 34] as

Chord [35], Pastry [36], eDonkey1, BitTorrent [37], or Skype2. P2P overlays are a class of

highly distributed application architectures. Equal entities, denoted as peers, voluntarily share

resources (e.g., disc storage, CPU cycles, or data) via direct end-to-end exchanges on applica-

tion layer. The data resources comprise user data (e.g., video content) as well as metadata (e.g.,

the locations of files or users). Virtual communication paths are established among peers by an

overlay reflecting the logical relationships between the peers. The P2P protocol establishes the

overlay and provides basic functions to enable resource sharing.

P2P overlays are designed to overcome the drawbacks of the client/server paradigm with

respect to fault tolerance, scalability and autonomous operation [33], e.g., P2P protocols al-

low peers to leave the system arbitrarily without compromising the system as a whole. They

typically support a very large number of peers and stored resources by the use of efficient coop-

eration strategies (e.g., multiple-source download) and efficient data structures (e.g., distributed

hash tables). In addition, they apply self-organization mechanisms to assign responsibilities to

peers, e.g., for load balancing purposes, or to structure and maintain the overlay. P2P over-

lays apply their own application-specific addressing and routing. They assign identifiers to

resources and nodes, e.g., hash-function values of data files and IP addresses, and perform

identifier-based routing.

P2P overlays are often classified according to their architecture and their algorithmic fea-

tures. In pure P2P architectures (e.g., Chord) all peers are assumed to be equal, whereas in

hybrid P2P overlays (e.g., eDonkey) some peers are distinguished from other peers, i.e., some

peers have different capabilities than others. Centralized P2P architectures (e.g., BitTorrent)

provide one or more centralized peers that manage the cooperation within the network. P2P

overlays are denoted to be unstructured (e.g., eDonkey), if the algorithms establish overlay

links that do not follow a regular connectivity pattern. In contrast, P2P overlays are called

structured (e.g., Chord), if a generic but predefined organization scheme of the overlay exists.

P2P functions can be separated into two classes, functions for resource mediation and func-

tions for resource access control. Generally, in P2P overlays resources are placed on arbitrary

peers. Resource mediation functions are used to locate resources in the overlay. They vary from

centralized concepts to highly decentralized approaches. Resource access control mechanisms

1eDonkey: http://www.overnet.org
2Skype: http://www.skype.com
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permit, prioritise, and schedule the access to shared resources. A peer providing a resource,

gets connected to one or more resource-consuming peers. After resource mediation, the com-

munication between the providing peer and the consuming peer takes place in a point-to-point

manner.

Figure 2.3: The eDonkey architecture

eDonkey is a highly popular P2P file-sharing applications1 that has practically proved to be

scalable to high number of peers. The eDonkey architecture is shown in Figure 2.3. In eDon-

key, specialized index servers that store the location of files implement resource mediation.

eDonkey peers publish and look up shared files using these index servers (see publish edges

and query edges in Figure 2.3). Before an eDonkey peer can download a file, it first gathers a

list of all file providers. To accomplish this, the peer connects to an index server and sends a

query to it, which returns a list of matching files and their locations. Thus, the index servers

handle all of the queries in order to relieve peers from this kind of traffic. eDonkey’s resource

access control is distributed and located at each participating peer. It uses the multiple-source

download concept that permits a requesting peer to download different parts of a file from

multiple providing peers.

Concluding, P2P overlays provide several functions that are highly interesting to be adopted

to the virtualized office environment. Such overlays create and maintain logical networks

among participants, while being adaptive to dynamic user behaviour. They enable logical ad-

dressing and the mediation of resources and are able to bring providers and consumers of con-

1CacheLogic Research: http://www.cachelogic.com/home/pages/research/p2p2005.php
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tent together. Furthermore, P2P overlays manage the optimal and fair distribution of resources

to consumers. The virtualized office environment that is presented in this thesis suggests a

distributed resource management approach that is based on a hybrid P2P overlay. It adapts P2P

mechanisms that are similar to the discussed eDonkey overlay to support energy efficiency

within office environments. This kind of network virtualization is combined with a system vir-

tualization approach (as it has been discussed in Section 2.1.1.2), in order to virtualize office

environments.

2.2 Energy efficiency in distributed environments

This section reviews architectures of distributed environments according to their energy effi-

ciency. In particular, methods and architectures are covered in this section that are applicable

within office environments.

2.2.1 Power-management features of hosts

Office hosts typically provide power management features that allow to hibernate components

(e.g., CPU, disc, or peripheral devices) or to reduce the power consumption of underutilised

hardware parts. The development of energy-efficient (and manageable) IT equipment is fos-

tered by labels such as the US Energy Star [38] or the European TCO Certification1, which

rate IT products according to their environmental impact. CPU frequency can be reduced by

mechanisms like SpeedStep [39], PowerNow, or Cool’n’Quiet. Furthermore, measures en-

able slowing down CPU clock speeds (clock gating), lowering voltage (voltage scaling) or

even power off parts of the chips (power gating), if they are idle [6, 40]. By sensing lack of

user-machine interaction, different hardware parts can incrementally be turned off or set to a

low-power state (e.g., display, disc, etc.). The Advanced Configuration and Power Interface

(ACPI) specification [41] defines four different power states that an ACPI-compliant computer

system can be in. These states range from G0-Working to G3-Mechanical-Off. The states G1

and G2 are subdivided into further sub-states that describe which components are switched off

in the particular state. For devices and CPU, separate power states (D0-D3 for devices and

C0-C3 for CPUs) are defined which are similar to the global power states.

Whereas power management features of office hosts are reducing the energy consumption

of each single device, the consolidation of services as it is presented in this thesis, is a more

1European TCO Certification: http://www.tcodevelopment.com
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comprehensive approach to save energy. Consolidation of services as suggested in this thesis,

focuses on the minimisation of the energy consumption of a group of hosts (within the office

environment) and is applied in addition to available power management mechanisms of devices.

2.2.2 Grid and cluster computing

In grid and cluster computing approaches, hosts are interconnected to reach a common goal.

Whereas grids tend to be more loosely coupled, heterogeneous, and geographically dispersed,

clusters are often closely coupled and homogeneous hosts that are located near to each other.

Energy-efficient scheduling for grids is suggested by Liu et al. [42], where a distributed energy-

efficient scheduler supports real-time and data-intensive applications. It aims to seamlessly in-

tegrate scheduling tasks with data placement strategies to provide energy savings. The main en-

ergy savings are obtained by reducing the amount of data replication and task transfers. In [43]

an energy-constrained scheduling scheme for a grid environment is investigated to achieve

energy minimisation in mobile devices and grid utility optimisation. This is achieved by for-

malising energy-aware scheduling, using nonlinear optimisation theory under the constraints

of energy budget and the job deadline. In addition, [43] proposes a distributed pricing scheme

that achieves trade-offs between energy and deadlines to achieve a system-wide optimisation

based on the preference of the grid user. Power minimisation in server clusters is investigated

in [44], with guaranteed throughput and response time. In [45] policies are developed that use

economic criteria and energy as measures to dispatch jobs to a small set of active servers, while

other servers are set to a low-power state. Similar dynamic provisioning algorithms [46] are

studied for long-living TCP connections as in instant messaging and gaming. A queuing ap-

proach [47] for dynamic provisioning algorithms has also been studied to obtain the minimum

number of servers required to respect the required quality-of-service.

In grid and cluster computing, a number of hosts is coupled to commonly solve specific

computation problems, as processing a large amount of data or computing long-lasting calcu-

lations. Tasks that are performed on grids or clusters are often specifically programmed to fit

to this kind of environment. In contrast to such approaches, the virtualized office environment

presented in this thesis achieves an energy-efficient provision of user applications within of-

fice environments. A variety of highly interactive desktop and office applications are performed

within the office environment that aren’t tailored to the special environment of grids or clusters.
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2.2.3 Future home environments

More and more end-users have home networks that consist of several computers (e.g. personal

digital assistants, laptops, desktops, or home servers). Such home networks provide a huge

pool of hardware resources. In [48, 49, 50, 51, 52] a Future Home Environment (FHE) is

described that enables the energy-efficient sharing of home network resources among users. To

achieve this, home networks are interconnected, using a P2P overlay that enables addressing

and mediation of resources. Although this architecture is designed for home networks, its

concepts can be adapted to office environments.

The two main goals of the FHE architecture are 1) to enable hardware resource sharing

among home users and 2) to achieve energy efficiency by consolidation of load (e.g. in terms of

bandwidth consumption or CPU usage). In particular, load generated by always-on applications

is considered. The number of applications that requires always-on hardware (e.g. media-

servers or file-sharing clients) in home networks is growing, which leads to a high number of

computers running on a 24/7 basis. Similar to service consolidation in data centres, the overall

load is shifted to a small number of hosts, in order to relieve others. Unloaded computers are

turned off to save energy. The consolidation of load is achieved as follows: A user starts a task

(e.g. a file-sharing client) locally on his host. The FHE environment discovers the potential for

energy savings. It moves the task (which is virtualized, e.g., within a JAVA virtual machine) to

another host, probably within another home network, that is already running and has enough

hardware resources left to process the task. The local host can be turned off to save energy.

When the task is finished, the local host is restarted and the result is sent back. In this way only

a small portion of always-on hosts are needed at any time.

The interconnected home networks form a distributed pool of virtual resources and FHE

uses a distributed management to allocate resources to home networks dynamically. To sim-

plify energy savings, a distinction is made between active and passive home networks (con-

tributing and non-contributing home networks). A home network is called active if it contains

at least one host that is turned on and can share resources. In a passive home network only a

gateway (e.g., the router) is on-line and other hardware or turned off.

The FHE architecture is illustrated in Figure 2.4. In this example, four home networks are

interconnected by the P2P overlay, two active and two passive homes. In the figure a task is

migrated from an end-host in the active home network b to an end-host in the active home
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Figure 2.4: FHE architecture

network c. The end-host in home network b can be turned off after the migration process. If no

further host is turned on in home network b, it can change its status to passive.

Similar to the FHE approach, the virtualized office environment presented in this thesis

combines different virtualization methods to achieve a consolidation of services. Whereas

the FHE approach implements mechanisms to consolidate services that are specifically imple-

mented for the FHE architecture (e.g., video-encoding or P2P file-sharing services) the vir-

tualized office environment achieves a consolidation of unmodified office applications. The

FHE approach isn’t transparent to the user: The user has to utilise special software that enables

the migration and consolidation of certain tasks. The virtualized office environment, instead,

works transparently for the user. The user is able utilise his office host and his applications as

usual, he isn’t necessarily aware of the virtualization that achieves energy efficiency.

2.2.4 Internet Suspend/Resume

The Internet Suspend/Resume (ISR) project [53, 54, 55] aims at separating the current state

of a user’s desktop environment from host hardware. A VM encapsulates the users desktop

environment (OS, applications, user data and configurations). Efficient migration is supported

within ISR by layering the VM on distributed storage. The main idea of ISR is to enable

ubiquitous computing independent of hardware. When the user, e.g., works at home on his

host and goes to work afterwards, the current state of his home host is transferred to his host at

work. When the user arrives he will find exactly the same state that he had at his home host:

All of the formerly opened applications are still opened and even the mouse pointer is in the

same spot as before. The project is called ISR, referring to the fact that the migration of the
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host state is performed in the same way, as if the user had closed his laptop at home, carried it

to his working place, and opened it again.

The ISR project solves various problems that are also important within the virtualized of-

fice environment that is presented in this thesis. In particular, the project proves that running

desktop applications can be migrated within VMs in office related scenarios. The project even

suggests a special kind of migration: The so-called transient migration [53] allows users to

switch from remote VM access (thin-client mode) to local VM access (thick-client mode).

Therefore, users are able to use their VM during the migration, although they are locally ac-

cessing the host that currently performs the migration. However, there are also some main

differences between the ISR project and the virtualized office environment that is presented in

this thesis. On one hand, the ISR project relies on a centralized server that stores all VMs,

updates their states and sends them to hosts on which they are required. On the other hand, the

ISR project doesn’t aim at energy efficiency at all: Not only is an always-on infrastructure pro-

viding the VMs; moreover, the server anticipates where a user might go to next and his VMs

are distributed in advance to plausible locations to improve the quality-of-service during the

migration process. Therefore, the user will already find an up-to-date version of his VM at his

working place, when he arrives. Although this represents a quite convenient situation for the

user, the architecture is not appropriate to achieve energy efficiency within office environments.

The virtualized office environment that is presented in this thesis, in contrast, focuses on energy

efficiency and develops distributed management mechanisms that allow for provision of office

services without relying on centralized infrastructure.

2.2.5 Office power management

There are several projects that provide power management solutions for office environments.

Such solutions focus on optimising the energy consumption of hosts that are turned on while

their users are absent. Examples are eiPowerSaver1, Adaptiva Companion2, FaronicsCore3,

KBOX4, or LANrev5. In power management approaches, office-wide power management poli-

cies are applied to office environments. Office hosts are forced to adopt power management

configurations, independent of user settings. Therefore, idle hosts can be set to a low-power

1eiPowerSaver: http://entisp.com/pages/eiPowerSaver.php
2Adaptiva Companion: http://www.adaptiva.com/products_companion.html
3FaronicsCore: http://faronics.com/html/CoreConsole.asp
4KBOX: http://www.kace.com/solutions/power management.php
5LANrev: http://www.lanrev.com/solutions/power management.html
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state or be powered off to save energy. Additionally, often mechanisms are provided by such

approaches to wake up hosts if necessary (e.g., based on Wake-on-LAN technology). This

way, inactive hosts can be accessed for administrative jobs (e.g., backups that happen during

the night) and for remote usage. Several power management solutions also provide a detailed

analysis of the energy-consumption within the office environment and calculate achieved sav-

ings.

Similarly to the virtualized office environment that is presented in this thesis, power man-

agement approaches achieve energy efficiency within office environments. Whereas power

management solutions focus on idle hosts only, the solution that is presented in this thesis fol-

lows a more comprehensive approach: On one hand, idle services and idle hosts are stopped

from consuming resources as it is similarly done by power management approaches. On the

other hand, utilised services are consolidated on office hosts. This means that the virtualized

office environment that is suggested in this thesis can be considered as an extension to power

management solutions.

2.2.6 Terminal servers and virtual desktop infrastructures

Terminal-server approaches use data-centre technology to achieve energy efficiency in office

environments. The idea is to move user services to centralized terminal servers and to replace

energy consuming office hosts by highly energy-efficient thin clients [56]. Terminal-server

solutions are based on multi-user concepts where several users are able to log-on to a single

OS that is provided by the terminal server. OS, applications, and user data are stored in the data

centre and can be remotely accessed by thin clients. Alternatively, any other host with specific

remote desktop software is able to access the virtualized desktop on the terminal server. A

main advantage of this concept is that the user’s working environment can be accessed from

different locations, e.g., from the users home or from inside of the office environment. Also,

the contents stored on the terminal server aren’t affected by a damaged or stolen end-device.

Furthermore, software maintenance is simplified: Changes that are applied to terminal server

applications affect the desktops of all users. Common terminal server software products are

Citrix XenApp1, Microsoft Windows Server 20082, or the Linux Terminal Server Project3.

1Citrix XenApp: http://www.citrix.com/XenApp
2Microsoft Windows Server 2008: http://www.microsoft.com/windowsserver2008
3Linux Terminal Server Project: http://www.ltsp.org
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The Virtual Desktop Infrastructure (VDI) goes one step further than terminal server solu-

tions: In this approach each user gets his own VM. Similar to terminal servers, the VMs are

stored within the data centre and can be accessed remotely by energy-efficient thin clients or

any host with remote desktop software. In contrast to the terminal server approach, the VDI

approach has the advantage that each user can utilise his preferred OS and individual appli-

cations (not all kinds of standard applications are able to run on terminal servers) and new

virtualized desktops can be easily deployed. Furthermore, the virtualized desktops are strictly

isolated from each other, while being managed within the data centre. However, it is impor-

tant to see that the provision desktop environments within VMs is resource demanding: All of

the VMs need a sufficient amount of RAM, disc I/O, and other hardware resources to operate.

Therefore, the number of VMs that can be provided by a single server is rather limited. As an

example, 42 VMs for task workers (web surfing, editing small office documents) or 26 VMs

for knowledge workers (editing large power-point presentations) can be provided on an ESX

Server 3.0 running on an HP ProLiant DL 385 G1 server with two dual-core 2.2GHz Opteron

processors, according to a VMWare performance study1. For more complex VM workloads,

the number of VMs needs to be further reduced. VDI products are, e.g., VMWare View2, Citrix

XenDesktop3, or Parallels Virtual Desktop Infrastructure4.

Similar to the virtualized office environment that is presented in this thesis, terminal server

and VDI approaches aim at providing desktop environments in offices energy efficiently. Al-

though in both approaches office desktops are consolidated, there are several main differences:

Terminal server and VDI solutions impose severe changes to the office environment. Thin

clients replace full featured office hosts. Such clients differ from typical office hosts in several

ways. Not being meant to operate as standalone hosts, they only provide a minimum of CPU

power, RAM, and disc space. Therefore they are bound to resources that are provided by the

server and rely on a working network connection. If the network or the terminal/VDI server

fails, none of the users will be able to work with his desktop environment. Furthermore, not

all kinds of applications can be processed on terminal or VDI servers, e.g., complex multi-

media applications need a specialized host to run on. The virtualized office environment that

is suggested in this thesis, in contrast, utilises available hosts, including all of their features:

Certain hosts may have special hardware (e.g., a high-performance graphic card) that remains

1VDI server sizing and scaling: http://vmware.co.za/pdf/vdi_sizing_vi3.pdf
2VMWare View: http://www.vmware.com/products/view
3Citrix XenDesktop: http://www.citrix.com/virtualization/desktop/xendesktop.html
4Parallels Virtual Desktop Infrastructure: http://www.parallels.com/solutions/vdi

22



accessible to users. If necessary, hosts can be excluded from resource sharing to provide all

of their capacity to a certain user (e.g., to perform simulations). Furthermore, due to the lack

of centralized server hardware, there is no single point of failure within the virtualized office

environment. Although the management of VMs requires the network, the VMs themselves

are stored on office hosts. Therefore, a VM will continue to work within the virtualized office

environment, even if the network fails.

Furthermore, it is important to see that the virtualized office environment achieves a con-

solidation of services on office hosts within the office environment, without any need of cen-

tralized data centre equipment. Terminal servers and VDIs, instead, move office services into

the data centre, which has two main disadvantages: First, additional hardware needs to be pur-

chased and managed: Several costly terminal servers or VDI servers are needed as the number

of VMs that can be provided by a server is rather limited and all of the office hosts need to be

replaced by energy efficient thin clients. Companies with small sized office environments may

hesitate to invest in costly and complex data centre technology and its management. Second,

the additional data centre hardware consumes energy itself. Date centre equipment typically

consumes more energy than desktop hosts [2], due to high-performance parts, parts that pro-

vide redundancy, and, especially, the cooling that needs to be applied within the data centre.

Energy is saved in this case by the reduced energy consumption of the thin clients. Therefore,

the energy that is saved by thin clients (compared to office hosts) needs to be higher than the

energy that is consumed by the additionally applied data centre equipment, which may be dif-

ficult within small office environments. The virtualized office environment that is presented

in this thesis, achieves energy efficiency based on software only, no additional hardware is

needed. Therefore, it can more easily be applied to small or medium sized office environments

(that probably don’t have a data centre) than VDI solutions.

2.2.7 Cloud computing

The term cloud computing [57, 58] refers to data-centre-based services, stored within ubiq-

uitous computing clouds and is strongly related to grid computing [59]. Cloud computing

approaches try to offer computing power independent of the actual hardware location. Three

different service types can be distinguished: Infrastructure as a Service (IaaS) provides di-

rect access to virtualized resources or virtual hardware platforms for arbitrary computing tasks.

Examples are the Amazon Web Services, where VMs (Elastic Compute Cloud) are provided
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as well as file storage (Simple Storage Service). Also Microsoft Azure provides VMs to cus-

tomers. Platform as a Service (Paas) provides interfaces or APIs that can be utilised for a

specific purpose. The Google App Engine is an example for PAAS, which provides interfaces,

e.g., for file storage, a NoSQL-database, web applications, or mailing. Software as a Service

(SaaS) hides hardware and platform, and offers application front-ends. Examples are, e.g.,

Salesforce.com (that offers customer relationship management and distribution, support, and

marketing of software products) and Google Apps (e.g., GMail, Google Docs, Google Reader).

In particular, cloud computing can be used to achieve energy-efficiency [3]. Services run

remotely within a ubiquitous computing cloud that provides scalable and virtualized resources.

The cloud is typically based on VMs that can be dynamically migrated to increase the utilisa-

tion of hardware. On one hand, the cloud provider saves energy by achieving a high utilisation

of his infrastructure. On the other hand, also the cloud consumer saves energy: Instead of

buying and utilising over-provisioned hardware that is able to handle possible peak loads, the

customer can dynamically allocate and release resources in the cloud, to deal with sporadic

peak-loads. Costs are usually generated from the amount of computing, storage or traffic units

consumed, depending on the used cloud service.

Similar to the cloud computing approach, the virtualized office environment that is sug-

gested in this thesis is dynamically managing VMs within a virtualized computing environ-

ment. Both architectures aim at energy efficiency by consolidating services on hosts. Cloud

computing, on one hand, aims at high performance data centre environments, where special-

ized servers are connected via high-performance networks. The virtualized office environment,

on the other hand, aims at the decentralized office environment that consists of ordinary hosts

and Fast/Gigabit Ethernet networks. The differences between data centres (including cloud

infrastructures) and office environments and the complexity of adopting service consolidation

to office environments are discussed in detail in Section 3.3.

Also the IAAS cloud service can be used to process and store virtualized desktop envi-

ronments within the cloud. This approach is quite similar to the VDI approach that has been

presented in Section 2.2.6. However, instead of processing and storing the users’ VMs within

the own data centre, a cloud provider hosts the VM externally. The similarities and differences

between the VDI approach and the virtualized office environment are discussed in detail in

Section 2.2.6.

Furthermore, clouds are able to achieve energy savings concerning office environments at

the cloud consumer side, if the consumer processes office services within the cloud, instead
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of operating own hardware for this task. As an example, a company may use collaborative

text-processing software within the cloud, instead of setting up a server within their own data

centre. These kinds of energy savings are, however, rather related to data centres than to office

environments. The office hosts that is utilising this kind of remote service needs the same

amount of energy, independent of the location of the service.

2.3 Power consumption models

Power consumption models estimate the rate of a device’s energy consumption in watts. This

section discusses several approaches of power consumption models of hosts and networked

architectures that can be adopted to office environments.

2.3.1 Host models

There are several models available that predict the power consumption Ph of a host h. The

Constant power model simply predicts a constant power consumption [60], regardless of a

certain utilisation of the host. The power consumption is estimated by Ph =C0, where C0 is the

measured average power that is consumed by the host when it processes typical applications.

This model has two main benefits:

• It is easy to compute and no dynamic information is needed to predict the energy con-

sumption of a host during a certain time period.

• Furthermore, this method is similar to the method of estimating a system’s power con-

sumption based on manufacturer’s specifications. However, it will probably yield better

predictions, because C0 is based on a host’s measured average power consumption, in-

stead of using conservative manufacturer specifications.

The Linear CPU dependent model predicts the power consumption according to the host’s

CPU utilisation [1]. The power consumption is estimated by

Ph =Ch
idle +W h

cpu ∗ lh
cpu, (2.1)

where Ch
idle models the power consumption of a host when it is idle and W h

cpu is a CPU weighting

factor that maps CPU utilisation to power consumption. W h
cpu calculates as Ch

max−Ch
idle, where

Ch
max is the power consumption of host h with a CPU load of 100%. 0 ≤ lh

cpu ≤ 1 is the actual
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CPU utilisation of the host. CPU utilisation is used as a first-order characteristic for dynamic

power consumption because the CPU is considered to be the dominant consumer of dynamic

power [60]. For systems that aren’t CPU-dominated (e.g., file-servers) or workloads that aren’t

CPU-intensive (e.g., streaming, sorting) such assumptions do not always hold.

The CPU and disc utilisation model predicts the power consumption of hosts similar to the

linear CPU dependent model, while taking also the utilisation of the disc into account [61].

The power consumption is estimated by

Ph =Ch
idle +W h

cpu ∗ lh
cpu +W h

disc ∗ lh
disc,

where W h
disc is a disc weighting factor that linearly maps disc utilisation to power consumption,

similar to the CPU weighting factor and 0≤ lh
disc≤ 1 is the disc utilisation of host h. In [60] it is

stated that this model is able to create more accurate estimations than the linear CPU dependent

model.

Disc I/O and transfer models consider the dynamic power consumption of the disc by using

the number of I/O requests or the number of disc transfers as parameters, in order to get some

idea about the balance of random vs. sequential I/O. However, Rivoire et al. [60] found these

kind of models to be no more accurate than those simply using disc utilisation.

The CPU, disc, and network interface card utilisation model considers CPU, hard disc and

network interface card (NIC) as the main consumers of power [56]. The power consumption is

estimated by

Ph =Ch
idle + fcpu(lh

cpu)+ fdisc(lh
disc)+ fnic(lh

nic),

where Ch
idle =Ccpu

0 +Cdisc
0 +Cnic

0 models the power consumption of a host with idle components,

lh
cpu, lh

disc, and lh
nic model the utilisation of the different devices, and the functions f map the

load of the devices to power consumption. In contrast to the models that have been discussed

before, f is not necessarily a linear function. Vereecken et al. [56] state that fdisc(lh
disc) can be

omitted in desktop computers, because the hard disc is heavily dominated by the rotation motor

of the drive. This simplifies the power consumption estimation to

Ph =Ch
idle + fcpu(lh

cpu)+ fnic(lh
nic). (2.2)

If, furthermore, the desktop is utilised with standalone applications (without network usage),

the power consumption estimation simplifies to

Ph =Ch
idle + fcpu(lh

cpu).
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If fcpu(lh
cpu) is chosen to be represented linearly, this model can be simplified to the linear CPU

dependent model (see Equation( 2.1)).

Performance counter models extend the CPU and disc utilisation models by additionally

looking at performance counters [62] of the system, as far as available (e.g., the amount

of instruction-level parallelism, the activity of the cache hierarchy, or the utilisation of the

floating-point unit). Such models turned out to be the most accurate one in [60] as they con-

sider the most detailed information.

This overview of models has focused on high-level host models that can be adopted to

model hosts in office environments. Apart from the models that have been presented in this

section, there are a high number of further power-consumption models available, e.g., in the

area of embedded systems [63, 64, 65] or storage devices [66, 67]. In contrast to the men-

tioned host power consumption models, the model that is suggested in this thesis focuses on

estimating the power consumption of hosts within office environments. Especially, a compar-

ison of different office environments is intended, including virtualization and the migration of

services. The linear CPU dependent model (see Equation (2.1)) as is suggested in [1] is a suit-

able candidate to be adopted to office environments. This model has two major advantages:

First, it is a simplistic and easily computable approach that allows to estimate the power con-

sumption of ordinary and virtualized office environments. This approach doesn’t impose the

need for information about detailed utilisation of components or complex mappings of load to

energy consumption. Instead it estimates energy consumption based on CPU utilisation which

can be easily achieved. Second, Rivoire et al. [60] have performed a comparison of different

power consumption models and found that the linear CPU dependent model is able to estimate

the power consumption of hosts within 10% mean accuracy. Although more complex models

achieved slightly better results, the linear model has been evaluated as a reliable model with

sufficient accuracy to model the energy consumption of hosts. Therefore, Chapter 5 extends

this approach to a host energy consumption model that copes with user behaviour, workload,

and overhead of virtualization approaches within virtualized office environments.

2.3.2 Networked architecture models

The following models estimate the power consumption of hardware that is organized in dis-

tributed architectures, including network power estimation. The thin client/terminal server

model, suggested by Vereecken et al. [56] is an end-to-end power consumption model concern-

ing the thin client/terminal server paradigm, see Section 2.2.6.
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• Thin client: The power consumption Ptc of thin clients is assumed to be constant, ac-

cording to the constant power model (see Section 2.3.1), with Ptc =C0, where the power

consumption of the NIC is stated to be neglectable.

• Terminal server: The power consumption of the terminal server Pts is modeled accord-

ing to a CPU and NIC utilisation model (see Equation( 2.2)). NIC utilisation fnic(lts
nic) is

modelled linearly, according to the bandwidth consumption. Therefore the power con-

sumption of the terminal server is estimated by

Pts =Ch
idle +W h

cpu ∗ lts
cpu +W h

nic ∗ lts
nic,

where Ch
idle is the idle power consumption, W h

cpu is a CPU weighting factor and W h
nic

is a NIC weighting factor. The NIC utilisation of the terminal server 0 ≤ lts
nic ≤ 1 is

determined by the bandwidth consumption ltc
bw of all thin clients and simplified to

lts
nic = ltc

bw ∗Nu,

where Nu is the number users (with thin clients) in the system. Furthermore, it is assumed

in [56], that the cooling overhead is accounted for in the parameter settings.

• Network: The power consumption of the network Pn is modelled according to a linear

bandwidth consumption dependent model in this approach, which considers the con-

sumed bandwidth as first-order characteristic for dynamic network power consumption.

Power consumption is estimated according to the basic power consumption Cn
idle of the

unloaded network and the created network traffic load in terms of bandwidth 0≤ ln
bw ≤ 1

that is consumed by the thin client/terminal server protocol [56]. Therefore, the power

consumption is modelled as

Pn =Cn
idle +W n

bw ∗ ln
bw, (2.3)

where W n
bw is a bandwidth consumption weighting factor that maps bandwidth consump-

tion to power consumption.

• Overall power consumption: The overall power consumption of the thin client/terminal

server approach is modelled as

Ptc/ts = Nu ∗Ptc +Nu ∗Pn +
Nu

Nmax ∗Pts,

where Nmax is maximum amount of thin clients that can be served by the terminal server.
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The component/connector model has been suggested by Seo et al. [68]. This model pre-

dicts the power consumption of different architecture styles (e.g., client/server, peer-to-peer,

publish/subscribe). The power that is consumed by a distributed architecture is modelled as

the sum of the power consumed by n components and m connectors, where components and

connectors are independent software parts:

P =
n

∑
i=1

P(Compi)+
m

∑
j=1

P(Conn j).

The power consumption of a component i consists of the computational power cost according

to the main application logic Plogic,i and the computational power cost caused by exchanging

data via connectors PcommWithConn,i:

P(Compi) = Plogic,i +PcommWithConn,i.

Accordingly, the power consumption of a connector j consists of the computational power cost

according to its business logic Plogic, j and the cost of communication Pcomm, j:

P(Conn j) = Plogic, j +Pcomm, j.

Plogic, j sums up of coordination (transfer of control among components), conversion (adapta-

tion of interfaces or data provided by one component to that required by another), and facilita-

tion (mediation and streamlining of interaction):

Plogic, j = Pcoord, j +Pconv, j +Pf acil, j.

Pcomm, j is defined as

Pcomm, j = PcommWithComp, j +PremoteComm, j +PlocalComm, j,

describing the power cost of exchanging data with components, exchanging data with remote

connectors, and exchanging data with local connectors. According to this, the overall power

consumption of a distributed architecture is modelled as

P =
n

∑
i=1

Plogic,i +PcommWithConn,i

+
m

∑
j=1

PcommWithComp, j +PremoteComm, j

+PlocalComm, j +Pcoord, j +Pconv, j +Pf acil, j.
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This overview has presented high-level networked architecture models that can be adopted

for modelling networks in office environments. Apart from the models that have been presented

in this section, there are a high number of further power-consumption models available, e.g.,

in the area of routers or switch fabrics [69, 70, 71].

The linear bandwidth consumption dependent network model (see Equation (2.3)), as it is

suggested in the thin client/terminal server scenario [56], is considered to be a suitable candi-

date to be adopted to office environments. On one hand, this scenario aims at office environ-

ments and is therefore highly related to the approach that is suggested in this work. On the

other hand, this model represents a simplistic and easy computable solution without complex

mappings of load to energy consumption that provides sufficient accuracy [56]. In Chapter 5

this model is extended in order to describe virtualization overhead and service migration within

the virtualized office environment.
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Chapter 3

Energy-Efficient Office Design

This chapter identifies the energy-saving potential of hosts and network equipment in office

environments (following the discussion of [72]). It suggests principles for the design of an

energy-efficient office environment, based on the energy-saving potential. Additionally, this

chapter discusses requirements and challenges that need to be faced when an energy-efficient

office environment according to the design principles is developed.

3.1 Energy-saving potential

Hosts within office environments aren’t only turned on while being locally accessed by users.

They are also often turned on without users sitting in front of them. This happens for short

time periods (minutes to hours), e.g., if users are in meetings, do telephone calls, have lunch or

coffee breaks. It also happens for longer periods of time (days to weeks):

• Remote access: Users access their hosts from their home in the evenings and on home

working days or they access it from a customer’s office, when they are working exter-

nally. In this case users leave their host turned on to be able to access it remotely. Remote

access is often needed to access office specific applications and personal data that aren’t

accessible from outside of the office (e.g., email accounts, text documents, addresses of

customers, data in data bases, or special office/graphics/business applications).

• Overnight jobs: Users run long lasting jobs over night (e.g., a download), expecting

the job to have finished when they return in the morning. Also administrators often run

overnight jobs as nightly backups or virus scans.
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• Carelessness: Users forget to turn their hosts off when they leave the office or users do

not want to power them up in the next morning.

Webber et al. [6] have analyzed sixteen office sites in the USA and reported that 64% of all

investigated office hosts where running during nights.

If a host is idle (0% CPU utilisation), it is turned on and consumes energy without providing

any benefit to users. Idle hosts, however consume a considerable amount of energy, compared

to hosts that are turned off. While being turned on, several hardware components of an idle host

need to be supplied with power, leading to significant energy consumption. Table 3.1 illustrates

Host Standby Idle Intense
Dell_Optiplex_SX280 1 58 (58%) 100
HP_dx5150S 2 43 (49%) 87
Macintosh_Mini 2 22 (59%) 37
Viglen_VM4_Cube 3 61 (56%) 108
Viglen_Genie 1 92 (62%) 149
Viglen_EQ100 3 46 (78%) 59
Dell_Optiplex_210L 2 70 (52%) 135
Viglen_Genie_Core_Duo 2 65 (76%) 86
IBM_X40_Portable 2 27 (73%) 37

Average energy consumption 2 54 (63%) 89

Table 3.1: Personal computers at the University of Sheffield (energy consumption in watts)

an example of the relation of the energy consumption of idle and intensely utilised hosts. It

refers to measurements that have been performed at the University of Sheffield [7] on hosts that

are typically used as personal computers. The University of Sheffield has examined personal

computer purchase records over a period of 5 years from three main suppliers, which showed

over 10,000 purchases. The four columns of Table 3.1 illustrate the type of the host (Host), the

energy consumption of the hosts when they are turned off (Standby), the energy consumption

when they are unutilised (Idle), and the energy consumption when they are intensively utilised

(Intense). Intensively utilised means in this case that the host was actively doing arithmetic

operations on a large data set and writing results back to disc. A highly important fact of this

example is that idle hosts still consume 49% to 78% of the energy that they need in the intense

usage scenario. Although this relation may vary among office hosts with different hardware
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components, office hosts generally consume a considerable amount of energy when they are

idle. Therefore, in an energy-efficient office environment the energy consumption of idle hosts

needs to be significantly reduced.

Energy efficiency of idle hosts can be achieved by applying power management that is

typically available in today’s hosts and OSs. The user is able to configure low-power states (see

Section 2.2.5) that kick in when a host is idle for a critical time period. Low-power strategies

include, e.g., slowing down a host’s clock rate, turning off power to certain circuits, powering

down the hard drive, powering down the monitor, or hibernating the complete host and its

peripheral devices. Depending on the configured type of low-power state, a significant amount

of energy can be saved on idle hosts. However, many devices that are low-power capable do

not successfully enter these states. Low-power states are subject to the complex combined

effects of hardware, OSs, drivers, applications, and after all, the user-based power management

configuration. Applications that periodically perform actions or wrongly configured screen

savers, for instance, are able to prevent energy-saving strategies. Webber et al. [6] report that

in the investigated office sites only 4% of all hosts have successfully switched to low-power

states during the night. This means that idle hosts often appear to be utilised while being

idle. Although such hosts have only a very low utilisation, this utilisation prevents hosts from

switching to a low-power state.

Furthermore, office hosts are often over-provisioned according to the typical office services

they provide, as, e.g., text processors, browsers, or mail clients, leading to an underutilisation

of these hosts. However, similar to idle hosts, also underutilised hosts consume nearly as much

energy as intensely utilised hosts. This means that a high number of hosts are needed to pro-

vide moderate payload in terms of requested services. Generally, it is necessary to provide

utilised services energy-efficiently in office environments. Therefore, in an energy-efficient

office environment services need to be consolidated on a small number of hosts. Due to ser-

vice consolidation, the number of running hosts is reduced, while the utilisation of hosts is

increased. Hosts without services need to be turned off automatically.

In contrast to office hosts, network equipment within office environments is typically never

turned off. It is needed 24/7 to enable communication within the office environment, an acti-

vation on demand is usually not possible. Similar to hosts, typical office network equipment

still consumes a significant amount of energy when it is idle. As an example, Table 3.2 illus-

trates the relation of the energy consumption of idle and utilised network equipment in terms

of 8-48 port switches. It refers to measurements that have been published by Cisco [73]. The
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Cisco Catalyst 3560 Series Throughput 5% Throughput 100%
3560-8PC 18 ( 95 %) 19
3560-12PC 20 ( 91 %) 22
3560-24TS 24 ( 89 %) 27
3560-48TS 41 ( 91 %) 45
3560-24PS 40 ( 93 %) 43
3560-48PS 72 ( 84 %) 86
3560G-24TS 66 ( 89 %) 74
3560G-24PS 86 ( 90 %) 96
3560G-48TS 113 ( 91 %) 124
3560G-48PS 123 ( 95 %) 130

Average energy consumption 60 (91%) 67

Table 3.2: Typical office network equipment (energy consumption in watts)

first column refers to the switch model, where 8/12/24/48 is the number of ports of the switch.

The second column illustrates the energy consumption of the switch with 5% traffic load on

the switch and its uplinks. The third column illustrates the energy consumption of the switch,

with 100% traffic load (made up entirely of 64-byte packets on the switch and the up-links).

The measurements show that typical office network equipment needs up to 84% - 95% of its

maximum energy usage, when it is (nearly) unloaded. This is even a higher idle energy con-

sumption rate as observed in the context of office hosts. Although this relation between loaded

and unloaded energy consumption varies among different switch models, unloaded (or lightly

loaded) networks commonly consume a considerable amount of energy. According to this en-

ergy consumption characteristic of office network equipment and the fact that the network is

typically turned on 24/7, the network’s utilisation can be increased without significantly in-

creasing the overall energy consumption of the office environment. This is important to enable

the consolidation of services within the office environment, which implies the migration of

office services and therefore an increase of load on the network.

3.2 Design principles

According to the discussion in Section 3.1 design principles for an energy-efficient office envi-

ronment are defined that enable the exploitation of the available energy-saving potential:
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• Unutilised services need to be stopped from consuming office resources. Services that

aren’t utilised by users allocate host resources. On one hand, resources that are allocated

by unused services aren’t available for other services. On the other hand, office hosts

remain switched on in order to provide these services. Therefore, services that aren’t

utilised by users need to be suspended.

• Utilised services need to be consolidated on a reduced number of hosts. Office hosts

are often not sufficiently utilised by the services they provide (e.g. text processing).

However, underutilised hosts consume a great portion of energy, nearly as much as in-

tensely utilised hosts. Therefore, a consolidation of services needs to be achieved within

the office environment that increases the utilisation of a reduced number of hosts, while

relieving other hosts from their duties. The consolidation of services increases the net-

work load within the office, due to service migrations. However, networks in office

environments are typically turned on 24/7 and their energy consumption depends only

moderately on the current utilisation of the network.

• Unutilised hosts need to be turned off or set to a low-power state. Hosts that are turned on

but aren’t utilised (idle) consume a great portion of energy within the office environment

compared to hosts that are turned off, without providing any additional benefit. There-

fore, hosts that are not providing services to users need to be prevented from consuming

significant amounts of energy.

An office environment architecture that is based on these design principles adopts methods of

two popular energy-saving approaches for office environments:

1. Methods of power-management solutions for office environments (as discussed in Sec-

tion 2.2.5) are adopted: On one hand the office environment needs to apply methods that

stop unutilised office services from consuming resources on hosts and prevent unutilised

hosts from consuming energy. This allows the minimization of the energy consump-

tion of each individual host within the office environment. On the other hand, the office

environment needs to apply methods that resume services and hosts, if needed.

2. Furthermore, methods of thin-client/terminal-server and virtual desktop infrastructure

solutions (as discussed in Section 2.2.6) are adopted: Office services are consolidated on

hosts to raise the utilisation of some hosts, while others can be turned off to save energy.
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The consolidation of services considers the energy consumption of the office environ-

ment as a whole and therefore allows a minimization of the overall energy consumption

within the office environment.

The services that are managed within office environments by power management, terminal

server, and virtual desktop infrastructure solutions are the desktop environments of the office

users. This kind of service is called the Personal Desktop Environment (PDE) of a user in this

thesis. A PDE consists of an OS (e.g., Windows, Mac OS, or Linux), typical office applications

(e.g., mail client, browser, word-processing and business applications), the user’s personal data

(e.g., text documents), and the user’s personal configurations (e.g., bookmarks, mail client

configuration, etc.). Users are able to access their PDE locally within the office or to access it

remotely from outside the office via remote access, e.g., by using Virtual Network Computing

(VNC) clients as RealVNC1 or by using Remote Desktop Protocol (RDP) clients as rdesktop2.

It is assumed in this thesis that PDEs have public IPs to be accessible from outside of the office

environment.

a) Ordinary office environment 

      PDE is utilized 
      PDE is unutilized 

b) Energy-efficient office environment 

      Host is turned on 
      Host is turned off 

Figure 3.1: Ordinary and energy-efficient office environment

1RealVNC: http://www.realvnc.com
2Rdesktop: http://rdesktop.sourceforge.net
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In Figure 3.1 an energy-efficient office environment according to the defined design prin-

ciples is illustrated in comparison to an ordinary office environment. In the ordinary office

environment PDEs and hosts are interdependent and the PDEs of users are typically not mov-

able. Although often network storage solutions are applied that store user data centralized on

a server and enable a log-in to different hosts, the PDE as a whole is fixed to a certain host.

In the energy-efficient office environment, however, PDEs are movable and several PDEs can

be processed simultaneously on a single host. It can be observed that eight hosts are turned

on in Figure 4.12 (a), to provide eight utilised PDEs to users. Six unutilised PDEs are turned

off together with their hosts. In the energy-efficient office environment as illustrated in Figure

3.1 (b) in contrast, the utilised PDEs are consolidated on a smaller number of hosts: Only four

hosts are turned on in order to provide the same number of utilised PDEs as in the ordinary

office environment. Hosts without PDEs are turned off.

3.3 Requirements and challenges

Data centres are the most popular example of an environment where service consolidation is

applied to achieve energy efficiency. In data centres, system virtualization (see Section 2.1.1.2)

is used to virtualize hardware resources. Although this seems also to be a suitable solution for

office environments, there are a number of major challenges that need to be solved to adapt this

kind of service consolidation to office environments [74].

Data Centre Office 

Company A 

Office 

Company A 
Home 

             Mul%‐purpose, heterogeneity 

Data Centre Office Environment Home Environment 

Performance, control, centraliza%on 

User A 
Home 
User B 

Home 
User C 

Home 
User D 

Figure 3.2: Data centres, office environments, and home environments [74]
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Service consolidation is successfully achieved in data centres because data centres provide

a very special environment for the application of system virtualization and the management

of virtual resources: The more centralized, homogeneous, and controllable an environment is,

the easier virtualization of hardware resources, seamless migration of services, and resource

management can be applied. However, data centres differ extensively from other environments

that do not necessarily provide such properties. As an example, Figure 3.2 illustrates three

different environments that come into consideration for service consolidation: Data centres,

office environments, and home environments. It can be observed that in data centres server

hosts are located very close to each other (usually within a single room) and are interconnected

with a high-performance network. Hosts of office environments, are in contrast, are loosely

coupled (often distributed over several rooms) and typically connected via Fast/Gigabit Eth-

ernet. Home environments are rather small networks that consist of heterogeneous and multi-

purpose hardware (e.g., media server, desktop, laptop, or net book) and are interconnected via

performance-limited Internet connections. It can be observed in Figure 3.2 that the office en-

vironment represents a compromise between highly centralized data centres and completely

decentralized home environments. Although the office environment differs in many ways from

data centres, it still provides some important properties that ease up service consolidation, such

as partly homogeneous hardware, Fast Ethernet network (or better), and common user guide-

lines (and security policies) for office employees. However, when service consolidation is

adapted to office environments, several challenges need to be faced:

1. PDE execution environments: To realize an energy-efficient consolidation of services in

office environments, office hosts need to provide execution environments that enable the

execution of several PDEs simultaneously on a single host. These execution environ-

ments need to dynamically allocate resources (e.g., CPU cycles, RAM, or disc space)

to PDEs, as required. In the best case, the execution environments are flexible enough

to enable the processing of a wide variety of different PDEs: PDEs might be based on

different OSs (e.g., Windows, MAC, or Linux) or they need to be executed on differ-

ent host architectures (e.g., x86 or SPARC). Furthermore, a clear separation between

different PDEs and the hosts they are executed on needs to be achieved, in order to pre-

vent interferences. The execution environments need to provide mechanisms to suspend

PDEs in order to stop them from consuming resources if they are unused and to resume

them, when users need them again. Data centres typically provide homogeneous hard-

ware that is often certified to support the virtualization and consolidation of services.
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Furthermore, server hosts are typically high-performance hosts, in terms of CPU cycles,

available RAM, and disc IO. Thus, execution environments can be provided simulta-

neously for a high number of services (up to hundreds) by such hosts, depending on

the resource consumption of the services. Office environments, in contrast, typically

consist of partly homogeneous office hosts (often series of hosts of similar types are ac-

quired) that are usually not optimised for the simultaneous provision of many virtualized

services. Therefore, office hosts are only able to process considerably less virtualized

services than data centre servers, restricted by their performance and configuration.

2. PDE migration: PDEs need to be movable from one host to another within the office en-

vironment, without terminating the processes that are currently running within them. A

temporary interruption of PDE execution may be tolerated (similar to closing and open-

ing a laptop), however, after this pause the PDE should continue to process the user’s

applications. The high-performance network of data centres supports the efficient mi-

gration of virtualized services from one host to another. Migration, however, is a big

challenge in office environments. The network is slower in orders of magnitudes, slow-

ing down the migration process. Furthermore, in data centres usually only process data is

migrated, OS and application data are stored on network storage solutions. In office envi-

ronments, however, PDEs are stored on hosts and have to be migrated entirely. This leads

to a considerable overhead in terms of data transfer, because OS, applications, and user

data might sum up to several GBs of data. Moreover, the migration of PDEs is affected,

if the office environment contains hosts of different host architectures types. In this case,

PDEs can only be migrated within sub-environments with similar host architectures.

3. Resource management: In addition to the virtualization of resources, also a management

of the virtualized resources needs to be applied. All of the available hosts need to be

logically interconnected to enable their cooperation. Addressing and mediation of PDEs

and hosts needs to be enabled, in order to locate PDEs and free host resources. Due to

their mobility, the locations of PDEs are changing over time as well as their utilisation

and the utilisation of hosts. Data centres provide a controlled and centralized environ-

ment, where specialized and closely coupled hosts provide PDEs to users. Consequently,

data centres also provide a centralized management server for the resource management.

Office environments, in contrast, consist of a rather distributed arrangement of hosts.
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Loosely coupled office hosts are sharing resources among each other. The lack of cen-

tralized always-on management servers and the distributed resource sharing indicates the

application of a distributed resource management. A service in the data centre is typically

used by hundreds or thousands of users that remotely access the service, where changes

of user behaviour lead to load changes on the server. A PDE in the office environment,

in contrast, depends on the behaviour of a single user. Each PDE needs to be powered

up, powered down, or be migrated according to this single user behaviour, leading to a

highly dynamic resource management. In data centres, only administrators have direct

access to hardware. In office environments, in contrast, users are able to power hosts

on and off, unplug cables, move hosts to other locations, or alter software and hardware

configurations of hosts. Moreover, the direct user access to office hosts adds hard con-

straints to the management of resources: PDEs that are used locally by users can not be

migrated. Instead, they have to be provided at the user’s host. Furthermore, an energy-

efficient management of PDEs and hosts within the office environment can only take

place if it doesn’t significantly reduce the quality and availability of PDEs. The man-

agement needs to be achieved, without considerably interrupting the day to day work of

users. In data centres, services are usually never powered down because they are used

by a high number of users that access them remotely. Services can be migrated to other

hosts (nearly) without interrupting them, by using live-migration methods [19], which is

supported by the high performance network and hardware that is available in data cen-

tres. A PDE in the office environment, in contrast, needs to be migrated or powered

up/down, according to the behaviour of a single user, leading to a highly dynamic man-

agement. Live-migration can’t be achieved because of restrictions of hardware, network,

and the local usage of hosts within the office environment. The dynamic management of

PDEs has considerable impact on the availability of PDEs within the office environment.

This impact needs to be considered in the resource management.

4. Resilience and security issues: The physical access of users to office hosts additionally

raises resilience and security issues that do not exist to this extent in data centres. Due

to the consolidation of PDEs on office hosts, the user’s PDEs are distributed within the

office environment, instead of being located on the user’s personal host. During the

migration process, PDEs might get damaged or lost, preventing users from carrying on

their work. Furthermore, users might willingly or unwillingly unplug or shut down hosts.
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Whereas data centres typically consist of high-performance hardware without direct user

access, office hosts are commodity hardware with direct user access and are more likely

to break down due to user applications while providing PDEs. Additionally, users that

have directly access to hosts (especially the hard-disc) are potentially able to get access

to contents of other users.

The discussed issues of service consolidation in office environments represent the main

challenges that will be further elaborated on in this thesis. Table 3.3 summarizes these chal-

lenges that need to be faced when an energy-efficient office environment is implemented ac-

cording to the design principles of Section 3.2. The first column names the challenge, as

described above. The second and third columns illustrate differences between data centres and

office environments that concern service consolidation. The fourth column of the table points

to corresponding Sections in Chapter 4 that present solutions to the mentioned challenges.

Challenge Data centre environment Office environment Section
PDE execution Homogeneous hardware Partly homogeneous hardware 4.1
environments High performance hardware Office hardware

PDE migration High performance network Fast Ethernet (or better) 4.1
Centralized storage of application
data on servers

Decentralized storage of applica-
tion data on hosts

Migration of process data Full migration of services
Homogeneous hardware Partly homogeneous hardware

Resource Centralized management server Distributed management 4.1
management Administrator hardware access User hardware access 4.2

High performance network Fast Ethernet (or better)
Migration of process data Full migration of services
Moderately dynamic management Highly dynamic management
Remote service utilisation Local and remote service utilisation

Resilience and se-
curity issues

Centralized storage of application
data on servers

Decentralized storage of applica-
tion data on hosts

4.3

High performance hardware Office hardware
Administrator hardware access User hardware access

Table 3.3: Main challenges of service consolidation in office environments
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Chapter 4

Virtualized Office Environment
Architecture

This chapter describes the architecture of an energy-efficient virtualized office environment.

First, the virtualization approach is presented that enables service migration, service consol-

idation, and distributed resource management. Then, the management of services and host

resources is described in detail that achieves an energy-efficient and service-aware operation of

the office environment. Furthermore, resilience and security issues are discussed and finally,

the overall architecture is presented.

4.1 Virtualization of office resources

The virtualized office environment focuses on the management and consolidation of PDEs,

similar to terminal server and virtual desktop infrastructure approaches that have been dis-

cussed in Section 2.2.6.

In ordinary office environments, PDE and host are strongly interdependent: When the PDE

is used the corresponding host needs to be turned on. When the user turns off his PDE, the cor-

responding host is shut down. To achieve consolidation in the virtualized office environment,

virtualization methods are used to decouple PDEs and hosts. The following sections discuss

the virtualization of office resources in terms of PDE execution environments, PDE migration

and the distributed management of PDEs and hosts.
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4.1.1 PDE execution environments

System virtualization (as discussed in Section 2.1.1.2) is a popular virtualization method that is

used to achieve energy efficiency in data centres by consolidating several services on a single

server. Although system virtualization is mainly applied in data centres today, it represents the

most interesting candidate to be adapted to office environments.

From the data centre’s perspective, system virtualization meets all of the requirements as

they have been discussed in Section 3.3. Looking at office environments, system virtualization

can also be adopted as a basic enabler for service consolidation. System virtualization is able

to provide an execution environment for PDEs: A PDE can be encapsulated within a Virtual

Machine (VM, see Section 2.1.1), and inherits all of the VM-related properties. System virtu-

alization enables resource sharing (e.g., in terms of CPU cycles, RAM, and disc space) among

PDEs and several PDEs can run simultaneously on a single host without being aware of each

other or the competition for resources. PDEs can be suspended (their RAM contents are stored

on the hard-disc) if they are idle and be resumed again, if necessary. Additionally, when PDEs

are encapsulated in VMs they can be migrated from host to host, without shutting-down the

PDEs. Figure 4.1 illustrates the application of system virtualization within the office environ-

ment. It can be seen that a single office host is providing three different PDEs to users. To

Office host 

PD
E 
1 

VM 

PD
E 
2 

PD
E 
3 

VM  VM 

Virtual machine monitor 

Figure 4.1: PDEs encapsulated within VMs

achieve this, a Virtual Machine Monitor (VMM, see Section 2.1.1) is running as an intermedi-

ate layer on the office host. The VMM is dynamically allocating resources to three VMs that

encapsulate the provided PDEs.

As long as the office environment provides a homogeneous Instruction Set Architecture

(ISA, see Section 2.1.1) such as x86 or SPARC, typical system virtualization solutions as XEN

or VMWare Workstation can be applied to provide PDE execution environments. If the hard-

ware is heterogeneous in terms of ISAs (which might be the case in some office environments)

system emulators (see Section 2.1.1) as QEMU can be applied. System emulators emulate
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their own hardware environment and translate dynamically between different ISAs. Without

emulation, VMs are limited to the ISA provided by the physical hardware, while emulation

enables any combination of host and guest ISA. However, the translation process causes con-

siderable performance overhead. Therefore, in this thesis another approach is suggested: PDE

consolidation can be achieved in offices with heterogeneous ISAs without imposing emulation

overhead, if the office environment is separated into sub-environments of hosts with identical

ISAs and a separate management is applied for each sub-environment. This way, PDEs are

only migrated between hosts with similar ISAs. On one hand, this increases the performance

of the virtualized hardware (compared to the emulation approach). On the other hand it re-

duces the energy efficiency that can be achieved by consolidation if the sub-environments get

too small. The suggested approach is evaluated in Section 6.3.3.2 where the energy-efficiency

of office environments with a small number of users is analyzed.

Office hosts do not provide the same performance and capacities as server hosts in data

centres that are optimised for service virtualization. Therefore, the number of PDEs that can

be provided by a single office host is limited. The management of the virtualized office en-

vironment needs to consider this fact and to achieve energy efficiency by consolidation of a

rather small number of PDEs on a single host, compared to consolidation approaches of data

centres. The maximum number of processed PDEs per host is mainly depending on the number

of available CPUs and the RAM size on the office hosts. The system virtualization based PDE

execution environment that has been suggested in this section has been implemented on office

hosts and is discussed in Section 6.4 where load and energy measurements are illustrated.

4.1.2 PDE migration

The efficient migration of PDEs from one host to another is challenging in office environ-

ments. Not only is the network performance in office environments slower than that of a high-

performance storage area network in data centres, also more data needs to be transferred during

a migration: Whereas in data centres usually only the process data of a service is migrated (ap-

plication data is typically stored on centralized storage server), PDEs have to be migrated en-

tirely. This leads to considerable overhead in terms of network traffic because OS, applications,

and user data might sum up to several GBs. Furthermore, the resource management within the

office environment is more dynamic than in data centres (as discussed in Section 3.3), which

means migrations happen more often. Therefore, it is essential to reduce the amount of data

that needs to be migrated within the office environment.
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A solution that is typically used to reduce the overhead of data transfers is delta encoding

(aka. delta differencing, or delta compression). Delta encoding is a way of storing or transmit-

ting data in the form of differences between sequential data copies. An example for delta en-

coding is Delta Encoding in HTTP (RFC 3229) [75], which proposes that HTTP servers should

send updated Web pages in the form of differences between versions (deltas) to decrease In-

ternet traffic. The solution that is suggested in this thesis adopts the method of delta encoding.

To be able to transmit deltas only, a common software basis is distributed to all office hosts,

the Standard PDE (SPDE). The SPDE is a pre-configured full featured OS (e.g., Windows or

Linux), together with common applications (e.g., mail client, browser, word processing, etc.).

Users derive their own PDE from the SPDE by installing additional applications, storing data,

and configuring their PDE. Thus each user is able to create a personalized PDE, which is based

on the SPDE. If the office environment contains hosts with different ISAs (as discussed in

Section 4.1.1) then separate SPDEs are created for each of the different architectures.

When a PDE is migrated from one host to another, not the complete PDE is transferred.

Instead, the difference DIFF = PDE - SPDE is migrated to reduce the required network traffic

within the office environment. There are different possibilities to create the difference DIFF,

e.g., based on layered file systems as UnionFS1, distributed file systems as OpenAFS2, or

calculating binary differences as it is done with the rsync tool3. Since the SPDE is available on

all office hosts, the receiver of a DIFF is able to recover the PDE by calculating PDE = SPDE +

DIFF. A difference DIFF may also be negative, in the sense that information has been deleted

and needs to be removed at the target host. It is important to see that the amount of migrated

data can be further minimised: Let PDE A consist of the SPDE and a difference DIFF A1: PDE

A = SPDE + DIFF A1. If PDE A is migrated from host X to host Y , both hosts contain the

same state of this PDE. On host Y the PDE is further modified by the user, leading to PDE A′

= SPDE + DIFF A1 + DIFF A2. If, finally, PDE A′ is migrated back to the host X , only the new

modifications DIFF A2 need to me migrated, because host X has all information available to

recover PDE A′ from DIFF A2.

The migration procedure is illustrated in Figure 4.2. In Figure 4.2 (a) host X provides three

PDEs to users (PDE A, B, and C) and host Y provides two PDEs (PDE D and E). PDE C needs

to be migrated to host Y . To perform the migration, host X calculates the current difference of

1UnionFS: http://unionfs.filesystems.org
2OpenAFS: http://www.openafs.org
3Rsync: http://rsync.samba.org
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Figure 4.2: Migration of a PDE

PDE C: DIFF C = PDE C - SPDE. Host Y is setting up a new VM that contains the SPDE. Then,

as shown in Figure 4.2 (b), host X transfers DIFF C to host Y . Finally, host Y is recovering PDE

C from DIFF C and resuming its VM to provide the PDE to the user, as shown in Figure 4.2 (c).

Accordingly, host X is terminating PDE C. This migration procedure has been implemented

based on the rsync tool and its performance is measured in Section 6.4.3.

Based on the discussed transmission of differences, there are several methods of migration

available that can be used in the virtualized office environment:

• Cold migration (VM turned off): In this approach, the VM is shut down before being

migrated to another host. After the migration the VM needs to be rebooted.

• Cold migration (VM suspended): In this approach, the VM is suspended (the RAM of the

VM is stored on the hard-disc) before being migrated to another host. After the migration
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the VM is resumed. In this approach, all applications that have been processed on the

source host are continued on the target host.

• Live migration: In this approach, the VM is transmitted to another host while its services

are seamlessly provided to users [19]. Live migration is typically performed in data

centres, where users are remotely accessing services.

• Transient migration: This approach (that has been suggested by the Internet Suspend/Re-

sume project [53]) adapts the method of live migration for office environments: It allows

users to switch from remote PDE access (thin-client mode) to local PDE access (thick-

client mode) during the migration. Therefore, users are able to use their PDE during

the migration, although they are locally accessing the host that currently performs the

migration.

Cold migration with turned off VMs can’t be used within the virtualized office environment

because it doesn’t support an important feature: To save energy, PDEs that are performing pro-

cesses on behalf of users (e.g., downloads) are consolidated. Therefore, processes need to be

transferred without being interrupted. Also live migration can’t be adopted to office environ-

ments because of the reduced network performance, the higher amounts of data that needs to

be transferred, and the fact that users are locally accessing their PDEs. The transient migra-

tion is a highly interesting approach that has been explicitly designed for desktop migration.

However, it represents a highly advanced solution and is complex to implement. This thesis

adopts the cold migration approach with suspended VMs to migrate PDEs within the virtual-

ized office environment. Similar to the transient migration, this migration approach enables the

migration of PDEs without closing opened applications. However, in contrast to the transient

migration approach it is most easy to implement, as current virtualization software already pro-

vides methods and interfaces to perform this kind of migration. Therefore, the cold migration

approach with suspended VM is used as an initial solution that is sufficient to analyze the en-

ergy efficiency of the virtualized office environment. This migration approach has been further

discussed in [76]. It has been implemented and performance measurements are presented in

Section 6.4.3.

Similar to the mentioned migration approaches, roaming profiles and network storage so-

lutions (e.g., based on SAMBA1 or [77]) enable users to log on to different office hosts while

1SAMBA: http://www.samba.org
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being able to access their user data. In contrast to the suggested migration solutions, how-

ever, such solution don’t support the required migration of running processes that is needed for

energy-efficient consolidation. It is important to see that roaming profiles and network storage

solutions support the suggested virtualized office environment by reducing the data that needs

to be transferred between office hosts when a PDE is migrated: When data is stored in the

network, it is accessible via the PDE without needing to be migrated.

This section has shown that delta encoding and SPDEs (see also Section 6.4.3) significantly

reduce the the overhead caused by migrations. Differences between PDE copies are transferred

rather than complete PDEs. The size of a DIFF depends mainly on the amount of personal data

that a user has stored in his PDE.

4.1.3 Distributed resource management

In data centres, the management of VMs and host resources is performed by centralized man-

agement servers, as explained in Section 2.1.1. Concerning the management of PDEs in office

environments, however, this kind of management needs to be extended. In contrast to the cen-

tralized provision of services in data centres, PDEs in the virtualized office environment are

provided in a distributed approach: All office hosts are sharing their resources to provide PDEs

to users and a PDE can be provided by any host that has free resources. This kind of distributed

resource sharing is very similar to Peer-to-Peer (P2P) resource sharing approaches as they are

used in P2P file-sharing networks.

Following this distributed resource sharing approach, methods of P2P overlays can also be

used to realize a distributed management of PDEs and hosts. Therefore, the management of

PDEs and hosts is enabled without imposing the need for centralized server hardware. P2P

overlays are able to interconnect hosts within the office environment and to manage resource

mediation and resource access control, as discussed in detail in Section 2.1.2.2. P2P content

distribution networks (e.g., eDonkey or BitTorrent) are often used to share files among users.

Such overlays provide several functions, the behaviour of which can be adapted to office envi-

ronments. First, such overlays create and maintain a logical network among participants, while

being adaptive to dynamic user behaviour (e.g., joining and leaving the overlay). Second, they

enable the logical addressing of resources, as hosts, users, and data. Third, they enable the me-

diation of resources and are able to bring providers and consumers of content together. Fourth,

such protocols additionally manage the access to resources (resource access control), in order

to achieve an optimal and fair distribution of resources among all users of the overlay.
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Concerning office environments, P2P overlays enable the interconnection, addressing, and

mediation of PDEs and hosts, according to the mentioned functions in P2P content distribution

overlays. Furthermore, they enable resource access control concerning PDEs and hosts, based

on their current states (i.e., suspending, resuming and migrating PDEs, and turning on/off

hosts). Especially, P2P overlays are able to adapt the dynamic behaviour of office users and

changes within the office environment, including the physical access of users to office hosts, as

discussed in Section 3.3.

P2P networks, however, aren’t optimised for energy efficiency, today. In contrast, they tend

to be rather energy consuming applications. P2P networks create logical neighbourhoods that

aren’t necessarily physical neighbourhoods. One logical hop might span over several physical

hops and the nearest logical neighbour might be located on a different continent. Furthermore,

P2P networks apply routing on the application layer. Even if a peer is not active (e.g., to down-

load content), it remains on-line, forwards signalling messages and sends keep-alive messages.

This prevents peers from entering energy-efficient low-power states, with is especially a prob-

lem for mobile peers [78], e.g., smart phones. This means that a special focus needs to be set on

the energy efficiency of P2P overlay that will be used within the virtualized office environment.

Three different approaches of P2P overlays (according to Section 2.1.1) are discussed in

this thesis (based on [79]) that are able to realize PDE and host management within office

environments: (1) A centralized client/server-based P2P overlay, (2) a pure P2P overlay, and

(3) a hybrid P2P overlay approach.

4.1.3.1 Centralized P2P overlay

The most simple approach in terms of setup, administration, and management that is discussed

in this thesis, is a centralized tracker based approach [33]. In this configuration, a dedicated

host provides the necessary management channel through which state changes are issued and

feedback is communicated. All hosts within the office environment are logically connected to

this centralized management instance, as illustrated in Figure 4.3. Although this management

approach is client/server-based, the resource-sharing is still performed by office hosts in a

distributed P2P manner. The peers of this P2P overlay are the hosts of the office environment,

whereas PDEs aren’t aware of the P2P overlay.

The use of a centralised management approach, mimicking a tracker from traditional P2P

file-sharing overlays has several benefits: The system is non-complex in design and implemen-

tation, as it isn’t necessary to deal with state replication issues amongst different management
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Figure 4.3: A centralized P2P-overlay approach

servers. This also means there is only one server to administer PDEs and hosts. As the manage-

ment instance is located on server which is typically never turned off, it can be allocated a static

IP address that is reachable from outside the office environment. This allows remote workers

to easily contact the management instance to locate and turn-on their PDE, if it is currently

turned off. Furthermore, the management instance is located on dedicated hardware, therefore,

it is likely to be kept in a secure location. This reduces the risk of failure due to accidental

disruptions (e.g., accidentally unplugging the host).

While a dedicated management host is a simplistic approach in terms of implementation

and administration, it has a number of disadvantages. The main disadvantage is that additional

energy-consuming hardware is needed (including networking equipment and UPS) to realize

the management host, which is in contradiction to the purpose of this scientific work. When

the number of active users reduces (e.g., at the end of a working day), the energy resources

associated with managing their PDEs remain constant. In addition, having the management

functionality in a single place introduces all commonly known client/server architecture prob-

lems, such as the risk of a single point of failure or issues with scalability (should there be

a large number of office machines in use). Any failure of the management instance would

result in failures of PDEs. Sub-environments, e.g., an office environment of a separated depart-

ment would be difficult to create: It may require a new management instance (together with

additional hardware and energy resources).
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4.1.3.2 Pure P2P overlay

A pure P2P-overlay approach (e.g., Chord based [35]) doesn’t rely on any centralized server

(a tracker in traditional P2P terms) to provide overlay management. Instead, it relies upon

information sharing amongst peers to build up an accurate picture of the current situation.

Applying a pure P2P-overlay approach to the distributed office environment is a complex task,

in which all office hosts are included in the resource management. Each host needs not only

to provide PDEs, but also to provide a management instance in this case. As no centralized

Management 
instance 
Personal Desktop 
Environment (PDE) 

P2P overlay 

Figure 4.4: A pure P2P-overlay approach

instance with a global view on the office environment is available, distributed management

algorithms need to be applied to achieve energy efficiency, based on the local view of each host.

An example of a pure structured P2P overlay (based on Chord) is illustrated in Figure 4.4. Each

host runs a part of the distributed management algorithm and is interconnected with other hosts,

following a certain ring structure (for clarity reasons not all of the overlay links are illustrated

in Figure 4.4).

Main advantages of a pure P2P approach are that of scalability and robustness in the light

of host failure. As there is no centralised management instance, the system is theoretically

able to scale up to any size of office environment, although the scalability depends on the

concrete implementation of the P2P protocol (Gnutella [80] is an example of a non-scaling

pure P2P protocol). Each of the office hosts takes a small volume of the management load

and provides a localized view on the overlay to achieve an approximation of a global view

in the system. Unlike in the centralised approach, the failure of a management instance will
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have limited impact: PDEs will only need to associate with a new management instance. As

management instances would only be embedded on already running hosts, they would consume

a small additional amount of energy. Additionally, as the number of running PDEs is reduced,

also management instances are shut-down. Therefore, the overlay management requires less

resources and scales with the number of running PDEs. q

The potential benefits of this approach come at the cost of significant implementation com-

plexity [81] and possible inaccuracies with the state of the overlay. Each management instance

must maintain information on the location of other management instances, PDEs, and their

state. As there is no central body to manage decisions, typically a voting process is used to

make decisions (e.g., shut-down or start-up of a host). Furthermore, as there is no central au-

thority available it is difficult to logically divide the overlay to create sub-environments within

an office environment. Another disadvantage to this approach relates to security. As manage-

ment instances are co-located with PDEs of users and run on the same hosts, users potentially

have direct access to the management instances. Finally although the fully distributed manage-

ment is able to provide scalability, it is likely to cause overhead in terms of sent messages and

message propagation times [82] due to a missing global view. Typically, additional messages

need to be sent to create and maintain the logical overlay structure (e.g., a ring structure [35]).

This is a disadvantage in terms of energy efficiency, as this kind of communication is able to

prevent peers from switching to low-energy modes[78].

While the pure P2P approach provides a number of advantages over the centralised ap-

proach, including robustness and resilience, the pure structured approach is the most complex

approach discussed in this thesis and therefore the most difficult to implement in office envi-

ronments. Additionally, the higher number of messages that is needed to stabilize the overlay

structure contradicts with the goal of energy efficiency.

4.1.3.3 Hybrid P2P overlay

A hybrid P2P overlay approach is a compromise between the centralized and the pure P2P

approach. This design represents a super-peer approach [83], in which several clients with

sufficient resources (e.g., CPU or RAM) take on a management role within the P2P overlay.

Within the virtualized office environment, one or more management instances are encapsulated

within VMs, similar to PDEs. These virtualized management instances are responsible for

managing a sub-environment of the office environment, e.g., a department. The management

instances can be migrated between different hosts and exchange state information amongst each
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other. The use of the hybrid P2P approach enables a virtualized office environment without

imposing the need for further infrastructure to support it. However, the office environment will

have the overhead of providing and managing a number of additional VMs that encapsulate the

management instances. The hybrid P2P approach consists of two overlay layers:

1. The office layer overlay interconnects a subset of peers with a certain management

instance. The peers of this overlay are hosts of the office environment that are turned on

and are registered with this management instance. The office layer overlay enables the

management of PDEs and hosts within the office environment. The PDEs aren’t aware

of the P2P overlay, reducing the complexity of the system.

2. The organization layer overlay interconnects all management instances of an office en-

vironment with each other. Within the organization layer overlay, fail-over mechanisms

and replication of management information are applied to deal with the situation when

a management instance fails. Such mechanisms need to define which management in-

stance is responsible for taking ownership of abandoned PDEs and for recreating lost

management instances.

Management instances are created and encapsulated within VMs according to the number of

sub-environments within the office, each management instance manages a sub-environment.

Hybrid P2P approaches are proved to scale to high numbers of peers (e.g., the eDonkey network

as described in Section 2.1.2). Only running hosts are considered as peers of the P2P network

(instead of all PDEs) and report state changes (see Section 4.2) to the management instance,

however, all of the hosts are known by the management instance. This reduces the signalling

overhead within the office environment on one hand, and releases unloaded hosts from the

duty of sending keep-alive messages [78] on the other hand. Therefore, unloaded hosts can

be turned off or be suspended. Although management instances are co-located with PDEs and

run on the same hosts in the hybrid P2P approach, where users have the potential to disrupt the

overlay (e.g., by turning off a host), this problem can be tackled through the organization layer

overlay. If a management instance fails, other management instances are able to establish a new

management instance. Therefore the management instances share the information for which

hosts they are responsible. Although the current state of the failing management instance may

be lost, it can be recovered by status messages from the peers within a short time period. Similar

to PDEs, the management instances can be supplied with fixed IP addresses which enables the

establishment of communication from outside of the office environment.
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Figure 4.5: A hybrid P2P-overlay approach

The hybrid P2P overlay is illustrated in Figure 4.5. It can be seen that the management

instances are co-located with PDEs on hosts, as separate entities. Running hosts in the of-

fice environment represent the peers of this P2P overlay and have overlay links (office layer

overlay) to their dedicated management instances. Additionally, all management instances are

interconnected with each other (organization layer overlay).

From all of the discussed P2P overlay approaches, the hybrid P2P approach is the most

suitable one to be adopted to the virtualized office environment (according to the discussion

of [79]). It is highly scalable as it is very similar to the eDonkey approach, it introduces no

single point of failure, it represents a trade-off between the centralized and the pure approach in

terms of implementation complexity. Furthermore, it is robust as failing management instances

can be replaced within the organization layer overlay. Mainly, it represents the most energy-

efficient approach of the compared solutions: The number of management instances scales

with the number of office hosts and management instances are VMs that can be consolidated

similar to PDEs to save energy. This means that in contrast to the centralized approach no

additional dedicated hardware is necessary to process the management instance. Furthermore,

the overlay doesn’t require extra messages for maintaining a certain overlay structure as pure

P2P approaches typically do and only running hosts are peers of the overlay. Therefore, the
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hybrid P2P approach is selected as preferred solution for the virtualized office environment.

The hybrid P2P approach as it has been described in this subsection, has been simulated in a

discrete-event simulation. The results are discussed and evaluated in Section 6.3.

4.2 PDE management

This subsection describes the management of PDEs within the virtualized office environment.

First, energy states of hosts and VMs are introduced in Section 4.2.1. Then, an energy-optimal

PDE management is described in Section 4.2.2. Section 4.2.3 discusses the availability of

services within the virtualized office environment and proposes a service-optimal PDE man-

agement approach. Based on the energy-optimal and the service-optimal PDE management,

Section 4.2.4 suggests an energy and service-aware PDE management approach. Section 4.2.5

quantifies energy efficiency and availability within an office environment and suggests an eval-

uation function that is used to determine an appropriate trade-off between energy efficiency

and availability.

4.2.1 Energy states of hosts and PDEs

Hosts within the virtualized office environment need to process two different kinds of VMs:

On one hand, PDEs of office users need to be processed, as described in Section 4.1.1. On

the other hand, management instances of the hybrid P2P network need to be processed that

enable the management of PDEs, as described in Section 4.1.3.3. Each PDE pi, i ∈ {1, ...,n}
and each Management Instance (MI) mk, k ∈ {1, ...,w} is located on a host h j j ∈ {1, ...,n}
in the virtualized office environment, where n is the number of office users and w << n. It is

assumed in this thesis that the virtualized office environment consists of n users, where each

user uses a single PDE and has a dedicated host.

Hosts can be in one of three different energy states: Turned on (ON), turned off (OFF),
or in a suspended state (SUSP). Hosts that are turned on, consume energy according to their
current workload. Suspended hosts switch to an energy-efficient low-power state, e.g., suspend
to disc or suspend to RAM. The advantage of suspending a host instead of turning it off is that
suspended hosts don’t need to be booted when their users need them again. Suspended hosts
can be resumed by restoring the RAM state, which is typically achieved faster than booting the
host.
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Definition 4.1 (Host energy states) The host energy state of a host h j at time t is denoted as
st(h j), with st(h j) ∈ {ON, SUSP, OFF}. A host h j is called active at time t iff st(h j) = ON. The
host h j is called passive otherwise. The number of active hosts at time t is denoted as Nh

act(t).

Hosts that don’t process PDEs or MIs are suspended by using a suspend to disc approach within

the virtualized office environment, where the current RAM state is stored on the hard disc.

Suspended hosts don’t consume significantly more energy as hosts that are turned off [84], but

can be resumed fast. Although suspend to disc is slightly slower than suspend to RAM (when

being resumed), it has the advantage that it is resilient to temporary power loss. The energy

consumption of hosts in different energy states is modelled in Chapter 5.

PDEs and MIs are encapsulated within VMs (as it has been described in Section 4.1.1 and

Section 4.1.3.3) and have different (virtual) energy states similar to the energy states of hosts:

A VM can be turned on (ON), turned off (OFF), or be suspended (SUSP). Suspended means in

this case, that the VM’s current RAM state is stored on the physical hard-disc and the VM is

stopped from consuming resources on the host it resides on. The main advantage of suspension

over turning off the VM is the maintenance of the RAM state: If a suspended VM is resumed,

it continues to operate in exactly the same condition as it was before the suspension. Formerly

opened applications and documents are still opened and the VM continues all of its system and

user processes immediately. If the VM is turned off instead, it needs to be rebooted and all of

the formerly opened applications remain closed.
Each MI mk needs to be constantly in the energy state ON to enable the management within

the office environment. The energy state of a PDE pi, however, depends on the user behaviour
and varies over time.

Definition 4.2 (PDE energy states) The PDE energy state of a PDE pi at time t is denoted as
st(pi), with st(pi) ∈ {ON, SUSP, OFF}. A PDE pi is called active at time t iff st(pi) = ON. The
PDE pi is called passive otherwise. The number of active PDEs at time t is denoted as N p

act(t).

MIs and active PDEs consume resources in terms of CPU cycles, RAM, and disc IO on hosts

in terms of the workload they cause, whereas passive PDEs don’t consume resources on hosts

except of disc-space. Therefore, hosts need to be active, if they process MIs or active PDEs.

4.2.2 Energy-optimal PDE management

The energy states of office hosts have significant impact on the power consumption of an office

environment. An active host needs considerably more energy than a passive host, even if the
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active host is underutilised or idle (see Section 3.1). Therefore, the number of active hosts

Nh
act(t) at time t is strongly correlated with the energy consumption of the office environment

at time t and can be used as a general energy consumption indicator. If no further information

on the specific energy consumption of hosts within an office environment is available, the

number of active hosts is an appropriate metric to estimate the energy consumption of an office

environment. The more hosts are active within a period of time, the more energy will be

consumed. Thus, an energy-optimal office environment, utilises a minimum number of active

hosts. This can be achieved by (1) minimising the load in terms of MIs and PDEs within the

office environment and (2) consolidating of MIs and PDEs on the smallest possible number of

active hosts, while (3) generating minimal management overhead.

4.2.2.1 Minimising load

To achieve an energy-optimal PDE management, the load in terms of MIs and PDEs needs

to be minimised within the office environment. Whereas MIs need to be constantly in the

energy state ON (as discussed in Section 4.2.1), the energy state of PDEs depends on the user’s

behaviour and can be determined in an energy-optimal way.

Users have a limited set of options in terms of interacting with their PDE within office

environments. From the perspective of the PDE a user can be in one of the following disjunctive

states at a certain point of time:

• Time periods with PDE/user interaction:

– Local interaction (LOCAL): The user utilises his PDE locally within the office

environment and has physical access to his host.

– Remote interaction (REMOTE): The user utilises his PDE remotely from outside

the office environment without having physical access to his host.

• Time periods without PDE/user interaction:

– Execution of user job (JOB): The user has initiated a job on his PDE that is executed

without PDE/user interaction.

– Unutilised (IDLE): The user doesn’t utilise his PDE at all, although it is turned on.

– Turned off (OFF): The user has manually turned his PDE off.
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The user changes between periods of interacting with his host (LOCAL, REMOTE) and periods
without interaction (JOB, IDLE, OFF): Obviously, it isn’t possible for a user to switch between
local and remote usage without going through a short period without interaction. Similarly, a

LOCAL  JOB 

OFF 

IDLE 

REMOTE 

Figure 4.6: PDE utilisation states

transition between IDLE and OFF isn’t possible without user interaction, because turning-
off the host requires PDE/user interaction. If the PDE executes a job on behalf of the user
(JOB), however, this job is able to terminate without any further user interaction. Therefore, a
transition from JOB to IDLE is possible. This user model assumes that hosts can be turned on
remotely (OFF → REMOTE), e.g., using Wake-On-LAN technology. PDE utilisation states
as illustrated in Figure 4.6 are defined according to this user model.

Definition 4.3 (PDE utilisation states) The PDE utilisation state of a PDE pi, at time t in the
office environment is denoted as ut(pi), with ut(pi) ∈ {LOCAL, REMOTE, JOB, IDLE, OFF}.

To minimize the number of active PDEs N p
act(t) within the office environment, all PDEs

that aren’t utilised by their users need to be stopped from consuming resources. In contrast to

PDEs in utilisation states {LOCAL, REMOTE, JOB} that are utilised locally, remotely, or by

performing a job, PDEs in utilisation states ut(pi) ∈ {IDLE, OFF} aren’t utilised by their user

at time t. Whereas, PDEs in the utilisation states ut(pi) = OFF can reside on passive hosts,

PDEs in the utilisation states ut(pi) = IDLE consume resources on active hosts. Therefore,

PDEs in the utilisation state ut(pi) = IDLE are suspended to minimize the number of active

PDEs.

The energy states of PDEs pi within the virtualized office environment according to PDE

utilisation states ut(pi) at time t are defined as follows:

• ut(pi) = OFF⇒ st(pi) = OFF
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• ut(pi) = IDLE⇒ st(pi) = SUSP

• ut(pi) ∈ {LOCAL, REMOTE, JOB}⇒ st(pi) = ON

The suspension of PDEs in the utilisation state ut(pi) = IDLE leads to a minimal set of VMs in

the energy state ON within the office environment because only utilised PDEs are considered

to be active.

4.2.2.2 Consolidating MIs and PDEs

Let [0,T ] be a time interval that is divided into discrete decision points t, t ∈ {0, ...,T}, where
each decision point t is determined by a change of a PDE utilisation state ut(pi). It is assumed
that the changes of PDE utilisation states occur sequentially. For each of the decision points
t the mapping of active PDEs and MIs to hosts is determined by a consolidation function Ht .
Let V := {p1, ..., pn,m1, ...,mw} be the set of VMs within the office environment, with VMs vr,
r ∈ {1, ...,(n+w)}.

Definition 4.4 (Consolidation function) Ht: {v1, ...,vr} → {h1, ...,hn} is the consolidation
function that maps each PDE pi and each MI mk to a host h j at decision point t.

A PDE pi or an MI mk can only be associated with a single host at any time t. The consolidation

function Ht isn’t necessarily injective in the virtualized office environment because at time t

more than a single PDE or MI can be located on a particular host. Ht is also not necessarily

surjective because at time t there may be hosts without any PDEs or MIs. The inverse relation

of Ht is denoted as H−1
t and maps each host to a set of PDEs and MIs that are provided by the

host at time t. Therefore, H−1
t can be seen as a function from the set of hosts {h1, ...,hn} into

the power set of PDEs/MIs P(V ) := {U |U ⊆ V}. As an example, the consolidation function

Ht of an ordinary office environment can be illustrated as

Ht(pi) = hi,

where each PDE pi is located exclusively on its dedicated host hi, and no MIs are existent.

MIs can be migrated from host to host for consolidation without restrictions within the of-

fice environment. The consolidation of active PDEs, however, is constrained by the behaviour

of office users: If a PDE is in the state ut(pi) = LOCAL, the user has physical access to his ded-

icated host (and its peripheral devices). Therefore, the PDE needs to be processed by this host

and can’t be migrated. However, this host is still able to provide free resources to other PDEs.

PDEs in the states ut(pi)∈ {REMOTE, JOB}, in contrast, can be migrated for consolidation. A
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user that is accessing his PDE remotely or is processing a job without user interaction will not

care about the host his PDE is processed on. Ordinary office environments don’t distinguish

between the utilisation states ut(pi) = LOCAL and ut(pi) ∈ {REMOTE, JOB}. PDEs in all of

these utilisation states are served equally and each PDE utilises a separate host.
Furthermore, the consolidation of MIs and PDEs is limited by resource requirements of

VMs and resource capacities of hosts. Especially the RAM of office hosts is a limiting factor
for the number of MIs and active PDEs that a host is able to process simultaneously. Several
methods have been suggested in literature that analyze services (especially in data centres or
server clusters) in terms of resource consumption and attempt to find an optimised mix of
services for a certain host (e.g., a mix of CPU-biased and network-biased services). Such
methods aren’t in the focus of this thesis, since network and CPU requirements of a PDE are
frequently changing due to the behaviour of a single office user. As a simplification, it is
assumed in this thesis that MIs and active PDEs have an average weight in terms of resource
consumption (particularly a fixed RAM size) and each host within the office environment is
able to process a fixed number of PDEs. This assumption is based on the fact that all PDEs are
used within the same office environment, where users show a comparable behaviour and use
similar applications. Furthermore, the hardware is expected to be homogeneous to a certain
extent, as discussed in Section 3.3.

Definition 4.5 (Host capacity) The host capacity ch of each host h j in the virtualized office
environment is the maximum number of active PDEs and MIs that can be processed by a host
h j at any time t, with ch ≥ 1.

The host capacity limits the number of active PDEs that are processed simultaneously by a sin-
gle host. To cope with heterogeneous PDE weights and host capacities, the office environment
can be divided into smaller sub-environments with different host capacities. This approach is
evaluated in Section 6.3.3.2 where the energy-efficiency of office environments with a small
number of users is analyzed. In ordinary office environments the host capacity is considered
to be ch = 1 because no consolidation is applied. The constraints regarding the consolidation
function Ht are summarized in the following definition:

Definition 4.6 (Valid consolidation function) A consolidation function Ht is called valid with
respect to PDE utilisation states ut(pi) iff

• ∀ (pi |ut(pi) = LOCAL): Ht(pi) = hi

• ∀h j:
∣∣∣{pi | pi ∈H−1

t (h j) ∧ ut(pi) ∈ {LOCAL, REMOTE, JOB}}
∣∣∣

+
∣∣∣{mk |mk ∈H−1

t (h j)}
∣∣∣≤ ch.
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A consolidation function Ht is valid, if all locally utilised PDEs are located at their dedicated

hosts and no host h j processes more than ch active PDEs and MIs simultaneously. Algorith-

mically, a valid Ht is achieved as illustrated in Listing 4.1. The method <Ht.validate(PDE

pde, State newState)> is called with the parameter pde, which is the PDE that has changed its

utilisation state and the new utilisation state newState.

1 p u b l i c vo id v a l i d a t e (PDE pde , S t a t e n e w S t a t e ) {
2 Host h o s t = pde . g e t C u r r e n t H o s t ( ) ; / / c u r r e n t l o c a t i o n o f PDE
3 Host home = pde . getHome ( ) ; / / g e t d e d i c a t e d h o s t o f t h e PDE
4 Host c l e a n = h o s t ;
5 i f ( n e w S t a t e == S t a t e .LOC) {
6 Ht . map ( pde , home ) ; / / maps PDE pde t o Host home i n Ht }
7 c l e a n = home ;
8 i f ( c l e a n . countAct iveVMs >= ch ) { / / t o o many PDEs?
9 i f ( n e w S t a t e != S t a t e .LOC) {

10 PDE move = pde ;
11 } e l s e { / / f i n d MI or PDE i n s t a t e REM/LOC
12 move = h o s t . getMovableVM ( ) ; }
13 Ht . movePDE ( move , h o s t ) ;
14 pde . s e t S t a t e ( n e w S t a t e ) }
15 p r i v a t e vo id move (PDE pde , Host s o u r c e ) {
16 / / f i n d a c t i v e h o s t s w i t h #VMs < h o s t c a p a c i t y
17 L i s t t a r g e t s = Ht . g e t A c t i v e H o s t s W i t h F r e e R e s o u r c e s ( ) ;
18 i f ( t a r g e t s . s i z e ( ) == 0) {
19 t a r g e t s . add ( Ht . ge tRandomPass iveHos t ( ) ) ; / / s t a r t random h o s t }
20 t a r g e t s . remove ( s o u r c e ) ; / / remove t h e s o u r c e h o s t
21 / / Get t h e most s u i t a b l e h o s t : ( 1 ) Home o f pde or
22 / / ( 2 ) h o s t s w i t h PDE i n s t a t e LOC and s m a l l e s t number o f PDEs
23 / / or ( 3 ) any o t h e r h o s t w i t h s m a l l e s t number o f PDEs .
24 Host h o s t = t a r g e t s . g e t B e s t H o s t ( ) ;
25 Ht . map ( pde , h o s t ) ; / / maps PDE pde t o Host h o s t i n Ht }

Listing 4.1: Validation of the consolidation function

To optimize the offices energy consumption, all MIs and active PDEs need to be consoli-
dated on a minimal number of active hosts.
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Definition 4.7 (Host-optimal consolidation function) A consolidation function Ht is called
host optimal iff it is valid and all active PDEs pi and all MIs mk are mapped to the minimal
number of active hosts:
Ht , H′t valid ∧
∀H′t:

∣∣∣{h j |∃
(

pi ∈H−1
t (h j) |ut(pi) ∈ {LOCAL, REMOTE, JOB}}

)
∨ ∃
(

mk ∈H−1
t (h j)

)∣∣∣
≤
∣∣∣{h j |∃

(
pi ∈H′−1

t (h j) |ut(pi) ∈ {LOCAL, REMOTE, JOB}}
)
∨ ∃
(

mk ∈H′−1
t (h j)

)∣∣∣.
This definition of a host-optimal consolidation function will be used to define an energy-

optimal PDE management in Section 4.2.2.4.

4.2.2.3 Minimising management overhead

The consolidation of PDEs and MIs on hosts is achieved by migrating PDEs and MIs (cold
migration of suspended VMs, see Section 4.1.2). Migrations, however, have impact on the
energy consumption within the office environment because they consume resources of hosts
and network. In particular, the number of active hosts is affected by migrations: Hosts need to
be active in order to perform a migration, even if they don’t process active PDEs or MIs.

Definition 4.8 (Migration) The migration of a VM vr (PDE or MI) from host h j to host hk is
called generated by consolidation function Ht , iff Ht−1(vr) = h j and Ht(vr) = hk. The migra-
tion is denoted as mig j→k

Ht
(vr), starts at time t and lasts a period of time given as ∆(mig j→k

Ht
(vr)).

Each MI or PDE can only be associated with a single host at time t, therefore the mapping
of an MI or a PDE that is migrated from host h j to a host hk changes immediately at time t.
Migrations, however need time to be performed (see Section 4.1.2). A migration mig j→k

Ht
(vr)

begins at time t and ends at time t +∆(mig j→k
Ht

(vr)). During this time, two hosts h j and hk are
involved in the migration of the VM vr.

Definition 4.9 (Set of ongoing migrations) Mt is the set of ongoing migrations at time t within
the office environment, with Mt := {mig j→k

Ht′
(vr) |t ′≥ 0 , t ∈ [t ′, t ′+∆(mig j→k

Ht′
(vr))]}. Ms

t is the set

of source hosts involved in ongoing migrations at time t, with Ms
t := {h j |mig j→k

Ht
(vr) ∈Mt}.

It is important to see that each host h j that is involved in a migration needs to be active to be

able to perform the ongoing migration, even if it doesn’t process any MIs or active PDEs, i.e.,

H−1
t (h j) ∈ /0. Target hosts of migrations are implicitly active because migrated active PDEs

or MIs are immediately mapped to the target host. Source hosts h j ∈ Ms
t , however, may not

necessarily process any MI or active PDE during the migration process.

Migrations raise the number of active hosts within the office environment. Therefore, the

number of migrations that are generated within a virtualized office environment needs to be
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minimised in order to minimize the overhead that is created by the management of MIs and

PDEs.

4.2.2.4 Energy-optimal consolidation

To define an energy-optimal consolidation function Ht within the virtual host environment, it
isn’t sufficient to find a host-optimal mapping of MIs and active PDEs to hosts, as defined in
Definition 4.7. Additionally, the number of migrations needs to be considered that are gener-
ated by such a mapping.

Definition 4.10 (Energy-optimal consolidation function) Given Ht−1, with t > 0, a consoli-
dation function Ht is called energy optimal, iff it is host-optimal and it generates less or equal
migrations than any other host-optimal H′t:
Ht , H′t host optimal ∧ ∀H′t:

∣∣∣{m j→k
Ht

(vr)}
∣∣∣ ≤ ∣∣∣{m j→k

H′t
(vr)}

∣∣∣.
The number of active hosts Nh

act(t) within the office environment that are generated by an
energy-optimal consolidation function Ht is illustrated in Theorem 4.1. Let Nu

LOC(t) be the
number of PDEs in the state ut(pi) = LOCAL at time t within the virtualized office environ-
ment.

Theorem 4.1 The number of active hosts Nh
act(t) that is utilised by an energy-optimal consoli-

dation function Ht is limited by

max
{

Nu
LOC(t) ,

⌈
N p

act(t)+w
ch

⌉}
≤ Nh

act(t) ≤ max
{

Nu
LOC(t) ,

⌈
N p

act(t)+w
ch

⌉}
+ |Ms

t |.

Proof. All N p
act(t) active PDEs and w MIs are distributed to

⌈
N p

act(t)+w
ch

⌉
active hosts, with

respect to the host capacity ch. But at least, all of the locally utilised PDEs Nu
LOC(t) need a

separate active host to be processed on, according to Definition 4.6. Therefore, the host-optimal

mapping of active PDEs to hosts utilises max
{

Nu
LOC(t) ,

⌈
N p

act(t)+w
ch

⌉}
active hosts. This number

of active hosts, however, doesn’t include all hosts that are possibly active due to migrations.

At most |Ms
t | source hosts of ongoing migrations do possibly not process active PDEs or MIs.

Therefore they need to be added to the number of active hosts Nh
act(t). �

Figure 4.7 illustrates the lower bound of the number of active hosts Nh
act(t) at time t within

an office environment with 100 active PDEs (N p
act(t) = 100) and 2 MIs (w = 2). The X-axis

shows the number of PDEs that are utilised locally Nu
LOC(t) and the Y-axis shows the number

of active hosts Nh
act(t) that are needed at minimum to process the PDEs. Nh

act(t) is illustrated

for four scenarios: Within an ordinary office environment (ord) and within three different vir-

tualized office environments that have host capacities of ch = 2, ch = 3, and ch = 4. It can be
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Figure 4.7: Lower bound of active hosts within different office environments

observed that 100 hosts are active within the ordinary office environment, independent of the

number of locally utilised PDEs, because no consolidation is achieved. In the virtualized office

environment, in contrast, the minimum number of active PDEs depends on the host capacity.

For ch = 2, e.g., only 51 hosts are needed at minimum to provide 100 PDEs and 2 MIs, as long

as the number of locally utilised PDEs is smaller than 52. With 52 or more locally utilised

PDEs, the number of active hosts depends on Nu
LOC(t), as each locally working user needs a

separate host to work on. Therefore, with 100 locally utilised PDEs, the number of active hosts

is the same as in the ordinary office environment. With an increased host capacity ch even less

active hosts are needed in certain cases. However, the higher ch gets, the smaller the number of

locally utilised PDEs needs to be. For Nu
LOC(t)≥ 52 all of the host capacities provide the same

result.

Listing 4.2 illustrates how an energy-optimal consolidation function can be achieved algo-

rithmically. First, Ht is validated according to Listing 4.1. Then all active hosts are selected

that can be dissolved, where dissolved means that the host can be freed from all active PDEs

and MIs to be turned off, i.e., hosts that process active PDEs and MIs but don’t process a

PDE in the state LOCAL. To minimize the number of migrations, these hosts are assorted

according to the number of active VMs they process. The host with the smallest number of

active PDEs can be dissolved, while generating the least number of migrations. The method

<Ht.energyOpt(PDE pde, State newState)> is called with the parameter pde, which is the PDE

that has changed its utilisation state and the new utilisation state newState.

Summarized, three steps are performed to achieve an energy-optimal management within

the virtualized office environment:
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1 p u b l i c vo id energyOpt (PDE pde , S t a t e n e w S t a t e ) {
2 Ht . v a l i d a t e ( pde , S t a t e n e w S t a t e ) ;
3 / / f i n d a c t i v e h o s t s w i t h o u t PDEs i n t h e s t a t e LOC t h a t
4 / / c o n t a i n a t l e a s t one a c t i v e PDE or MI
5 L i s t h o s t s = Ht . getHostsWithMovableVMs ;
6 h o s t s . s o r t ( ) / / s o r t by number o f a c t i v e VMs , a s c e n d i n g
7 i n t max = Math . c e i l ( Math . max (#LOC, ( # LOC+#REM+#JOB+w ) / ch ) ) ;
8 whi le ( Ht . countHostsWithAct iveVMs ( ) > max ) {
9 Host d i s s o l v e = h o s t s . r e m o v e F i r s t ( ) ;

10 f o r ( i =0 , i < d i s s o l v e . countPDEs ( ) , i ++){
11 Ht . move ( d i s s o l v e . getPDE ( i ) , d i s s o l v e ) }
12 } }

Listing 4.2: Energy-optimal consolidation function

1. PDEs that aren’t utilised by users are suspended to minimize the number of active PDEs

within the office environment (see Section 4.2.2.1).

2. MIs and active PDEs are consolidated on a minimal number of hosts to minimize the

number of active hosts within the office environment (see Section 4.2.2.2).

3. The management overhead is minimised in terms of the number of migrations that is

generated by the management of MIs and active PDEs (see Section 4.2.2.3).

4.2.3 Service-optimal PDE management

It is important to see that an energy-efficient management within the office environment can

only take place under the precondition that the management that is applied within the office

environment doesn’t significantly reduce the quality-of-service that is experienced by users.

The management needs to be achieved, without considerably interrupting the day to day work

of users. Moderate changes in the usage of office hosts, however, will be tolerable by users.

The virtualization of PDEs reduces the performance of PDEs that are provided on hosts.

On one hand, the virtual machine monitor (that is needed to provide VMs) consumes host

resources itself. On the other hand, the translation of physical resources to virtual resources and

the allocation of virtual resources to VMs is causing overhead in terms of CPU load. Current

developments of soft and hardware, however, are more and more reducing this virtualization-

based overhead (current CPUs, e.g., typically provide virtualization support, as described in
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Section 2.1.1.2). Additionally, the performance of PDEs is decreased by consolidation because

several PDEs are sharing the hardware resources of a single host. In particular, the available

RAM is a limiting factor for the number of PDEs that can be provided simultaneously on a

single host. Typical office applications (e.g., text processing), however, aren’t very resource

consuming compared to other applications (e.g., games). In this thesis it is assumed that PDEs

show a moderate resource consumption behaviour and office hosts provide enough resources

to run a limited number of PDEs simultaneously.
Concerning the impact of the suggested architecture on the day to day work of office users,

the focus of this thesis is set to overhead that is directly caused by the PDE management within
the virtualized office environment. When a PDE pi is in one of the states ut(pi) ∈ {LOCAL,
REMOTE, JOB}, the user intends to utilise his PDE. However, the PDE isn’t always available
to the user: When the host on which the PDE resides is turned off, e.g., it needs to be booted
first before the user is able to access it. This means, that the booting process is reducing
the time period in which the PDE is able to process user services. There are several more
situations in which the PDE isn’t available: When a host switches between its energy states
(ON, OFF, and SUSP) as defined in Definition 4.1) it needs to traverse one of four different
intermediate states: Shut down host, boot host, suspend host, and resume host. The traversal of
an intermediate state lasts time periods from several seconds up to minutes. Although the host
is active while such intermediate states are traversed, PDEs that are located on this host can’t
process user services during that time period. Whereas in ordinary office environments PDEs
and hosts are interdependent (see Section 3.2), PDEs in the virtualized office environment are
encapsulated within VMs, as discussed in Section 4.1.1. Therefore, such PDEs have additional
intermediate states that are traversed during a switch between PDE energy states: Shut down
PDE, boot PDE, suspend PDE, resume PDE. In contrast to hosts, PDEs can be migrated,
leading to a further intermediate state migrate PDE. To determine the availability of services
within an office environment, the term PDE service is defined.

Definition 4.11 (PDE service) A PDE pi that resides on host h j provides PDE service at time
t iff st(pi) = ON, st(h j) = ON, and no intermediate states are traversed by pi or h j. The
number of PDEs pi that provide PDE service at time t is denoted as N p

serv(t), where
N p

serv(t) =
∣∣∣{pi|st(pi) = ON ∧ st(h j) = ON ∧Ht(pi) = h j}

∣∣∣.
In the context of service availability the PDE service represents the up-time of a PDE (the

time when the PDE is able to process user services). It is used in this thesis to describe the im-

pact of PDE management on the daily work of users within the virtualized office environment.

Figure 4.8 illustrates PDE service and intermediate states within an ordinary office envi-

ronment. It can be observed that the provision of PDE service depends on the traversal of

67



Figure 4.8: PDE service within an ordinary office environment

intermediate states on the host. It is important to see that PDE service within an ordinary of-

fice environment isn’t optimal: The user has to wait if the host is booted or resumed while he

intends to utilise his PDE. In the virtualized office environment the situation is worse. A combi-

nation of intermediate states of host and PDE are reducing the PDE service of users. Figure 4.9

illustrates PDE service and intermediate states within the virtualized office environment. It can

be observed that PDE service depends on intermediate states of PDE and host. In particular,

PDE service is interrupted by migrations: When a migration occurs, the PDE needs to be sus-

pended, migrated to another host, and resumed before the PDE is able to provide PDE service

to the user (cold migration of suspended VMs, see Section 4.1.2). A various number of tran-

sitions (illustrated as arrows) are possible between the different intermediate states, increasing

the probability that a user receives no PDE service.

To simplify the energy consumption model that will be presented in Chapter 5, the interme-

diate states shut down PDE, suspend PDE, shut down host, and suspend host aren’t considered

in the virtualized office environment model. This is illustrated by dotted lines in the Figures 4.8

and 4.9. This way, only active PDEs lead to active hosts and passive PDEs don’t need to be

processed. On one hand, the impact of these intermediate states on PDE service is limited: The

mentioned intermediate states are traversed when the user is inactive, (i.e., the user is shutting

down his PDE or he isn’t utilising it). Therefore the PDE service isn’t affected by these states.

The only exception is the PDE migration: A PDE needs to be suspended, before it can be mi-

grated (as described in Section 4.1.2). On the other hand, these states are typically traversed

in a short time interval of only a few seconds, as illustrated in Section 6.4.3.

Based on the definition of PDE service, a service-optimal PDE management can be defined,
where users within the virtualized office environment never traverse intermediate states and
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Figure 4.9: PDE service within a virtualized office environment

thus experience no waiting times.

Definition 4.12 (Service-optimal PDE management) A PDE management is called service
optimal with respect to PDE utilisation states ut(pi) at time t iff

ut(pi) ∈ {LOCAL, REMOTE, JOB}⇒ PDE pi provides PDE service.

A PDE management is service optimal at time t if PDE service is available to all users that

request PDE service. Unfortunately, it is typically not possible to predict at what time a user

will switch to one of the utilisation states ut(pi) ∈ {LOCAL, REMOTE, JOB}. Therefore,

PDE service needs to be provided permanently and the PDE needs to be located on the users

host to avoid the traversal of intermediate states: On one hand, hosts and PDEs need to remain

turned on to prevent them from booting/resuming. On the other hand, migrations can’t be per-

formed because they also lead to a traversal of intermediate states. Therefore, service optimal

PDE management leads to the maximum number of active hosts within the office environment

Nh
act(t) = n.
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Obviously, service-optimal PDE management conflicts with the goal of minimising the en-

ergy consumption within the office environment. Conversely, also the energy-optimal manage-

ment of PDEs (as it has been described in Section 4.2.2) conflicts with the goal of maximising

the PDE service availability.

1. Suspension of PDEs: The immediate suspension of PDEs in periods without user in-

teraction leads to frequent suspending and resuming of PDEs, if the user continues his

interaction within a short time period. The user has to wait until the PDE is resumed, to

be able to continue his work.

2. Consolidation of PDEs: Analogously, the immediate consolidation of PDEs in periods

without user interaction leads to frequent migrations of PDEs (forth and back), if the

user continues his interaction within a short time period. The user has to wait until the

PDE is migrated back to his host, to be able to continue his work.

These suspensions and migrations lead to an increased traversal of intermediate states and

heavily decrease the PDE service of users.

Concluding, this subsection has shown that neither an energy-optimal PDE management,

nor a service-optimal PDE management is the best solution for the virtualized office environ-

ment. Therefore, a trade-off between energy-efficiency and service availability needs to be

found to enable a reasonable PDE management.

4.2.4 Energy and service-aware PDE management

The energy-optimal PDE management (as described in Section 4.2.2) suspends and consoli-

dates PDEs with respect to user behaviour. If the user stops interacting with his host (e.g.,

for lunch or to join a meeting), his PDE will be suspended or may be migrated for consolida-

tion. When the user intends to continue his work, he will have to wait a short period of time

until his PDE is available again: The PDE needs to be resumed or migrated back to his host.

Such waiting times are comparable to waiting times that users experience within ordinary of-

fice environments when hosts have been suspended to low-power states (e.g., suspend to disc).

Although this kind of management reduces the service availability moderately, energy savings

that are achieved by such mechanisms (see Chapter 6) justify the reduction.

The suspension or migration of PDEs becomes a problem, however, if a user pauses his

PDE interaction for short time periods (e.g., to have a short conversation or to read an email):
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Although the user intends to continue his interaction with the PDE within a few moments,

the PDE will be suspended or migrated for consolidation. Additionally, the host might be

suspended, if no other PDE or MI is active. The PDE needs to be resumed or migrated back to

the user, before he is able to continue his work. Moreover, it is difficult to decide whether the

user is interacting with his host or not. Typically, activity of peripheral devices is recorded, e.g.,

keyboard usage or mouse movements. Users often interrupt this kind of interaction for short

time periods (seconds or minutes), e.g., while reading a mail. Such interruptions, however,

lead to a considerable reduction of service availability when the PDE is suspended or migrated

during this time and leads to oscillations (suspending/resuming or migrating forth and back).

Table 4.1 illustrates all possible state transitions of this critical situation (interaction → short

PDE PDE Oscillation
Transition suspension consolidation possible

LOCAL→ IDLE→ LOCAL Yes No Yes
LOCAL→ JOB→ LOCAL No Likely Yes
LOCAL→ OFF→ LOCAL No No No

REMOTE→ IDLE→ REMOTE Yes No Yes
REMOTE→ JOB→ REMOTE No No No
REMOTE→ OFF→ REMOTE No No No

Table 4.1: Critical transitions between PDE utilisation states

break → continued interaction). It can be observed that three of the illustrated transitions

between periods of interaction and periods without interaction are able to lead to oscillations

due to PDE management: LOCAL→ IDLE→ LOCAL and REMOTE→ IDLE→ REMOTE

lead to the suspension of the PDE. LOCAL→ JOB→ LOCAL possibly leads to a migration

of the PDE, if it can be consolidated.

The power management of ordinary office environments faces a similar oscillation prob-
lem: In ordinary office environments, typically idle hosts are suspended to save energy and
need to be resumed, before the user is able to continue his work. To avoid oscillations, the
suspension isn’t performed immediately when a host becomes idle. Instead, hosts are sus-
pended after a critical time period ct, which is configurable by users. This critical time period
is adopted within the virtualized office environment and used to delay the suspension and the
migration of PDEs to avoid oscillations.
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Definition 4.13 (Critical time period) The critical time period ct defines a time interval [t, t+
ct], with t,ct ≥ 0 by which a transition from the PDE utilisation state ut(pi) ∈ {LOCAL, RE-
MOTE} to ut(pi) = IDLE and from ut(pi) = LOCAL to ut(pi) = JOB is delayed.

The critical time period ct delays transitions that possibly lead to oscillations, as illustrated

in Table 4.1. It reduces the time a user spends by traversing intermediate energy states (as

discussed in Section 4.2.3): When the user stops interacting with his PDE for a time period

smaller than ct, his PDE remains in the previous utilisation state and is neither suspended nor

migrated to another host. Instead, it remains providing PDE service time to the user. Therefore,

the user is able to immediately continue his work without a loss of PDE service within the time

period ct. If the user stops interacting with his PDE for a time period longer than ct, the

utilisation state transition to ut(pi) = JOB or ut(pi) = IDLE is performed.

JOB 

OFF 

IDLE 

LOCAL  REMOTE 

Delayed  
transition 

Delayed  transition 
Delayed  

transition 

Figure 4.10: Extended PDE utilisation states

As a consequence, the PDE utilisation states (as defined in Definition 4.3) need to be ex-

tended: Users that are interrupting their PDE interaction for less than the critical time period

ct are still considered to be interactive with their PDE. It is assumed that users that interrupt

their work for less than the critical time period intend to continue their work and expect their

PDE to provide PDE service. The extended utilisation states are illustrated in Figure 4.10.

The delayed transitions are illustrated as dotted arrows. While a transition is delayed, the PDE

remains in one of the states ut(pi) ∈ {LOCAL, REMOTE}. In the following text, the states

ut(pi) ∈ {LOCAL, REMOTE} are always meant to be the extended utilisation states with de-

layed transitions.

The delay of utilisation state transitions by using the critical time period ct raises the service

availability within the virtualized office environment because it reduces oscillations of suspend-
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ing/resuming and migrating PDEs. The higher ct is, the less suspensions and migrations are

performed.

In addition to the oscillations that can appear, there is another impact of PDE management

on service availability: If the PDE is suspended or migrated while the user in one of the ex-

tended utilisation states ut(pi)∈ {LOCAL,REMOT E,JOB}, he will lose PDE service while he

is utilising his PDE. If the PDE is suspended or migrated while the user isn’t utilising his PDE,

in contrast, he will not be affected.

Migrations of PDEs are generated for two reasons within the virtualized office environ-

ment: On one hand, migrations are performed to achieve a valid configuration within the office,

as defined in Definition 4.6. Such PDE migrations are denoted as validating migration. On the

other hand, migrations are performed to achieve energy-efficient consolidation, as defined in

Definition 4.7. Such PDE migrations are denoted as consolidating migration.

Utilisation PDE PDE Validating Consolidating
state utilisation suspension migration migration

LOCAL Yes No 0-1 times No
REMOTE Yes No repeatedly repeatedly

JOB Yes No repeatedly repeatedly
IDLE No 1 time No No
OFF No No No No

Table 4.2: Critical PDE utilisation states

Table 4.2 illustrates all possible suspensions and migrations that can happen while a PDE

resides in a certain utilisation state. It can be observed that the suspension of a PDE only

happens while the user isn’t utilising his PDE (utilisation state ut(pi) = IDLE), therefore sus-

pensions aren’t critical in terms of service availability. Although, validating migrations are

performed while PDEs are in the utilisation state ut(pi) = LOCAL, this can happen at most a

single time during the time interval in which the PDE remains in this state: It is only migrated,

if it needs to be moved to the users dedicated host. PDEs that reside in the utilisation state

ut(pi) ∈ {REMOTE, JOB}, however, are affected by validating migrations and consolidating

migrations: PDEs can be migrated several times while being in this state: With every utilisation

state change (of any user) in the office environment, the host-optimal consolidation function

Ht is reorganising the mapping of PDEs to hosts.
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To increase the service availability within the virtualized office environment, the number
of migrations that are performed on PDEs in these utilisation states ut(pi) ∈ {REMOTE, JOB}
needs to be reduced. Let Nu

REMOT E(t) and Nu
JOB(t) be the number of PDEs in utilisation states

ut(pi) ∈ {REMOTE, JOB} within the virtualized office environment.

Definition 4.14 (Consolidation buffer) The consolidation buffer cb, 0 ≤ cb ≤ n, limits the
number of consolidating migrations that a consolidation function Ht generates on PDEs in
utilisation states ut(pi) ∈ {REMOTE, JOB}: cb =

⌈
(1−mr)

(
Nu

REM(t)+Nu
JOB(t)

)⌉
, where mr,

0≤ mr ≤ 1, is called migration ratio.

The consolidation buffer cb raises service availability by preventing migrations on a subset of

PDEs in the utilisation state ut(pi) ∈ {REMOTE, JOB}. The lower the migration ratio mr is,

the less consolidating migrations of such PDEs are generated. With mr = 0 no consolidating

migration is generated, with mr = 1 all possible consolidating migrations are performed.
Based on extended PDE utilisation states and the consolidation buffer an energy and service-

aware consolidation function Ht can be defined that manages MIs and PDE energy efficiently,
while considering service availability.

Definition 4.15 (Energy and service-aware consolidation function) Given Ht−1, t > 0, the
consolidation function Ht is called energy and service aware with respect to extended utilisa-
tion states ut(pi) iff it is valid and

1. ∀ host-optimal consolidation functions H′t:∣∣∣{h j |∃
(

pi ∈H−1
t (h j) |ut(pi) ∈ {LOCAL,REMOTE,JOB}}

)
∨ ∃
(

mk ∈H−1
t (h j)

)∣∣∣
≤
∣∣∣{h j|∃

(
pi ∈H ′−1

t (h j)|ut(pi)∈ {LOCAL,REMOTE,JOB}}
)
∨∃
(

mk ∈H ′−1
t (h j)

)∣∣∣+cb

2. Ht generates less or equal migrations than any other energy-and service aware H′t:
∀H′t:

∣∣∣{m j→k
Ht

(vr)}
∣∣∣ ≤ ∣∣∣{m j→k

H′t
(vr)}

∣∣∣
A valid consolidation function Ht is called energy and service aware, if it maps all MIs and

active PDEs to a number of hosts that exceeds the host-optimal number of active hosts by at

most cb hosts. This mapping of active PDEs and MIs to active hosts isn’t necessarily host

optimal, because not all of the PDEs are included in the consolidation process. Each PDE that

is excluded from consolidating migrations by the migration ratio mr utilises a separate active

host in the worst case. The consolidation function achieves the defined mapping of MIs and

PDEs to hosts while generating the least possible number of migrations.
The number of active hosts Nh

act(t) within the office environment that are generated by an
energy and service-aware consolidation function Ht is illustrated in Theorem 4.2.
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1

2 p u b l i c vo id energyAware (PDE pde , S t a t e n e w S t a t e ) {
3 Ht . v a l i d a t e ( pde , S t a t e n e w S t a t e ) ;
4 / / f i n d a c t i v e h o s t s w i t h o u t PDEs i n t h e s t a t e LOC t h a t
5 / / c o n t a i n a t l e a s t one a c t i v e PDE or MI
6 L i s t h o s t s = Ht . getHostsWithMovableVMs ;
7 h o s t s . s o r t ( ) / / s o r t by number o f a c t i v e VMs , a s c e n d i n g
8 / / #LOC and #REM r e f e r t o e x t e n d e d u t i l i s a t i o n s t a t e s
9 i n t max = Math . c e i l ( Math . max (#LOC, ( # LOC+#REM+#JOB+w ) / ch ) + cb ) ;

10 whi le ( Ht . countHostsWithAct iveVMs ( ) > max ) {
11 Host d i s s o l v e = h o s t s . r e m o v e F i r s t ( ) ;
12 f o r ( i =0 , i < d i s s o l v e . countPDEs ( ) , i ++){
13 Ht . move ( d i s s o l v e . getPDE ( i ) , d i s s o l v e ) }
14 } }

Listing 4.3: Energy and service-aware consolidation function

Theorem 4.2 The number of active hosts Nh
act(t) that is utilised by an energy and service-

aware consolidation function Ht is limited by

max
{

Nu
LOC(t) ,

⌈
N p

act(t)+w
ch

⌉}
≤ Nh

act(t) ≤ max
{

Nu
LOC(t) ,

⌈
N p

act(t)+w
ch

⌉}
+ cb+ |Ms

t |.

Proof. The energy and service-aware mapping of PDEs to hosts utilises the minimal set of

active hosts within the office environment at time t with respect to extended PDE utilisation

states and the migration ratio mr. If, in the best case, Ht is already host optimal and none

of the hosts is involved in ongoing migrations, max
{

Nu
LOC(t) ,

⌈
N p

act(t)+w
ch

⌉}
active hosts are

utilised (see proof of Theorem 4.1). Otherwise, at most max
{

Nu
LOC(t) ,

⌈
N p

act(t)+w
ch

⌉}
+cb active

hosts are utilised, without taking migrations into account, if all PDEs that are excluded from

consolidating migrations (see Definition 4.14) utilise a separate host. Furthermore, at most |Ms
t |

source hosts of ongoing migrations do possibly not process active PDEs or MIs. Therefore they

need to be added to the number of active hosts Nh
act(t). �

Listing 4.3 illustrates how an energy and service aware consolidation function can be

achieved algorithmically. It is important to see that Listing 4.3 is almost identical to List-

ing 4.2, except of the usage of extended utilisation states and the consolidation buffer. The

method <Ht.energyAware(PDE pde, State newState)> is called with the parameter pde, which

is the PDE that has changed its utilisation state and the new utilisation state newState.
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4.2.5 Energy efficiency and availability trade-off

To achieve a balance between energy efficiency and availability, the two parameters critical

time period ct and migration ratio mr need to be determined. The energy and service-aware

consolidation function Ht is energy optimal with respect to Definition 4.7, if ct = 0 and mr =

1, leading to a number of hosts as defined in Theorem 4.2. The energy and service-aware

consolidation function Ht is service optimal with respect to Definition 4.12 if ct → ∞ and

mr = 0, leading to n active hosts. Optimal values of the parameters ct and mr that achieve a

trade-off between energy consumption and service availability, however, depend on the specific

office scenario in terms of user behaviour, hardware properties, and virtualization overhead

within an office environment. This section defines two metrics that can be used to determine

optimal values of ct and mr. On one hand, the mean consolidation ratio quantifies the energy

efficiency of an office environment and on the other hand the mean service ratio quantifies the

service availability.

Definition 4.16 (Mean consolidation ratio) The mean consolidation ratio rmc(T ), 0≤ rmc(T )
≤ ch is the mean number of active PDEs that is processed per host during a time interval [0,T ]:

rmc(T ) =
∫ T

0 N p
act(t)dt∫ T

0 Nh
act(t)dt

.

The mean consolidation ratio is a measure of energy efficiency and quantifies the consolidation

that is achieved within an office environment during a time interval [0,T ]. This measure is

based on the number of active PDEs (see Definition 4.2), weighted by the number of active

hosts (see Definition 4.1) in the office environment.
∫ T

0 N p
act(t)dt is the active PDE time (e.g.,

in terms of PDE hours) that has been processed by the office environment and
∫ T

0 Nh
act(t)dt is

the host time (e.g., in terms of host hours) in which hosts have been active. The higher the

mean consolidation ratio is, the higher is the energy efficiency of the office environment. For

ordinary office environments the mean consolidation ratio is rmc(T ) = 1 (no consolidation is

achieved), indicating a low level of energy efficiency. In addition to the parameters ct and mr,

the mean consolidation ratio is limited by:

• User behaviour: The relation of the number of PDEs that are locally utilised to the

number of PDEs that are non-locally utilised limits the consolidation of MIs and active

PDEs (see Section 4.2.2.1).
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• Capacity of hosts: The host capacity ch limits the number of MIs and active PDEs that

are processed simultaneously on a single host (see Definition 4.5).

• Virtualization overhead: In addition to PDEs, also MIs need to be processed which

raises the number of active hosts. (see Section 4.2.1). Furthermore, hosts need to be

active while they are involved in migrations, even if they don’t process active PDEs.

In addition the energy efficiency of an office environment, also the service availability
needs to be quantified to find the optimal results of ct and mr.

Definition 4.17 (Mean service ratio) The mean service ratio rms(T ), 0 ≤ rms(T ) ≤ 1 of an
office environment is the mean service time per active PDE during a time interval [0,T ]:

rms(T ) =
∫ T

0 N p
serv(t)dt∫ T

0 N p
act(t)dt

.

It is important to see that PDE service needs only to be available (up-time) if it is actually

requested by the user. Otherwise the service can be suspended to save energy (down-time).

Therefore, the mean service ratio quantifies the availability of requested PDE services within

the office environment during a time interval [0,T ]. This measure is based on the number of

PDEs that provide PDE service (see Definition 4.11), weighted by the number of active PDEs

(see Definition 4.2) in the office environment that request PDE service.
∫ T

0 N p
serv(t)dt is the PDE

service time (e.g., in terms of service hours) that has been provided by the office environment

and
∫ T

0 N p
act(t)dt is the time in which users have requested PDE service (e.g., in terms of active

PDE hours). The higher the mean service ratio is, the higher the service availability is that users

experience within the office environment. The mean service ratio is limited by intermediate

energy states as they have been defined and discussed in Section 4.2.3.

The critical time period ct and the migration ratio mr can be determined for an office en-

vironment by using the mean consolidation ratio rmc(T ) and the mean service ratio rms(T )

as metrics for energy efficiency and availability: Let α be a weighting factor for energy effi-

ciency and let β be a weighting factor for availability. The evaluation function that needs to be

maximised to find optimal values for ct and mr is defined as

eval(ct,mr) = α ∗ rmc(T )
ch

+β ∗ rms(T ), (4.1)

where rmc(T ) is normalized by the host capacity ch. Section 6.3.3.1 illustrates the determination

of ct and mr for a given office environment.
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4.3 Resilience and security issues

In contrast to data centres, users in office environments have physical access to office hosts.

This raises resilience and security issues in the context of PDE consolidation. Due to the mi-

gration and consolidation of PDEs, PDEs are distributed within the office environment and not

located on the users’ personal hosts anymore. One one hand, the resilience of the virtualized

office environment is in question because PDEs or MIs might get damaged while being mi-

grated from host to host or hosts may be unplugged or break down while providing PDEs. On

the other hand, security issues are in question because users have physical access to hosts and

are potentially able to copy or modify contents of other users.

The reliability of peers and the content (e.g., files or management information) they store

has always been a significant issue within P2P overlays, especially in fully decentralized over-

lays. The common method of overcoming unreliable peers is to adopt a super-peer structure.

Peers that are identified as stable (using metrics, e.g., system up-time) act as coordination

points and data repositories. The super-peers maintain a secondary overlay above the network

maintaining state information of the overlay network and its peers. The hybrid P2P approach as

it is suggested in Section 4.1.3.3, has similarities to a super-peer approach. In order to improve

reliability, selected peers (dedicated by MIs) may act as replication peers within the overlay.

Should an underlying host fail, any recent modifications to a PDE are available from one or

more hosts within the overlay. Alternatively, if a PDE is moved between hosts, the original

copy of the PDE could be maintained. This allows the passing back of deltas (as described in

Section 4.1.2) to keep the copy of the PDE up-to-date. Should a host that is holding a copy go

off-line to save power, the MI could store version changes on another host, until the host comes

back on-line. In an ordinary office, when a host breaks down, the user may lose his PDE and

all the data contained. Within the virtualized office, copies of the PDE are available that can be

used to restore the PDE on the user’s host. Also the MIs can be restored by the organization

layer P2P overlay (see Section 4.1.3.3) when they fail. MI’s share the information for which

hosts they are responsible, therefore functional MIs are able to recreate failing MIs. Although

the current state of the failing MI may be lost, it can be recovered by status messages from the

peers within a short time period.

Security issues have to be considered, when users have physical access to hosts that store

data of other users. Users that have physical access to hosts are potentially able to copy or

modify contents of this host. Encrypted file systems within VMs may be used that are only
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accessible by their users to prevent such infringements. Furthermore, it is important to see that

physical access to hosts by insiders is also a problem in ordinary office environments. Users in

office environments typically belong to same organization (in contrast to home environments,

for instance, as discussed in Section 3.3), where typically a certain level of trust is expected

among employees. Therefore, security measures of office environments are often based on

common security policies and trust among users.

Apart from this brief discussion, resilience and security issues are not in the focus of this

thesis and solutions have neither been implemented, nor been evaluated. However, resilience

and security are important properties of the suggested architecture that will be looked at in

future work.

4.4 Architecture overview

The virtualized office environment architecture that has been presented in this thesis consists

of PDEs, office hosts, the hybrid P2P overlay (including MIs), and the PDE management. The

suggested virtualized office environment architecture is based on the design principles that

have been described in Section 3.3 and provides all of the requirements and faces all of the

challenges: Section 4.1.1 has suggested a system virtualization approach to provide PDE exe-

cution environments. Section 4.1.2 has described a PDE migration approach, based on SPDEs

and the transmission of differences between SPDEs and PDEs. Section 4.1.3 has suggested

a distributed resource management approach in terms of a hybrid P2P overlay. Section 4.2

has presented a PDE management approach that achieves energy efficiency by consolidating

PDEs on hosts, while considering service availability within the office environment. Finally,

Section 4.3 has briefly discussed resilience and security issues of the suggested architecture.

Figure 4.11 illustrates the architecture of the virtualized office environment. At the bottom

of Figure 4.11 the physical resources of the office environment are depicted: Several office

hosts and network equipment. Each of the hosts stores the SPDE (see Section 4.1.2) on the

hard-disc to enable migrations. Furthermore, each of the hosts is able to host several VMs

within its system virtualization based execution environment, where VMs contain PDEs or

MIs. Hosts and the MI of a sub-environment are part of the office layer P2P overlay of this

sub-environment. Each sub-environment contains an MI that performs the PDE management.

All of the MIs of the office environment are interconnected via the organization layer P2P
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Figure 4.11: Architecture overview

overlay. Energy efficiency is achieved within the virtualized office environment by performing

the following steps:

1. Unutilised PDEs stopped from consuming resources on office hosts. VMs that encapsu-

late idle PDEs are suspended.

2. PDEs are consolidated on a small number of active hosts, while generating a minimal

number of migrations and considering service availability.

3. Unutilised hosts are set into a low-power state to save energy.

Figure 4.12 shows the transition from an ordinary to a virtualized office environment. In

the illustrated example, 4 users are working locally at their host, 4 users are using their PDE

remotely, 3 users have turned their PDE off manually, and 3 PDEs are idle. The ordinary office

environment, as it is illustrated in Figure 4.12 (a), needs to provide each PDE on a single host.

Therefore, 8 hosts are turned on to provide the 8 active PDEs. Figure 4.12 (b) illustrates a

similar situation in the virtualized office environment, with a host capacity of ch = 3. Although

the number of active PDEs is the same as in Figure 4.12 (a), only four hosts are actually

turned on. The upper right host, e.g., is providing two active PDEs to users simultaneously: A
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a) Ordinary office environment 

      PDE is used locally 
      PDE is used non-locally 

b) Virtualized office environment 

      Host is on 
      Host is suspended / off 
      Management instance 
      Office layer P2P overlay 

      PDE is suspended 
      PDE is off 

Figure 4.12: Ordinary and virtualized office environment

locally utilised PDE and a non-locally utilised PDE (a PDE in the utilisation states REMOTE

or JOB, see Section 4.2.2.1). In addition, a suspended PDE (which currently doesn’t consume

resources) is located on the host. Furthermore, an MI and the overlay network of the hybrid

P2P approach is illustrated in Figure 4.12 (b). It can be observed that only the hosts that

are currently turned on are part of the office layer P2P overlay and exchange management

information. The (small) office is considered as a sub-environment, therefore, the organization

layer P2P overlay, as discussed in Section 4.1.3.3 isn’t illustrated.
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Chapter 5

Energy Consumption Model

This chapter presents an energy consumption model that is able to estimate the energy con-

sumption of ordinary offices as well as of the virtualized office environment (as described in

Chapter 4) and enables their comparison.

Similar to terminal server and VDI approaches (see Section 2.2.6), the virtualized office

environment focuses on the energy consumption of hosts and network within office environ-

ments as the energy consumption of these components is directly affected by the suggested

architecture. Specifically, it reduces the energy consumed by PDEs that are provided by sta-

tionary hosts within the office. The energy consumed outside of the office environment (e.g.,

by using laptops for remote access) isn’t considered as well as the energy consumption of non-

office network equipment. The outside energy consumption isn’t changed by the suggested

architecture and depends solely on the user’s behaviour. Also, the model excludes further en-

ergy consumers within the office, as peripheral devices (e.g., monitors, printers, or scanners),

other office equipment (e.g., IP-phones), or the working environment (e.g., light, heating, or

cooling).

First, power consumption models of office hosts and the network are presented in Sec-

tions 5.1 and 5.2, then the overall energy consumption within office environments is defined in

Section 5.3. Finally, Section 5.4 proves the energy efficiency of the virtualized office environ-

ment.
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5.1 Host power consumption model

In the following sections, hosts and the network of an ordinary office environment are called

ordinary hosts and ordinary network, whereas hosts and network in the virtualized office envi-

ronment are called virtualized hosts and virtualized network.

5.1.1 Power consumption characteristic

The power consumption of an active office host depends on its idle power consumption that is

consumed while the host is completely unloaded and its load in terms of CPU load, disc I/O,

and network I/O, as described in Section 2.3. Therefore, the power consumption characteristic

Ph(t) of an active host h at time t can be defined as

Ph(t) =Ch
idle + f h(lh(t)),

where Ch
idle is the idle power consumption, lh(t) is the load of the host at time t, with 0 ≤

lh(t) ≤ 1, and f h is a function that maps the load of the host to its power consumption. The

maximum possible power consumption Ch
max of a fully loaded host calculates as

Ch
max =Ch

idle + f h(1).

According to the host power consumption model discussion of Section 2.3, the linear CPU

dependent model [1] (illustrated in Equation (2.1)), is a high-level model that provides sufficient

accuracy [60] to predict the power consumption of typical office hosts when they are active,

according to their load. The linear CPU dependent model identifies the CPU load as the main

indicator to predict the power consumption of a host and defines a linear relation between load

and power consumption. The linear CPU dependent model is defined as

f h(lh(t)) =W h
cpu ∗ lh

cpu(t),

where lh
cpu(t) is the CPU load at time t, with lh(t) = lh

cpu(t), and W h
cpu =Ch

max−Ch
idle is the CPU

weighting factor. W h
cpu depends on the host type and maps CPU load to power consumption.

In order to fully describe the power consumption of an office host, the linear CPU depen-

dent model needs to be extended. Load models (see Section 2.3.1) focus only on active hosts,

i.e., the time period when hosts are turned on and process workload. This is typically sufficient

for servers that are usually turned on and utilised on a 24/7 basis. Office hosts, however, show
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a different characteristic: They may be loaded with office applications at one time (energy state

ON, see Definition 4.1) or be turned off (OFF) or be suspended to a low-power state (SUSP)

at another time. This difference of workloads is illustrated in Figure 5.1 which shows power
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(a) Server power consumption example
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(b) Office host power consumption example

Figure 5.1: Power consumption of servers and office hosts

consumption trends of servers (cp. Figure 3 in [1]) and office hosts (cp. measurements as illus-

trated in Section 6.4). It can be seen that the power consumption of a server (see Figure 5.1(a))

varies between its idle power consumption Ch
idle and its maximum possible power consumption

Ch
max. In contrast, the office host in Figure 5.1(b) has two additional states with constant power

consumption, according to the energy states as discussed in Section 4.2.1:

• Ch
o f f is the power that is consumed while the host is turned off (OFF state).

• Ch
susp is the power that is consumed while the host is in a low-power state (SUSP state).

In this case, the constant power consumption of the host depends on the kind of low-

power state (e.g., suspend to RAM or suspend to disc) that is used.

According to this observation, in this thesis the linear CPU dependent model is extended by the

two states Ch
o f f and Ch

susp. Therefore, the power consumption characteristic Ph(t) of an office

host h at time t according to the energy states st(h) ∈ S := {ON,SUSP,OFF} as defined in

Definition 4.1 and with respect to the linear CPU dependent model of Equation (2.1) can be

defined as

Ph(t) =


Ch

o f f if st(h) = OFF,
Ch

susp if st(h) = SUSP,
Ch

idle +W h
cpu ∗ lh

cpu(t) if st(h) = ON,

(5.1)
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where the last line represents the power consumption of an active host with varying load. To

eliminate the different cases of Equation (5.1), an alternative notation of is introduced: Let

1A(s) be the indicator-function of A⊆ S, where 1A : S→{0,1} with

s 7→

{
1 if s ∈ A,
0 else.

Using the indicator-function 1A(s), Equation (5.1) can be transformed to

Ph(t) = 1{OFF}(st(h))∗Ch
o f f +1{SUSP}(st(h))∗Ch

susp (5.2)

+1{ON}(st(h))∗ (Ch
idle +W h

cpu ∗ lh
cpu(t)).

The power consumption of an office host at time t is determined by its energy state as

discussed in Section 4.2.1 and by the load that the host processes at time t. According to

Section 4.2.2, a host h is active at time t, if it processes active PDEs pi, i ∈ {1, ...,n}, MIs mk,

k ∈ {1, ...,w}, or if it is the source of a migration:

• st(h) = ON⇔
(
∃ pi |Ht(pi) = h ∧ st(pi) = ON

)
∨
(
∃mk |Ht(mk) = h

)
∨
(

h ∈Ms
t

)
• st(h) = SUSP⇔H−1

t (h) = /0 ∧ h /∈Ms
t

Passive hosts are suspended within the virtualized office environment. In the ordinary office

environment, in contrast, PDEs and hosts are strictly coupled: The host is exactly in the same

energy state as the corresponding PDE (ON, OFF, or SUSP, see Definition 4.2). According to

the discussion of intermediate energy states (see Section 4.2.3), the power consumption model

makes the following assumptions:

• Booting/resuming PDEs: When a PDE becomes active, it immediately creates load on

a host as if it is already booted/resumed.

• Booting/resuming hosts: When an active PDE or MI is allocated to a passive host, the

host becomes immediately active and consumes power according to its new load.

• Shutting down/suspending PDEs and hosts. Times of shutting down or suspending of

PDEs/hosts have limited relevance to power consumption and PDE service. This issue

is discussed in detail in Section 4.2.3. Therefore, these times are not considered in the

model and PDEs and hosts that become passive are immediately turned off.
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• Migrating PDEs/MIs: When a migration is generated, the PDE is immediately allocated

to the target host of the migration, which consumes power according to its new load. The

source host remains active for the duration of the migration, even if it doesn’t process

active PDEs or MIs.

5.1.2 Ordinary host model

To model the power consumption of an ordinary host, the workload of a host needs to be

defined. It is important to see that the workload of a PDE is caused by the work of a single user,

where typical office applications (e.g., text processing or web surfing) cause only moderate load

on a host. The individual behaviour of a single user, however, causes dynamic load variations

that are hard to predict. Dynamic user behaviour is already covered by modelling idle PDEs

and PDEs that are turned off. Detailed workload variations caused by short term changes in

user behaviour (of a single user), however, are not considered in this model, as their impact on

the overall power consumption is only moderate. Instead, the workload that is caused by an

active PDE is modelled as an average constant load Lp
cpu and is determined by the load created

by typical office applications. The workload 0≤ lp
cpu(t)≤ 1 that is created by a PDE at time t

is defined as

lp
cpu(t) =

{
0 if the PDE is passive at time t,
Lp

cpu else.
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Figure 5.2: Power consumption of an ordinary host

In an ordinary office environment, each ordinary host hosts exactly one PDE and the energy

states of PDE and host are interdependent. Therefore, the load of an ordinary host h at time t
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is defined as lh
cpu(t) = lp

cpu(t) = Lp
cpu, and the power consumption of an ordinary host h at time

t calculates as

Ph
ord(t) = 1{OFF}(st(h))∗Ch

o f f +1{SUSP}(st(h))∗Ch
susp (5.3)

+1{ON}(st(h))∗
(

Ch
idle +W h

cpu ∗Lp
cpu

)
.

Figure 5.2 illustrates the suggested model, showing the power consumption of an ordinary

host. It can be observed that the PDE creates an average load of Lp
cpu = 25% in this example.

5.1.3 Virtualized host model

In contrast to ordinary hosts, virtualized hosts need to be able to process more than a single

PDE. A PDE can be located on an active host, while being active or passive (according to

Equation (5.2)). A passive PDE, however, doesn’t create load on any host. Therefore, the

workload of a virtualized host is different from the workload of an ordinary host and related to

the number of active PDEs that are processed by a host. Let H−1
t |P be the restriction of H−1

t to

PDEs, with P := {p1, ..., pn}, according to Definition 4.4. The PDE workload of a virtualized

host at time t is defined as ∣∣∣H−1
t |P (h)

∣∣∣∗ lp
cpu(t).

In addition to the workload created by PDEs, load is also created by virtualization methods

and PDE management. The overhead with respect to power consumption of a host that is

created by virtualization and management within the office environment consists of:

1. Management load: In addition to PDEs, also MIs need to be processed in the office

environment (see Section 4.2.1). The management load that is created by a single MI

is defined as an average constant value 0 ≤ Lm
cpu ≤ 1 in this model. Let H−1

t |M be the

restriction of H−1
t to MIs, with M := {m1, ...,mw}. The management load of a virtualized

host is defined as ∣∣∣H−1
t |M (h)

∣∣∣∗Lm
cpu.

2. Virtualization load: To execute VMs (as described in Section 4.1.1), a virtual machine

monitor needs to be processed on each host that allocates resources to VMs. Virtualiza-

tion load is defined as an average constant value 0≤ Lh
virt ≤ 1 in this model. It depends on

the host virtualization method (as discussed in Section 2.1.1) and needs to be determined
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according to the load that is created by the virtual machine monitor. Virtualization load

is defined as

lh
virt =

{
Lh

virt if host h is virtualized,
0 else.

3. Migration load: The processing of a migration (MI or PDE) creates load on source and

target host. Migration load depends on the number of migrations that a host performs at

time t. Migration load is defined as an average constant value 0≤ Lh
mig ≤ 1 in this model.

Let Mh
t be the number of migrations, host h is involved in at time t. The migration load

of a virtualized host is defined as

Mh
t ∗Lh

mig.

4. Migration delay: If a host is only active in order to migrate a PDE to another host

without providing any other active PDE, this migration consumes additional power: If

the host wasn’t involved in this migration, it would be passive. Migration delay depends

on the time period ∆(m j→k
Ht

(vi)) that a migration lasts (see in Definition 4.8). Migration

delay is already included within the power consumption model: If a host h is involved

in a migration at time t, then 1{ON}(st(h)) = 1 (see Section 5.1.1). Therefore, the host is

considered to be active and consumes power accordingly.

The load of a host h with respect to workload, virtualization and management overhead at time

t is modelled as

lh
cpu(t) =

∣∣∣H−1
t |P (h)

∣∣∣∗ lp
cpu(t)+

∣∣∣H−1
t |M (h)

∣∣∣∗Lm
cpu + lh

virt +Mh
t ∗Lh

mig,

where 0≤ lh
cpu(t)≤ 1. The general power consumption model of a host h at time t that models

virtualized hosts as well as ordinary hosts is defined as

Ph
virt(t) = 1{OFF}(st(h))∗Ch

o f f +1{SUSP}(st(h))∗Ch
susp (5.4)

+1{ON}(st(h))∗
(

Ch
idle +W h

cpu ∗ lh
cpu(t)

)
.

For ordinary hosts the virtualization load is lh
virt = 0, only a single PDE is processed per host

|H−1
t |P (h) = 1, no MIs are available |H−1

t |M (h)| = 0, no migrations are performed Mh
t = 0,

and lp
cpu(t) = Lp

cpu (as discussed in Section 5.1.2) at any time t, leading to Equation (5.3).

The power consumption model of a virtualized host according to Equation (5.4) is illus-

trated in Figure 5.3. It can be observed that in this example the host’s load consists of 2 PDEs,

an MI, and virtualization load, with Lp
cpu = 25%, Lm

cpu = 15%, and Lh
virt = 10%. No migrations

are processed in this example.
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Figure 5.3: Power consumption of a virtualized host

5.2 Network power consumption model

5.2.1 Power consumption characteristic

According to the discussion of Section 2.3.2, the power consumption of an office network

depends on its idle power consumption that is consumed while the network is completely un-

loaded and its load. Therefore, the power consumption characteristic of a network at time t is

modelled as

Pn(t) =Cn
idle + f n(ln(t)),

where Cn
idle is the idle power consumption, ln(t) is the network load in terms of consumed

bandwidth of the network at time t, with 0≤ ln(t)≤ 1, and f n is a function that maps the load

of the network to its power consumption. The maximum possible power consumption Cn
max of

a network calculates as

Cn
max =Cn

idle + f n(1).

It is important to see that Cn
idle is typically relatively high (e.g., for the 24/48 port switches

of the Cisco Catalyst 3560 Series approx. 84% - 95%, see Table 3.2 in Section 3.1), indicating

a simplified network power consumption model. In [56], a linear network model is suggested

to model the power consumption of the network (see Equation (2.3)), which is adopted in this

work. The linear network model defines the load in terms of consumed bandwidth as the main

indicator to predict the power consumption and defines a linear relation between bandwidth
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consumption and power consumption. The linear network model is defined as

f n(ln(t)) =W n
bw ∗ ln

bw(t),

where ln
bw(t) is the consumed bandwidth at time t, ln(t) = ln

bw(t), and W n
bw = Cn

max−Cn
idle is

the network weighting factor that depends on the network’s performance and maps bandwidth

consumption to power consumption.

In contrast to office hosts, network equipment is typically never turned off, as discussed

in Section 3.1. Therefore, the network power consumption characteristic Pn(t) of an active

network at time t is

Pn(t) =Cn
idle +W n

bw ∗ ln
bw(t). (5.5)

5.2.2 Ordinary network model

The workload 0 ≤ lp
bw(t)≤ 1 of an ordinary network at time t is caused by active PDEs in the

office environment. It depends on typical user behaviour and the applications that are typically

used within the office environment. Each individual user causes only moderate load on the

overall network, where the dynamic load variations caused by a user are are hard to predict.

Dynamic user behaviour is already covered by modelling idle PDEs and PDEs that are turned

off. Detailed variations of network load caused by short term changes in user behaviour (of a

single user), however, are not considered in this model, as their impact on the overall power

consumption is only moderate. Instead, the network load that is caused by a single PDE is

modelled as an average constant network load Lp
bw in this thesis. The workload of an ordinary

network at time t is defined as ln
bw(t) = lp

bw(t) = N p
act(t) ∗Lp

bw, where N p
act(t) is the number of

active PDEs at time t in the office environment (see Definition 4.2). The power consumption

of an ordinary office environment at time t (according to Equation (5.5)) is

Pn
ord(t) =Cn

idle +W n
bw ∗N p

act(t)∗Lp
bw. (5.6)

5.2.3 Virtualized network model

In addition to the ordinary network workload, load is also created by virtualization methods and

PDE management. The network overhead that is created by the virtualization and management

within the office environment consists of:
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1. Virtualization load: The hybrid P2P overlay that has been introduced in Section 4.1.3.3

creates virtualization load 0 ≤ ln
virt(t) ≤ 1 in terms of signalling traffic. On one hand,

peers of the hybrid P2P network (i.e., all of the active hosts) send frequently messages to

MIs (office layer overlay). This traffic is modelled as an average constant network load

Ln
virt per active host. On the other hand, MIs send frequently messages to their neighbours

in the organization layer overlay. This traffic is not modelled explicitly, but included in

Ln
virt . The virtualization load in the virtualized network is defined as

ln
virt(t) =

{
∑

n
h=1 1{ON}(st(h))∗Ln

virt , if network n is virtualized,
0 else,

where ∑
n
h=1 1{ON}(st(h)) is the number of active hosts at time t.

2. Migration load: In the virtualized environment PDEs are migrated from host to host

in order to achieve an energy-efficient consolidation of PDEs, creating a considerable

amount of network load. Migration load depends on the number of ongoing migrations

|Mt | in the office environment at time t (according to Definition 4.9). Each ongoing PDE

migration causes network load Ln
mig, which is depending on the link capacity between

two hosts in the network and the method of migration. Therefore, migration load is

defined as

|Mt | ∗Ln
mig.

With regard to workload, virtualization, and management overhead the load of a virtualized

network is modelled as

ln
bw(t) = lp

bw(t)+ ln
virt(t)+ |Mt | ∗Ln

mig = N p
act(t)∗Lp

bw +
n

∑
h=1

1{ON}(st(h))∗Ln
virt + |Mt | ∗Ln

mig,

where 0≤ ln
bw(t)≤ 1.

The general power consumption model of a network at time t that models networks of

virtualized office environments as well as networks of ordinary office environments is defined

as

Pn
virt(t) =Cn

idle +W n
bw ∗

(
N p

act(t)∗Lp
bw + ln

virt(t)+ |Mt | ∗Ln
mig

)
. (5.7)

For ordinary networks lh
virt(t) = 0 and lh

mig(t) = 0 at any time t, leading to Equation (5.6).
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Figure 5.4: Power consumption of a virtualized network

The power consumption model of a virtualized network in a virtualized office environment

according to Equation (5.7) is illustrated in Figure 5.4. It can be observed that in this example

that lp
bw(t) = 28%, ln

virt = 15%, and ln
mig = 35%, where Non = ∑

n
h=1 1{ON}(st(h)).

It is important to see that a network and its power consumption changes with the office

size in terms of hosts. A network is composed of a set of network elements and has to provide

enough capacity to interconnect all hosts within the office, independent of the current use of

these hosts. To give an example, an office environment with 120 hosts could consist of three 48

port Cisco Catalyst 3560 switches (see Section 3.1). The more hosts need to be interconnected,

the more switches are needed, changing the power characteristic of the network.

5.3 Office energy consumption

Power consumption models as defined in Section 5.1 and 5.2 estimate the rate of a device’s

energy consumption in watts. To determine the energy consumption of a device, the power

consumption over a period of time needs to be considered, measured in watt-seconds or joule.

Based on the power consumption characteristics illustrated in Equations (5.2) and (5.5) and on

the power consumption models illustrated in Equations (5.4) and (5.7) the energy consumption
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Eo(T ) of office environments within a time interval [0,T ] (e.g, a week) is defined as

Eo
virt(T ) =

∫ T

0

n

∑
h=1

Ph
virt(t)+Pn

virt(t)dt (5.8)

=
∫ T

0

{
n

∑
h=1

1{OFF}(st(h))∗Ch
o f f +1{SUSP}(st(h))∗Ch

susp +1{ON}(st(h))

∗
[
Ch

idle +W h
cpu

(∣∣∣H−1
t |P (h)

∣∣∣∗ lp
cpu(t)+

∣∣∣H−1
t |M (h)

∣∣∣∗Lm
cpu + lh

virt +Mh
t ∗Lh

mig

)]}

+Cn
idle +W n

bw

[
N p

act(t)∗Lp
bw + ln

virt(t)+ |Mt | ∗Ln
mig

]
dt.

For an ordinary office environment with ordinary hosts and network, the host virtualization load

is lh
virt = 0, the number of processed PDEs is |H−1

t |P (h) = 1, no MIs are available |H−1
t |M (h) =

0, no migrations are performed Mh
t = 0, and lp

cpu(t) = Lp
cpu. This leads to a simplified energy

consumption model of ordinary office environments that is based on Equations (5.3) and (5.6):

Eo
ord(T ) =

∫ T

0

n

∑
h=1

Ph
ord(t)+Pn

ord(t)dt

=
∫ T

0

{ n

∑
h=1

1{OFF}(st(h))∗Ch
o f f +1{SUSP}(st(h))∗Ch

susp

+1{ON}(st(h))∗
(

Ch
idle +W h

cpu ∗Lp
cpu

)}
+Cn

idle +W n
bw ∗N p

act(t)∗Lp
bw dt.

The office energy consumption model of virtualized and ordinary office environments is partly

validated by power measurements in Section 6.4.2.

5.4 Energy efficiency proof

Energy efficiency can be defined as “work done”
“total energy used” [85]. Let Ewl(T ) be the workload (“work

done”), measured in watt-seconds and caused by active PDEs of a given office environment

during a time interval [0,T ]. According to the definitions of architecture and energy model,

this workload is determined by the behaviour of the office users’ and identical for different

office environment architectures. Furthermore, let Eo(T ) be the “total energy used” of this

office environment during this time interval, where Eo(T ) is defined in Equation (5.8). The

energy efficiency EEo(T ) of this office environment within a time interval [0,T ] is defined as

EEo(T ) =
Ewl(T )
Eo(T )

.
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If two office architectures are compared with regard to a given workload Ewl(T ), an architecture

A is is more energy efficient than an architecture B during a time interval [0,T ], if

EEo
A(T ) > EEo

B(T ) ⇔ Eo
A(T ) < Eo

B(T ).

Theorem 5.1 The virtualized office environment is more energy efficient than an ordinary of-
fice environment at time t, with t ∈ [0,T ], if the mean consolidation ratio rmc(T ) > 2, the

number of active PDEs is N p
act(t) >

rmc(T )
Cn

idle
Ch

idle

(rmc(T )−2)
, with Cn

idle
Ch

idle
> 0, the energy consumption

of suspended hosts is Ch
susp = 0, and the energy consumption of idle hosts and network is

Ch
max ≤ 2Ch

idle, Cn
max ≤ 2Cn

idle.

Proof: According to Equation (5.4), the virtualized office environment is more energy efficient

than an ordinary office environment during a time interval [0,T ], if Eo
virt(T ) < Eo

ord(T ). Fur-

thermore, with respect to the mean consolidation ratio rmc(T ) (see Definition 4.16), the period

in which hosts are active during a time interval [0,T ] in the virtualized office environment is

defined as ∫ T

0
Nh

act(t)dt =
∫ T

0

N p
act(t)

rmc(T )
dt =

∫ T

0
∑

h∈H
1{ON}(st(h))dt.

This leads to

rmc(T ) > 2, ∀t : N p
act(t) >

rmc(T )
Cn

idle
Ch

idle

(rmc(T )−2)
,

Cn
idle

Ch
idle

> 0 (5.9)

⇒∀t : rmc(T ) >
2N p

act(t)

N p
act(t)−

Cn
idle

Ch
idle

⇒∀t : rmc(T ) >
2N p

act(t)Ch
idle

N p
act(t)Ch

idle−Cn
idle

⇒∀t :
2N p

act(t)Ch
idle

rmc(T )
< N p

act(t)C
h
idle−Cn

idle

⇒∀t :
N p

act(t)
rmc(T )

2Ch
idle +2Cn

idle < N p
act(t)C

h
idle +Cn

idle

⇒∀t :
N p

act(t)
rmc(T )

Ch
max +Cn

max < N p
act(t)C

h
idle +Cn

idle

⇒
∫ T

0

N p
act(t)

rmc(T )
Ch

max +Cn
max dt <

∫ T

0
N p

act(t)C
h
idle +Cn

idle dt

⇒ Eo
virt(T ) < Eo

ord(T )

�
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Theorem 5.1 shows that the virtualized office environment is a valid approach to save en-

ergy in office environments. It states that a virtualized office (according to the energy con-

sumption model) consumes less energy than an ordinary office if a mean consolidation ratio

of rmc(T ) > 2 is achieved and a minimum number of PDEs is active. Furthermore, it is as-

sumed that the energy consumption of suspended hosts is ignored: The energy consumption

of suspended hosts (in a suspend to disc approach) is typically very low, i.e., similar to hosts

that are turned off [84]. The assumption Ch
max ≤ 2Ch

idle, Cn
max ≤ 2Cn

idle is based on typical power

consumption characteristics of hosts and network [6, 7, 73, 84] as discussed in Section 5.1.1

and Section 5.2.1 that indicate a high ratio of idle energy consumptions of hosts and networks.
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Figure 5.5: Relation of mean consolidation ratio and m := Cn
idle

Ch
idle

Figure 5.5 illustrates the result of Inequation (5.9). The x-axis shows different values of

rmc(T ) and the y-axis shows the corresponding minimum number of active PDEs that are

needed to achieve higher efficiency than ordinary office environments, according to the re-

lation of the idle network power consumption to the idle host power consumption m := Cn
idle

Ch
idle

.

As an example, if the mean consolidation ratio is rmc(T ) = 2.25 and the idle network consumes

twice as much of power than an idle host (m = 2, e.g., two 48-port switches), then 18 active

PDEs are needed N p
act(t)≥ 18 to be more efficient than the ordinary office environment.

Inequation (5.9), however, provides only a lower bound of the mean consolidation ratio

and an upper bound of the number of active PDEs that are needed to achieve a higher energy

efficiency than ordinary office environments. The energy efficiency of the suggested architec-

ture is further evaluated in Sections 6.2 and 6.3. On one hand, these evaluations show that the

virtualized office environment is also efficient for smaller values of rmc(T ) and N p
act(t). On

the other hand, Section 6.3.3.2 shows that the suggested architecture is also efficient if highly
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energy efficient up-do date hardware is used, where the power consumption of idle hosts is

Ch
max > 2Ch

idle.
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Chapter 6

Evaluation

This chapter evaluates the virtualized office environment architecture as it has been suggested

in Chapter 4. The evaluation is organized in a top-down approach: First, Section 6.2 shows

a general analysis of the virtualized office environment based on Markov processes. It illus-

trates an analytical evaluation of the impact of user behaviour on the virtualized office envi-

ronment. Second, Section 6.3 evaluates the virtualized office environment more specifically,

based on discrete-event simulations of office environments. A variety of scenarios is simulated

to evaluate energy efficiency and service availability within the virtualized office environment.

Finally, Section 6.4 illustrates concrete measurements that have been performed on physical

hosts. These measurements are used (1) to parameterise parts of the discrete-event simulation,

(2) to validate the energy consumption model that has been presented in Chapter 5, and (3) to

validate the applicability of PDE execution environments and PDE migration, as described in

Section 4.1.

The evaluation of the virtualized office environment is focused on two hypotheses that are

verified in this chapter:

1. The suggested virtualized office environment architecture provides PDEs energy effi-

ciently. It consumes less energy than ordinary office environments

(a) for various settings of user parameters,

(b) for office environments with non-efficient hardware as well as for office environ-

ments with energy-efficient up-to-date hardware,

(c) and for office environments with a high number of users as well as for small office

environments or sub-environments with a small number of users.
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2. The suggested virtualized office environment achieves energy efficiency without signifi-

cantly decreasing the PDE service availability. It reduces the availability of services only

moderately compared to ordinary office environments, even in disadvantageous scenar-

ios.

6.1 User model

Section 4.2.2.1 has suggested a PDE utilisation model (see Definition 4.3 and Figure 4.6) based

on five states (LOCAL, REMOTE, JOB, IDLE, and OFF). These utilisation states are the basis

of the user model that is presented in this section. The user model will be used to evaluate en-

ergy efficiency and service availability within the virtualized office environment in comparison

to ordinary office environments.

The user model that is illustrated in this section distinguishes between working times which

describe working periods during weekdays and non-working times which describe other times

(i.e., nights or weekends). During working times, periods of user/PDE interaction are alternat-

ing with periods without user/PDE interaction. In periods with user/PDE interaction the user is

utilising his PDE locally or remotely (LOCAL, REMOTE). In periods without user/PDE inter-

action the PDE is either idle (IDLE) and will be suspended or it is performing a job on behalf

of the user (JOB). During non-working times, users don’t interact with their PDE. Each user

is able to manually turn off his PDE (OFF) at the end of a working day. In this case the PDE

remains turned off until the next working time begins, e.g., in the next morning. Otherwise,

the PDE is again either idle and will be suspended or it is performing a job on behalf of the

user. The following paragraphs describe user model parameters that define the behaviour of

users within an office environment based on PDE utilisation states. Furthermore they define a

standard user scenario that will be evaluated in detail.

• Time periods with user/PDE interaction (LOCAL, REMOTE): Parameter premote de-

scribes the probability that a user works remotely (REMOTE), following a Bernoulli

distribution. PDEs of such users can be migrated for consolidation within the office en-

vironment. If a user works locally (LOCAL), instead, his PDE needs to be provided at

his dedicated host. The number of remote workers depends on the specific flow of work

within an office environment. Employees of a consulting company, e.g., will more often

work at a customer’s office or home office than employees of an administrative office.

If a user isn’t working remotely, he works locally within the office. Local and remote
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working scenarios have been discussed in detail in Section 3.1. The probability that users

work remotely is set to a default of premote = 0.30 in the standard user scenario.

• Time periods without user/PDE interaction (JOB, IDLE, OFF): Parameter p job describes

the probability that a PDE executes a job on behalf of a user during a period without

user/PDE interaction (JOB), following a Bernoulli distribution. A job lasts as long as

the period without user/PDE interaction lasts. It is important to see that this probability

includes PDEs that have a defective power management and aren’t able to initiate a low-

power state (e.g., due to wrongly configured applications or drivers). Such PDEs appear

to be performing a job from the perspective of the host, as discussed in Section 3.1.

According to a report of Webber et al. [6], 64% of all hosts in 16 investigated office sites

in the USA where turned on during nights and only 4% of them were able to successfully

switch into a low-power state. With regard to this report, the probability of job execution

is set to a default value of p job = 0.60 in the standard user scenario.

Parameter po f f describes the probability that energy-efficient users manually turn off

their PDE during non-working times (OFF), following a Bernoulli distribution. This kind

of behaviour significantly reduces the energy consumption within office environments. If

a PDE isn’t performing a job (JOB) or turned off, it is idle (IDLE) and will be suspended.

The report of Webber et al. [6] states that in the investigated office sites 36% of all hosts

had been manually turned off during nights. According to this report, the probability that

users turn their host off is set to a default of po f f = 0.36 in the standard user scenario.

• Alternating between time periods with and without user/PDE interaction during work-

ing times: Periods of user/PDE interaction are modelled using an exponential distribution

with a mean of µactive min. Periods without user/PDE interaction are modelled using an

exponential distribution with a mean of µpassive min. The parameters µactive and µpassive

depend on typical office tasks and usage patterns within a certain office environment.

Employees of a call centre, e.g., will show different interaction patterns than employ-

ees of a lawyer’s office. The default values of both periods are set to µactive = 60 and

µpassive = 20 in the standard user scenario.

The described user model is illustrated in Figure 6.1. The left side of the figure represents

different PDE utilisation states during working times, whereas the right side illustrates non-

working times. It can be observed that during working times, periods with and without user/PDE
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Figure 6.1: User model

interaction are alternating. Furthermore it is illustrated in which way the described parameters

impact the user model.

The lengths of working times and non-working times will be determined per user and be

defined according to specific scenarios that are described in Sections 6.2.1 and 6.3.2.1. All of

the described parameters will be evaluated analytically in Section 6.2 and within a discrete-

event simulation in Section 6.3. The defined standard user scenario (premote = 0.3, p job = 0.6,

po f f = 0.36, µactive = 60, and µpassive = 20) will be evaluated as well as other relevant user-

related parameter settings.

6.2 Markov process

This section evaluates the suggested virtualized office environment analytically by using Markov

processes, based on the user model that has been defined in Section 6.1. The goal of this section

is to evaluate the impact of the user model’s parameters on the virtualized office environment

and to get initial evidence of its energy efficiency.
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6.2.1 Work time scenario and modelling

This Section presents a work time scenario that extends the user model that has been defined

in Section 6.1: It is assumed that the office environment consists of 10 users, where each user

has a separate host (10 hosts) and utilises a single PDE (10 PDEs). Each of the users works

on average 9 h per day (working times) following an exponential distribution with a mean of

µday = 9 h. Accordingly, the nights (non-working times) have lengths of 15 h, exponentially

distributed with a mean of µnight = 15 h. This working time scenario represents a simplistic

approach based on exponential distributions that will be analyzed using Markov processes.

The scenario will be extended in Section 6.3. The described user and work time model was

modelled as a generalised stochastic Petri net [86] and described in MOSEL-2 language [87].

MOSEL-2 is equipped with a set of model translators that allow the automatic translation

MOSEL-2 models to several performance evaluation tools. The Petri net was transformed into

a continuous time Markov chain to perform a steady state analysis of the expected distribution

of users to PDE utilisation states. The SPNP1 tool (developed at the Duke University, USA)

was used to perform the analysis.

The Petri net of the user and work time scenario is illustrated in Figure 6.2. It can be

observed that 5 places represent the PDE utilisation states (LOCAL, REMOTE, IDLE, JOB,

OFF), as defined in Definition 4.3. Two places model the change between day and night and

the rest of the places together with the illustrated transitions model utilisation state transitions

with respect to user model parameters, as defined in Section 6.1.

6.2.2 PDE management

Whereas the energy and service-aware PDE management approach (see Section 4.2.4) depends

on user behaviour, office parameters (e.g., start-up times of hosts), and parameters of the archi-

tecture (e.g., ct or mr), the energy-optimal PDE management approach (see Section 4.2.2), in

contrast, depends on user behaviour only. As the focus of this evaluation is to analyze the im-

pact of user behaviour on the energy efficiency of the suggested approach, the energy-optimal

PDE management is used to perform this evaluation. Migrations, however, aren’t considered

in this evaluation because it would be necessary to distinguish PDEs and hosts and to con-

sider different distributions of PDEs within the office environment, which is not included in the

model.
1SPNP: http://www.ee.duke.edu/∼kst/software_packages.html
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Figure 6.2: User and work time scenario modelled as generalised stochastic Petri net

According to the energy-optimal PDE management approach (with migrations excluded),

a host-optimal number of active hosts (see Definition 4.7) is utilised at all times t within the

office environment, leading to the following number of active hosts

Nh
act = max

{
Nu

LOC(t) ,
⌈

N p
act(t)+w

ch

⌉}
, (6.1)

where w is set to 1, i.e., a single MI is applied to support the 10 users.

6.2.3 Evaluation

To evaluate the suggested virtualized office environment architecture according to the impact

of user behaviour and independent of a particular office scenario, it is analyzed without mak-

ing specific assumptions about the energy consumption of the office environment. The mean
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consolidation ratio (see Definition 4.16) is a main indicator of energy efficiency within office

environments, as described in Section 4.2.5. It quantifies the energy efficiency that is achieved

within an office environment without considering energy consumption features of an office en-

vironment. It calculates the number of active PDEs that are processed per active host during

a time interval. The higher the mean consolidation ratio is, the more PDEs are consolidated

within the office environment and the less energy is consumed.

The expected mean consolidation ratio E[rmc(T )] can be calculated based on the steady

state analysis of the expected distribution of users to PDE utilisation states. E[rmc(T )] is used

to evaluate the impact of user behaviour on the virtualized office environment in this section

and calculates as

E[rmc(T )] =
10

∑
i=1

10

∑
j=1

i
j
∗P[N p

act = i, Nh
act = j],

where P[N p
act = i,Nh

act = j] is the joint probability that in the steady state the number of active

PDEs is i and the number of active hosts is j. As an example, Equation (6.2) illustrates the joint

probability P[N p
act = 9, Nh

act = 4] for ch = 3 with respect to the PDE management as defined in

Equation (6.1).

P[N p
act = 9, Nh

act = 4] =P[Nu
LOC +Nu

REM +Nu
JOB = 9, Nu

LOC = 4] (6.2)

+P[Nu
LOC +Nu

REM +Nu
JOB = 9, Nu

LOC = 3]

+P[Nu
LOC +Nu

REM +Nu
JOB = 9, Nu

LOC = 2]

+P[Nu
LOC +Nu

REM +Nu
JOB = 9, Nu

LOC = 1]

+P[Nu
LOC +Nu

REM +Nu
JOB = 9, Nu

LOC = 0]

This equation illustrates that 4 hosts are active if 0-4 of the 9 active PDEs are in the state

LOCAL. The rest of the PDEs and the MI can be distributed to 4 active hosts. The MOSEL-2

tool is able to calculate the steady state probability of a certain number of users residing in a

certain utilisation state and also the illustrated joint probabilities.

The evaluation of the impact of user model parameters on the energy efficiency of office

environments is structured as follows:

1. The standard user scenario (premote = 0.3, p job = 0.6, po f f = 0.36, µactive = 60, and

µpassive = 20) as it is described in Section 6.2.1 is evaluated, where each parameter is

considered separately.
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2. Parameters with high impact on energy efficiency are further evaluated in situations that

are disadvantageous for the virtualized office environment.

In all of the evaluations, different virtualized office environments with host capacities ch = 2,

3, and 4 (see Definition 4.5) are compared to an ordinary office environment.
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Figure 6.3: Probability of jobs
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Figure 6.4: Probability of remote users

Figure 6.3 illustrates the expected mean consolidation ratio with regard to the probability

of jobs being performed during periods without user/PDE interaction. The X-axis shows the

probability p job and the Y-axis shows the expected mean consolidation ratio that is achieved in

the virtualized office environment. The curves illustrate three virtualized office environments

with different host capacities (ch = 2, ch = 3, and ch = 4) and an ordinary office environment

(ord). The expected mean consolidation ratio of the ordinary office environment is continuously

1, due to the fact that no consolidation is achieved. It can be observed in Figure 6.3 that p job

heavily impacts the expected mean consolidation ratio. The more PDEs remain turned on due

to performing jobs during periods without user/PDE interaction, the more consolidation can be

achieved because such PDEs can be migrated for consolidation. This means that p job adjusts

the number of PDEs that can be migrated within the virtualized office environment. If p job

gets too small, the virtualized office environment becomes inefficient. If, e.g., p job < 0.1, the

virtualized office environment is less efficient than the ordinary office environment. On one

hand, small parameters of p job reduce the number of migratable PDEs. On the other hand,

with a decreasing of p job, also the number of expected active PDEs is decreasing: If no job is

performed, a PDE will be turned off or suspended, instead. With a small number of PDEs the

overhead that is created by the processing of MIs becomes considerable. Figure 6.3, however,

also illustrates the efficiency of the suggested approach: It can be observed, e.g., that the mean
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consolidation ratio is about 2 with p job = 0.4 and ch = 4. This means that the virtualized office

environment is twice as efficient at this point as the ordinary office environment and only half

as much active hosts are needed (with an energy-optimal PDE management) to process the

same number of active PDEs. In the standard user scenario with p job = 0.6 (see Section 6.1),

the efficiency is about 1.5 for ch = 2 and about 2.25 for ch = 4.

Figure 6.4 illustrates the impact of users that work remotely in office environments on

the expected mean consolidation ratio. The X-axis shows the probability premote. It can be

observed that the virtualized office environment is more efficient than an ordinary office for all

settings of premote. The mean consolidation ratio of the virtualized office environment increases

considerably with an increasing number of remote working users, especially for ch =3 and

4. This is due to the fact that each of the local users needs a separate host to work on (see

Section 4.2.2.2) and remotely utilised PDEs can be migrated for consolidation. The gradients

of the curves increase fast, as long as locally used hosts can be filled with remotely used PDEs.

This means that similar to p job, also premote directly adjusts the number of PDEs that can be

migrated within the virtualized office environment and thus is a parameter with high impact.

0 

0.5 

1 

1.5 

2 

2.5 

3 

0  0.2  0.4  0.6  0.8  1 

E[
m
ea
n 
co
ns
ol
id
at
on

 ra
0
o]
 

poff    

ch=4 

ch=3 

ch=2 

ord 

Figure 6.5: Probability that users turn their host off over night

Figure 6.5 shows the impact of energy-efficient users that turn their hosts off over night,

where the X-axis shows the probability po f f . In contrast to p job and premote this parameter

doesn’t adjust the number of migratable PDEs, but adjusts the number of active PDEs within

the office environment. The more users turn off their host manually, the less PDEs are active

and the less consolidation can be achieved (with po f f = 0.9 only about 4 PDEs of 10 are ex-

pected to be active). Nevertheless, the suggested architecture is more efficient than the ordinary

office environment for nearly all host capacities and nearly all values of po f f in the illustrated
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scenario. Only if 100% of the users are manually turning off their host over the night, the vir-

tualized office environment becomes inefficient. Conversely, it is important to see, that the less

energy efficient the users behave, the more consolidation can be achieved within the virtualized

office environment. This means that the suggested architecture is able to even out inefficient

user behaviour to a certain extent.
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Figure 6.6: Interaction period
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Figure 6.7: Period without interaction

Figures 6.6 and 6.7 illustrate the impact of periods with and without user/PDE interaction

(during working days) on the expected mean consolidation ratio. The X-axis’ in the Figures

show the mean lengths of the periods µactive and µpassive. It can be observed in Figure 6.6 that

an increased length of µactive decreases the expected mean consolidation ratio and increased

length of µpassive increases the expected mean consolidation ratio, especially for ch > 2. This

means the virtualized office environment is more efficient with short periods of interaction and

long periods without interaction. This is due to the fact that with longer interaction periods

and shorter periods without interaction, more users are active where 70% of them utilise their

host locally. Each of the locally utilised PDE needs to be provided on a separate host and can’t

be migrated for consolidation. This means that the parameters µactive and µpassive influence the

number of active hosts within the office environment, similar to the parameter po f f . Therefore,

the variation of the time period lengths µactive and µpassive has only moderate impact on the

mean consolidation ratio that can be achieved for typical settings.

So far, the evaluation has shown that the parameters p job and premote highly impact the en-

ergy efficiency of the virtualized office environment because they directly adjust the number of

PDEs that can be migrated within the virtualized office environment. If both of the parameters

are set to 0, none of the PDEs can be migrated and thus no consolidation can be achieved. The
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Figure 6.8: Probability of jobs, with
premote = 0
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Figure 6.9: Probability of remote users, with
p job = 0

other parameters in contrast, only influence the number of active PDEs within the office envi-

ronment. Therefore, the parameters p job and premote need to be further evaluated. Figure 6.8

illustrates the parameter p job (X-axis) without any remote usage premote = 0. It can be observed

that for settings of p job ≤ 0.15 the virtualized office environment becomes inefficient in this

scenario due to the overhead that is created by the MI. With increasing settings of p job, the vir-

tualized office environment becomes highly energy efficient, in spite of missing remote users.

In comparison, Figure 6.4 illustrates the parameter premote (X-axis) without the performance

of any jobs p job = 0. Although the efficiency increases with increasing parameter settings of

premote, the achieved efficiency is mostly lower than that of the ordinary office environment. It

can be observed that the virtualized office environment is only efficient for very few parameter

settings (i.e., premote > 0.7 and ch = 4). This means that in the considered scenario the param-

eter p job outweighs premote by far. The reason for this effect is that p job doesn’t only adjust the

number of migratable PDEs, it also influences the number of active PDEs. The fewer jobs are

performed, the more PDEs are turned off or suspended. With p job = 0 only 2.75 of 10 PDEs

are active in the steady state, leading to a considerable overhead caused by the MI. premote,

in contrast, has no effect to the number of active PDEs. A small number of PDEs, however,

can’t be consolidated efficiently even with higher settings of premote. This situation should be

different with a higher number of users. Therefore, p job and premote will be further evaluated

with a higher number of users in Section 6.3.3.2.
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6.2.4 Conclusions

It can be concluded from this evaluation that p job and premote heavily impact the energy ef-

ficiency of the virtualized office environment. This effect is quite plausible, since these pa-

rameters determine the number of PDEs in the utilisation states REMOTE and JOB, which

represent the states that allow a migration of PDEs for consolidation. Also po f f has significant

impact on the mean consolidation ratio by adjusting the number of active PDEs. However, it

is important to see that the impact scales with the energy-efficient behaviour of users: If users

already show energy-efficient behaviour, there is not much potential for optimizations within

the office environment. Otherwise, the mean consolidation ratio increases with a decreasing

energy-efficient behaviour of users, leading to considerable energy savings. The parameters

µactive and µpassive had only moderate effect to the expected mean consolidation ratio, com-

pared to the other parameters. Furthermore, for most of the evaluated parameter settings, the

virtualized office environment had a higher mean consolidation ratio than the ordinary office

environment, even with a small host capacity of only ch = 2. This indicates that significantly

less active hosts are needed and a considerable amount of energy can be saved by the suggested

architecture. For the default settings that have been described in Section 6.1, the virtualized

office environment is up to 2.25 times more efficient than the ordinary office environment, lead-

ing to possible energy savings of about 44% in the described energy-optimal scenario with 10

users.

The energy efficiency of the virtualized office environment will be further evaluated in a

discrete-event simulation in Section 6.3. In contrast to the model that has been evaluated in this

section, the discrete-event simulation evaluates more complex user scenarios that aren’t entirely

based on exponential distributions and consider a higher number of users. Furthermore, the

energy consumption of office hardware is considered and the energy-and service-aware PDE

management approach that has been suggested in Section 4.2.4 is evaluated. The correctness

of the implementation of the discrete-event simulation is validated using the analytical results

that have been presented in this section.

6.3 Discrete-event simulation

This section presents results of a discrete-event simulation (DES) that has been performed to

evaluate service availability and energy efficiency of the suggested virtualized office environ-

ment. First, the implementation of the DES is discussed and the DES is validated using the
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analytical results from 6.2. Then, parameter settings of the DES are discussed, including user

scenarios, energy consumption scenarios, and PDE management parameters. Finally, the re-

sults of the simulations are illustrated and evaluated.

6.3.1 DES implementation and validation

The DES is implemented in JAVA, using SIMJAVA1 in version 1.2 (University of Edinburgh,

1997). It discretises simulated time to minutes and processes time series of discrete user events

in simulated office environments. During the simulation, the energy consumption of hosts and

network and the PDE service is recorded every simulation minute. PDEs are suspended/re-

sumed or turned on/off according to the user behaviour. The energy and service-aware PDE

management, as it has been suggested in Section 4.2.4 and shown in Listing 4.3 is implemented

within the DES. PDEs and MIs are migrated and consolidated on hosts according to the PDE

management and hosts are suspended/resumed or turned on/off with regard to the PDEs and

MIs they are processing. Migrations are performed successively within the virtualized office

environment if they concern the same host, to prevent an overwhelming of hosts. Migrations

that are performed for validation (see Definition 4.6) are performed before migrations that are

performed for consolidation.

All of the described simulations have covered 1 week of simulated time, with a resolution

of 1 min and have been repeated 20 times, using different random seeds. Each simulation

run has been initialized by one additional week of simulated time, before measuring results.

Confidence intervals have been calculated with a confidence level of 99.8% and the radius

of the confidence interval is described in the text for each illustrated graph. The confidence

intervals of all curves in all of the illustrated graphs support the trends that are visible in the

graphs.

The DES is validated in this section by verifying the results from the analytical evaluation

in Section 6.2 with the DES. To achieve this, the user model, as is presented in Section 6.2.1 and

illustrated in Figure 6.2, has been implemented within the DES and all of the parameters have

been set accordingly. In contrast to the described model, the rare event of day/night change (see

places Night and Day in Figure 6.2) has been implemented in a deterministic manner (9 h day

and 15 h night). The energy and service-aware PDE management that is implemented within

the DES has been adapted to provide an energy-optimal PDE management: The critical time

1SIMJAVA: http://www.dcs.ed.ac.uk/home/hase/simjava
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interval has been set to ct = 0, the migration ratio to mr = 1, migrations need no simulation

time to be performed and host/PDE start-up and resume times are set to 0.
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Figure 6.10: Probability of remote users in the
Markov process
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Figure 6.11: Probability of remote users in the
DES

10 users have been simulated over a time period of 1 week, using the described parameter

settings. The results of the DES have been compared to the results of the Markov process from

Section 6.2. The results of the DES were very similar to the results of the Markov process

for all of the different parameter settings that have been evaluated in Section 6.2. This partly

validates the correctness of the implementation of the DES, including the energy-optimal PDE

management. Figures 6.10 and 6.11 illustrate an example of the comparison, the evaluation

of the parameter premote. Figure 6.10 shows the result of the Markov process that has been

discussed in detail in Section 6.2. Figure 6.11 shows the result of the DES, where the confi-

dence intervals of all curves have radiuses smaller than 1%. It can be observed that the two

graphs show very similar trends. The minor differences are effects of discrete time, the discrete

number of hosts and PDEs within the DES, and the random seeds of the 20 runs.

6.3.2 Parameter settings

This section defines scenarios and parameter settings that have been used to parametrise the

DES. Two different user scenarios are defined, where one is advantageous and the other one

is disadvantageous for the virtualized office environment. Furthermore, two different energy

consumption scenarios are defined, one with high energy consumption, the other one with

highly energy efficient hardware. Additionally, parameters of the PDE management approach

are defined.
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6.3.2.1 Work time scenarios

This section presents two different work time scenarios, based on the user model and the stan-

dard user scenario (premote = 0.3, p job = 0.6, po f f = 0.36, µactive = 60, and µpassive = 20) that

has been defined in Section 6.1. It is assumed that the office environment consists of 100 users,

where each user has a separate host (100 hosts) and utilises a single PDE (100 PDEs). The

work time scenarios are defined as follows:

• The Strict Work Time Scenario (StrictTime) models an office environment, where em-

ployees have strict work time guidelines, leading to simultaneous usage patterns con-

cerning office hosts. It is assumed that employees work 8 h a day (working times). All

of the employees start working within a time frame of 10 min before/after 8.00 h (i.e.,

between 7.50 h and 8.10 h) each day, following a uniform distribution (limited to the

time frame). The working days include a 1 h lunch break that is modelled as a fixed time

period without user/PDE interaction. Lunch starts 4 h after the beginning of the working

day of a user and the working day ends 9 h after its beginning.

• The Flexible Work Time User Scenario (FlexTime) models an office environment, where

employees have flexible work times, leading to differing host usage patterns. In this

scenario employees work on average 8 h per day (working times), following a normal

distribution with a mean of 8 h and a variation of 4 h. The length of a working day is

limited to a minimum of 6 h and a maximum of 10 h. The start of the working day of

each employee is limited to a time frame of 4 h, between 6.00 h and 10.00 h, following

a uniform distribution. Each employee has a 1 h lunch break that is modelled as a fixed

time period without user/PDE interaction. It begins 4 h after the user started his working

day and the working day ends 9 h after its beginning.

In addition to night times, both scenarios additionally model weekends (non-working times)

where the last working day of a week ends at Friday evening and the first working day of the

week starts on Monday morning.

The suggested work time scenarios provide different challenges to the virtualized office

environment: On one hand, the StrictTime scenario is most disadvantageous for the virtualized

office environment because it creates a high number of simultaneous state changes of users

(beginning/ending of working days and lunch breaks). This leads to a high number of parallel

migrations that considerably reduce the service availability. The FlexTime scenario, on the
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other hand, is rather supportive for the suggested virtualized office environment because state

changes are distributed over several hours. These two scenarios are used to illustrate the impact

of working times on energy efficiency and service availability within the office environment in

two extreme cases: In environments with strict and with flexible working times.

6.3.2.2 Energy consumption scenarios

This section suggests two different energy consumption scenarios, based on the energy con-

sumption model (see Chapter 5) that will be used to evaluate the virtualized office environ-

ment. One of the scenarios represents an office with non-energy efficient hardware and the

other represents a highly energy-efficient environment with up-to-date hardware.

• The High energy office scenario (HighEnergy) models an office environment where the

power consumption is based on characteristics of the office host Viglen Genie (see Ta-

ble 3.1). It is the host with the highest power consumption of the University of Sheffield

example, shown in Section 3.1. The network power consumption parameters are taken

from the Cisco Catalyst 3560G-48PS, shown in Table 3.2, representing the 48-port

switch with the highest power consumption.

• The Low energy office scenario (LowEnergy) models an office environment, where hosts

and network consume considerably less power than in the first scenario. The power

consumption is based on characteristics of the office host HP Compaq 8100 Elite, which

has been evaluated as one of the most energy-efficient office hosts of the year 2010

in [84]. The network power consumption parameters are taken from the Cisco Catalyst

3560-48TS, shown in Table 3.2, representing the 48-port switch with the lowest power

consumption of the table.

In both scenarios, it is assumed that the office network consists of three 48-port switches (to

support 100 users) and provides Fast Ethernet (100 Mbps). The loads of hosts and network

within the scenarios (according to Chapter 5) are defined as follows: The average CPU load

that is created by a PDE is set to a default of Lp
cpu = 0.23. This represents the highest load

of office applications that have been measured in Section 6.4.2 (see Table 6.6). This workload

limits the number of PDEs that can be processed simultaneously on a single host to ch = 4. The

average network load that is created by a single PDE is assumed to be 20% of a Fast Ethernet

link, which also allows the simultaneous processing of 4 PDEs on a single host. Accordingly,
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Host Network
Ch

o f f = 1 w Cn
idle = 123*3 w

Ch
low = 1 w W n

bw = 7*3 w
Ch

idle = 92 w (62%) Ln
bw = 0.0014

W h
cpu = 57 w (38%)

Lp
cpu = 0.23

Table 6.1: Power consumption parameters of
the HighEnergy scenario

Host Network
Ch

o f f = 1 w Cn
idle = 41*3 w

Ch
low = 1 w W n

bw = 4*3 w
Ch

idle = 27 w (43%) Ln
bw = 0.0014

W h
cpu = 37 w (57%)

Lp
cpu = 0.23

Table 6.2: Power consumption parameters of
the LowEnergy scenario

the PDE network load is set to Ln
bw = 0.0014 (≈ 0.2 /48 ports /3 switches). The power con-

sumption parameters of both scenarios are illustrated in Tables 6.1 and 6.2. It can be observed

that in the HighEnergy scenario W h
cpu is 38%, whereas in the LowEnergy scenario that consid-

ers an up-to-date energy-efficient host W h
cpu is 57% of the overall power consumption of the

host. This means that in the LowEnergy scenario not only the idle power consumption of the

host is smaller than in the HighEnergy scenario. Also the load dependent part of the power

consumption outweighs the load independent part, which increases the impact of loads on the

power consumption of hosts. This is disadvantageous for the virtualized office environment

because the consolidation of PDEs imposes high loads to hosts.

The presented scenarios represent two different office environments that provide similar

services to users. One of them (HighEnergy) consists of rather inefficient hosts and network,

creating a high potential for energy savings for the virtualized office environment. The other

one (LowEnergy) consists of energy-efficient up-to-date hardware and is disadvantageous for

the virtualized office environment: On one hand, less potential for energy savings is available.

On the other hand, the load dependent part of a host’s power consumption outweighs the load

independent part in this scenario, which increases the impact of higher loads on the power

consumption of hosts. The two scenarios are used to illustrate the energy efficiency of the

virtualized office environment in two extreme cases: In environments with high and low energy

consumption.

6.3.2.3 PDE management parameters

The PDE management that is simulated within the DES is based on the energy and service-

aware PDE management as it is defined in Definition 4.15 and shown in Listing 4.3. Two

MIs are processed within the office environment to support 100 users. This number of MIs is
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reasonable, as hybrid P2P approaches are proved to be scalable to high numbers of peers [33]

(see Section 2.1.2). Although a single MI would be sufficient for this small number of users,

a second MI is processed to provide redundancy. The MI load is set to Lm
cpu = 0.23, similar

to the load caused by a PDE. This enables the processing of 4 PDEs/MIs on a single host

simultaneously. Virtualization load of hosts (see Section 5.1.3) is set to Lh
virt = 0.05, according

to measurements that are illustrated in Table 6.7 of Section 6.4.2. Virtualization load of the

network (signalling traffic between active hosts and MIs) is supposed to be very small for the

small number of 100 users, because only active hosts communicate with the MIs, and only

when the utilisation state of a PDE changes (see Listing 4.3). Each MI supports 100 hosts with

a link capacity of 24% (up to 4 PDEs/MIs can be processed simultaneously per host). This

leads to an average link capacity of (24% + 24%)/100 = 0.48% (sender and receiver side) per

host and therefore to a virtualization load of Ln
virt = 0.000033 (≈ 0.0048 /48 ports /3 switches).

Furthermore, load that is caused by migrations (see Section 4.1.2) needs to be defined. The

user data that needs to be transferred between hosts during the migration of a PDE consists

of the current state of the virtual RAM and user data that is stored on the virtual hard disc.

The virtual RAM size is set to 600 MB for each PDE, which is enough to process typical

office applications (see Section 6.4). If the PDE is moved to an arbitrary host (other than the

users host), the user data is set to a uniformly distributed size between 200 MB and 1000 MB,

leading to a transmission between 800 MB and 1600 MB of data (including the 600 MB RAM).

Otherwise, if the PDE is migrated back to its user’s host, only the current modifications of

the PDE need to be transferred (see Section 4.1.2) and the user data is set to a uniformly

distributed size between 20 MB and 100 MB, leading to a transmission between 620 MB and

700 MB of data (including the 600 MB RAM). The mean transition rate is set to 5.6 MB/s

according to measurements that are illustrated in Section 6.4.3. Therefore, the transmission of

620 MB–1600 MB of data lasts between 2 min and 5 min (rounded to minutes). Migration

load of hosts is set to Lh
mig = 0.35, which is the average CPU load of sender and receiver,

according to measurements that are illustrated in Section 6.4.3. Due to migration load, the CPU

load of a host can temporarily be higher than 100% within the DES. This causes extra energy

consumption that is also recorded (in a real system, the performance of the host would be

decreased instead). Migration load on the network is set to 5.6 MB/s per link (47% of the link

capacity at sender and receiver side) according to measurements illustrated in Section 6.4.3.

This leads to a migration load of Ln
mig = 0.065 (≈ 0.47*2 /48 ports /3 switches). All of the

described load parameters that are caused by virtualization are illustrated in Table 6.3.

116



Hosts Network
Lm

cpu = 0.23 Ln
virt = 0.000033

Lh
virt = 0.05 Ln

mig = 0.0065
Lh

mig = 0.35

Table 6.3: Virtualization based load parameters

In addition to load parameters, the host and PDE energy states (as discussed in Sec-

tion 4.2.3) need to be defined. According to measurements that are illustrated in Table 6.8

of Section 6.4.3, time periods of booting/resuming a host are set to 1 min and the time period

of booting a PDE is set to 1 min. The measurements have shown that the resuming of a PDEs

can be achieved within around 10 s. This time period is too short to have significant impact

on service availability and is therefore ignored. Furthermore, according to the discussion of

Section 4.2.3 and the results of Table 6.8, the time periods of turning off/suspending PDEs and

hosts are ignored.

6.3.3 Evaluation

This section illustrates the results of various simulations and evaluates serviced availability and

energy efficiency of the virtualized office environment. First, the trade-off between energy effi-

ciency and service availability within the virtualized office environment is adjusted with respect

to the critical time period ct and the migration ratio mr, as discussed in Section 4.2.5. Then,

the energy efficiency of the suggested architecture is evaluated in detail for various scenarios

and parameter settings.

6.3.3.1 Energy efficiency and availability trade-off

The critical time period ct and the migration ratio mr (see Section 4.2.4) are parameters that

adjust the trade-off between energy efficiency and service availability within the virtualized

office environment. To ease up the parameter setting of ct and mr, Section 4.2.5 has defined

two metrics and an evaluation function: On one hand, the mean consolidation ratio rmc(T )

quantifies the energy efficiency of an office environment in terms of achieved consolidation.

On the other hand, the mean service ratio rms(T ) quantifies the service availability of an of-

fice environment in terms of provided PDE service. The evaluation function eval(ct,mr), as

illustrated in Equation (4.1), is a weighted linear combination of both ratios and needs to be
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maximised to find optimal values of the parameters ct and mr. The evaluation function depends

solely on the specified user scenario and the applied PDE management, but is independent of

specific energy consumption parameters. This section illustrates how the parameters ct and mr

can be determined for specific user scenarios.

Two user scenarios (StrictTime and FlexTime scenario) with 100 users have been defined in

Section 6.3.2.1 and are evaluated in this section. Both are based on the standard user scenario

(defined in Section 6.1) with parameter settings premote = 0.3, p job = 0.6, po f f = 0.36, µactive =

60, and µpassive = 20. The PDE management is parameterised according to the description of

Section 6.3.2.3.
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Figure 6.12: Mean consolidation ratio, StrictTime scenario and ch = 2

First, the StrictTime scenario has been simulated, for parameter settings of 0 ≤ ct ≤ 90

and 0.9 ≤ mr ≤ 1. Figure 6.12 illustrates the mean consolidation ratio of a virtualized office

environment with a host capacity of ch = 2. The X-axis shows mr, the Y-axis shows ct, and

the Z-axis shows the mean consolidation ratio. The confidence intervals of the graph have

radiuses smaller than 2.2%. It can be observed that the mean consolidation ratio reaches its

maximum, if all PDEs are immediately suspended/migrated (ct = 0) and if migrations are not

restricted (mr = 1), which represents an energy-optimal management as described in Section

4.2.2. For increasing values of ct and decreasing values of mr, the efficiency of the virtualized

office environment decreases in both dimensions (this has also been verified for smaller values

of mr and higher values of ct).

The energy-optimal setting of the parameters ct and mr, however, represents the worst

setting with regard to service availability, as discussed in Section 4.2.5. This is illustrated in

Figure 6.13 that shows the service availability in the same scenario. The Z-axis displays the
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Figure 6.13: Mean service ratio, StrictTime
scenario and ch = 2
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Figure 6.14: Mean service ratio between
7:50 h and 8:10 h, StrictTime scenario, ch = 2

mean service ratio and the confidence intervals of the graph have radiuses smaller than 0.1%. It

can be observed that the mean service ratio achieves its minimum (rms(T )≈ 0.96) with ct = 0

and mr = 1. The graph increases for higher values of ct or smaller values of mr, where the graph

increases faster for the parameter ct than for the parameter mr. The maximum that is illustrated

in the graph is displayed at the point ct = 90 and mr = 0.9 with rms(T )≈ 0.996, which means

that the mean service ratio is contradicting in both dimensions with the mean consolidation

ratio. An interesting effect within the graph is visible between ct = 50 and ct = 60, where the

graph increases very fast. This effect appears due to the 1 h lunch break that has been modelled

for both user scenarios: When ct gets higher or equal to 60 min, hosts are neither suspended

nor migrated during lunchtime, which increases the service availability.

The impact of the parameters ct and mr is further illustrated in Figure 6.14 that presents the

mean service ratio of users during a critical time period within the StrictTime user model: All

users begin their working day between 7:50 h–8:10 h in the mornings, leading to highly con-

current state changes. The mean service ratio within these 20 minutes is displayed at the Z-axis

of the graph, where the confidence intervals of the graph have radiuses smaller than 0.1%. It

can be observed that the graph has a similar shape as the graph in Figure 6.13, however, it starts

on a lower level and increases faster with an increasing parameter ct. On its minimum the mean

service ratio drops down to rms(T ) ≈ 0.86 and on the displayed maximum to rms(T ) ≈ 0.91.

This means that the critical situation that has been modelled within the StrictTime scenario,

drops the PDE service by about 10% at its minimum, during this time interval. In contrast to

the graph of Figure 6.13, the jump between ct = 50 and ct = 60 is not visible in the displayed

mean service ratio, as lunchtime is not included in the considered time interval.

119



To find optimal parameter settings for ct and mr that achieve energy efficiency while main-

taining a good level of service availability, the evaluation function eval(ct,mr) = α ∗ rmc(T )
ch

+

β ∗ rms(T ), (as discussed in Section 4.2.5) needs to be analyzed. Although it is typically diffi-

cult to determine appropriate values for the weighting factors α and β , the function provides

clear results in this case: For settings of α and β between 1 and 20, the maximum of the evalu-

ation function is always at the line of mr = 1. If β is smaller or equal to α the maximum of the

evaluation function is at ct = 0, as the mean consolidation ratio dominates the graph. With an

increasing β the maximum runs along mr = 1 towards ct = 90. To give examples, Figure 6.15

illustrates the result for α = 1 and β = 2. Figure 6.16 illustrates the result for α = 1 and β = 6

where the Z-axis’ display the evaluation function. The maximum of the graph in Figure 6.15 is

at mr = 1 and ct = 10. It can be observed that with a weight of β = 2 the mean consolidation

ratio dominates the evaluation function, the displayed graph looks quite similar to the graph of

Figure 6.12. The maximum of the graph in Figure 6.16 is at mr = 1 and ct = 85. It can be

observed that with a weight of β = 6 the mean service ratio dominates the evaluation function,

the displayed graph looks quite similar to the graph of Figure 6.13. Since the maximum of the

evaluation function is at the line of mr = 1 for reasonable weighting factors, it is always the best

choice to set the parameter mr = 1 and to define the trade-off between energy efficiency and

service availability by varying the parameter ct. This result indicates to set the consolidation

buffer that is determined by the parameter mr (see Definition 4.14) to 0 in the evaluated user

scenarios. This means that all of the migrations that can be performed to achieve consolidation

are actually initiated by the PDE management. Instead, the critical time period that delays

transitions of utilisation states is used to fine-tune the service availability.
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Figure 6.15: Evaluation function, StrictTime
scenario, ch = 2, α = 1, β = 2
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Figure 6.16: Evaluation function, StrictTime
scenario, ch = 2, α = 1, β = 6
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The evaluation function eval(ct,mr) has additionally been analyzed for host capacities ch =

3, ch = 4 in the StrictTime scenario and for host capacities ch = 2, ch = 3, and ch = 4 in the

FlexTime scenario. The graphs of these evaluations are not separately shown in this thesis. The

evaluations have illustrated very similar trends for the evaluation function as well as for the

mean consolidation ratios and the mean service ratios. Especially, for all of these simulations

the maximum of the evaluation function was at the line mr = 1 for weights between 1 and

20. Therefore, only the parameter ct needs to be determined to define the trade-off between

service availability and energy efficiency in all of the mentioned scenarios, mr will be set to

1. This leads to a two dimensional optimization problem that is easier to analyse than the

multidimensional problem.
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Figure 6.17: Mean consolidation ratio, Strict-
Time scenario and mr = 1
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Figure 6.18: Mean consolidation ratio, Flex-
Time scenario and mr = 1

Figures 6.17 and 6.18 illustrate the mean consolidation ratio of the StrictTime and the Flex-

Time scenario with mr = 1. The X-axis’ show the critical time period ct and the Y-axis’ show

the mean consolidation ratio, which is displayed for virtual office environments with host ca-

pacities ch = 2, ch = 3, and ch = 4 and an ordinary office environment ord. The confidence

intervals of all curves have radiuses smaller than 2.2%. It can be observed that both scenarios

show very similar results, where the FlexTime scenario is a bit more efficient than the Strict-

Time scenario. This is due to the simultaneous state changes that are modelled in the StrictTime

scenario, (see Section 6.3.2.1) which lead to a high number of simultaneous migrations (per-

formed sequentially) that decrease the energy efficiency. It is important to see that the mean

consolidation ratio decreases moderately with an increasing parameter ct, therefore, ct needs

to be selected as small as possible to maintain high energy efficiency.
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Figure 6.19: Mean service ratio, StrictTime
scenario and mr = 1
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Figure 6.20: Mean service ratio, FlexTime
scenario and mr = 1

The mean service ratio, in contrast, increases significantly with an increasing parameter

ct. Figures 6.19 and 6.20 illustrate the mean service ratio for the StrictTime and the FlexTime

scenario with mr = 1. The Y-axis’ show the mean service ratio of the whole simulated week

(ord, ch = 2, ch = 3, ch = 4) as well as the mean service ratio for the times between 7:50 h–

8:10 h on working days (ord 8h, ch = 2 8h, ch = 3 8h, ch = 4 8h). The confidence intervals

of all curves have radiuses smaller than 0.1%. It can be observed that the ordinary office en-

vironment (ord, ord 8h) provides a high service availability between 98% and 99.9% which

is only moderately depending on ct in all of the displayed scenarios (ct adjusts the suspension

of idle hosts in the ordinary office environment, as described in Section 4.2.4). The service

availability of the virtualized office environment, however, increases considerably with an in-

creasing parameter ct for all displayed scenarios. Whereas the mean service ratio of the whole

week is quite similar for the StrictTime and the FlexTime scenario, the mean service ratios that

consider working days between 7:50 h - 8:10 h differ significantly with up to 7%. This means

that the curves (ch = 2 8h, ch = 3 8h, and ch = 4 8h) of the StrictTime scenario illustrate the

worst case in terms of service availability of all displayed scenarios. The aim of this section

is, to find a setting for ct that is small enough to provide energy efficiency and big enough

to maintain an appropriate service availability. Therefore, especially this worst-case scenario

needs to be considered where the users experience the lowest service availability. It can be

observed that the curves in the worst-case scenario increase fast for small values of ct until

approximately ct = 25, where the gradient gets very small. This means that a further increase

of ct doesn’t improve the service availability significantly. Therefore, the parameter setting of

ct = 25 maximises the service availability in the worst-case scenario. This setting of ct is also
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an appropriate setting concerning the other displayed scenarios, as the gradients of all curves

decrease considerably for ct ≥ 25 (except of the jump at ct = 60 which has been described in

Figure 6.13 and is not relevant in this case).

Scenario Results Difference to ord
mr = 1, ct = 25 ord ch = 2 ch = 3 ch = 4 ch = 2 ch = 3 ch = 4

StrictTime rmc(T ) 1.000 1.682 1.988 2.177 34.1% 49.4% 58.9%
FlexTime rmc(T ) 1.000 1.754 2.083 2.281 37.7% 54.5% 64.1%
StrictTime rms(T ) 0.999 0.984 0.982 0.981 -1.5% -1.7% -1.8%
FlexTime rms(T ) 0.999 0.983 0.982 0.981 -1.5% -1.7% -1.7%

StrictTime rms(T ), 8 h 0.985 0.905 0.900 0.896 -8.0% -8.5% -8.9%
FlexTime rms(T ), 8 h 0.996 0.963 0.971 0.972 -3.3% -2.5% -2.3%

Table 6.4: Mean consolidation ratios and mean service ratios for mr = 1 and ct = 25

Concluding, a critical time period of ct = 25 provides a high service availability while

still being energy efficient according to the mean consolidation ratio, as shown in Figure 6.12.

The mean service ratio and the mean consolidation ratio that are achieved with a parameter

setting of mr = 1 and ct = 25 are illustrated in Table 6.4. The first column shows the illustrated

scenario, columns 2–5 show the results of the DES and columns 6–8 show the differences

between ordinary office environment and virtualized office environment in percent. It can be

observed that the mean consolidation ratio of the virtualized office environment is at least

34.1% and at most 64.1% higher than that of the ordinary office environment. The mean

service ratio is at most 1.8% lower than in the ordinary office environment if the full week is

considered. In the worst-case scenario (during the time period 7:50–8:10 on working days) the

mean service ratio is at most 8.9% lower than in the ordinary office environment.

6.3.3.2 Energy efficiency evaluation

This section evaluates the energy efficiency of the virtualized office environment. Similar to

Section 6.3.3.1, two user scenarios (StrictTime and FlexTime scenario) with 100 users are con-

sidered that have been defined in Section 6.3.2.1. Both of them are based on the standard user

scenario (defined in Section 6.1). Furthermore, two different energy consumption scenarios

are evaluated, one with high energy consumption hardware (HighEnergy) and one with low
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energy consumption hardware (LowEnergy), as described in Section 6.3.2.2. The PDE man-

agement is parameterised according to the description of Section 6.3.2.3. The parameters that

determine the trade-off between energy efficiency and service availability are set to mr = 1 and

ct = 25, as discussed in Section 6.3.3.1. The energy efficiency evaluation of the virtualized

office environment is structured as follows:

1. The standard user scenario (premote = 0.3, p job = 0.6, po f f = 0.36, µactive = 60, and

µpassive = 20) as it is described in Section 6.2.1 is evaluated. The user parameters that

had the most impact on energy efficiency according to Section 6.2.3 (premote, p job, po f f )

are analyzed in detail.

2. Parameters that are shown to have a high impact on energy efficiency are further eval-

uated for specific situations that are disadvantageous for the virtualized office environ-

ment.

3. The impact of different loads on hosts and network on energy efficiency is evaluated.

4. The virtualized office environment is evaluated for a small number of users (e.g., in sub-

environments of offices) and for high numbers of users.

In all of the evaluations, different virtualized office environments with host capacities ch = 2,

3, and 4 (see Definition 4.5) are compared to an ordinary office environment.
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Figure 6.21: Mean consolidation ratio, Strict-
Time scenario
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Figure 6.22: Mean energy consumption,
StrictTime scenario

First, the StrictTime scenario has been evaluated with respect to the parameter premote

(probability that users work remotely) and the mean consolidation ratio. This evaluation is
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similar to the analytical evaluation of Section 6.2, where a simpler user scenario and a smaller

number of users has been considered. The result of the simulation is illustrated in Figure 6.21.

The X-axis shows the parameter premote and the Y-axis shows the mean consolidation ratio,

which is displayed for virtual office environments with host capacities ch = 2, ch = 3, and

ch = 4 and an ordinary office environment ord. The confidence intervals of all curves have

radiuses smaller than 2.4%. It can be observed that the impact of premote is higher than in the

results of Section 6.2 and a mean consolidation ratio of up to 3.7 is achieved, due to the higher

number of users and the different user model. The mean consolidation ratio of the virtualized

office environment increases with an increasing parameter premote. This is because remotely

utilised PDEs can be migrated for consolidation within the suggested architecture. The mean

consolidation ratio increases, until all of the hosts with locally used PDEs are filled with re-

motely used PDEs (e.g., at premote ≈ 0.7 and ch = 3). The virtualized office environment is

more efficient than the ordinary office environment for all settings of premote. For premote = 0.6

and ch = 4, e.g., the mean consolidation ratio is rmc(T ) ≈ 3, which means that the virtualized

office environment is approximately three times as efficient as the ordinary office environment,

according to the achieved consolidation.

Figure 6.22 shows results of the same simulation, however, the Y-axis shows the mean en-

ergy consumption (in kWh) of the office environment during the simulated week. Two scenar-

ios are illustrated, the HighEnergy and the LowEnergy office environment (see Section 6.3.2.2).

The names of the curves are similar to those of Figure 6.21, where the upper 4 curves have the

annotation high and illustrate the mean energy consumption of the HighEnergy office scenario.

The lower 4 curves have the annotation low and illustrate the mean energy consumption of

the LowEnergy office scenario. The confidence intervals of all curves have radiuses smaller

than 2.7%. It can be observed that the mean consolidation ratio (see Figure 6.21) provides a

rough approximation of the energy efficiency that is achieved in the two displayed scenarios:

With an increasing mean consolidation ratio, the mean energy consumption of the displayed

office environments is decreasing. Whereas the mean consolidation ratio has estimated that

the virtualized office environment is three times as efficient as the ordinary office environment

at the point premote = 0.6 and ch = 4, which can be interpreted as possible energy savings of

at most 66%, the actually achieved savings are lower. About 52% of savings are achieved

in the HighEnergy office scenario at this specific point and 42% in the LowEnergy scenario.

The application of the energy consumption model causes the differences between the results of

the mean consolidation ratio and the actual energy consumption: Energy consumption, caused
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by different loads of hosts and network are not considered by the mean consolidation ratio.

Therefore, the ratio of savings is smaller with the LowEnergy scenario than in the HighEn-

ergy scenario because the load related energy consumption of hosts is higher (as shown in

Table 6.2), which increases the impact of loads on energy consumption. It can be observed that

the virtualized office environment consumes less energy than the ordinary office environment

for all settings of premote. It is important to see that also in the LowEnergy scenario, where the

office consists of highly energy-efficient hosts and network, the virtualized office environment

consumes considerably less energy than the ordinary office environment. This shows that the

virtualized office environment is energy efficient for offices with high energy consumption as

well as for office environments with energy-efficient hardware.
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Figure 6.23: Mean energy consumption,
StrictTime scenario
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Figure 6.24: Mean energy consumption, Flex-
Time scenario

The analytical evaluation of Section 6.2 has shown that the parameter p job (probability that

users process jobs during their absence) has significant impact on the efficiency of the virtual-

ized office environment. Therefore, p job has also been analyzed within the DES. Figures 6.23

and 6.24 illustrate the mean energy consumption of the StrictTime and the FlexTime scenario

with respect to p job, where the Y-axis’ show the mean energy consumption. The confidence

intervals of all curves have radiuses smaller than 3.3%. In contrast to the evaluation of Sec-

tion 6.2 it can be observed that the virtualized office environment consumes less energy than

the ordinary office environment for all settings of p job. This is due to the higher number of

users that reduces the overhead caused by MIs. With an increasing p job also the mean energy

consumption of all displayed office environments increases, because more PDEs are active (to

perform jobs). However, the increase of the energy consumption of the virtualized office en-

vironment is slower than that of the ordinary office environment, because PDEs with jobs can
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be consolidated. The energy savings that are achieved with the standard settings (p job = 0.6)

are about 44% in the HighEnergy office and 34% in the LowEnergy office in the FlexTime

scenario. It is important to see that there are only minor differences between the illustrated

StrictTime and the FlexTime scenario, where the StrictTime scenario is slightly less efficient

due to its contemporary state changes (see Section 6.3.2.1). This shows that the virtualized

office environment is energy efficient for offices with strict working times as well as for offices

with flexible working times. Therefore, only the StrictTime scenario (which is disadvantageous

for the virtualized office environment) is further analyzed in the rest of this section.
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Figure 6.25: Mean energy consumption, StrictTime scenario

Figure 6.25 illustrates the mean energy consumption of office environments according to

the energy-efficient behaviour of users. The X-axis shows the probability po f f that users turn

their hosts off over night. The confidence intervals of all curves have radiuses smaller than 3%.

It can be observed that the energy consumption of all office environments decreases with an

increasing parameter po f f . The more hosts are turned off manually, the less energy is consumed

within the office environment, where the virtualized office environment consumes less energy

than the ordinary office environment for all parameter settings of po f f . It is important to see that

the less efficient users behave, the more energy is saved by the virtualized office environment.

If no user turns off his host manually during the nights, about 46% of energy can be saved in

the standard user scenario with high energy consumption and about 37% of used energy can be

saved in the standard user scenario with energy-efficient hardware.

The evaluations of premote and p job in Section 6.2 have shown that these parameters have

a most significant impact on the energy efficiency of the virtualized office environments. This

is due to the fact that these two parameters determine the number of PDEs that can be mi-

grated for consolidation. If both parameters are set to 0, no consolidation can be achieved and
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Figure 6.26: Mean energy consumption,
StrictTime scenario and p job = 0
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Figure 6.27: Mean energy consumption,
StrictTime scenario and premote = 0

the virtualized office environment becomes less efficient than an ordinary office environment.

Figures 6.26 and 6.27 illustrate the mean energy consumption for the parameter premote with

p job = 0 and for the parameter p job with premote = 0. The confidence intervals of all curves have

radiuses smaller than 3%. It can be observed that in Figure 6.26 the virtualized office environ-

ment consumes less energy than the ordinary office environment for premote > 0.1. Similarly,

in Figure 6.27 the virtualized office environment consumes less energy than the ordinary office

environments for p job > 0.1. This illustrates that either a minimum of remote working users

or a minimum of executed jobs is needed to save energy within the virtualized office environ-

ment. It is important to see that there is a main difference to the evaluation of Section 6.2:

Whereas in Section 6.2 only the parameter p job was able to achieve energy efficiency indepen-

dent of premote, in this scenario both of the parameters equally achieve energy efficiency, even

if the other is set to 0. This is due to the higher number of users (100) that has been simulated

within the DES. Although p job adjusts the number of active PDEs, as discussed in Section 6.2,

there are enough PDEs active with p job = 0, to enable consolidation by increasing the param-

eter premote. It is important to see that both of the parameters independently and significantly

determine the energy efficiency that is achieved within the virtualized office environment.

In addition to the evaluation of user parameters, also loads of hosts and network are evalu-

ated in this section. Figure 6.28 illustrates the mean energy consumption of office environments

with increasing PDE loads on hosts Lp
cpu and network Ln

bw. The X-axis shows the different loads

of Lp
cpu, however, the network load Ln

bw is increasing accordingly (from 0 to 0.0028 which is

twice of the standard setting). For a parameter setting Lp
cpu = 0.23 the CPU and network loads

have their default setting as described in the Tables 6.1 and 6.3. The confidence intervals of
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Figure 6.28: Mean energy consumption, StrictTime scenario

all curves have radiuses smaller than 2.7%. It is important to see that the higher the load in-

creases, the less PDEs can be processed simultaneously by a single host because the CPU load

gets higher than 100%. Therefore, not all of the curves are displayed for all loads. It can be ob-

served in Figure 6.28 that the increasing loads do to not directly decrease the energy efficiency

of the virtualized office environment. The achieved savings, e.g., for ch = 2 remain nearly sim-

ilar for all displayed kinds of loads. However, higher loads reduce the number of active PDEs

that can be processed per host and thus reduce the achievable energy savings. 4 PDEs can be

processed, e.g., for loads Lp
cpu ≤ 0.23. If the load gets higher than Lp

cpu ≥ 0.47 no consolidation

can be achieved at all without allowing CPU loads of more than 100%, which would reduce

the performance of each single PDE.
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Figure 6.29: Mean consolidation ratio, Strict-
Time scenario
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Figure 6.30: Mean energy consumption,
StrictTime scenario
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Finally, different numbers of office users have been simulated to evaluate the energy effi-

ciency of small office environments (or sub-environments) and big office environments. It is

assumed in the simulation that one 48-port switch is active per 40 users. Figure 6.29 illus-

trates the efficiency of the virtualized office environment with regard to an increasing number

of users. The X-axis shows the number of users within the office environment (2-200), where

the number of users is equal to the number of hosts and the number of PDEs within the office.

The Y-axis illustrates the mean consolidation ratio. The confidence intervals of all curves have

radiuses smaller than 10%. It can be observed that the efficiency increases very fast with an

increasing number of users until the number of users gets greater than 30, where the gradients

of the curves get very small. After this point the mean consolidation ratio doesn’t increase

significantly (this has been tested for higher numbers of users, e.g., for 1000 users). Three

important conclusions can be achieved from this simulation:

1. The virtualized office environment is more energy efficient than an ordinary office en-

vironment for a small number of users (e.g., 10 users). This means that the suggested

office environment can be used in small office environments or small sub-environments

of offices.

2. The mean consolidation ratio of the virtualized office environment increases very fast

and gets near the displayed maximum with a relatively small number of 30 users. This

means that even with a small number of users, high energy savings can be achieved.

3. The virtualized office environment remains energy efficient for an increasing number of

users (up to 1000 have been simulated with an increasing number of MIs). This means

that the virtualized office environment can be applied to big offices. It is important to

see that offices with high numbers of users can be split into smaller sub-environments

without significantly decreasing the energy efficiency of the suggested approach.

These results are further evaluated according to small office environments in Figure 6.30

which illustrates the mean energy consumption of office environments. The X-axis shows the

number of users within the office environment (2-20) and the Y-axis shows the mean energy

consumption. The confidence intervals of the curves have radiuses smaller than 5.75%. It can

be observed that the virtualized office environment consumes less energy than the ordinary of-

fice environment with 4 or more users in the HighEnergy scenario and with 5 or more users in

the LowEnergy scenario. These results are illustrated in Table 6.5 that displays the minimum
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Scenario Minimum number of users Savings higher 20%
ch = 2 ch = 3 ch = 4 ch = 2 ch = 3 ch = 4

HighEnergy users ≥ 7 users ≥ 4 users ≥ 4 users ≥ 19 users ≥ 10 users ≥ 8
LowEnergy users ≥ 9 users ≥ 7 users ≥ 5 users ≥ 45 users ≥ 18 users ≥ 14

Table 6.5: Minimum number of office users

number of users for all host capacities. Furthermore, the table illustrates the number of users

that is needed to achieve more than 20% of energy savings within the virtualized office envi-

ronment in the simulated scenarios. It can be observed that 8 users are sufficient to save 20%

of energy in comparison to the ordinary office environment in the HighEnergy scenario and 14

users are sufficient in the LowEnergy scenario, considered a host capacity of ch = 4.

6.3.4 Conclusions

Concluding, this evaluation illustrates the energy efficiency of the virtualized office environ-

ment. It shows that energy efficiency can be achieved without significantly reducing the avail-

ability of office services. The trade-off between energy efficiency and service availability has

been adjusted with respect to the critical time period ct and the migration ratio mr in Sec-

tion 6.3.3.1. The mean availability within the virtualized office environment in terms of mean

service ratio is at most 1.8% lower than in the ordinary office environment in the illustrated

scenarios. In a specific worst-case scenario where simultaneous state changes of users are

triggered within a short time period, the mean service ratio is at most 8.9% lower than in the

ordinary office environment. Furthermore, the evaluation of Section 6.3.3.2 shows that energy

savings can be achieved for a variety of different parameter settings. Starting from the stan-

dard user scenario, the evaluation illustrates in which way user and working time parameters

impact the energy consumption of office environments and indicates possible savings. It shows

that energy is not only saved in office environments with non-energy-efficient hardware where

the potential for energy savings is high (HighEnergy scenario). Considerable savings are also

achieved in office environments with up-to-date energy-efficient hardware (LowEnergy sce-

nario). Up to 44% of energy savings are achieved in the standard user scenario and higher

savings are possible, according to the user behaviour within the office environment (e.g., 52%

with premote = 0.6). Another important result that is presented within the evaluation is the ef-

ficiency of the virtualized office environment in offices with different numbers of users: Even
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in small office environments (e.g., 4 or more users in the HighEnergy scenario) the virtualized

office environment is more energy efficient than an ordinary office environment. Furthermore,

its efficiency increases very fast with an increasing number of users, e.g., with a number of 8

users, already 20% of energy can be saved in the HighEnergy scenario. Moreover, the virtual-

ized office environment remains energy efficient for higher numbers of users, where big office

environments can be split into smaller sub-environments without significantly decreasing the

energy efficiency of the suggested approach.

6.4 Measurements

This section presents the results of measurements that have been performed on physical hosts.

First, the measurement environment and the systems under test are described. Then the host

energy consumption model (as presented in Section 5.1) is validated. Finally, further measure-

ments of host parameters are illustrated and the applicability of PDE execution environments

and PDE migration (as described in Section 4.1) is verified.

6.4.1 Power meter and systems under test

A ZES LMG 5001 (2010) power meter was used to perform energy measurements on hosts,

where the active power consumption of a complete host has been measured, including the

power supply unit. The ZES LMG 500 provides a basic accuracy of 0.03%.

Two office hosts with Intel Core 2 Duo 6400 CPUs, 2.13 Ghz, and 2 GB RAM were used as

systems under test. On each host Ubuntu 10.04 (32 bit) was installed as OS. Furthermore, the

Gnome desktop was installed and Qemu/KVM 0.12.3 (kernel module) was used as virtual ma-

chine monitor to perform system virtualization. Qemu is able to use the virtualization support

of the Intel CPUs and provided good performance on the hosts. The two hosts were intercon-

nected via a Fast Ethernet link (100 MBit/s), which represents a typical network connection

within office environments. The PDEs that were processed by the office hosts had 600 MB of

virtual RAM each, leading to a maximum number of 3 PDEs that can be processed on a host.

The PDEs consisted of the Ubuntu 8.04 OS (32 bit), a Gnome desktop, OpenOffice.org 2.4, the

Epiphany browser, and a collection of further office related software. Each PDE had a size on

the hard disc of about 2.4 GB.

1ZES ZIMMER Electronic Systems GmbH, Germany
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It is important to see that the selected office hosts fit the scenarios that have been defined

in Section 6.3.2.2. The hosts show an energy consumption behaviour that is in between the

HighEnergy office scenario (with non-energy efficient hardware) and the LowEnergy office

scenario (with energy-efficient up-to-date hardware). Furthermore, the PDEs contain a popular

OS and typical software that is used on desktops. Therefore, the systems under test represent

typical hardware and software as it may be used in office environments.

6.4.2 Validation of the energy consumption model

The energy consumption model that has been presented in Section 5.1 consists of a host and a

network part. In particular, the energy consumption of hosts plays a highly important role in

this thesis, as the energy consumption of hosts is managed by the suggested virtualized office

environment to save energy. Therefore, the validation that is presented in this section focuses

on host energy consumption.

Each active host within the virtualized office environment needs to process the virtualiza-

tion load that is caused by the virtual machine monitor and the load caused by active PDEs that

are running on the host. These loads and the idle energy consumption mainly determine the

overall energy consumption of hosts. Other loads caused by MIs or migrations, in contrast, only

appear sporadically and have therefore not been considered in the measurements. Accordingly,

the energy consumption model that has been presented in Equation (5.8) is simplified to

Eh
virt =

∫ T

0
Ch

idle +W h
cpu ∗

(∣∣∣H−1
t |P (h)

∣∣∣∗Lp
cpu +Lh

virt

)
dt, (6.3)

where Ch
idle is the idle energy consumption of the host, W h

cpu is the CPU weighting factor,∣∣∣H−1
t |P (h)

∣∣∣ is the number of PDEs that are currently active at the host, Lp
cpu is the load caused

by a PDE, and Lh
virt is the load caused by virtualization. The networks energy consumption,

the loads caused by migrations, and the loads caused by MIs are set to 0 and don’t appear in

Equation (6.3). The validation of this simplified energy consumption model is performed in

the following steps:

1. Load and energy consumption measurements are performed on one of the hosts to achieve

parameters that are needed to parameterise the energy consumption model.

2. Based on these parameters, the energy consumption model estimates the energy con-

sumption of the office host, according to the three different PDE workloads.
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3. To validate the estimations of the energy consumption model, the real energy consump-

tion of the host is measured, according to similar PDE workloads. The estimations of the

energy consumption model are compared to the measured results.

To parameterise the energy consumption model load and energy consumption measure-

ments need to be performed. Therefore, three office workloads in terms of PDEs have been

implemented that cause different CPU loads on a host:

• Office writing: Open office was started within a PDE and a new letter had been created.

A macro was typing 15 characters per minute.

• Web surfing: The Epiphany browser was started within a PDE. A script was loading 7

web links in different tabs of the browser, a new link every 10 seconds.

• Calculations: A script was performing calculations (factorials) within a PDE, where

each calculation (20 times the factorial of 1 to 20) is followed by a short break of 4 s.

First, the described PDEs have been processed on one of the Intel Core 2 Duo office hosts, with-

out using virtualization. The CPU loads caused by each individual PDE have been measured by

parsing the /proc/stat file of the Ubuntu OS while it was processing the PDE for 20 min. Sec-

ond, the CPU load caused by virtualization has been measured. To achieve this, 3 PDEs have

been set up on the host. The load of the host was measured, while all of the three PDEs were

idle (0% CPU load). Finally, the minimum power consumption (with 0% CPU load) and max-

imum power consumption (with 100% CPU load) have been measured on the host, which are

needed to calculate the parameter W h
cpu of the energy consumption model. The results of these

measurements are illustrated in Table 6.6. The first column shows the parameter of the energy

consumption model that has been measured and the second column shows a short explanation

of the parameter. The third column illustrates the measured power/load consumption.

The results of Table 6.6 were used to parameterise the energy consumption model of Equa-

tion (6.3). According to these parameters, the energy consumption model was able to estimate

the energy consumption of the host for different PDE workloads. To give an example, the

following equation illustrates the parameterised energy consumption model of 3 PDEs that

perform web surfing tasks, estimated for 20 minutes in watt-hours:

Eh
virt(20 min) =

( 20

∑
i=1

83.3+31.6∗ (3∗0.17+0.05)
)
/60 Wh
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Parameter Description Mean power/load
Ch

idle Minimum power consumption 83.3 w
Ch

max Maximum power consumption 114.9 w
W h

cpu Ch
max−Ch

idle 31.6 w

Lh
virt Minimum load with 3 idle VMs 5%

Lp
cpu Workload office writing 2%

Lp
cpu Workload web surfing 17%

Lp
cpu Workload calculations 23%

Table 6.6: Measured loads and idle/max power consumption

To validate the results of this estimation, the PDEs have additionally been processed on

the host (using system virtualization) and the real energy consumption of the host has been

measured by using the power meter. Each measurement was performed during a time period

of 20 min and has been repeated 5 times. The estimations of the energy consumption model

are compared with the measured energy consumption in Table 6.7. The results of the 5 mea-

surements were very similar and showed only minor variations, therefore, mean values are

presented. The first 4 lines of Table 6.7 show the energy consumption (in watt-hours) that is

Mean energy in 20 min
Description 1 PDE 2 PDEs 3 PDEs

Estimated energy Minimum load 3 idle VMs 28.3 Wh
consumption Eh

virt Workload office writing 28.5 Wh 28.7 Wh 28.9 Wh
(energy model) Workload web surfing 30.1 Wh 31.9 Wh 33.7 Wh

Workload calculations 30.7 Wh 33.1 Wh 35.6 Wh

Measured energy Minimum load 3 idle VMs 28.9 Wh
consumption Workload office writing 29.4 Wh 29.7 Wh 30.2 Wh

(power meter) Workload web surfing 31.4 Wh 33.7 Wh 34.3 Wh
Workload calculations 32.5 Wh 35.2 Wh 36.9 Wh

Mean error Minimum load 3 idle VMs 2%
Workload office writing 2.9% 3.3% 4.2%
Workload web surfing 4.3% 5.4% 1.8%
Workload calculations 5.4% 5.8% 3.5%

Table 6.7: Estimation vs. measurements
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estimated by the energy consumption model in this scenario. First, the estimated energy con-

sumption of the host is illustrated while it processes three idle PDEs (virtualization load) for

20 min. Then, the estimated energy consumption of the host is illustrated while it processes (1)

a single PDE, (2) two PDEs, and (3) three PDEs that perform office-writing tasks. Similarly,

the energy consumption of the host is illustrated if it processes one, two, and three PDEs that

perform web-surfing/calculation tasks. The second 4 lines of Table 6.7 show the measurements

that have been performed with the power meter for the same scenarios. It can be observed that

the estimated results are quite similar to the measured results. The last 4 lines illustrate the dif-

ferences between the estimated and the measured energy consumption. It can be observed that

the error of the estimated energy consumption is less than 6% for all of the measured scenar-

ios. This result indicates an accuracy of the host energy consumption model that is sufficient

to compare different office environments.

6.4.3 Energy states and PDE migration

This section describes further measurements that have been performed on two office hosts,

where the results have been used to parameterise the DES (see Section 6.3). Furthermore, the

measurements verify that PDE execution environments and PDE migration (as described in

Section 4.1) can be implemented by using currently available hard and software.

Measurements DES
Energy state mean min max

Shutdown host 8 s 7 s 10 s 0 min
Shutdown PDE 9 s 8 s 11 s 0 min

Boot host 44 s 40 s 51 s 1 min
Boot PDE 35 s 30 s 39 s 1 min

Suspend host 17 s 16 s 17 s 0 min
Suspend PDE 7 s 5 s 10 s 0 min
Resume host 41 s 40 s 43 s 1 min
Resume PDE 11 s 10 s 13 s 0 min

Table 6.8: Energy state measurements

First, the energy states (see Section 4.2.3) of the hosts were measured, where each measure-

ment was repeated 5 times. The results are illustrated in Table 6.8. The columns 2-4 illustrate
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the mean, minimum, and maximum result that has been measured. Column 5 shows how the

measured values are mapped to the discrete time (in minutes) of the DES.

In addition, the migration of PDEs has been performed between two office hosts, according

to Section 4.1.2. The standard PDE (SPDE) was stored on the hard discs of both hosts. It

consisted of 2.4 GB of data and was similar to the PDEs that have been described in Section

6.4.1. The PDE that has been transferred between the hosts, differed from the SPDE by 500 MB

of data (application data, user data, and user configurations) and 600 MB of current RAM state.

Therefore, about 1.1 GB of data needed to be transferred between the hosts. The rsync tool (see

Section 4.1.2) is able to create and merge binary differences of files through network connection

and was used to perform the PDE transfer. Based on the cold migration of suspended PDEs,

as it has been described in Section 4.1.2, a migration of the PDE has been performed via Fast

Ethernet:

1. The PDE on the source host was suspended. QEMU is able to suspend a PDE and to

store a snapshot of the PDE on the hard disc.

2. The rsync tool calculated the difference DIFF = SPDE - PDE and sent the difference to

host B, where PDE was recovered (PDE = DIFF + SPDE) and resumed.

The described migration has been repeated 5 times and the transfer speed of the migrations has

been measured. The PDE was transferred with an average transfer rate of 5.6 MB/s in the 5

migrations. It is important to see that this transfer rate was mainly limited by the rsync software

that needed to calculate the difference between PDE and SPDE. Although this experiment was

repeated using Gigabit Ethernet, the transfer rate didn’t increase significantly. The CPU load

of the sending host was on average 52% and the CPU load of the receiving host was on average

18%.

6.4.4 Conclusions

Concluding, the performed measurements validate the host-related part of the energy consump-

tion model that has been suggested in Chapter 5. The mean error between the energy consump-

tion that has been estimated by the energy consumption model and the real energy consumption

that has been measured by a power meter was less than 6% for all illustrated scenarios. This

result is quite similar to results that have been presented by Rivoire et al. [60], concerning

CPU load based power models for servers and the accuracy of 6% is sufficient to estimate and
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compare the energy consumption of different office environments as it has been done in Sec-

tion 6.3. Furthermore, the measurements show that the PDE execution environment that has

been described in Section 4.1.1 can be implemented by using currently available hardware and

software. Also the cold migration of PDEs (as it has been described in Section 4.1.2), has suc-

cessfully been performed and load and performance measurements have been presented. All

of the presented measurements have been adopted to parameterise the DES of Section 6.3.
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Chapter 7

Conclusions and Future Work

This thesis has proposed a virtualized office environment that enables the energy-efficient pro-

vision of services within offices. The PDE of each user is virtualized to enable a consolidation

of services and power management. This chapter sums up the main contributions and results

of the thesis, discusses the application of the suggested architecture, practical implications,

possible extensions, and potential integrations with other office-related solutions.

7.1 Main contributions and results

This thesis has analyzed the energy consumption within office environments and defined de-

sign principles of an energy-efficient office environment. Based on these design principles, a

virtualized office environment architecture has been developed. On one hand, the architecture

consists of a virtualization approach for office environments that is based on system virtual-

ization and a hybrid P2P overlay. On the other hand, it consists of an autonomic service and

resource management that achieves the energy-efficient and service-aware mapping of services

to office resources. To optimize this management, the thesis has defined energy-efficiency and

service-availability metrics that quantify efficiency and availability within office environments.

In contrast to related solutions, the suggested approach achieves consolidation on office hosts

that are already available within the office environment, without imposing any need for costly

and energy consuming data centre equipment.

Together with the suggested architecture, the thesis has presented an energy consumption

model of office environments that can be parameterised to model ordinary office environments

as well as virtualized office environments. It estimates the energy consumption of various office
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scenarios and enables the energy-based comparison of office environments. The host-related

part of the energy consumption model has been validated by measurements that have been

performed on physical hosts. The mean error between the energy consumption that has been

estimated by the energy consumption model and the energy consumption measured by a power

meter was less than 6% for all illustrated scenarios. This is supposed to be sufficient (according

to [60]) to estimate and compare the energy consumption of different office environments.

The energy efficiency of the suggested virtualized office environment has been theoreti-

cally proved with respect to the energy consumption model. Furthermore, a user model of

office environments has been suggested and Markov processes have been used to analyze the

impact of user behaviour on the virtualized office environment. Particularly, it was shown in

this analysis that for most of the evaluated user parameter settings, the virtualized office en-

vironment achieved higher energy efficiency than the ordinary office environment. Even in a

small office environment with only 10 users, the virtualized office environment was more than

twice as efficient as the ordinary office environment.

Moreover, this thesis has presented a discrete-event simulation of office environments that

enables the simulation and evaluation of various office scenarios (e.g., varying virtualization

approaches, management parameters, user behaviour, or office equipment). The evaluation

has shown that considerable energy savings are achieved for a variety of different parameter

settings. Energy is not only saved in office environments with non-energy-efficient hardware

where the potential for energy savings is high. Considerable savings are also achieved in of-

fice environments with up-to-date energy-efficient hardware. Up to 44% of energy savings

are achieved in the illustrated user scenarios and higher savings (52% and more) are possible,

considering different user behaviour. Another important result is the applicability of the virtu-

alized office environment architecture to small offices. Even in small office environments (e.g.,

4 or more users) the virtualized office environment is more energy efficient in certain scenarios

than an ordinary office environment and its efficiency increases very fast with an increasing

number of users. With a number of 8 users, e.g., already 20% of energy can be saved in the

illustrated scenarios. Also in large office environments energy efficiency is achieved by the

suggested architecture. If required, large office environments can be split into smaller sub-

environments without significantly decreasing the energy efficiency of the suggested approach.

Furthermore, the evaluation of the virtualized office environment has shown that energy ef-

ficiency is achieved without considerably decreasing the availability of office services. The

mean availability within the virtualized office environment in terms of the mean service ratio
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was at most 1.8% lower than in the ordinary office environment. Even in a specific worst case

scenario where simultaneous state changes of users were triggered within a short time period,

the mean service ratio was at most 8.9% lower than in the ordinary office environment. This

reduction of availability can be further decreased if the suggested architecture is extended, as

discussed in Section 7.2.

Concluding, this thesis has suggested a comprehensive solution to save energy within of-

fice environments. In particular, the suggested architecture has achieved the consolidation of

services on office hosts within office environments, which has been identified as the main re-

search topic of this thesis in Section 1.2. The thesis has verified two hypotheses according to

the suggested virtualized office environment: On one hand, it has been shown that the sug-

gested architecture reduces the energy consumption within office environments considerably

and consumes significantly less energy than ordinary office environments in various user and

office scenarios. On the other hand this thesis has illustrated that the suggested virtualized

office environment achieves energy efficiency without considerably decreasing the quality or

availability of office services. The virtualized office environment is a novel approach to achieve

energy efficiency within office environments. It consolidates services similar to virtual desktop

infrastructures (see Section 2.2.6) and it manages office resources energy efficiently similar to

power management solutions (see Section 2.2.5). Therefore, the presented architecture com-

bines advantages of both related solutions.

7.2 Application and practical implications

The virtualized office environment architecture can be applied to various office scenarios (as it

has been discussed in Section 7.1), where the achieved energy savings depend on the user be-

haviour, the energy consumption of the office equipment, and the size of the office environment.

Expected energy savings can be estimated by using the discrete-event simulation that has been

presented in this thesis. In particular, the application of the virtualized office environment to

small or medium sized office environments seems to be a highly interesting opportunity, where

other data centre-based solutions may not easily be applicable (see discussion of Section 2.2.6).

The virtualized office environment is solely software based, achieves energy efficiency even for

a small number of users, and doesn’t require costly and energy consuming centralized server

hardware or thin clients.
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Although the application of the suggested architecture to office environments is mostly

transparent to users, it has certain impact on user behaviour. Within ordinary office environ-

ments, users often deactivate power-management mechanisms because they feel bothered if

their host is automatically hibernated and needs to be started again. However, similar to office

wide power-management approaches (as discussed in 2.2.5), the virtualized office environment

enforces energy-efficient management within office environments. Additionally, the service

availability is reduced within the virtualized office environment, especially in extreme situa-

tions where many simultaneous state changes are triggered (e.g., when all office employees

start their working day simultaneously). The contradiction between energy efficiency and ser-

vice availability has been discussed in Section 4.2. The more patience users are prepared to

show, the more energy can be saved within the office. Possibly, if users don’t like to lose

control over their host, they may even try to prevent the energy-efficient management. This

kind of behavior has to be dealt with, either by convincing users to cooperate or by technical

countermeasures. The application of the virtualized office environment also has impact on the

administration of hosts and PDEs. In addition to typical administration tasks within ordinary

office environments, management parameters need to be set (e.g., migration ratio and critical

time period, see Section 4.2.4), sub-environments need to be defined, and users need to be

added to or removed from the system.

Resilience and security are highly important properties of the virtualized office environ-

ment as they heavily impact the acceptance of such an architecture. Due to the migration and

consolidation of PDEs and MIs, user and management data is distributed within the office en-

vironment. One one hand, the resilience of the virtualized office environment is in question

because PDEs or MIs might get damaged while being migrated from host to host or hosts may

be unplugged or break down while processing them. On the other hand, security issues are

in question because users have physical access to hosts that contain data of other users and

management data and are potentially able to copy or modify this data. Resilience and security

issues have been briefly discussed in Section 4.3 and will be a main part of the future work that

needs to be done with respect to the presented architecture.

7.3 Possible extensions and integration with other solutions

Important parts of the virtualized office environment have already been implemented (e.g.,

PDE management and PDE migration), some other parts of a full featured implementation are
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still missing. First, the virtual machine monitor needs to be extended to allow for the moni-

toring of PDE/user interaction and CPU utilisation. Second, the authentication of users within

the virtualized office environment needs to be achieved. Especially, the log-in from outside of

the office environment requires the MI to locate and activate requested PDEs for users. Fur-

thermore, the organization layer P2P overlay (see Section 4.1.3.3) needs to be implemented to

foster resilience within the virtualized office environment and to enable its administration.

The evaluation of the presented architecture shows that it achieves energy efficiency in

various office environment scenarios. The main problem, however, is the contradiction between

energy efficiency and service availability. To improve this situation, the resource management

needs to anticipate weather the user stops working for a long time period or if he has just

shortly interrupted his work. Only during long time periods PDEs need to be suspended or

migrated to save energy. There are several possible extensions that can be added to ease up

this situation: One possibility would be to implement a signalling between the user and the

resource management to clarify this critical situation, however, this involves the cooperation

of the user. Another possibility would be to apply machine-learning methods that adapt to

the individual behaviour of each user. A further solution would be a location-based power

management [88], where the current location of the user is traced (e.g., using the Bluetooth

function of the users mobile phone). When the user gets near his host, the PDE is resumed and

when he moves away it is suspended or migrated. Also the migration of PDEs within the office

environment can be improved. In particular, the adaption of the transient migration approach

(as discussed in Section 4.1.2) that enables a smooth switch between remote and local usage

of a PDE is highly interesting. It enables the usage of the PDE during the migration process,

effectively increasing the availability of PDEs within the virtualized office environment. Using

this approach, PDEs could be consolidated more often, which increases the energy efficiency

within the office environment.

The integration of the presented architecture with other solutions is a highly interesting re-

search area. Especially, the application of thin clients within the virtualized office environment

seems to be promising. This approach allows a reduction of the number of energy consuming

office hosts within the office environment. Only a part of the office users would utilise of-

fice hosts (e.g., half of the office users), while others would be provided with energy-efficient

thin clients. The PDEs of all users would be processed and managed by the virtualized of-

fice environment architecture. This approach doesn’t only increase the energy efficiency of the

suggested architecture (as thin clients consume less energy than office hosts) it also increases
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the availability of services because there is no need to migrate PDEs to or from thin clients.

Furthermore, a step-by-step approach would be possible in this approach, where only new em-

ployees or employees with failing hosts are provided with thin clients. One of the next steps

in the future work of the virtualized office environment will be the extension of the suggested

models and simulation to cope with thin clients. Especially, an analysis of the required min-

imum number of full-featured hosts in relation to thin clients will be performed and expected

energy savings will be estimated.

Similar to the virtualized office environment that is presented in this thesis, terminal server

and especially virtual desktop infrastructure solutions as they have been discussed in Sec-

tion 2.2.6 aim at providing desktop environments in offices energy efficiently. Although in

both approaches office desktops are consolidated, there is a main difference to the approach

suggested in this thesis: Terminal servers and virtual desktop infrastructures consolidate PDEs

on servers within the data centre, whereas the suggested virtual office environment achieves

the consolidation of PDEs on office hosts. The combination of these approaches is a highly

interesting research topic. It is important to see that some virtual desktop infrastructures al-

ready support a local mode1 that allows the provision of a managed desktop (a PDE in terms

of this thesis) on client hosts, which eases up a possible cooperation. The virtual office envi-

ronment could extend the capacities of a virtual desktop infrastructure by using office hosts to

store PDEs, leading to a reduced need of server hardware. In addition, the virtualized office

environment could be considered as backup solution to cover bottlenecks of the virtual desktop

infrastructure.

Also cloud computing (as discussed in Section 2.2.7) is an interesting approach to be com-

bined with the virtual office environment that has been presented in this thesis. In particular,

the infrastructure as a service paradigm can be used to process and store PDEs within the cloud,

similar to the virtual desktop infrastructure approach. Instead of hosting the users’ PDEs on

virtual desktop infrastructure servers within the own data centre, they can be hosted externally

by the cloud provider. This combination would allow a reduction of energy consuming hosts

within the office environment: Not all of the users would need an own host, a part of the users

could be provided with thin clients, instead. As long as possible, active PDEs would be pro-

cessed within the virtualized office environment. If the number of active PDEs gets too high,

however, they could be temporarily migrated into the cloud.

1VMWare View: http://www.vmware.com/products/view

144



References

[1] Fan, X., Weber, W., Barroso, L.: Power provisioning for a warehouse-sized computer. In:

Proceedings of the 34th annual international symposium on computer architecture, pp.

13–23. ACM New York, NY, USA (2007) 1, 25, 27, 84, 85

[2] Koomey, J.: Estimating total power consumption by servers in the US and the world.

Tech. rep., Lawrence Berkeley National Laboratory Stanford University (2007) 1, 23

[3] Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Quan Dang, M., Pen-

tikousis, K.: Energy-efficient cloud computing. The Computer Journal pp. 1–7 (2009).

DOI 10.1093/comjnl/bxp080 1, 24

[4] Bertoldi, P., Atanasiu, B.: Electricity consumption and efficiency trends in the enlarged

European Union. Institute for Environment and Sustainability, European Union (2007) 1

[5] Stobbe, L., Nissen, N., Proske, M., Middendorf, A., Schlomann, B., Friedewald, M.,

Georgieff, P., Leimbach, T.: Abschätzung des Energiebedarfs der weiteren Entwicklung

der Informationsgesellschaft: Bearbeitungsnummer ID 4-02 08 15-43/08. Abschluss-

bericht an das Bundesministerium für Wirtschaft und Technologie. Berlin, Karlsruhe:

Fraunhofer IZM p. 66ff. (2009) 1

[6] Webber, C., Roberson, J., McWhinney, M., Brown, R., Pinckard, M., Busch, J.: After-

hours power status of office equipment in the USA. Energy - The International Journal

31(14), 2487–2502 (2006) 2, 16, 32, 33, 96, 101

[7] Cartledge, C.: Sheffield ICT footprint commentary. Report for SusteIT (2008) 2, 32, 96

[8] Baun, C., Kunze, M., Ludwig, T.: Servervirtualisierung. Informatik-Spektrum 32(3),

197–205 (2009) 8

145



[9] Brendel, J.C.: Schöner schein? Linux Magazin: Technical Review 01 - Virtualisierung

Ressourcenmanagement auf neuem Level (2006) 8

[10] Group, S.A.V.W.: Virtualization: State of the art, version 1.0. Tech. rep., SCOPE Alliance

(2008) 8

[11] Lindholm, T., Yellin, F.: Java virtual machine specification. Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA (1999) 8

[12] Price, D., Tucker, A.: Solaris zones: Operating system support for consolidating com-

mercial workloads. In: Proceedings of the 18th USENIX conference on system adminis-

tration, pp. 241–254. USENIX Association (2004) 8

[13] Des Ligneris, B.: Virtualization of linux based computers: The linux-vserver project.

High Performance Computing Systems and Applications, Annual International Sym-

posium on 0, 340–346 (2005). DOI http://doi.ieeecomputersociety.org/10.1109/HPCS.

2005.59 8

[14] Kamp, P., Watson, R.: Jails: Confining the omnipotent root. In: Proc. 2nd Intl. SANE

Conference, pp. 99–1. Citeseer (2000) 8

[15] Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation archi-

tectures. Commun. ACM 17(7), 412–421 (1974) 9

[16] Bundesverband Informationswirtschaft Telekommunikation und neue Medien e.V.: En-

ergieeffizienz im Rechenzentrum. Telekommunikation und neue Medien 2, 10 (2008)

9

[17] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,

I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst. Rev. 37(5), 164–

177 (2003) 9, 12

[18] Johanssen, M.: Virtual system profile, DMTF standard dsp 1057. DMTF (2010) 10

[19] Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield,

A.: Live migration of virtual machines. In: 2nd conference on Symposium on Net-

worked Systems Design & Implementation (NSDI’05), pp. 273–286. USENIX Associa-

tion, Berkeley, CA, USA (2005) 10, 40, 48

146



[20] Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the USENIX

Annual Technical Conference, FREENIX Track, pp. 41–46. USENIX Association (2005)

11

[21] Whitaker, A., Cox, R.S., Shaw, M., Gribble, S.D.: Rethinking the design of virtual ma-

chine monitors. Computer 38(5), 57–62 (2005). DOI 10.1109/MC.2005.169 12

[22] Von Hagen, W.: Professional xen virtualization. Wiley-India (2008) 12

[23] Chisnall, D.: The Definitive Guide to the Xen Hypervisor (Prentice Hall Open Source

Software Development Series). Prentice Hall PTR, Upper Saddle River, NJ, USA (2007)

12

[24] Chowdhury, N., Boutaba, R.: A survey of network virtualization. Computer Networks

54(5), 862–876 (2010) 13

[25] Feamster, N., Gao, L., Rexford, J.: How to lease the Internet in your spare time. SIG-

COMM Comput. Commun. Rev. 37(1), 61–64 (2007) 13

[26] Jeffree, T., Seaman, M.: IEEE standards for local and metropolitan area networks: Virtual

bridged local area networks, IEEE standard 802.1q-2005. IEEE (2006) 13

[27] Kent, S., Seo, K.: Security architecture for the Internet protocol, IETF rfc 4301. IEEE

(2005) 13

[28] Berl, A., Fischer, A., De Meer, H.: Using system virtualization to create virtualized net-

works. Electronic Communications of the EASST 17, 1–12 (2009) 13

[29] Egi, N., Greenhalgh, A., Handley, M., Hoerdt, M., Mathy, L., Schooley, T.: Evaluating

xen for router virtualization. In: 16th Int. Conf. on Comp. Commun. and Networks -

ICCCN 2007, pp. 1256–1261 (2007) 13

[30] Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing network virtualization in xen. In:

USENIX Annual Technical Conference, pp. 15–28 (2006) 13

[31] Wang, Y., Keller, E., Biskeborn, B., van der Merwe, J., Rexford, J.: Virtual routers on the

move: Live router migration as a network-management primitive. SIGCOMM Comput.

Commun. Rev. 38(4), 231–242 (2008) 13

147



[32] Campbell, A.T., De Meer, H., Kounavis, M.E., Miki, K., Vicente, J.B., Villela, D.: A

survey of programmable networks. SIGCOMM Comput. Commun. Rev. 29(2), 7–23

(1999) 13

[33] Steinmetz, R., Wehrle, K.: Peer-to-Peer Systems and Applications (LNCS). Springer-

Verlag New York, Secaucus, NJ, USA (2005) 14, 50, 116

[34] Tutschku, K., Berl, A., Hoßfeld, T., De Meer, H.: Mobile Peer-to-Peer Computing for

Next Generation Distributed Environments: Advancing Conceptual and Algorithmic Ap-

plications, chap. Mobile P2P in Cellular Networks: Architecture and Performance, pp.

349–373. IGI Global (2009). DOI 10.4018/978-1-60566-715-7 14

[35] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable

peer-to-peer lookup service for Internet applications. In: SIGCOMM ’01, pp. 149–160.

ACM Press (2001). DOI http://doi.acm.org/10.1145/383059.383071 14, 52, 53

[36] Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), vol. 11, pp. 329–350. Heidelberg (2001) 14

[37] Cohen, B.: Incentives build robustness in BitTorrent. In: Workshop on Economics of

Peer-to-Peer Systems, vol. 6. Berkeley, CA, USA (2003) 14

[38] Intel, Agency, U.E.P.: ENERGY STAR* system implementation, whitepaper. SIG-

COMM Comput. Commun. Rev. (2007) 16

[39] Intel: White paper 30057701. wireless Intel speedstep power manager: Optimizing power

consumption for the Intel pxa27x processor family (2004) 16

[40] Intel, Agency, U.E.P.: Virtualization can help power efficiency. SIGCOMM Comput.

Commun. Rev. (2007) 16

[41] Hewlett-Packard: Microsoft, Phoenix, and Toshiba. advanced configuration and power

interface specification. ACPI Specification Document 3 (2004) 16

[42] Liu, C., Qin, X., Kulkarni, S., Wang, C., Li, S., Manzanares, A., Baskiyar, S.: Distributed

energy-efficient scheduling for data-intensive applications with deadline constraints on

data grids. In: IEEE International Performance, Computing and Communications Con-

ference, 2008. IPCCC 2008, pp. 26–33 (2008) 17

148



[43] Li, C., Li, L.: Utility-based scheduling for grid computing under constraints of energy

budget and deadline. Computer Standards & Interfaces (2008) 17

[44] Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power analysis

and modeling for server environments. In: Workshop on Modeling, Benchmarking, and

Simulation (MoBS) (2006) 17

[45] Chase, J., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing energy and server

resources in hosting centers. In: Proceedings of the eighteenth ACM symposium on

Operating systems principles, pp. 103–116. ACM New York, NY, USA (2001) 17

[46] Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server

provisioning and load dispatching for connection-intensive Internet services. In: Proceed-

ings of the 5th USENIX Symposium on Networked Systems Design and Implementation

table of contents, pp. 337–350. USENIX Association (2008) 17

[47] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier

Internet applications. In: Autonomic Computing, 2005. ICAC 2005. Proceedings. Second

International Conference on, pp. 217–228 (2005) 17

[48] Hlavacs, H., Hummel, K.A., Weidlich, R., Houyou, A.M., Berl, A., De Meer, H.: Dis-

tributed energy efficiency in future home environments. Annals of Telecommunica-

tion: Next Generation Network and Service Management 63(9), 473–485 (2008). DOI

10.1007/s12243-008-0045-2 18

[49] Berl, A., De Meer, H., Hlavacs, H., Treutner, T.: Virtualization in energy-efficient future

home environments. IEEE Communications Magazine 47(12), 62–67 (2009). DOI 10.

1109/MCOM.2009.5350370 18

[50] Berl, A., Hlavacs, H., Weidlich, R., Schrank, M., De Meer, H.: Network virtualization in

future home environments. In: Proc. of the 20th Int’l Workshop on Distributed Systems:

Operations and Management (DSOM09), Lecture Notes in Computer Science (LNCS),

vol. 5841, pp. 177–190. Springer Verlag (2009). DOI 10.1007/978-3-642-04989-7_14

18

[51] Hlavacs, H., Weidlich, R., Treutner, T.: Energy saving in future home environments. In:

2nd Home Networking Conference at IFIP Wireless Days. Dubai, United Arab Emirates

(2008) 18

149



[52] Garcia, A.E., Berl, A., Hummel, K.A., Weidlich, R., Houyou, A.M., Hackbarth, K.D.,

De Meer, H., Hlavacs, H.: An economical cost model for fair resource sharing in virtual

home environments. In: Proc. of the 4th Euro-NGI Int’l Conf. on Next Generation Internet

Networks (NGI 2008), pp. 153–160. IEEE Press (2008). DOI 10.1109/NGI.2008.27 18

[53] Satyanarayanan, M., Gilbert, B., Toups, M., Tolia, N., O’Hallaron, D., Surie, A., Wol-

bach, A., Harkes, J., Perrig, A., Farber, D., et al.: Pervasive personal computing in an

Internet suspend/resume system. IEEE Internet Computing pp. 16–25 (2007) 19, 20, 48

[54] Kozuch, M.: Enterprise client management with Internet suspend/resume. Relation

10(1.15), 3749 (2004) 19

[55] Kozuch, M., Satyanarayanan, M.: Internet suspend/resume. In: Proceedings of the Fourth

IEEE Workshop on Mobile Computing Systems and Applications, p. 40. IEEE Computer

Society (2002) 19

[56] Vereecken, W., Deboosere, L., Simoens, P., Vermeulen, B., Colle, D., Develder, C., Pick-

avet, M., Dhoedt, B., Demeester, P.: Power efficiency of thin clients. European Transac-

tions on Telecommunications 13(0), 1–13 (2009) 21, 26, 27, 28, 30, 90

[57] Vaquero, L., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: Towards

a cloud definition. ACM SIGCOMM Computer Communication Review 39(1), 50–55

(2008) 23

[58] Hewitt, C.: Orgs for scalable, robust, privacy-friendly client cloud computing. IEEE In-

ternet Computing 12(5), 96–99 (2008). DOI http://doi.ieeecomputersociety.org/10.1109/

MIC.2008.107 23

[59] Vaquero, L., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: Towards

a cloud definition. ACM SIGCOMM Computer Communication Review 39(1), 50–55

(2008) 23

[60] Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system

power models. In: HotPower. USENIX Association (2008) 25, 26, 27, 84, 137, 140

[61] Heath, T., Diniz, B., Carrera, E., et al.: Energy conservation in heterogeneous server

clusters. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles and

practice of parallel programming, p. 195. ACM (2005) 26

150



[62] Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power analysis

and modeling for server environments. In: Workshop on Modeling, Benchmarking, and

Simulation (MoBS). Citeseer (2006) 27

[63] Qu, G., Kawabe, N., Usami, K., Potkonjak, M.: Function-level power estimation method-

ology for microprocessors. In: Proceedings of the 37th Annual Design Automation Con-

ference, pp. 810–813. ACM (2000) 27

[64] Li, T., John, L.: Run-time modeling and estimation of operating system power consump-

tion. ACM SIGMETRICS Performance Evaluation Review 31(1), 171 (2003) 27

[65] Tan, T., Raghunathan, A., Jha, N.: Energy macromodeling of embedded operating sys-

tems. ACM Transactions on Embedded Computing Systems (TECS) 4(1), 254 (2005)

27

[66] Allalouf, M., Arbitman, Y., Factor, M., Kat, R., Meth, K., Naor, D.: Storage modeling for

power estimation. In: The Israeli Experimental Systems Conference (SYSTOR 2009),

pp. 1–10. ACM (2009) 27

[67] Zedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishnamurthy, A., Wang, R.: Modeling

hard-disk power consumption. In: FAST’03. USENIX Association (2003) 27

[68] Seo, C., Edwards, G., Popescu, D., Malek, S., Medvidovic, N.: A framework for es-

timating the energy consumption induced by a distributed system’s architectural style.

In: Proceedings of the 8th international workshop on Specification and verification of

component-based systems, pp. 27–34. ACM (2009) 29

[69] Ye, T., Micheli, G., Benini, L.: Analysis of power consumption on switch fabrics in

network routers. In: Proceedings of the 39th annual Design Automation Conference, p.

529. ACM (2002) 30

[70] Wang, H., Peh, L., Malik, S.: A power model for routers: Modeling alpha 21364 and

infiniband routers. IEEE MICRO pp. 26–35 (2003) 30

[71] Kahng, A., Li, B., Peh, L., Samadi, K.: Orion 2.0: A fast and accurate noc power and

area model for early-stage design space exploration. In: Design, Automation, and Test in

Europe, pp. 423–428 (2009) 30

151



[72] Berl, A., De Meer, H.: A virtualized energy-efficient office environment. In: Proc. of

the ACM SIGCOMM 1st Int’l Conf. On Energy-Efficient Computing and Networking

(e-Energy 2010), pp. 11–20. ACM (2010). DOI 10.1145/1791314.1791317 31

[73] Cisco Systems, I.: Cisco catalyst 3560 series switches data sheet. Cisco white paper

(2008) 33, 96

[74] Berl, A., De Meer, H.: Energy-efficient office environments. In: Proc. of the COST

Action IC0804 on Energy Efficiency in Large Scale Distributed Systems - 1st Year, pp.

101–105. COST office (2010) xi, 37

[75] Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland, Y., van Hoff, A.,

Hellerstein, D.: Delta encoding in http, IETF rfc 3229. IEEE (2002) 46

[76] Berl, A., De Meer, H.: An energy-efficient distributed office environment. In: Proc. of

the 1st Int’l Conf. on Emerging Network Intelligence EMERGING 2009 - Includes the

5th European Conf. on Universal Multiservice Networks (ECUMN 2009), pp. 117–122.

IEEE Press (2009). DOI 10.1109/EMERGING.2009.13 48

[77] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler, M., Noveck, D.:

Network file system (nfs) version 4 protocol, IETF rfc3530. IEEE (2003) 48

[78] Berl, A., De Meer, H.: Integrating mobile cellular devices into popular peer-to-peer sys-

tems. Telecommunication Systems 48(12), – (2011). DOI 10.1007/s11235-010-9327-x

50, 53, 54

[79] Berl, A., Race, N., Ishmael, J., De Meer, H.: Network virtualization in energy-efficient

office environments. Computer Networks 54(16), 2856–2868 (2010). DOI DOI:10.1016/

j.comnet.2010.07.019 50, 55

[80] Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings of

the First International Conference on Peer-to-Peer Computing, pp. 99–100 (2001) 52

[81] Gupta, I., Birman, K., Linga, P., Demers, A., Renesse, R.V.: Renesse. kelips: Building

an effcient and stable p2p dht through increased memory and background overhead. In:

In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03

(2003) 53

152



[82] Falkner, J., Piatek, M., John, J.P., Krishnamurthy, A., Anderson, T.: Profiling a million

user dht. In: IMC ’07: Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement, pp. 129–134. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/

10.1145/1298306.1298325 53

[83] Beverly Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Data Engi-

neering, 2003. Proceedings. 19th International Conference on, pp. 49–60 (2003) 53

[84] Benz, B.: Arbeitstiere. c’t Magazin für Computer Technik 15, 128–135 (2010) 57, 96,

114

[85] Rivoire, S., Shah, M.A., Ranganathan, P., Kozyrakis, C.: Joulesort: A balanced energy-

efficiency benchmark. In: Proceedings of the 2007 ACM SIGMOD international confer-

ence on Management of data, SIGMOD ’07, pp. 365–376. ACM, New York, NY, USA

(2007). DOI http://doi.acm.org/10.1145/1247480.1247522 94

[86] Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing Networks and Markov

Chains - 2nd Edition, 2nd edn. John Wiley & Sons (2006). DOI 10.1002/0471791571

103

[87] Wüchner, P., De Meer, H., Barner, J., Bolch, G.: A brief introduction to mosel-2. MMB

2006 (2006) 103

[88] Harris, C., Cahill, V.: Exploiting user behaviour for context-aware power management.

In: Wireless And Mobile Computing, Networking And Communications, vol. 4, pp. 122–

130. IEEE (2005) 143

153


	List of Figures
	List of Tables
	List of Definitions
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Energy consumption within office computing environments
	1.2 Solution approach
	1.3 Contribution of this thesis
	1.4 Thesis structure

	2 Related Work
	2.1 Virtualization
	2.1.1 Host virtualization
	2.1.2 Network virtualization

	2.2 Energy efficiency in distributed environments
	2.2.1 Power-management features of hosts
	2.2.2 Grid and cluster computing
	2.2.3 Future home environments
	2.2.4 Internet Suspend/Resume
	2.2.5 Office power management
	2.2.6 Terminal servers and virtual desktop infrastructures
	2.2.7 Cloud computing

	2.3 Power consumption models
	2.3.1 Host models
	2.3.2 Networked architecture models


	3 Energy-Efficient Office Design
	3.1 Energy-saving potential
	3.2 Design principles
	3.3 Requirements and challenges

	4 Virtualized Office Environment Architecture
	4.1 Virtualization of office resources
	4.1.1 PDE execution environments
	4.1.2 PDE migration
	4.1.3 Distributed resource management

	4.2 PDE management
	4.2.1 Energy states of hosts and PDEs
	4.2.2 Energy-optimal PDE management
	4.2.3 Service-optimal PDE management
	4.2.4 Energy and service-aware PDE management
	4.2.5 Energy efficiency and availability trade-off

	4.3 Resilience and security issues
	4.4 Architecture overview

	5 Energy Consumption Model
	5.1 Host power consumption model
	5.1.1 Power consumption characteristic
	5.1.2 Ordinary host model
	5.1.3 Virtualized host model

	5.2 Network power consumption model
	5.2.1 Power consumption characteristic
	5.2.2 Ordinary network model
	5.2.3 Virtualized network model

	5.3 Office energy consumption
	5.4 Energy efficiency proof

	6 Evaluation
	6.1 User model
	6.2 Markov process
	6.2.1 Work time scenario and modelling
	6.2.2 PDE management
	6.2.3 Evaluation
	6.2.4 Conclusions

	6.3 Discrete-event simulation
	6.3.1 DES implementation and validation
	6.3.2 Parameter settings
	6.3.3 Evaluation
	6.3.4 Conclusions

	6.4 Measurements
	6.4.1 Power meter and systems under test
	6.4.2 Validation of the energy consumption model
	6.4.3 Energy states and PDE migration
	6.4.4 Conclusions


	7 Conclusions and Future Work
	7.1 Main contributions and results
	7.2 Application and practical implications
	7.3 Possible extensions and integration with other solutions

	References

