4,537 research outputs found

    A Blind Source Separation Method for Chemical Sensor Arrays based on a Second-order mixing model

    No full text
    International audienceIn this paper we propose a blind source separation method to process the data acquired by an array of ion-selective electrodes in order to measure the ionic activity of different ions in an aqueous solution. While this problem has already been studied in the past, the method presented differs from the ones previously analyzed by approximating the mixing function by a second-degree polynomial, and using a method based on the differential of the mutual information to adjust the parameter values. Experimental results, both with synthetic and real data, suggest that the algorithm proposed is more accurate than the other models in the literature

    Source Separation in Chemical Analysis : Recent Achievements and Perspectives

    Get PDF
    International audienceSource separation is one of the most relevant estimation problems found in chemistry. Indeed, dealing with mixtures is paramount in different kinds of chemical analysis. For instance, there are some cases where the analyte is a chemical mixture of different components, e.g., in the analysis of rocks and heterogeneous materials through spectroscopy. Moreover, a mixing process can also take place even when the components are not chemically mixed. For instance, in ionic analysis of liquid samples, the ions are not chemically connected, but, due to the lack of selectivity of the chemical sensors, the acquired responses may be influenced by ions that are not the desired ones. Finally, there are some situations where the pure components cannot be isolated chemically since they appear only in the presence of other components. In this case, BSS may provide these components that cannot be retrieved otherwise. In this paper, our aim is to shed some light on the use of BSS in chemical analysis. In this context, we firstly provide a brief overview on source separation (Section II), with particular attention to the classes of linear and nonlinear mixing models (Sections III and IV, respectively). Then, (in Section V), we will give some conclusions and focus on challenging aspects that are found in chemical analysis. Although dealing with a relatively new field of applications, this article is not an exhaustive survey of source separation methods and algorithms, since there are solutions originated in closely related domains (e.g. remote sensing and hyperspectral imaging) that suit well several problems found in chemical analysis. Moreover, we do not discuss the supervised source separation methods, which are basically multivariate regression techniques, that one can find in chemometrics

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Blind Source Separation of Overdetermined Linear-Quadratic Mixtures

    No full text
    ISBN 978-3-642-15994-7, SoftcoverInternational audienceThis work deals with the problem of source separation in overdetermined linear-quadratic (LQ) models. Although the mixing model in this situation can be inverted by linear structures, we show that some simple independent component analysis (ICA) strategies that are often employed in the linear case cannot be used with the studied model. Motivated by this fact, we consider the more complex yet more robust ICA framework based on the minimization of the mutual information. Special attention is given to the development of a solution that be as robust as possible to suboptimal convergences. This is achieved by defining a method composed of a global optimization step followed by a local search procedure. Simulations confirm the effectiveness of the proposal

    Post-Nonlinear Mixtures and Beyond

    Get PDF
    Although sources in general nonlinear mixturm arc not separable iising only statistical independence, a special and realistic case of nonlinear mixtnres, the post nonlinear (PNL) mixture is separable choosing a suited separating system. Then, a natural approach is based on the estimation of tho separating Bystem parameters by minimizing an indcpendence criterion, like estimated mwce mutual information. This class of methods requires higher (than 2) order statistics, and cannot separate Gaarsian sources. However, use of [weak) prior, like source temporal correlation or nonstationarity, leads to other source separation Jgw rithms, which are able to separate Gaussian sourra, and can even, for a few of them, works with second-order statistics. Recently, modeling time correlated s011rces by Markov models, we propose vcry efficient algorithms hmed on minimization of the conditional mutual information. Currently, using the prior of temporally correlated sources, we investigate the fesihility of inverting PNL mixtures with non-bijectiw non-liacarities, like quadratic functions. In this paper, we review the main ICA and BSS results for riunlinear mixtures, present PNL models and algorithms, and finish with advanced resutts using temporally correlated snu~s

    An overview of signal processing issues in chemical sensing

    No full text
    International audienceThis tutorial paper aims at summarizing some problems, ranging from analytical chemistry to novel chemical sensors, that can be addressed with classical or advanced methods of signal and image processing. We gather them under the denomination of "chemical sensing". It is meant to introduce the special session "Signal Processing for Chemical Sensing" with a large overview of issues which have been and remain to be addressed in this application domain, including chemical analysis leading to PARAFAC/tensor methods, hyper spectral imaging, ion-sensitive sensors, artificial nose, chromatography, mass spectrometry, etc. For enlarging and illustrating the points of view of this tutorial, the invited papers of the session consider other applications (NMR, Raman spectroscopy, recognition of explosive compounds, etc.) addressed by various methods, e.g. source separation, Bayesian, and exploiting typical chemical signal priors like positivity, linearity, unit-concentration or sparsity

    A Sparsity-Based Method for Blind Compensation of a Memoryless Nonlinear Distortion: Application to Ion-Selective Electrodes

    No full text
    International audience— In this paper, we propose a method for blind compensation of a memoryless nonlinear distortion. We assume as prior information that the desired signal admits a sparse representation in a transformed domain that should be known in advance. Then, given that a nonlinear distortion tends to generate signals that are less sparse than the desired one, our proposal is to build a compensating function model that gives rise to a maximally sparse signal. The implementation of this proposal has, as central elements, a criterion built upon an approximation of the 0-norm, the use of polynomial functions as compensating structures, and an optimization strategy based on sequential quadratic programming. We provide a theoretic analysis for an 0-norm criterion and results considering synthetic data. We also employ the method in an actual application related to chemical analysis via ion-selective electrode arrays

    Technical report on Separation methods for nonlinear mixtures

    Get PDF

    Single-channel source separation using non-negative matrix factorization

    Get PDF
    • …
    corecore