14,833 research outputs found

    Quantum Cyber-Attack on Blockchain-based VANET

    Full text link
    Blockchain-based Vehicular Ad-hoc Network (VANET) is widely considered as secure communication architecture for a connected transportation system. With the advent of quantum computing, there are concerns regarding the vulnerability of this architecture against cyber-attacks. In this study, a potential threat is investigated in a blockchain-based VANET, and a corresponding quantum cyber-attack is developed. Specifically, a quantum impersonation attack using Quantum-Shor algorithm is developed to break the Rivest-Shamir-Adleman (RSA) encrypted digital signatures of VANET and thus create a threat for the trust-based blockchain scheme of VANET. A blockchain-based VANET, vehicle-to-everything (V2X) communication, and vehicular mobility are simulated using OMNET++, the extended INET library, and vehicles-in-network simulation (VEINS) along with simulation of urban mobility (SUMO), respectively. A small key RSA based message encryption is implemented using IBM Qiskit, which is an open-source quantum software development kit. The findings reveal that the quantum cyber-attack, example, impersonation attack is able to successfully break the trust chain of a blockchain-based VANET. This highlights the need for a quantum secured blockchain.Comment: This paper consists of 10 pages with 7 figures. It has been submitted to IEEE Internet of Things Journa

    Blockchain-enabled Wireless IoT Networks with Multiple Communication Connections

    Get PDF
    Blockchain-enabled wireless network has been recognized as an emerging network architecture to be widely employed into the Internet of Things (IoT) ecosystems for establishing trust and consensus mechanisms without the involvement of a third party. However, the uncertainty and vulnerability of wireless channels among the IoT nodes may pose a serious challenge to facilitate the deployment of blockchain in wireless networks. In this paper, we first present a generic system model for blockchain enabled wireless networks with multiple communication connections, where the number of communication connections between a client IoT node and the blockchain full nodes can be any arbitrary positive integer to satisfy different security requirements. Based on the proposed spatial-temporal network model, we theoretically calculate the transmission successful probability and the required communication throughput to support a wireless blockchain network. Finally, simulation results validate the accuracy of our theoretical analysis

    Performance Analysis for Blockchain Driven Wireless IoT Systems Based on Tempo-Spatial Model

    Get PDF
    Blockchain has shown a great potential for Internet of Things (IoT) systems to establish trust and consensus mechanisms with no involvement of any third party. It has been not clear how the low complexity devices and the wireless communications among them can pose constraints on the blockchain enabled IoT systems. In this paper, we establish a fundamental analysis model to underpin the blockchain enabled IoT system. By considering spatio-temporal domain Poisson distribution, i.e., node geographical distribution and transaction arrival rate in time domain are both modeled as Poisson point process (PPP), we first derive the distribution of signal-to-interference-plus-noise ratio (SINR), blockchain transaction successful rate as well as overall throughput. Then, based on the analytical model, we design an optimal full function node deployment for blockchain system to achieve the maximum transaction throughput with the minimum full function node density. Numerical results validate the accuracy of our theoretical analysis and evaluate the relationship between blockchain full function node deployment and the density of IoT nodes

    A Blockchain-Enabled Model to Enhance Disaster Aids Network Resilience

    Get PDF
    The disaster area is a true dynamic environment. Lack of accurate information from the affected area create several challenges in distributing the supplies. The success of a disaster response network is based on collaboration, coordination, sovereignty, and equality in relief distribution. Therefore, a trust-based dynamic communication system is required to facilitate the interactions, enhance the knowledge for the relief operation, prioritize, and coordinate the goods distribution. One of the promising innovative technologies is blockchain technology which enables transparent, secure, and real-time information exchange and automation through smart contracts in a distributed technological ecosystem. This study aims to analyze the application of blockchain technology on disaster management resilience. Blockchain technology, the Internet of Things (IoT), and Dynamic Voltage Frequency Scaling (DVFS) algorithm are integrated in a network-based simulation. The results indicate an advancement in disaster-aids network strategies using smart contracts for collaborations. From the investigations, insights have been derived for researchers in the field and the managers interested in practical implementation

    Di-ANFIS: an integrated blockchain–IoT–big data-enabled framework for evaluating service supply chain performance

    Get PDF
    Service supply chain management is a complex process because of its intangibility, high diversity of services, trustless settings, and uncertain conditions. However, the traditional evaluating models mostly consider the historical performance data and fail to predict and diagnose the problems’ root. This paper proposes a distributed, trustworthy, tamper-proof, and learning framework for evaluating service supply chain performance based on Blockchain and Adaptive Network-based Fuzzy Inference Systems (ANFIS) techniques, named Di-ANFIS. The main objectives of this research are: 1) presenting hierarchical criteria of service supply chain performance to cope with the diagnosis of the problems’ root; 2) proposing a smart learning model to deal with the uncertainty conditions by a combination of neural network and fuzzy logic, 3) and introducing a distributed Blockchain-based framework due to the dependence of ANFIS on big data and the lack of trust and security in the supply chain. Furthermore, the proposed six-layer conceptual framework consists of the data layer, connection layer, Blockchain layer, smart layer, ANFIS layer, and application layer. This architecture creates a performance management system using the Internet of Things (IoT), smart contracts, and ANFIS based on the Blockchain platform. The Di-ANFIS model provides a performance evaluation system without needing a third party and a reliable intermediary that provides an agile and diagnostic model in a smart and learning process. It also saves computing time and speeds up information flow.Service supply chain management is a complex process because of its intangibility, high diversity of services, trustless settings, and uncertain conditions. However, the traditional evaluating models mostly consider the historical performance data and fail to predict and diagnose the problems’ root. This paper proposes a distributed, trustworthy, tamper-proof, and learning framework for evaluating service supply chain performance based on Blockchain and Adaptive Network-based Fuzzy Inference Systems (ANFIS) techniques, named Di-ANFIS. The main objectives of this research are: 1) presenting hierarchical criteria of service supply chain performance to cope with the diagnosis of the problems’ root; 2) proposing a smart learning model to deal with the uncertainty conditions by a combination of neural network and fuzzy logic, 3) and introducing a distributed Blockchain-based framework due to the dependence of ANFIS on big data and the lack of trust and security in the supply chain. Furthermore, the proposed six-layer conceptual framework consists of the data layer, connection layer, Blockchain layer, smart layer, ANFIS layer, and application layer. This architecture creates a performance management system using the Internet of Things (IoT), smart contracts, and ANFIS based on the Blockchain platform. The Di-ANFIS model provides a performance evaluation system without needing a third party and a reliable intermediary that provides an agile and diagnostic model in a smart and learning process. It also saves computing time and speeds up information flow

    Towards Secure and Fair IIoT-Enabled Supply Chain Management via Blockchain-based Smart Contracts

    Get PDF
    Integrating the Industrial Internet of Things (IIoT) into supply chain management enables flexible and efficient on-demand exchange of goods between merchants and suppliers. However, realizing a fair and transparent supply chain system remains a very challenging issue due to the lack of mutual trust among the suppliers and merchants. Furthermore, the current system often lacks the ability to transmit trade information to all participants in a timely manner, which is the most important element in supply chain management for the effective supply of goods between suppliers and the merchants. This thesis presents a blockchain-based supply chain management system in the IIoT. The proposed system takes advantage of blockchain technology in terms of its transparency and tamper-proof nature to support fair goods exchange between merchants and suppliers. Additionally, the decentralization and pseudonymity property will play a significant role in preserving the privacy of participants in the blockchain. In particular, fairness in the IIoT is first defined. Then, a design for a smart contract for fair goods exchange is presented to prevent malicious behaviour through imposing penalties. The proposed system was prototyped on Ethereum and experiments were conducted to demonstrate its feasibility

    Integration of Hardware Security Modules and Permissioned Blockchain in Industrial IoT Networks

    Get PDF
    Hardware Security Modules (HSM) serve as a hardware based root of trust that offers physical protection while adding a new security layer in the system architecture. When combined with decentralized access technologies as Blockchain, HSM offers robustness and complete reliability enabling secured end-toend mechanisms for authenticity, authorization and integrity. This work proposes an ef cient integration of HSM and Blockchain technologies focusing on, mainly, public-key cryptography algorithms and standards, that result crucial in order to achieve a successful combination of the mentioned technologies to improve the overall security in Industrial IoT systems. To prove the suitability of the proposal and the interaction of an IoT node and a Blockchain network using HSM a proof of concept is developed. Results of time performance analysis of the prototype reveal how promising the combination of HSMs in Blockchain environments is.Infineon Technologies AGEuropean Union's Horizon 2020 Research and Innovation Program through the Cyber Security 4.0: Protecting the Industrial Internet of Things (C4IIoT) 833828FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades B-TIC-588-UGR2

    Holistic Blockchain Approach to Foster Trust, Privacy and Security in IoT Based Ambient Assisted Living Environment

    Get PDF
    The application of blockchains techniques in the Internet of Things (IoT) is gaining much attention with new solutions proposed in diverse areas of the IoT. Conventionally IoT systems are designed to follow the centralised paradigm where security and privacy control is vested on a 'trusted' third-party. This design leaves the user at the mercy of a sovereign broker and in addition, susceptible to several attacks. The implicit trust and the inferred reliability of centralised systems have been challenged recently following several privacy violations and personal data breaches. Consequently, there is a call for more secure decentralised systems that allows for finer control of user privacy while providing secure communication. Propitiously, the blockchain holds much promise and may provide the necessary framework for the design of a secure IoT system that guarantees fine-grained user privacy in a trustless manner. In this paper, we propose a holistic blockchain-based decentralised model for Ambient Assisted Living (AAL) environment. The nodes in our proposed model utilize smart contracts to define interaction rules while working collaboratively to contribute storage and computing resources. Based on the blockchain technique, our proposed model promotes trustless interaction and enhanced user's privacy through the blockchain-Interplanetary File System (IPFS) alliance. The proposed model also addresses the shortfall of storage constraints exhibited in many IoT systems

    Blockchain systems, technologies and applications: a methodology perspective

    Get PDF
    In the past decade, blockchain has shown a promising vision to build trust without any powerful third party in a secure, decentralized and scalable manner. However, due to the wide application and future development from cryptocurrency to the Internet of things, blockchain is an extremely complex system enabling integration with mathematics, computer science, communication and network engineering, etc. By revealing the intrinsic relationship between blockchain and communication, networking and computing from a methodological perspective, it provided a view to the challenge that engineers, experts and researchers hardly fully understand the blockchain process in a systematic view from top to bottom. In this article we first introduce how blockchain works, the research activities and challenges, and illustrate the roadmap involving the classic methodologies with typical blockchain use cases and topics. Second, in blockchain systems, how to adopt stochastic process, game theory, optimization theory, and machine learning to study the blockchain running processes and design the blockchain protocols/algorithms are discussed in details. Moreover, the advantages and limitations using these methods are also summarized as the guide of future work to be further considered. Finally, some remaining problems from technical, commercial and political views are discussed as the open issues. The main findings of this article will provide a survey from a methodological perspective to study theoretical model for blockchain fundamentals understanding, design network service for blockchain-based mechanisms and algorithms, as well as apply blockchain for the Internet of things, etc
    • …
    corecore