2,012 research outputs found

    Knowledge Based Systems: A Critical Survey of Major Concepts, Issues, and Techniques

    Get PDF
    This Working Paper Series entry presents a detailed survey of knowledge based systems. After being in a relatively dormant state for many years, only recently is Artificial Intelligence (AI) - that branch of computer science that attempts to have machines emulate intelligent behavior - accomplishing practical results. Most of these results can be attributed to the design and use of Knowledge-Based Systems, KBSs (or ecpert systems) - problem solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. These systems can act as a consultant for various requirements like medical diagnosis, military threat analysis, project risk assessment, etc. These systems possess knowledge to enable them to make intelligent desisions. They are, however, not meant to replace the human specialists in any particular domain. A critical survey of recent work in interactive KBSs is reported. A case study (MYCIN) of a KBS, a list of existing KBSs, and an introduction to the Japanese Fifth Generation Computer Project are provided as appendices. Finally, an extensive set of KBS-related references is provided at the end of the report

    Knowledge-Based Support for Management of Concurrent, Multidisciplinary Design

    Get PDF
    Artificial intelligence (AI) applications to design have tended to focus on modeling and automating aspects of single discipline design tasks. Relatively little attention has thus far been devoted to representing the kinds of design \u27metaknowledge\u27 needed to manage the important interface issues that arise in concurrent design, that is, multidisciplinary design decision-making. This paper provides a view of the process and management of concurrent design and evaluates the potential of two AI approaches—blackboard architectures and co-operative distributed problem-solving (CDPS)—to model and support the concurrent design of complex artifacts. A discussion of the process of multidisciplinary design highlights elements of both sequential and concurrent design decision-making. We identify several kinds of design metaknowledge used by expert managers to: partition the design task for efficient execution by specialists; set appropriate levels of design conservatism for key subsystem specifications; evaluate, limit and selectively communicate design changes across discipline boundaries; and control the sequence and timing of the key (highly constrained and constraining) design decisions for a given type of artifact. We explore the extent to which blackboard and CDPS architectures can provide valid models of and potential decision support for concurrent design by (1) representing design management metaknowledge, and (2) using it to enhance both horizontal (interdisciplinary) and vertical (project life cycle) integration among product design, manufacturing and operations specialists

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 323)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1989. Subject coverage includes; aerospace medicine and psychology, life support systems and controlled environments, safety equipment exobiology and extraterrestrial life, and flight crew behavior and performance

    Knowledge-based design support and inductive learning

    Get PDF
    Designing and learning are closely related activities in that design as an ill-structure problem involves identifying the problem of the design as well as finding its solutions. A knowledge-based design support system should support learning by capturing and reusing design knowledge. This thesis addresses two fundamental problems in computational support to design activities: the development of an intelligent design support system architecture and the integration of inductive learning techniques in this architecture.This research is motivated by the belief that (1) the early stage of the design process can be modelled as an incremental learning process in which the structure of a design problem or the product data model of an artefact is developed using inductive learning techniques, and (2) the capability of a knowledge-based design support system can be enhanced by accumulating and storing reusable design product and process information.In order to incorporate inductive learning techniques into a knowledge-based design model and an integrated knowledge-based design support system architecture, the computational techniques for developing a knowledge-based design support system architecture and the role of inductive learning in Al-based design are investigated. This investigation gives a background to the development of an incremental learning model for design suitable for a class of design tasks whose structures are not well known initially.This incremental learning model for design is used as a basis to develop a knowledge-based design support system architecture that can be used as a kernel for knowledge-based design applications. This architecture integrates a number of computational techniques to support the representation and reasoning of design knowledge. In particular, it integrates a blackboard control system with an assumption-based truth maintenance system in an object-oriented environment to support the exploration of multiple design solutions by supporting the exploration and management of design contexts.As an integral part of this knowledge-based design support architecture, a design concept learning system utilising a number of unsupervised inductive learning techniques is developed. This design concept learning system combines concept formation techniques with design heuristics as background knowledge to build a design concept tree from raw data or past design examples. The design concept tree is used as a conceptual structure for the exploration of new designs.The effectiveness of this knowledge-based design support architecture and the design concept learning system is demonstrated through a realistic design domain, the design of small-molecule drugs one of the key tasks of which is to identify a pharmacophore description (the structure of a design problem) from known molecule examples.In this thesis, knowledge-based design and inductive learning techniques are first reviewed. Based on this review, an incremental learning model and an integrated architecture for intelligent design support are presented. The implementation of this architecture and a design concept learning system is then described. The application of the architecture and the design concept learning system in the domain of small-molecule drug design is then discussed. The evaluation of the architecture and the design concept learning system within and beyond this particular domain, and future research directions are finally discussed

    An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    Get PDF
    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered

    Knowledge based flowsheet modelling for chemical process design

    Get PDF

    Regenerative life support system research

    Get PDF
    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling

    Second CLIPS Conference Proceedings, volume 1

    Get PDF
    Topics covered at the 2nd CLIPS Conference held at the Johnson Space Center, September 23-25, 1991 are given. Topics include rule groupings, fault detection using expert systems, decision making using expert systems, knowledge representation, computer aided design and debugging expert systems
    • …
    corecore