647 research outputs found

    Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions

    Get PDF
    The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.Comment: arXiv admin note: text overlap with arXiv:0810.101

    Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping

    Full text link
    Presented here is a study of a viscoelastic wave equation with supercritical source and damping terms. We employ the theory of monotone operators and nonlinear semigroups, combined with energy methods to establish the existence of a unique local weak solution. In addition, it is shown that the solution depends continuously on the initial data and is global provided the damping dominates the source in an appropriate sense.Comment: The 2nd version includes a new proof of the energy identit

    Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    Get PDF
    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the Kelvin-Voigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained

    Blow up Analysis for Anomalous Granular Gases

    Full text link
    We investigate in this article the long-time behaviour of the solutions to the energy-dependant, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that energy dissipation increases when temperature decreases. This allows the gas to cool down in finite time. We study existence and uniqueness of blow up profiles for this model, together with the trend to equilibrium and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we investigate the asymptotic behaviour of the inelastic Boltzmann equation with and without drift term by introducing new strongly "nonlinear" self-similar variables.Comment: 20
    • …
    corecore