
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1991

Knowledge-Based Support for Management of
Concurrent, Multidisciplinary Design
Raymond E. Levitt
Stanford University

Yan Jin
Stanford University

Clive L. Dym
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
R. E. Levitt, Y. Jin and C. L. Dym, “Knowledge-Based Support for Management of Concurrent, Multidisciplinary Design,” Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 5 (2), 77-95, 1991. DOI: 10.1017/S0890060400002584

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Articial Intelligence for Engineering, Design, Analysis and
Manufacturing
http://journals.cambridge.org/AIE

Additional services for Articial Intelligence for Engineering, Design,
Analysis and Manufacturing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Knowledge-based support for management of concurrent,
multidisciplinary design

Raymond E. Levitt, Yan Jin and Clive L. Dym

Articial Intelligence for Engineering, Design, Analysis and Manufacturing / Volume 5 / Issue 02 / May 1991, pp 77 - 95
DOI: 10.1017/S0890060400002584, Published online: 27 February 2009

Link to this article: http://journals.cambridge.org/abstract_S0890060400002584

How to cite this article:
Raymond E. Levitt, Yan Jin and Clive L. Dym (1991). Knowledge-based support for management of concurrent,
multidisciplinary design. Articial Intelligence for Engineering, Design, Analysis and Manufacturing, 5, pp 77-95
doi:10.1017/S0890060400002584

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/AIE, IP address: 134.173.130.137 on 31 Jan 2014

(AI EDAM) (1991) 5(2), 77-95

KNOWLEDGE-BASED SUPPORT FOR MANAGEMENT OF
CONCURRENT, MULTIDISCIPLINARY DESIGN

RAYMOND E. LEVITT,1 YAN JIN2 AND CLIVE L. DYM3

1 Center for Integrated Facility Engineering, Stanford University, Stanford, CA, 2 Civil Engingeering
Department, Stanford University, Stanford, CA and 3 Department of Engineering, Harvey Mudd College,

Claremont, CA, U.S.A.

Artificial intelligence (AI) applications to design have tended to focus on modeling and automating aspects of single discipline
design tasks. Relatively little attention has thus far been devoted to representing the kinds of design 'metaknowledge' needed to
manage the important interface issues that arise in concurrent design, that is, multidisciplinary design decision-making. This
paper provides a view of the process and management of concurrent design and evaluates the potential of two AI
approaches—blackboard architectures and co-operative distributed problem-solving (CDPS)—to model and support the
concurrent design of complex artifacts. A discussion of the process of multidisciplinary design highlights elements of both
sequential and concurrent design decision-making. We identify several kinds of design metaknowledge used by expert managers
to: partition the design task for efficient execution by specialists; set appropriate levels of design conservatism for key subsystem
specifications; evaluate, limit and selectively communicate design changes across discipline boundaries; and control the sequence
and timing of the key (highly constrained and constraining) design decisions for a given type of artifact. We explore the extent to
which blackboard and CDPS architectures can provide valid models of and potential decision support for concurrent design by
(1) representing design management metaknowledge, and (2) using it to enhance both horizontal (interdisciplinary) and vertical
(project life cycle) integration among product design, manufacturing and operations specialists.

1. Introduction

The design of artifacts and the processes required to
implement them is an ubiquitous human problem-
solving activity. A working definition of design is
provided by (Dym, 1990):

Engineering design is the systematic, intelligent
generation and evaluation of specifications for
artifacts whose form and function achieve stated
objectives and satisfy specified constraints.

Design tasks typically require several iterations of
synthesis, analysis, and evaluation (Asimow, 1962;
Dym and Levitt, 1990):

• Synthesis is the assembly of primitive design elements
or partial designs into a configuration that self-
evidently satisfies a few key specifications and
constraints. ('Performance specifications' can be
viewed as constraints that are optimized rather than
just being specified (Simon, 1975) but we maintain
the distinction herein.)

• Analysis involves computations or deductions based
upon attributes of the current synthesis to assess the
extent to which the synthesis satisfies other, more
subtle or complex specifications and constraints.

Received 18 January 1991 and in final form 15 July 1991.

0891-0604/91/020077 + 19S02.00/0
77

• Evaluation is the process of comparing the analysis of
the current synthesis against the specifications and
constraints for the artifact to determine whether that
synthesis is acceptable. An evaluation that a given
synthesis is unacceptable will typically prompt a new
synthesis aimed at improving the artifact's perfor-
mance to satisfy the violated specifications or
constraints.

The design of most complex artifacts requires
combining the expertise of specialists in several
discrete areas. The various kinds of expertise involved
in generating the design of a complex artifact can be
employed in either a 'sequential' or a 'concurrent'
mode. In sequential design, the design task is broken
down into a sequence of design subtasks for which the
output of one designer's decision process serves as
input to another. In concurrent design, distributed
problem solving by specialists from different dis-
ciplines (e.g. process, structural, mechanical, electri-
cal) or functions (planners, designers, manufacturers'
constructors and operators/users) occurs simul-
taneously, and design decisions must either be
co-ordinated in real time or reviewed for consistency
and modified as needed during periodic reviews.
Routine or semi-custom design can often be done
sequentially because experience has produced a

© 1991 Academic Press Limited

78 R. E. Levin et al.

feasible sequence of design decisions that can be
executed serially and without much backtracking. The
design of complex or substantially innovative artifacts
typically requires a significant degree of concurrent
decision making by its designers.

The present capabilities of computer tools to
support concurrent, multidisciplinary design are quite
limited. Efforts to employ computers as design aids
have to date been channelled primarily within
individual disciplines or functions. For example, in
building design, 'islands of automation' have evolved
to aid structural engineers in designing and analysing
structural systems or to assist mechanical engineers to
compute the air conditioning requirements of a
building. Moreover, computer tools used by the
various specialty contractors to plan and schedule
their parts of the construction process are completely
isolated both from each other and from the tools used
in design. Similarly, in manufacturing, most MRP or
factory scheduling tools are isolated from the
CAD/CAE tools used to design the products
produced in the plant.

We note that some degree of concurrency is present
in the design of most artifacts and that effective
management of concurrent design for a class of
artifacts involves specific, experience-based co-
ordination and control metaknowledge. Therefore,
knowledge-based architectures such as blackboards
and CDPS systems that were developed to represent
control knowledge and task co-ordination should be
able to provide powerful models of and enhanced
decision support for the management of concurrent
design. Our paper explores this proposition.

2. Managing the design of complex artifacts

In this section we discuss the nature of design
tasks—sequential vs. concurrent—and list some of the
kinds of knowledge needed to coordinate decision-
making for complex artifacts.

2.1 SEQUENTIAL VS. CONCURRENT DESIGN

In sequential design, a tentative design synthesis is
developed by one designer—often acknowledged as
the 'lead discipline' designer—which addresses some
of the key performance specifications and constraints
for the artifact. Examples of this lead designer role
include the architect who develops the conceptual
design of a building and the process designer who
develops a process block diagram for a chemical plant.
This conceptual design is then refined and evaluated

iteratively in terms of a broader set of product and
process specifications and constraints by other design
specialists. For all but the most routine kinds of
design, several iterations involving considerable
amounts of backtracking are typically necessary
before a feasible design synthesis emerges from a
sequential design process of this type. Moreover, time
pressures typically permit the generation and evalua-
tion of only one—or a very few—alternatives for
major projects in this style of design.

Concurrent design occurs when the multiple design
specialists required to design a complex artifact work
in parallel. This approach has the potential to save
time and thus permit the consideration of more
alternative design syntheses. However, without
adequate coordination, it runs the risk that the design
details developed by the various specialist designers
for a given artifact may be locally suboptimal,
redundant, or mutually incompatible (Logcher and
Levitt, 1979).

In the course of progressing from a high-level
specification of an artifact to its detailed design and
manufacturing, most real-world design processes
involve both sequential and concurrent design
elements. In many cases, the flux of sequential and
concurrent design and manufacturing activities follow
a predictable pattern that has been referred to as
'matrix swing' (Levitt, 1984).

In the early stages of conceptual design, high-level
specialists from all involved design disciplines meet
frequently to be sure that (1) key performance
specifications and constraints for each discipline will
be met and (2) assumptions of designers from a given
discipline that may have implications for other
disciplines are communicated and understood. This
represents a form of tightly-coupled concurrent
design. But extensive co-ordination meetings of
experienced designers impose a significant overhead
cost on design and must be used sparingly, particularly
where the specialist designers are employed by
separate organizations and are geographically
dispersed.1

As a conceptual design becomes firm, key
subsystems that fall primarily within the area of
expertise of a single design specialist can frequently be
demarcated, and the most important interface issues
to be coordinated with other specialists can be

1 In the early stages of designing the space shuttle, NASA
conducted huge meetings consisting of high-level design repre-
sentatives from contractors for all of the shuttle's major subsystems
to deal with this problem of 'configuration management' or change
control. One of the authors attended such a meeting as an observer
and conservatively estimates the salary, travel and administrative
costs of running each of these meetings at $250,000.

Multidisciplinary design 79

identified. Once this occurs, design activities can
proceed concurrently, in a much more loosely coupled
fashion. During this stage of design few meetings are
held: Most designers can proceed to develop partial
design solutions covering the components, materials,
dimensions and other attributes of the subsystems
assigned to them, with only limited communication
across discipline- or subsystem-based boundaries.

In many types of design, this activity can proceed to
the point where about one-third of the total budgeted
design hours have been expended, at which time
additional, concerted review and coordination ac-
tivities occur. Subsystem attributes become known in
sufficient detail that more detailed and specific
interface issues can be addressed. For example, the
adequacy of a particular beam to support the designed
mechanical equipment (along with other known loads)
in a structure can now be analysed. Or, the ability of
the power supply and distribution system of a process
plant to meet the demands of component devices
(whose power consumption has now been determined
more exactly) can be computed. Conflicts identified at
this stage will typically require one or more design
specialists to redesign some elements of the artifact,
while others can proceed to flesh out design details
without backtracking.

In routine design, the constraints imposed by other
subsystems or specialties become embedded implicitly
over time into standard component designs, design
procedure manuals, or other kinds of personal and
institutional memory. For the design of innovative or
unique artifacts, this implicit knowledge about the
constraints posed by other subsystems or specialties
has not yet been learned by the design team. As a
result, iterations at this stage of design are often
sequential rather than concurrent; they involve
frequent negotiations among specialists to determine
who will relax conflicting constraints or performance
objectives.

As final detailed descriptions of all subsystems are
determined for a large and complex artifact such as an
aircraft, software system or power plant, an
overwhelming amount of information must be shared
and coordinated to ensure continued fit—functional,
spatial and temporal—between each of the artifact's
subsystems. In traditional design practice, this often
involves the circulation to all affected parties of paper
drawings which are 'red pencilled' to identify conflicts,
errors or omissions. This process is largely sequential
in nature, prone to errors, and extremely time-
consuming.

The means that are used to co-ordinate such
engineering project teams include a consistent
repertoire of four co-ordination devices used by any

organization: rules and standards, direct supervision,
hierarchical planning, and face-to-face meetings
(Thompson, 1967; Logcher and Levitt, 1979). These
coordination techniques are used successively, in the
order listed, as the interdependence among specialists'
tasks and their degree of novelty or uncertainty
increase. Since interdependence and uncertainty are
ever present in engineering, engineering organizations
rely heavily on face-to-face meetings to share
information and to coordinate decisions.

2.2 KINDS OF KNOWLEDGE USED IN
MANAGING DESIGN

Expert designers and design managers accumulate
several types of experiential knowledge for coordinat-
ing the design of classes of artifacts. They develop
heuristics or rules of thumb to aid them in making the
following kinds of decisions:

• Defining efficient boundaries between the artifact's
subsystems in order to minimize the number and
severity of interface issues that must be coordinated
across design specialties. Of course, the definition of
subsystem boundaries involves other considerations
besides ease of coordination. It includes considera-
tions of available fabrication methods and of
subcontractors' or suppliers' capabilities to deliver
particular combinations of components.2

• Making good guesses about the required degree of
conservatism in the initial performance specifications
for each subsystem. Experienced design managers use
their experience to set functional performance
requirements and cost contingencies for subsystems
to achieve a good balance between the expected costs
of excess conservatism (e.g. wasted materials, labor,
space, power, etc.) and the potential costs of
under-design (e.g. loss of design flexibility, time lost
to redesign, or increased probability of failure of the
completed artifact).

• Evaluating and limiting proposed changes in sub-
system specifications. Assessing whether a proposed
change is essential (the artifact will fail to meet an
important specification without the change), desirable
(the value of enhanced performance of the artifact
will outweigh the technical and administrative costs
of making the change), or undesirable (the costs of
making the change will exceed its benefits) involves
experience-based knowledge. The importance of this

2 The latter may be viewed as a form of microeconomic institutional
learning about how to package components rationally. Of course, as
product designs, manufacturing technologies or factor prices
change, these constraints on packaging of subsystems may become
obsolete, and can create significant barriers to more rational
reallocation of design and manufacturing responsibilities among
project participants.

80 R. E. Levitt et al.

type of knowledge is enhanced by the fact that the
impact of administrative changes varies substantially
during design and manufacture. Further, participat-
ing designers vary in their ability to tolerate
disruption and ambiguity.3

Determining which specialists are likely to be impacted
by changes that do get approved, and communicating
information about such changes selectively to the
affected parties.
Controlling the timing and sequencing of that small
number of key design decisions that usually turn out
to be highly constrained or constraining for a
particular class of artifact. These key decisions have
the potential to affect many disciplines.

3. Research on computer systems to automate
design

Since the early 1960s, a great deal of research and
development effort has been conducted in universities
and industry to automate certain aspects of design.
Early work such as the ICES project at MIT was
aimed at substituting computation for closed form
mathematical analysis of structural, thermal and other
loadings on engineered systems (Roos, 1967). As the
need to manage large volumes of data arose in such
computations, engineers helped to push the frontiers
of database technology forward. Subsequently, com-
puters were used to automate drafting, a trend which
is still continuing.

Up to about 1983 most designers—even in the
largest and most sophisticated firms—used batch
programs to analyse syntheses that they developed
manually. Their designs were then drawn by drafters
either manually or, more recently, at CAD stations.
Only in the last few years have links between
engineering analysis, graphics and database tech-
nologies created the first cohort of CAD/CAE tools
that provide meaningful support for design synthesis.
Engineers can now design automobiles, aircraft, and
buildings at graphics workstations, bypassing the
drafters.

3 A major constructor of petrochemical facilities has estimated that,
in the period from 75% completion to 100% completion of
construction, the indirect costs of design changes are about 150% of
the identifiable direct costs. This contractor attempts to freeze
designs at about the 75% point, claiming that subsequent changes
can often be more efficiently implemented—and perhaps more
easily resisted—when carried out as retrofits to the completed
facility.

3.1 3-D CAD FOR DOCUMENTING AND
VERIFYING DESIGN SYNTHESES

As designers in more and more fields begin to
develop syntheses on workstations, their partially-
developed designs become machine-readable. This
creates new opportunities to exercise coordination and
control of concurrent design in real-time. 3-D CAD
models provide a machine-readable and electronically
communicable alternative to the red pencil approach
for consistency checking and communication across
disciplines. If an integrated 3-D model with layers for
each discipline's input is used to coordinate the
design, the model is not only machine-readable, it is
'machine-usable'—e.g. in checking for spatial
conflicts.

This form of automated verification of spatial
consistency ('interference checking') among concur-
rent designers has proven to be extremely valuable. It
has in some cases eliminated the need for physical
modeling of artifacts, e.g., plastic scale models of
refineries, full scale mock-ups of new aircraft, and so
on. However, the current generation of computational
design tools provides little or no assistance to design
managers in verifying functional consistency among an
artifact's subsystems. The software architectures
discussed in this paper begin to address the need for
intelligent functional coordination among subsystem
designs developed by separate design teams.

Incompatible database architectures for CAD/CAE
systems used by different design specialists pose one
obstacle to computer-aided design integration. An
administrative solution to this problem is to insist on
the use of a single CAD/CAE package, provided that
it can support all the kinds of analysis needed. Of
course, this is most easily adopted by horizontally and
vertically integrated firms.4 Several parallel research
efforts are attempting to address this barrier to design
integration. One approach involves development of
'intelligent' database management systems that can
propagate and resolve constraints among related
attributes of a design to specify additional attributes
(Stonebraker and Rowe, 1986). An alternative, more
evolutionary line of attack on the 'Tower of Babel'
problem in design is the development of knowledge-
based database interfaces that can mediate between
several related but incompatible databases. One
example of this approach is KADBASE (Howard and
Rehak, 1989).

4 Japanese engineering/construction firms, which are generally far
more integrated than their US competitors, have adopted this
strategy with considerable success in some market sectors.

Multidisciplinary design 81

Note that to date, CAD systems have been useful
first for documenting design and more recently for the
spatial coordination of designs. They have not yet
provided any significant support for automated design
synthesis.

3.2. AI TECHNIQUES FOR AUTOMATION OF
DESIGN SYNTHESIS

AI contributions to design have come from the
application of knowledge-based (expert) systems
(KBESs) to design tasks (Dym and Levitt, 1990).
KBES applications typically encapsulate and represent
knowledge in a well-specified part of a single narrow
domain (e.g. diagnosis of bacterial meningitis,
evaluation or molybdenum ore deposits). This
distinguishes the strong or knowledge-intensive
methods that KBESs use for solving problems from
weak or domain-independent methods such as
mathematical optimization techniques. The latter rely
on extensive search and computation in solving
problems, but they are potentially applicable across a
broader range of problem domains. It has been
observed that the capability of a KBES degrades
rapidly and ungracefully outside of its scope of
intended application. In the words of one of the
pioneers of this technology, the KBES falls off the
edge of its "knowledge mesa" (Feigenbaum, 1977).
Since KBES applications have usually represented and
reasoned with knowledge that is highly specialized, it
might seem like an impossible task to model the many
kinds of expertise used by diverse engineering
specialists within a single KBES.

Furthermore, design problems are inherently
different from the types of problems for which AI
techniques have thus far provided powerful solutions.
In terms of Amarel's (1968) spectrum of tasks, from
selection to formation, most KBES applications have
been to selection problems such as diagnosis or
interpretation, for which the universe of potential
solutions is relatively small and easy to define. In
contrast, design synthesis is a formation task in which
an infinitely large number of potential solutions must
be synthesized from elemental features or components
to meet a set of requirements or specifications for the
completed artifact. As a result, design applications of
AI have been slower in coming. Nevertheless,
significant progress has been made.

AI techniques have been explored for automating
some aspects of mechaical design synthesis (Brown
and Chandrasekaran, 1989) as well as for structural
systems (Maher, 1984). A number of these attempts at

automating design have now progressed beyond the
laboratory. The PRIDE design system for designing
paper-handling subsystems for copiers paths, imple-
mented in Xerox PARC's LOOPS language, is now in
routine use at Xerox (Mittal et al, 1986). The IBDS
system, implemented in the Design++Im system, is
being routinely used to design industrial boilers by
Tampella in Finland (Riitahuhta, 1988).

Emerging commercial knowledge-based design
systems such as Wisdom System's Concept Modeler"",
Design Power's Design++Im, or ICAD's ICAD"" can
be used to generate design synthesis for semi-custom
products. These systems can be developed to run in a
fully automated mode; or they can keep human
designers in the loop via human interface tools such as
product structure graphs and geometric CAD
visualizations of the design, to which the human
designer can react at each stage of design develop-
ment. However, the applicability of these tools is
limited to semi-custom products—those for which a
'once through' sequential design approach can be
defined. 'Design management' in such tools is
hard-wired into the rules used to determine
component inclusion and refinement in a sequential
manner. High-level control of the process must be
provided by the human user intervening to carry out
iterative sensitivity analyses in a 'What if?' mode.

Research on the use of AI techniques to coordinate
non-routine design decision-making across disciplines
has been proposed and initiated in a few places (see
IJCAI, 1989; Sriram et al., 1989; Pohl and Cotton,
1990; SIGMAN, 1990). However, the focus of this
research has been primarily on using AI techniques to
automate specific design tasks rather than on using AI
techniques to provide decision support for the
management of design.

In the next two sections we discuss two architec-
tures, blackboard architectures and cooperative
distributive problem solving (CDPS), which have been
used to model concurrent tasks carried out by human
and computer agents. Thus, instead of the now-
traditional focus of KBES applications on automating
individual tasks, we examine architectures that
support the interactions of multiple agents because
this is essential for the support of multidisciplinary
design activities. Our discussions of blackboard and
CDPS architectures will evaluate their potential to
provide models of and decision support tools for
managing concurrent design.

Two related discussions are worth noting. In a
review of AI applications to planning and scheduling,
Levitt (1987) concluded that AI techniques offered
considerable value as decision support tools for

82 R. E. Levitt et al.

human synthesis in planning, scheduling and control-
ling project activities, and relatively less value as
substitutes for humans in synthesis tasks. We shall
argue here that the same general conclusions hold at
this time for multidisciplinary design of all but the
most standard artifacts. Also, in a somewhat broader
context, Dym and Levitt (1991) argue that knowledge-
based approaches provide an essential building block
for identifying and integrating all the kinds of
engineering knowledge needed to perform complex
engineering analysis and design tasks.

4. Blackboard architectures

Blackboard architectures for KBESs evolved out of
the HEARSAY project on speech recognition at
Carnegie-Mellon University (Lesser, 1975; Erman,
1980) and the HASP project on sonar data
interpretation at Stanford University (Nii, 1982).
Reasoning at multiple levels of abstraction, where
each level of reasoning helps to resolve uncertainties
at other levels, was needed for both speech
understanding (phonemes, words, sentences) and
sonar ship identification (vibrations, sources, plat-
forms). The blackboard architecture is an attempt to
organize such multilevel or multidisciplinary kinds of
knowledge into a single KBES. As such, they might
be viewed as good candidates to model the diverse
kinds of knowledge required to execute and manage
concurrent design. Recently, attempts have been
made to use blackboard architectures developed for
integrating knowledge at multiple levels of abstraction
in domains such as concurrent engineering, which
involves multiple sources of expertise at the same
level of abstraction (Tommelein 1989a, b).

The blackboard metaphor for integrated computer-
based reasoning with multiple sources of expertise was
abstracted from HEARSAY and adapted in HASP
and other subsequent applications. It is now
incorporated into a number of general-purpose
blackboard programming environments, such as BB1
(Hayes-Roth, 1985) and GBB (Corkill et al., 1986a).
We set the stage for this section with a discussion of
how the decision making of specialist designers is
coordinated in human organizations. Then we show
that blackboard architectures incorporate some of the
same kinds of coordination devices to manage
concurrent reasoning by their separate knowledge
sources. We touch on some details of blackboard
architectures by outlining how representation, reason-
ing, and control are implemented in the BB1
blackboard system (Hayes-Roth, 1985). We conclude

with an evaluation of the suitability of blackboard
systems for modeling concurrent engineering tasks.

The blackboard architecture described in this
section is a KBES architecture which incorporates
some of the same four means for coordination of its
disparate knowledge sources as do human engineering
organizations (cf. Section 2.1). We will see that a
blackboard architecture:

• Models the specialization of expertise in concurrent
design by organizing chunks of related knowledge
about some aspect of the design domain (correspond-
ing to organizational rules, standards and procedures
for design decision-making) into discrete modules
termed domain knowledge sources f

• Incorporates the information sharing—although not
the negotiation—that occurs in face-to-face meetings.
Knowledge sources communicate indirectly with one
another by writing to, and reading from, a common
data structure called a blackboard; and

• Approximates hierarchical planning and direct
supervision by having one or more control knowledge
sources that form a solution strategy against which it
can evaluate and implement recommendations from
domain knowledge source as problem solving
proceeds.

Several general-purpose blackboard architectures with
these three basic features—but varying in the details
of their implementation—have been abstracted from
applications that used the blackboard style of
reasoning. The evolution of these blackboard
architectures for problem solving through a series of
applications is thoroughly reviewed by Nii (1986) and
Engelmore and Morgan (1988). To ground our
discussion of blackboard architectures, we will next
briefly describe how representation, reasoning, and
control are implemented in one blackboard system,
the BB1 blackboard architecture.

4.1. OVERVIEW OF THE BB1 SYSTEM

The BB1 blackboard architecture is a general-
purpose blackboard architecture originally developed
to support opportunistic planning (Hayes-Roth, 1985)
BB1 grew out of the Opportunistic Planning Model
(OPM) system developed at Rand Corporation
(Hayes-Roth and Hayes-Roth, 1979) and was strongly
influenced by developments in the HEARSAY
projects (Lesser et al., 1975; Erman et al., 1980) in

5 These knowledge sources are roughly, but not closely, analogous
to rule sets in integrated rule/frame/OOP environments such as
IntelliCorp's KEE or Neuron Data's Nexpert Object.

Multidisciplinary design 83

terms of the concept of an abstract blackboard
architecture with control being viewed as a problem-
solving process run in the blackboard framework. BB1
was subsequently employed for several other classes
of problems, including intensive care patient monitor-
ing and control (Hayes-Roth et al., 1989); construc-
tion site layout (Tommelein, 1989a); case-based
reasoning about structural design (Howard et al,
1989); and project planning (Darwiche et al., 1989).
BB1 is implemented in Common Lisp and has been
widely distributed and used in many research efforts
besides those mentioned here. Our discussion of BB1
is adapted from Tommelein (1989a) and Dym and
Levitt (1990).

4.2 THE BLACKBOARD METAPHOR IN BB1

The BB1 architecture emulates a 'structured
meeting' in which a number of participants—here
called knowledge sources (KSs)—are faced with a
problem that is described on a blackboard (BB). None
of the KSs can solve the entire problem on its own, in
part because no single KS has enough knowledge, and
in part because the KSs are distributed over different
levels of abstraction of the problem domain. That is,
the KSs vary not only in the content of their
knowledge but also in the level of detail with which
that knowledge is concerned. However, each KS may
be able to contribute problem-solving steps which,
when combined in a reasonable sequence, lead to a
solution. By looking at the BB, KSs know when it is
appropriate for them to focus their attention and
when it is proper to propose an action. The KSs can
communicate with each other only indirectly, by
making changes on the blackboard. In each step
toward the solution, one and only one KS gets to
execute its proposed action by being allowed to make
changes to the BB. In reaction to such changes on the
BB, other KSs may now focus their attention or
propose to take action.

The 'meeting' has a moderator—here called the
scheduler—which, at each cycle, evaluates each of the
contributions or actions proposed by the various KSs
and selects one of them for execution. Thus, as
embodied in the scheduler, the problem-solving style
of BB1 is hierarchical, in its distribution of KSs at
different levels of abstraction and in its assignment of
authority for control to the scheduler; incremental, as
it only does one piece of the puzzle at a time; and
opportunistic, in adjusting its strategy for picking the
most appropriate KS to call on at any stage in the
problem-solving process.

4.2 REPRESENTATION, REASONING AND
CONTROL IN BB1

All concepts (objects, constraints, events, etc.) in a
BB1 knowledge base are represented by frames that
can have any kind of user-defined attributes or links to
other objects and that can inherit attributes over
specific links (not just abstraction links). Concepts in a
BB1 knowledge base thus form a conceptual graph
defined by all of the relationships existing between
them, including—but not limited to—the abstracted
relationships (Sowa, 1984).

For clarity and flexibility, the semantic net or
conceptual graph of concepts in a BB1 knowledge
base is layered. Concepts specific to a particular
application domain are grouped in a BB, itself part of
a knowledge base (KB). System-level concepts
applicable to many domains are layered into
higher-level blackboards that form part of the overall
conceptual graph for a knowledge base. A BB1
knowledge base thus contains several blackboards,
including system- and application-level BBs, a
problem BB containing the description of the current
problem, and a solution BB on which the evolving
solution to the problem is stored.

Knowledge sources in BB1 are responsible for
reasoning. KSs are similar in structure to situation-
action rules and reside on their own blackboard. They
contain the knowledge that BB1 will apply to make its
inferences from the current state of the problem and
solution BBs. These KSs are not designed to 'chain'
together as in traditional rule-based systems; rather,
they are independent entities whose antecedents can
become true on the basis of facts stated on any of the
BBs and whose consequents—upon execution—post
new facts onto the frames in any of the BBs. Thus,
KSs need not be 'aware' of each other's presence.
KSs, as all other concepts in BBl's conceptual graph,
are represented by means of frames.

Two types of knowledge sources are distinguished
in BB1. Domain knowledge sources are application-
dependent and are specific to the problem-solving
method that is used. Control knowledge sources
contain so-called metaknowledge which allows the
BB1 scheduler to assign priorities as problem solving
proceeds. For example, control KSs express strategic
knowledge on the desirability of domain actions, as
well as on the desirability of control actions. The
control knowledge sources allow a BB1 application to
alter its strategy dynamically and select its actions
opportunistically.

The BB1 scheduler embodies an incremental
problem solver, so it activates only one KS at a time
(see Tommelein, 1989a or Chapter 8 of Dym and

84 R. E. Levitt et al.

Levitt, 1990 for detailed examples)—even though
there can be multiple executable KSs at any cycle.
Control KSs make changes to the control data BB, on
which they can post or modify one of three things: a
strategy, a focus, or a heuristic. Strategies provide
high-level statements of what needs to be done to
solve the problem. Focuses (or foci) do the same, but
they describe the preferred steps in more detail and
are used by the scheduler to determine which of the
executable KSs is most desirable at that point.
Heuristics, which implement foci, prescribe ways for
the scheduler to compute this desirability.

Thus, we see that the blackboard architecture
emulates a design or problem-solving process that is
opportunistically sequential, i.e., one in which a
sequence of design steps are taken based upon some
measure of making the 'best' possible progress at any
point in the process. However, the process is
controlled centrally by the scheduler or meeting
moderator, much as a project manager controls the
interaction of the specialist designers in a meeting,
that is, by recognizing those who can contribute to the
flow of the discussion. In fact, the metaknowledge of
the control KSs might be said to embody the
experiential knowledge of the project manager or
design team leader. This suggests that the individual
designers or agents are rather independent of each
other, do not require much knowledge of each other's
capabilities, and are best instantiated only when their
specific expertise is required. Thus, these designers
have little autonomy, dependent as they are upon the
scheduler or project manager to hand them their
assignments.

4.3 BLACKBOARD ARCHITECTURES FOR
CONCURRENT ENGINEERING

We cannot yet evaluate the quality of solutions
produced for concurrent engineering because the
applications developed so far in BB1 and other
blackboard architectures such as GBB (Corkill et al.,
1986a, b) and DICE (Sriram et al., 1989) are still in
the prototype stage. However, on the basis of our
description of concurrent engineering in Section 2, we
can examine the extent to which a blackboard
approach captures the essence of a concurrent design
process.

We have argued that concurrent engineering, as
practiced by humans for routine or standard kinds of
engineering tasks, usually involves decomposition of
the task into loosely-coupled subtasks performed by
separate specialists who are locally independent of

each other. The specialists here are analogous to the
domain knowledge sources in the blackboard analogy,
and they interact with each other only through the
blackboard, that is, through a common data structure
accessible to all of them and to the design leader.
Coordination of decision-making occurs only through
periodic design reviews, and the hierarchical coor-
dination of decision-making at each step of problem
solving is implicit in the control KSs. Thus, since
blackboard architectures appear to call on the
specialists through the exertion of centralized,
hierarchical control, they may be good models of how
human organizations perform routine concurrent
engineering when the design can be so effectively
decomposed. In fact, even the sequential, opportunis-
tic style of this hierarchical control can be said to
mimic the way that unexpected problems and 'fires'
are dealt with as inconsistencies arise from the
integration of what were thought to be loosely
coupled design tasks.

However, it is not clear that a blackboard
architecture is entirely appropriate for modeling a full
range of concurrent engineering activities, especially
when we consider the design of complex artifacts
involving significantly variant or innovative subtasks.
The restriction that the design task be decomposable
into loosely coupled subtasks means that the
specialists need have little or no knowledge of what
other specialists are doing or their capabilities, a
situation that does not obtain for complex, innovative
design. The performance of novel tasks with a high
degree of interdependency, in which parallel reason-
ing is likely to produce many inconsistencies, clearly
requires knowledge exchange and negotiation be-
tween subtask specialists. This, in turn, requires direct
contact between the specialists, while the conventional
blackboard approach permits only one specialist at a
time to take decisions which are then broadcast to
others via the blackboard.

Another drawback of blackboard architectures for
complex, innovative design is that their opportunistic
style of problem solving requires a priori specification
of the control knowledge. One or more problem-
solving strategies involving task decomposition and
the sequenced solution of partial problems must be
specified in order to guide problem solving in a
blackboard system. This imposes a certain rigidity
which inhibits more globally opportunistic revisions of
problem solving strategies.

One approach to using blackboards for complex
design might be to model individual specialists as
independent blackboards that could communicate
directly (in order to model the negotiation process).
Then these individual blackboard agents would be

Multidisciplinary design 85

integrated into a 'global design leader' blackboard
that serves to schedule, maintain and monitor the
global design. There are important issues to be
addressed in such an extension of the blackboard
architecture, including: the nature and extent of
communication between individual specialist black-
boards; the degree to which the global scheduler
could analyse and critique an evolving design; and the
extent to which the global scheduler can identify and
communicate repairs for design inconsistencies. We
will see that some of these ideas of blackboards within
blackboards are embodied in the CDPS approach
discussed in the next section.

Another approach to using blackboards for complex
concurrent design depends upon the degree to which
good interfaces can be developed for human users of
blackboard KBESs. If user-friendly (by domain expert
users!) interfaces can be developed, then a human
designer can function as another knowledge source in
the system, probably with a higher priority than the
system's internal knowledge sources. In this regard,
the SightView interface for the SightPlan system
suggests intriguing opportunities for KBESs that
exploit knowledge-based interactive graphics (Levitt et
al., 1989). Such an interface also combines and
manages the input of multiple experts—of both the
flesh-and-blood and the dirty silicon varieties—while
exploiting the strengths of both humans and
computers in problem solving (Levitt and Kunz, 1987;
Levitt et al., 1989; Mittal et al, 1986).

There is also a larger, more philosophical question
involved in the quest to model the performance of
human designers in complex organizations. Why
should departing from human problem-solving ap-
proaches be a disadvantage for a KBES? Computers
have very different strengths and weaknesses in
problem-solving than do humans, so that a system for
machine reasoning in the domain of concurrent
engineering should probably not be restricted to
emulating the problem-solving styles of humans.6

Nevertheless, in seeking to draw an analogy with the
concurrent engineering process used by teams of
human designers, the cooperative distributed
problem-solving approach described next may be a
better fit.

5. Cooperative distributed problem-solving

We now turn to cooperative distributed problem
solving, the idea of distributing a computation or a
task over an assembly or network of processors or

6This question is explored in some depth by Tommelein (1989b).

agents that, together, solve a complex problem or
achieve some overarching goal. Each KBES within
the network works on a piece of the larger problem,
hopefully in cooperation with other KBESs in the
network. In decomposing the problem-solving proc-
ess, we must confront the issues of how we represent
and decompose the original, global task and how we
maintain control of the solution process so as to
ensure a coherent outcome. CDPS is a rapidly
developing set of ideas which, as we will point out,
provides a suitable approach for managing multidis-
ciplinary design. Thus, it is useful to compare CDPS
to blackboard architectures, although we begin by
commenting on more traditional distributed
processing.

In distributed processing, which is often viewed as a
hardware issue, each of the processors in a network is
strongly coupled to a central processor with which it
communicates directly (Stankovic, 1984). The in-
dividual processors typically do their work alone in a
predetermined and prescribed manner, in which they
may share data and communication resources.
However, the processors do not communicate about
goals nor about their tasks, both of which are preset
by the system designer. This means that the
processors can deal with their control issues
independently with only local processing. The
independence of control, which is predetermined,
reflects the fact that the problems solved in distributed
processing are decomposable into separate tasks that
require little interaction and can therefore be done in
parallel without intermediate coordination steps.

Thus, the individual nodes need have little
knowledge of the tasks performed by or within the
network, other than their own. Further, these
individual task agents will not function outside the
context provided by the designer of the network. This
model is a sharp departure from the opportunistic
control offered by blackboards, and it is not
particularly useful for the complex engineering
organizations that we have outlined in Section 2. In
such organizations, tasks are generally not decom-
posable into highly compartmentalized, independent
subtasks that can be performed in parallel with a rigid,
predetermined control structure. Thus, the distributed
processing model is not useful for describing
concurrent engineering.

The CDPS approach resembles a blackboard system
to a cerain extent, but CDPS goes beyond the ideas of
knowledge sources operating within a particular
hierarchical structure and controlled by a centralized
scheduler. In fact, a very simple model of CDPS
would replace each KS in a blackboard with a
powerful KBES free to operate at all levels in the

86 R. E. Levitt et al.

hierarchy. Moreover, it would give each KBES in the
network the autonomy to do its problem-solving,
based on its own knowledge and resources, without
waiting to be ordered into action by a scheduler.
These elementary ideas seem much more consistent
with how a complex engineering task would be done
in a human, organizational setting.

Blackboard architectures are, however, suitable for
accommodating ideas of CDPS. Individual KBESs can
be sets of domain and local control knowledge
sources, and they could communicate with other
KBESs through a shared blackboard space.
Moreover, as we have hinted above (in Section 4.3),
we can model the agents in a CDPS system as
blackboard systems which cooperate with each other.
In fact, the blackboard architecture concept has been
adopted by many projects in CDPS of which DVMT is
probably the best known (Lesser, 1981).

In this survey, we focus on CDPS in which, broadly
speaking, the work is done through a network of
loosely coupled, semi-autonomous problem-solving
agents or nodes. In a CDPS network, each node is
capable of sophisticated problem solving and coopera-
tive interaction with other nodes to solve a single
problem. Each node may itself be a complex
problem-solving system that can modify its behavior
as circumstances change and can plan its own
communication and cooperation strategies with other
nodes. Our discussion begins with an overview of
applications of and motivations for CDPS. We then
describe some basic issues of, and approaches to
building a CDPS system. Next, we discuss the issue of
applying CDPS to support concurrent engineering. In
organizing our brief survey, which follows that in Dym
and Levitt (1990), we have drawn heavily on the work
of Huhns (1987), Bond and Gasser (1988), Durfee et
al. (1989) and Gasser and Huhns (1989).

5.1 MOTIVATIONS AND APPLICATIONS

CDPS is an important area for several reasons.
First, hardware technology has advanced to the point
where the construction of large distributed problem-
solving networks is both possible and economically
feasible. Although current networks may consist of
only a small number of nodes, CDPS networks can
eventually contain hundreds of nodes. While exciting
hardware possibilities draw nearer, the problem-
solving technology required for their effective
utilization lags behind. Second, there are applications
that are inherently distributed, many spatially, some
temporally, and some functionally. The distribution
usually results from the limited resources in one

location, limited communication bandwidth and
bounded rationality of single problem-solvers. A
distributed architecture that matches the distribution
of intelligence in the application offers many
advantages over a centralized approach. Concurrent
engineering appears to be an application that could be
enhanced through the use of CDPS techniques.

Third, understanding the cooperative aspects of
CDPS is an important goal in its own right. Whether
we are talking about social, managerial, biological, or
mechanical systems, we know more about competition
within them than we do about cooperation. In the
same way that the development of Al systems has
helped our understanding of problem-solving and
intelligence in linguistics, psychology and philosophy,
we may find that the development of CDPS networks
will serve to validate theories in sociology, manage-
ment and organizational theory—all of which are
related to concurrent design—as well as to fields like
biology. That is, research that views CDPS as
cooperative problem solving could have a salutary
impact on our understanding of cooperative behavior
between independent agents ranging from design
teams to simple biological organisms. The top-level
goals of such a research approach have been nicely
summarized as follows: (1) to use parallelism to speed
up task completion; (2) to expand what is achievable
by resource allocation and sharing; (3) to increase
reliability by (selective) redundancy; and (4) to reduce
the interference between tasks by avoiding harmful
interactions (Durfee, 1986). These generic goals can
then be elaborated as sets of goals for the individual
agents or KBESs in a CDPS network.

There are four general application areas that seem
well suited for CDPS approaches.

• Distributed interpretation: Distributed interpretation
applications require the integration and analysis of
distributed data to generate a (potentially distrib-
uted) model of the data. Application domains include
network fault diagnosis and distributed sensor
networks. In these applications, agents must ex-
change enough information in order to form partial
interpretations that are globally relevent.

• Distributed planning and control: Distributed plan-
ning and control applications involve developing and
coordinating the actions of a number of distributed
effector nodes to perform some desired work.
Application domains include distributed air traffic or
ship traffic control, control of groups of cooperating
robots, remotely piloted vehicles, distributed process
control in manufacturing, and resource allocation in
transportation and delivery systems. Distributed
planning and control applications often require
distributed interpretation for determining and moni-
toring node actions.

Multidisciplinary design 87

• Coordination networks: Coordination network ap-
plications involve the coordination of a number of
individuals in the performance of some task.
Application domains include intelligent command
and control systems, multiuser project coordination,
and cooperative environments where work is shared
among workstations. Concurrent engineering clearly
can be viewed through the prism of network
coordination, as it is precisely that type of
coordination of the engineering process that we
described in Section 2.

• Cooperative interaction among KBESs: Cooperative
interaction mechanisms would allow multiple KBESs
to work together toward solving a common problem;
this would be one means of applying expert system
technology to larger problem domains. One example
is the integration of a number of specialized medical
diagnosis systems. Another is the negotiation
between the expert systems of two corporations
about details of price and delivery time on a major
purchase. Again, this kind of application is central to
engineering practice in general, to the integration of
KBES and conventional tools, and to concurrent,
multidisciplinary engineering.

Some recent research has directly addressed the
concurrent engineering application domain and
prototype systems have been developed to support
cooperative design. We provide more details about
such systems in Section 5.3.

5.2 ISSUES AND APPROACHES IN BUILDING
CDPS SYSTEMS

The problems that one encounters when building a
CDPS system include how to describe and decompose
domain problems, how to distribute the subtasks
among agents, and how to make agents coordinate
their activities so that they can act coherently. These
problems are fundamental to both the research on
CDPS and the application of CDPS to concurrent
engineering. In this section, we elaborate these basic
problems and briefly describe some recently de-
veloped approaches that are appropriate for solving
these problems. We will focus the discussion on the
design of CDPS systems for solving multidisciplinary
design problems. We conclude that extending and
using the approaches described here may make it
possible to build CDPS systems to support concurrent
engineering.

5.2.1 Task description and decomposition
When a task is to be done by a group of agents, the

most immediate question to be answered is, 'How are
tasks to be distributed among agentsT This basic
question involves the important issues of task

decomposition and distribution. The choice of both
decomposition and distribution are critically depend-
ent on how the task is described, because it is the
collection of attributes and descriptive categories that
provides a language for expressing subproblem and
interagent dependencies. At present, the description
of tasks is typically carried out by the designer of the
system, and there is little automated assistance
available. This also means that in order to
accommodate the design metaknowledge that cor-
responds to task decomposition, we need first to
choose a suitable description of the design task.

The problem of task decomposition can be viewed
from several perspectives. When we look at a typical
decomposition process, a single task is decomposed
into smaller ones for reducing the complexity of the
problem, because smaller tasks require less capable
agents and fewer resources. When we view the
decomposition in a general sense, we will need to
determine whether there are alternative task decom-
positions. These are conventionally obtained by
alternative problem-reduction operators, correspond-
ing to an OR branch in a goal graph, or by problem
transformation methods. Successful task decomposi-
tion depends greatly on the system designer's
decisions about the construction and description of
operators—i.e. the agents, for problem-solving—
because most decomposition processes flow directly
from the descriptions of the available agents for
problem-solving. In multi-agent systems where agents
are naturally determined, the decomposition process
must consider the resources and capabilities of the
different agents for solving the subtasks. In addition,
there may be interactions among the subproblems and
conflicts among the agents. Difficult problems of
decomposition arise because of dependencies among
subproblems and among the decisions and actions of
separate agents.

Solutions to the problem of task decomposition can
be classified into several general classes, although
there seem to be few principles, methods, or
experimentally validated techniques for doing so.

The first approach is to pick tasks that are inherently
decomposable. In this approach, the representation of
the task contains its decomposition, as in an
AND-OR tree structure for subproblems. The
description of states, of the space of states, and of
operators, leads to a natural decomposition, using the
selector operations of the data structure. Examples of
this approach include spatial decomposition of
information in distributed sensor networks and
functional decomposition of knowledge in cooperating
KBESs. Concurrent engineering design exploits both
inherent functional and spatial decomposition, since it

88 R. E. Levitt et al.

requires different analysis and design functions and
considers construction and manufacturing of the
design

Hierarchical planning is another method of task
decomposition. A hierarchical planner does genuine
task decomposition. It generates tasks as goals to be
achieved. This approach uses abstraction as its
decision base and depends heavily on task repre-
sentation and agent description.

The last approach to decomposition is
decomposition by the system designer. The system
designer takes decomposition issues into consideration
in the system design stage, based on the designer's
experience, since there seem to be few known
principles or methods for automatically decomposing
tasks.

In the concurrent engineering context, this means
that we will probably need to acquire knowledge
about formulating CDPS systems through experimen-
tation with alternate approaches, after attempting to
understand how experienced human design managers
perform this task.

5.2.2 Task distribution
Task distribution is the problem of how to allocate

particular tasks to particular agents, or in other words,
how to assign responsibility for a particular activity.
The distribution of a task or the allocation of the
responsibility for accomplishing the task is carried out
by interaction between agents. A distributing agent
can construct a task completely or partially by itself
and send the complete problem-solving description to
the agent responsible for performing the task,
including in this local description the overall problem
description, a solution method and a control trigger.
Alternatively, an agent can be provided with only
those data to which the agent can apply the methods it
already has, or it can receive a method to apply to
locally available data. In yet another approach, an
agent may have access to both the problem
description and solution method, and then the control
trigger must be provided.

In deciding how a CDPS system should solve the
task distribution problem, the system designer should
consider issues such as: selecting agents with the most
global view to assign tasks to other agents; avoiding
overloading critical resources; assigning overlapping
responsibility to agents to achieve coherence;
assigning highly interdependent tasks to agents in
similar spatial or semantic regions of the system; and
reassigning tasks as necessary for completing urgent
tasks.

The problem of task distribution can be properly

solved by a number of approaches, including
negotiation, multi-agent planning, organizational
structuring, and market mechanisms. We will discuss
only the first three approaches because they seem to
be most relevant to our engineering concerns.

Negotiation is generally important for CDPS
because it is fundamental strategy observed in
cooperation among human agents. It is, at the same
time, particularly important for task distribution
because most negotiation mechanisms developed to
date are used for solving task allocation problems.
The Contract-Net protocol is the best known
negotiation protocol and was employed in one of the
earliest and most influential research projects in
CDPS (Smith and Davis, 1981; Davis and Smith,
1983). Agents use the Contract-Net protocol to make
contracts about how they should allocate tasks in the
network.

The Contract-Net protocol can be described as an
information exchange process, involving task an-
nouncement, bidding, and awarding. A manager agent
announces the existence of tasks to other agents
via a (possibly selective) broadcast termed a task
announcement. Agents having expertise and re-
sources, such as time and availability, evaluate task
announcements, and some of these agents (bidders)
decide to submit bids to the manager (bidding). After
receiving a number of bids from the bidders, the
manager evaluate all the bids and awards a contract to
the most appropriate contractor agent. Once a
contract has been established, the manager and
contractor communicate privately during the execu-
tion of contract. The Contract-Net approach provides
a framework for the dynamic allocation of tasks, and
decisions about who performs which task are more
informed because there is local evaluation and mutual
selection. It also provides a reliable mechanism for
problem-solving because control is distributed, the
hierarchy is dynamic and failure recovery is inherent.

Researchers have developed other protocols besides
the Contract Net negotiation protocol for task
allocation. Multistage negotiation was developed by
Conry and her colleagues for a class of task allocation
problems called distributed constraint satisfaction
problems (Conry et al., 1988), and expectation based
negotiation was developed by Jin and Koyama (1990)
for the problems of role (task or responsibility)
allocation among agents.

Negotiation appears to be the most important
approach for concurrent and multidisciplinary en-
gineering design domains, because managers of design
often lack the detailed technical knowledge of all
affected subdisciplines that would be required to
reconcile the cross-disciplinary functional conflicts that

Multidisciplinary design 89

are major issues in concurrent design. We will discuss
this in some detail in the following subsection.

Multi-agent planning and organizational structuring
are also useful mechanisms for task distribution. In a
multi-agent planning approach, a planner or collection
of planners can combine the work of task decomposi-
tion and task allocation by treating agents as
specialized resources and objects that interact and
depend upon one another. Multi-agent planning can
be done using a single centralized planner with global
plan synchronization and conflict elimination or by
distributed planners that make joint multi-agent plans.
Conflicts in task allocations can be resolved by
allowing agents with related interests to exchange and
elaborate proposed activities. Many engineering
planning problems, e.g., construction planning by
different subcontractors, can be approached using
multiagent planning techniques. In an organizational
structure, each agent is forced to play a certain
role—which is usually predefined—in order to assign
designated responsibilities to agents. An agent cannot
accept tasks that do not match its role in the
organization and, assuming role knowledge is
disseminated, cannot be presented with such tasks by
other agents. An agent can assume its role in the
organization in either a static or a dynamic manner,
although the latter is more difficult to implement. Jin
and Koyama (1990) suggest using negotiation to assign
roles dynamically to agents. As will be discussed in
Section 5.3, organizational structuring may play an
important role in concurrent design for assigning tasks
to design agents.

5.2.3 C"uerence and coordination
After the problem of allocating tasks has been

resolved, the next question is, 'How can the system or
network be made to behave effectively and efficiently T
This question raises the issues of coherence and
coordination of the system. Coherence refers to how
well a system behaves as a unit along dimensions such
as solution quality, efficiency and clarity, and the
extent to which the system degrades gracefully.
Coordination, on the other hand, is the property of
interaction among a set of agents performing some
collective activities. The degree of coordination is the
extent to which agents avoid extraneous activity. In
most cases, it is not easy to establish coherence and
coordination in a CD PS system. The difficulty in
achieving these goals stems from the attempt to
achieve them without a centralized control or
viewpoint. Although the link between coherence and
a variety of system attributes is still not clear, much
research has been done to achieve global or regional
coherence and coordination in CDPS systems.

An organizational structuring approach derives
from organization theory and attempts to ensure the
coherence of a CDPS system by providing a
framework of constraints and expectations about the
behavior of agents that focuses the decision-making
and action of particular agents. An organizational
structure of a CDPS network is the pattern of
information and control relationships that exist
between the nodes and the distribution of problem-
solving capabilities among the nodes. It defines
general, and relatively long-term, information about
the relationships between nodes. Using this informa-
tion, nodes can ensure that they meet conditions that
are essential to successful problem-solving, including
coverage—each necessary portion of the overall
problem must be within the problem-solving capabi-
lities of at least one node; connectivity—nodes must
interact in a manner that permits the covered activities
to be developed and integrated into an overall
solution; and capability—coverage and connectivity
must be achievable within the communication and
computational resource limitations of the system and
the reliability specifications of the network (Corkill
and Lesser, 1983).

An organizational structure can specify authority
and connectivity for the flow of information and
control between nodes in terms of topologies, such as
hierarchical, heterarchical, flat structures, groups or
teams and market or price systems. Fox (1981) has
developed a taxonomy of how organizational types
evolve as an organization forms groupings, becomes
more complex and encompasses more diverse
activities. He pointed out that complexity (high
demands on rationality) and uncertainty (the
difference between information available and the
information necessary to make the best decision) are
two important factors in deciding how to structure an
organization. Complexity forces a distribution of
tasks, ultimately resulting in a heterarchical structure.
Uncertainty pushes in the opposite direction, verti-
cally integrating tasks into a more hierarchical
structure. Jin and Koyama (1990) have proposed a
method for exerting organizational structuring. The
organization can be structured by defining roles and
relationships between roles. During the problem-
solving process, agents can choose their proper role or
roles through an expectation-based negotiation proc-
ess. Once all the relevant agents have assumed their
roles through expectation-based negotiation, the
organization is instantiated and agents may pursue
their activities coherently according to the role
specifications, which are an important element of the
common knowledge shared by agents.

Another well known CDPS model for achieving

90 R. E. Levitt et al.

coherence is functionally accurate cooperation (FA/C)
(Lesser and Corkill, 1981). In this model, the
problem-solving system is a collection of semi-
autonomous processing nodes, each of which receives
information from others. The model is useful for
dynamic domains in which data is distributed and
noisy and it is generally impossible to maintain
complete and consistent information among the
processing nodes. In the FA/C paradigm, the
processing nodes cooperatively exchange and integr-
ate partial, tentative, high-level results. They detect
inconsistencies between local partial results and those
from other nodes, and then integrate into local
databases only those portions of other nodes' results
that are consistent with local information. In this way,
the nodes can use the newly integrated results as a
basis for supplying information that is missing locally.

This process of exchanging and integrating partial
and tentative results can lead to a global consensus
despite inconsistent and incomplete local information.
Error resolution is an integral part of the problem-
solving process. The FA/C approach can reduce
communication costs by exchanging only high-level
results rather than raw data. It can also reduce
synchronization costs by allowing nodes to act
autonomously. Because the nodes are designed to
process uncertain data and results, the resultant
system has increased robustness and concurrency. The
disadvantages of FA/C are that we can neither
guarantee accurate answers nor predict the time when
the final result will emerge. Because the FA/C
approach is inherently oriented to bottom-up problem
solving, it appears less relevant for solving design
problems.

Improved coordination can be achieved by aligning
the behavior of agents toward common goals, with
explicit divisions of labor. The multi-agent planning
approach provides ways for agents to align their
activities by explicitly assigning tasks after reasoning
through the consequences of doing those tasks in
particular order. In centralized multi-agent planning,
there is a single planning agent who builds the plan
that specifies activities for all agents in the network.
Key issues to be addressed in this approach are: how
do we represent interference between actions of
different agents, and how do we choose a planner?
Research on distributed air traffic control has
proposed a policy for selecting the most appropriate
node as a planner (Cammarata et al., 1983). In
distributed multi-agent planning, the plan is produced
by cooperation of several agents. The problem here is
how to reconcile conflicts between the subplans
produced by each agent. One hierarchical approach is
to synchronize levels of planning in all the agents,

communicating shared variables between goals and
resolving conflicts at each level before refining plans
to lower levels Corkill (1979). Durfee and Lesser
(1986, 1987) originated the idea of partial global
planning as a mechanism to enable communicating
problem-solvers to construct mutually coherent plans
incrementally. Jin and Koyama (1990) proposed an
expectation-based negotiation protocol for multi-agent
planning in which agents exchange their expectations
and resolve the conflicts through compromises
between agents.

From an engineering design point of view, we
observe that organizational structuring is a suitable
way to coordinate the team of design agents (human
and/or computers) to achieve coherence, and that
negotiations between agents, together with organiza-
tional structuring, may play an important role in
solving complex and non-routine design problems. We
continue the discussion and review some of the recent
work in the following subsection.

5.3 CDPS FOR CONCURRENT,
MULTIDISCIPLINARY DESIGN

In concurrent, multidisciplinary design, multiple
and heterogeneous designers work together to solve
single design problem. There are two basic issues
involved in such working style. One is how designers
can identify and resolve conflicts—functional, temp-
oral and spatial—between their local or partial designs
that must be integrated to form an overall design. The
other is how the designers can achieve coherence so
that the group of designers can work effectively and
efficiently to attain a globally 'optimal' design. Some
research has been done to address the former
problem, but we have not found any research focused
on the latter issue in concurrent design. The first two
authors believe that these two basic problems can be
approached through structuring and connecting
designers using CDPS techniques, and will be
conducting research to explore this idea.

Structuring designers involves imposing relation-
ships between designers which specify authoritive
and/or communicative interactions among designers.
Structuring designers is required for accommodating
meta-design knowledge and facilitating connection
between designers. We observe that, when designing a
complex artifact such as a building or a plant, it is
difficult to maintain consistency of the design if there
are no authoritive relations between designers. Such
relations can be defined along different hierarchies,
such as functional hierarchy, construction or manufac-
turing hierarchy, management hierarchy, etc. We can
structure design teams to impose long-term respon-

Multidisciplinary design 91

sibilities and disparities among designers, and let
short-term conflicts be resolved by designers through a
negotiation process that is discussed in detail below.
Structuring may also help designers working on
separate partial designs to be aware of their roles in
the overall design process. For a complex design
problem, structuring designers may be realized by
explicitly defining organizational roles (authoritive or
functional) for each designer and/or formulating the
design into a set of partial designs and assigning them
to designers in some way. In many cases, it is
important that structuring should make sense not only
for aiding in the resolution of conflicts, but also for
providing designers with enough fixed boundary
conditions to begin formulating and solving their own
partial design problem.

Connecting designers addresses the issues of
communication and negotiation among designers.
Decentralized designers need to exchange information
with each other in order to construct a consistent
overall design. Heterogeneity of the designers,
however, makes the communication with others
difficult. For example, it may be the case that a
structural designer may not understand suggestions of
a mechanical designer. We will need to create some
shared or common vocabulary or language with which
designers of different disciplines can not only
communicate with each other, but also evaluate
mutual suggestions, critiques and constraints. Nego-
tiation is another important aspect of the connecting
problem. Because conflict resolution is the central
problem for concurrent design, negotiation becomes a
crucial aspect of knowledge-based support for
concurrent design. As we stated above, for the design
of complex artifacts involving significantly variant or
innovative subtasks, designers performed novel tasks
with a high degree of interdependency and are likely
to produce many conflicts. In these cases, introducing
a suitable negotiation scheme for designers to resolve
conflicts is essential. On the other hand, we may also
say that allowing conflicts to be resolved through
negotiation between designers rather than preventing
them by strict structuring permits the possibility of
innovative design. This also means that structuring
and connecting may drive the system into different
directions, hence should be balanced based on the
design problem.

Recent work on CDPS in the context of concurrent
engineering has emphasized the role of negotiation for
conflict resolution. Werkman (1990) has proposed an
incremental negotiation scheme called knowledge
based negotiation in his Designer Fabricator Interpre-
ter (DFI), a knowledge based tool that allows
structural designers to bring construction knowledge

to bear during the preliminary design stage of
beam-to-column connections in buildings. This nego-
tiation scheme utilize a shared knowledge repre-
sentation called shareable agent perspectives which
allows designers to perform negotiation in a manner
similar to cooperating (or competing) experts who
share a common background of domain knowledge.
Designers communicate with each other using a
shared language and assert their proposals based on a
number of strategies depending on to whom the
proposal will be helpful. Designers are structured by
interagent issue relations that relate designers to
domain objects by means of domain aspects. A
relational network of the interagent issue relations is
maintained by a third-party arbitrator agent who
assists when a deadlock situation occurs between two
designers. During its mediation phase of conflict
resolution, the arbitrator reviews the negotiation
dialog for relevant issues between the conflicting
agents and then searches the network of interagent
issue relations for relations that are known to exist
between the two conflicting agents. Once found, the
arbitrator then enters its arbitration phase of conflict
resolution which includes such techniques as setting
time limits and searching the negotiation dialog for
similar proposal alternatives considered feasible at
earlier stages of negotiation.

Lander and Lesser (1989), and Laasri et al. (1990)
have emphasized the important role of negotiation for
conflict resolution. Lander and Lesser (1989) view
negotiation as an integral part of a general
problem-solving process and proposed two approaches
to negotiation, i.e. compromise negotiation and
integrative negotiation. Compromise negotiation is a
general form of negotiation in which a solution is
iteratively revised by sliding a value or set of values
along some dimension until a point is found that is
mutually acceptable. Compromise negotiation has
certain requirements that must be true in order for it
to be effective: a small number of dimensions is
involved; methods are available for evaluating if the
proposed values are moving toward each other along
the dimension(s); the values are close to the
acceptable range. Integrative negotiation is useful for
finding solutions in problems that are not appropriate
for compromise negotiation or in situations where
novel solutions are desirable. The focal point of
integrative negotiation is to identify the most
important goals of each participant and to find a
solution which fulfills the merger of these goals.
Compromise negotiation is a fine-tuning technique
while integrative negotiation offers the opportunity to
look for innovative solutions when the current
proposals appear to be inadequate. Lassri et al.,

92 R. E. Levitt et al.

(1990) discussed the role of negotiation in the
different stages of goal manipulation during problem-
solving, namely, formulation of goals, selection of
active goals, allocation of selected goals, solving of
these goals and the organization of agents. They view
negotiation as a process of conflict resolution among
the agents due to their interdependent activities and
point out that negotiation may occur at each stage of
the problem-solving process depending on assump-
tions related to the system organization and
complexity, and also that negotiation may be used for
both domain and control problem-solving.

Sycara (1988, 1989) presented a model of
negotiation in which the system (PERSUADER) acts
as a mediator in union management labor disputes.
The mediator has access to local and global
information about the situation and about the
negotiation participants. Given a particular conflict
and the context in which the conflict occurs, the
planner has two alternatives, i.e., find a new
compromise by using case-based reasoning or
multi-attribute preference analysis strategies, or if
some agents disagree, use persuasive arguments to
convince them of the proposed compromise by using
explanation-based reasoning or try to promote
potential compromises by asking for justification of
disagreements. Although Sycara developed this
negotiation scheme for the situation where agents are
uncooperative and even antagonistic, which is not
usually the case in concurrent engineering, this
scheme may be useful for resolving conflicts between
designers from different domains, because each
specialty might be under economic or professional
pressures to suboptimize its own part of the design.

Klein (1990) addressed the conflict resolution
problem in cooperative design and proposed a
computational conflict resolution model based on
studies of human cooperative design. This model is
strongly based on the insights that general conflict
resolution expertise exists separately from domain-
level design expertise, and that this expertise can be
instantiated in the context of particular conflicts into
specific advice for resolving those conflicts. In this
model, conflict resolution expertise is given 'first class'
status, i.e. is represented and reasoned with explicitly
using formalisms as robust as those used for other
kinds of expertise, rather than being implicitly
involved in conflict resolution decisions made during
the system development phase. Conflict resolution
strategies, which comprise the conflict resolution
expertise, is viewed as consisting of preconditions that
match a given class of conflicts, and advice for how to
resolve conflicts in that class. These strategies can be
organized as a conflict taxonomy that includes very
general classes of conflict near the top, and more

specific classes near the bottom. Designers in the
model have both conflict resolution and design
components. Designers can view the global design
description. When conflicts are detected by looking
for unsatisfied constraints on design features, the
conflict classes that subsume the conflict are identified.
The general pieces of advice associated with these
classes are then used as templates that are instantiated
in the context of the conflict into specific conflict
resolution plans. The conflict resolution component
identifies relevant conflict resolution advice and
generates its instantiations by asking questions of the
agents using a query language. The plans accumulated
by the instantiation process are then sorted by the
conflict resolution component, using domain-
independent heuristics, to find the one most likely to
succeed.

From the research described above we see that
negotiation is a useful approach for solving conflict
resolution problems in a distributed fashion. Effective
negotiation may be achieved through introducing
shared language, reviewing negotiation history,
organizing conflict resolution knowledge for reasoning
and structuring designers, i.e. defining relations
among designers and introducing mediators or
arbitrators. Although the research up to date has
addressed some aspects of concurrent engineering,
little work has been done, in terms of CDPS, to deal
with the full range of the problem and to address both
structuring and connecting issues. We feel that recent
work has demonstrated the potential applicability of
the CDPS approach to concurrent engineering. Future
research in this area will need to be aimed at
enhancing our understanding of how to carry out
conflict resolution in functional, temporal and spatial
dimensions, and at exploring a structuring and
connecting model with the power to accommodate
meta-design knowledge that can support distributed
problem solving in the multidisciplinary design
context.

6. Conclusions

We conclude this paper with a recapitulation of the
key challenges in using artificial intelligence ap-
proaches such as blackboard architectures and CDPS
systems to model, and ultimately to enhance,
concurrent design by teams of specialized human and
computer agents.

6.1 CHALLENGES FOR AI IN CONCURRENT
DESIGN

We have identified the following kinds of design
metaknowledge as being needed by computer systems

Multidisciplinary design 93

to support concurrent design:
• partitioning artifacts into nearly independent (from a

design standpoint) subsystems;
• selecting levels of conservatism for key interface

parameters of critical subsystems;
• identifying and resolving conflicts that arise from

incompatible partial solutions at each stage of the
design process;

• evaluating and limiting proposed changes in system
or subsystem design parameters after initial values
have been communicated to and used by other design
agents;

• identifying agents impacted by approved changes and
selectivity communicating to them the minimum
information required to maintain consistency; and

• controlling the sequence and timing of key design
decisions by specialized agents.

6.2 APPLICABILITY OF BLACKBOARD AND
CDPS APPROACHES

We have provided an exploratory review of
blackboard and CDPS systems in the context of
concurrent design, and have speculated about the
extent to which blackboard architectures and CDPS
systems might be employed as computing paradigms
in modeling and ultimately aiding concurrent design of
complex artifacts.

Based upon this initial evaluation, we have
concluded that blackboard architectures are likely to
be most useful in modeling and supporting concurrent
design for relatively routine artifacts, in which
sufficient control knowledge can be defined to
establish hierarchical control of the design process.
For less standard design tasks in which a 'once
through' sequencing of design decisions is not obvious
a priori, and in which considerable negotiation of
constraints among agents will be required, the CDPS
approach may be more applicable. We believe that
the best approach for using CDPS in this domain will
be to assign fixed, specialized roles to agents
hierarchically, and then to obtain decentralized
control through a process of heterarchical negotiation
of decision sequences and constraints among agents
with specialized expertise. This style of CDPS appears
to match closely the way in which human organiza-
tions deal with innovative design tasks. One
experimental effort of this type of CDPS approach
concerns building a structuring and connecting model
for the processes of concurrent facility design,
construction planning and maintenance planning and
management for industrial plants. This work will be a
synthesis of work already under way in the area of
distributed planning for ship collision avoidance (Jin
and Koyama, 1990), current research on 'virtual
design teams' (Cohen and Levitt, 1991) and the
research we reviewed in Section 5.3. Currently

available hardware and software tools appear to be
adequate to support initial experimentation in this
area.

Acknowledgements

The authors are grateful to Dr Barbara Hayes-Roth of
the Knowledge Systems Laboratory of Stanford
University for helpful comments on an early draft of
this paper and to reviewers of the paper who provided
us with excellent critiques and detailed suggestions for
sharpening the paper's focus.

References

Amarel, S. 1968. On representations of problems of reasoning
about actions. In D. Mitchie (ed.), Machine Intelligence 3.
Edinburgh: Edinburgh University Press.

Asimow, W. 1962. Introduction to Design. Englewood Cliffs, NJ:
Prentice-Hall.

Bond, A. H. and Gasser, L., eds 1988. Readings in Distributed
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.

Brown, D. C. and Chandrasekaran, B. 1989. Design Problem
Solving: Knowledge Structures and Control Strategies. London:
Pitman.

Cammarata, S., McArthur, D. and Steeb, R. 1983. Strategies of
cooperation in distributed problem solving. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence,
pp. 767-770. [Also in Bond (1988), pp. 102-105].

Cohen, G. and Levitt, R. E. 1991. The virtual design team. ASCE
Construction Congress 91, Boston, MA.

Conry, S. E., Meyer, R. A. and Lesser, V. R. 1988. Multistage
negotiation in distributed planning. In Bond, A. H. and Gasser,
L. (eds) Readings in Distribution Artificial Intelligence. San
Mateo, CA: Morgan Kaufmann.

Corkill, D. D. 1979. Hierarchical planning in a distributed
environment. In Proceedings of the Sixth International Joint
Conference on Artificial Intelligence, Tiblisi, Georgia, USSR,
August 1979. (An extended version was published as Technical
Report 79-13, Department of Computer and Information Science,
University of Massachusetts, Amherst, MA, February 1979.)

Corkill, D. D. and Lesser, V. R. 1983. Coordination in a
distributed problem-solving network. In Proceedings of the
Conference on Artificial Intelligence, Oakland University,
Rochester, MI.

Corkill, D. D., Corkill, D. D., Gallagher, K. 0 . and Murray, K. E.
1986. GBB: A generic blackboard development system.
Proceedings of A A AI-86, Philadelphia, PA.

Corkill, D. D., Gallagher, K. Q. and Johnson, P. M. 1986. From
prototype to product: evolutionary development within the
blackboard paradigm. Technical Report 86-46, Department of
Computer and Information Science, University of Massachusetts,
Amherst, MA.

Darwiche, A., Levitt, R. E. and Hayes-Roth, B. 1989.
'OARPLAN: generating project plans by reasoning about
objects, actions and resources. (AIEDAM) 2, 169-181.

Davis, R. and Smith, R. G. 1983. Negotiation as a metaphor for
distributed problem solving. Artificial Intelligence 20(1), 63-109.

Durfee, E. H. 1986. An approach to cooperation: planning and

94 R. E. Levitt et al.

communication in a distributed problem solving network.
Technical Report No. 86-09, Department of Computer and
Information Science, University of Massachusetts, Amherst, MA.

Durfee, E. H. and Lesser, V. R. 1986. Incremental planning to
control a blackboard-based problem solver. In Proceedings of the
National Conference on Artificial Intelligence, Philadelphia, PA.

Durfee, E. H. and Lesser, V. R. 1987. Using partial global plans to
coordinate distributed problem solvers. In Proceedings of the
Tenth International Joint Conference on Artificial Intelligence,
Milan, Italy. [Also in (Bond, 1988) pp. 285-293].

Durfee, E. H., Lesser, V. R. and Corkill, D. D. 1989. Trends in
cooperative distributed problem solving. IEEE Transactions on
Knowledge and Data Engineering, KDE-1 (1), 63-83.

Dym, C. L. 1990. Representation and problem solving: the
foundations of engineering design. Report 05-50-90, Engineering
Design Research Center, Carnegie-Mellon University, Pittsburgh,
PA.

Dym, C. L. and Levitt, R. E. 1990. Knowledge-Based Systems in
Engineering. New York: McGraw-Hill.

Dym, C. L. and Levitt, R. E. 1991. Towards the integration of
knowledge for engineering modeling and computation.
Engineering with Computers, to appear.

Engelmore, W. and Morgan, T. 1988 (eds) Blackboard Systems.
Reading, MA: Addison-Wesley.

Erman, L. D., Hayes-Roth, F., Lesser, V. R. and Reddy, D. R.
1980. The hearsay—II speech understanding system: integrating
knowledge to resolve uncertainty. ACM Computing Survey 12(2),
213-253.

Feigenbaum, E. A. 1977. The art of artificial intelligence: themes
and case studies of knowledge engineering. Proceedings of IJCAI
77, Cambridge, MA.

Fox, M. S. 1981. An organizational view of distributed systems.
IEEE Transactions on Systems, Man and Cybernetics 11(1),
70-80.

Gasser, L. and Huhns, M. N. (eds) 1989. Distributed Artificial
Intelligence, Volume II. San Mateo, CA: Morgan Kaufmann.

Hayes-Roth, B. and Hayes-Roth, F. 1979. Modeling planning as an
incremental opportunistic process. In Proceedings of the 1979
International Joint Conference on Artificial Intelligence.

Hayes-Roth, B. 1985. A blackboard architecture for control.
Artificial Intelligence 26, 251-321.

Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R. and
Seiver, A. 1989. Distributed intelligence within an individual. In
L. Gasser and M. Huhns (eds), Distributed Artificial Intelligence,
Vol. II. Los Altos, CA: Morgan Kaufmann.

Howard, H. C. and Rehak, D. R. 1989. KADBASE: Interfacing
Expert Systems with Databases. IEEE Expert 4(4), 65-76.

Howard, H. C , Wang, J., Daube, F. and Rafio, T. 1989. Applying
design-dependent knowledge in structural engineering design.
(AlEDAM) 3, 111-123.

Huhns, M. N. (ed) 1987. Distributed Artificial Intelligence. Los
Altos, CA: Morgan Kaufmann.

IJCAI 1989. Proceedings of the 1989 International Joint Conference
on Artificial Intelligence, Detroit, MI.

Jin, Y. and Koyama, T. 1990. Multiagent planning through
expectation based negotiation. In Proceedings of the 10th AAAI
International Workshop on Distributed Artificial Intelligence.

Klein, M. 1990. Supporting conflict resolution in cooperative design
systems. In Proceedings of the 10th AAAI International Workshop
on Distributed Artificial Intelligence.

Laasri, B., Laasri, H. and Lesser, V. R. 1990. Negotiation and its
role in cooperative distributed problem solving. In Proceedings of
the 10th AAAI International Workshop on Distributed Artificial
Intelligence.

Lander, S. and Lesser, V. R. 1989. A framework for the integration
of cooperative knowledge-based systems. In Proceedings of the
IEEE International Symposium on Intelligent Control, Albany,
New York.

Lesser, V. R., Fennell, R. D., Erman, L. F. and Reddy, D. R.
1975. Organization of the HEARSAY II speech understanding
system. In IEEE Transactions on Acoustics, Speech and Signal
Processing ASSP-23(1), 11-24.

Lesser, V. R. 1981. AI and brain-theory research at Computer and
Information Science Department University of Massachusetts. Al
Magazine, 3(1), 16-20.

Lesser, V. R. and Corkill, D. D. 1981. Functionally accurate,
cooperative distributed systems. IEEE Transactions on Systems,
Man and Cybernetics 11(1), 81-96.

Levitt, R. E. 1984. Superprojects and superheadaches: balancing
technical economies of scale against management diseconomies of
size and complexity. Project Management Journal, 15(4), 82-90.

Levitt, R. E. and Kunz, J. C. 1987. Using artificial intelli-
gence techniques to support project management. (AIEDAM) 1,
3-24.

Levitt, R. E., Tommelein, I. D., Hayes-Roth, B. and Confrey, T.
1989. SightPlan: A blackboard expert system for constraint based
spatial reasoning about construction site layout. Technical Report
No. 020, Center for Integrated Facility Engineering, Stanford
University, Stanford, CA.

Logcher, R. D. and Levitt, R. E. 1979. Organization and control of
engineering design firms. ASCE Engineering Issues, 105 (Ell),
7-14.

Maher, M. L. 1984. HI-RISE: a knowledge based expert system for
the preliminary design of high rise buildings. PhD Dissertation,
Department of Civil Engineering, Carnegie-Mellon University,
Pittsburgh, PA.

Mittal, S., Dym, C. L. and Morjaria, M., 1986. PRIDE: an expert
system for the design of paper handling systems. Computer 19(7),
102-114.

Nii, H. P., Feigenbaum, A., Anton, J. J. and Rockmore, A. J.
1982. Signal-to-symbol transformation: HASP/SIAP case study.
AI Magazine 3(2), 23-35.

Nii, H. P. 1986. Blackboard systems: Part I and Part II. AI
Magazine, 7.

Pohl, J. and Cotton, J. 1990. ICADS Working Model Version I: A
Responsive CAD Environment. Proceedings of the Symposium
on Knowledge-Based Systems in Building Design, Baden-Baden,
Germany.

Riitahuhta, A. 1988. Systematic engineering design and use of an
expert system in boiler plant design. Proceedings of the ICED
International Conference on Engineering Design, Budapest,
Hungary.

Roos, D. 1967. ICES System Design. Cambridge, MA: MIT Press.
Special Interest Group on Manufacturing (SIGMAN). 1989.

Workshop on Concurrent Engineering Design, Working Notes,
International Joint Congress on Artificial Intelligence, Detroit,
MI.

Simon, H. A. 1975. Style in design. In C. M. Eastman (ed), Spatial
Synthesis in Computer-Aided Building Design, pp. 287-309.
Applied Science Publishers.

Smith, R. G. and Davis, R. 1981. Frameworks for cooperation in
distributed problem solving. IEEE Transactions on Systems, Man
and Cybernetics, SMC-11 (1), 61-70.

Sowa, J. C. 1984. Conceptual Structures: Information Processing in
Mind and Machine. Reading, MA: Addison-Wesley.

Sriram, D., Logcher, R. and Fukuda, S. (eds) 1989. Proceedings of
the MIT-JSME Workshop on Cooperative Product Development,
Massachusetts Institute of Technology, Cambridge, MA.

Multidisciplinary design 95

Stankovic, J. A. 1984. A perspective on distributed computer McGraw-Hill,
systems. IEEE Transactions on Computers, C-33(12), 1102-1115. Tommelein, I. D. 1989. SightPlan: an expert system that models

Stonebraker, M. and Rowe, L. 1986. The design of POSTGRES. and augments human decision-making for designing construction
Proceedings of the A CM SIGMOD Conference. site layouts. Ph.D. Dissertation, Department of Civil Engineering,

Sycara, K. 1988. Resolving goal conflicts via negotiation. In Stanford University, Stanford, CA.
Proceedings of the Seventh National Conference on Artificial Tommelein, I. D. 1989. Comparing design strategies of agents with
Intelligence, St Paul, MN. limited resources. MS Thesis, Department of Computer Science,

Sycara, K. 1989. Multiagent compromise via negotiation. In L. Stanford University, Stanford, CA.
Gasser and M. Huhns (eds) Distributed Artificial Intelligence II. Werkman, K. 1990. Knowledge-based model of negotiation using
San Mateo, CA: Morgan Kaufmann. shareable perspectives. Proceedings of the 10th AAA1 Interna-

Thompson, J. 1967. Organizations in Action. New York: tional Workshop on Distributed Artificial Intelligence.

Raymond E. Levitt is Professor of Civil Engineering and serves as Associate Director of
Stanford's Center for Integrated Facility Engineering. After earning his PhD in Civil
Engineering at Stanford in 1975, Dr Levitt served on the faculty of MIT's Civil
Engineering Department for five years. Dr Levitt's early research employed organization
theory and risk analysis approaches to model decision-making in facility engineering
organizations. Since 1980, he has been conducting research at Stanford to explore the
potential uses of artificial intelligence and knowledge-based systems as non-numerical
computing tools for a variety of facility engineering applications, including site layout,
design synthesis and project planning and control. His industry experience includes design,
estimating and on-site management positions in marine and building construction, and
numerous consulting assignments related to organization design, safety management and
expert systems applications. Dr Levitt is a Director of Design Power, Inc., and serves as a
scientific or technical advisor to several companies in the U.S. and Europe. He is
coauthor, with Professor Clive Dym, of the book, Knowledge-based Systems in
Engineering.

Yan Jin is a Postdoctoral Research Fellow at Department of Civil Engineering, Stanford
University. He received his PhD from the University of Tokyo in 1988 and has been
working on knowledge-based systems, distributed artificial intelligence and their applica-
tions in marine traffic control, computer aided design and computer integrated manufac-
turing systems. His current research interests include knowledge-based planning, distrib-
uted problem solving and concurrent engineering.

Clive L. Dym is Fletcher Jones Professor of Engineering Design at Harvey Mudd College
in Claremont, CA. Since receiving his PhD from Stanford University in 1967, he has done
research on a variety of problems in applied mechanics and acoustics. Since 1983, his
research has focused on the development of knowledge-based (expert) systems for
engineering design and analysis. He has published more than 50 archival journal articles
and eight books.

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1991

	Knowledge-Based Support for Management of Concurrent, Multidisciplinary Design
	Raymond E. Levitt
	Yan Jin
	Clive L. Dym
	Recommended Citation

	tmp.1391205956.pdf.PQzbg

