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Abstract 

The aim of this work was to develop an experimental tool to perform flow-

sheeting tasks throughout the course of chemical process design. Such design 

proceeds in a hierarchical manner increasing the amount of detail in the de-

scription of the plant, and, correspondingly, in the mathematical models used to 

describe the plant. The models range from the simplest overall mass balance to 

rigorous unit models, and the calculations required in the course of a design may 

include the modelling of the complete plant or any of its constituent parts at any 

level of detail between these two extremes. Object oriented programming has 

been used to represent the hierarchy of units required throughout a hierarchical 

design. 

A flexible modelling tool requires that models compatible with both the de-

signer's intention and the context of the design are created. Sets of equations 

are defined in a generic form independent of process units with their selection as 

part of a model being dependent on the function and context of the unit being 

modelled. The expansion of the generic equation descriptions is achieved with 

reference to the structure of the unit, e.g. number of inlets and outlets, while the 

context of an equation determines the form of the equation to be applied, e.g. 

ideal or non-ideal behaviour. Equations are, therefore, represented as relations 

between a process item and its structural and contextual properties. 

An increase in modelling flexibility is obtained by allowing the designer to 

interact with generated models. Different sets of equations can be selected within 

constraints imposed by the system. At a lower level, terms in individual equations 

can be modified for particular applications. 

In chemical process design, many different analyses are performed. To demon-

strate the application of different tools to a central model, the modelling system 

has been incorporated within a process synthesis framework. 

The application of the system to simple design case studies is described. 
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Chapter 1 

Introduction 

The aim of this work has been to develop an experimental tool to perform flow-

sheeting tasks throughout the course of a design. Design proceeds in a hierarchi-

cal manner increasing the amount of detail in the description of the plant, and, 

correspondingly, in the mathematical models used to describe the plant. Models 

range from the simplest overall mass balance to rigorous, fully detailed unit mod-

els, and the calculationè required in the course of a design include the modelling 

of complete plants or any of their constituent parts at any level of detail between 

these two extremes. 

As a design develops, many alternative flowsheets may be generated reflecting 

the opportunistic way in which a designer works. The tool has been developed to 

support the numerical and heuristic evaluation of the alternatives, with the aim 

of producing, ultimately, a single design. 

Most current flowsheeting technology is intended for modelling plants at a sin-

gle level of complexity. In situations where several levels can be handled, there is 

no means of ensuring a consistency of data between them, or between the flow-

sheeting program and other programs used for design. This work aims to extend 

the applicability of flowsheet modelling as a tool to be used throughout the design 

process while considering the requirements of integrated process evaluation. 

The justification for characterising the work in this thesis as knowledge based, 

is that, in comparison with more conventional programming techniques, the 

knowledge, both about the subject and the nature of the problem solving ac-

tivity, has been coded explicitly in a modular manner. Inference is then possible 

based on the classification of the encoded knowledge. 

The major area of work has been in knowledge representation. The repre- 
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sentation of information must be able to describe the structure and function of 

plant items and the relationships between them. Relationships define topology, 

the position of a unit in a design hierarchy, its functional description and its 

modelling capability. Section 1.1 and Chapter 2 discuss the knowledge appropri-

ate to flowsheeting and its representation. The application of the representation 

techniques to flowsheeting is discussed in Chapter 4. 

The work described here has addressed the implementation of a solution 

method, together with its support facilities, appropriate for flexible fiowsheet 

modelling. Chapter 3 discusses the advantages and diadvantages of the flow-

sheeting techniques currently in widespread use, providing the basis for the se-

lection of the most suitable approach. The system could, however, be altered to 

accommodate a range of solution techniques as demonstrated in Chapter 3. 

Integration with other design functions has been considered as part of knowl-

edge representation. A tool for aiding in process synthesis has been developed 

to demonstrate the principle of wider integration. Process synthesis has a hier-

archical structure providing an overall framework for design. The discrete levels 

suggested by the procedure allow a structured analysis of flowsheets, providing 

information for their subsequent modelling. The structure and its representation 

are discussed in Chapter 6. 

1.1 Chemical Engineering Design 

To provide a tool to facilitate process flowsheet modelling in the context of an 

integrated design, it is first necessary to define the scope of design and the level 

to which integration of different design functions is desirable and supportable. 

Chemical engineering design is a multi-disciplinary exercise involving chemical 

engineers and chemists who define the process, mechanical and civil engineers who 

design process equipment and the site, and electrical and control engineers who 

provide power and control system design for the plant. Commercial pressures 

require that the design be completed in as short a time as possible. This can 

only be achieved by successful coordination of all these functions. 

The different functions may view the same information in different ways, using 

terminology and notation unfamiliar outside their own fields. The coordination 

of information which is to be used from different viewpoints is itself a major 

research topic and has been given only brief consideration here. A discussion of 
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the implications for a multi-disciplinary design environment has been pres ented '  

by Westerberg et al [1] and Subrahmanian et al [2]. - 

Design has traditionally been performed in two distinct phases [3] - concep-

tual design of the process and physical design of the items of plant. Initially, 

the process is defined by the chemists and chemical engineers. Specialists from 

other functions only become involved once the process definition is completed and 

their involvement is economically justifiable. This implies that once the design 

has reached the stage of involving the specialist functions, the process is fixed. 

Any fundamental alterations required as a result of consideration of the different 

functions are added to the design rather than integrated into the development of 

the process. 

Process design is necessarily performed in an iterative manner. A number 

of designs will be considered initially and carried forward in enough detail to 

enable evaluation and, thereby, a choice to be made between them. The number 

of alternatives will be reduced as the degree of detail is increased, until a single 

process design may be chosen for progression to the plant and equipment design 

stage. 

The present approach to design is to advance progressively from block flow 

diagram level (BFD) to the description of the individual unit operations. At this 

stage, a single design is accepted on economic grounds. Subsequently, a piping 

and instrumentation diagram (PID) is constructed, where control and layout are 

considered. 

This is followed by a safety and hazard analysis where each line in the plant is 

investigated to see if variations from the specified conditions can occur and what, 

if any, hazards will result. Similarly, procedures for plant start-up and shut-down 

are determined. 

Any of these evaluations could result in a major redesign of a plant which 

has been accepted without detailed consideration of the different functions. For 

example, a hazard analysis might reveal a failure resulting in an unanticipated 

explosive mixture of components. The solution to the problem at this stage of 

the design is to implement a control strategy ensuring that in the event of the 

identified failure, the explosive mixture is not formed. This may involve the 

specification of extra items of process equipment. If this eventuality had been 

considered earlier in the design, it may have been possible to define the process 
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such that a failure of this sort would not occur. 

An integrated approach to design would prevent such costly errors by en-

couraging the consideration of all facets of design throughout the hierarchical 

synthesis procedure (Figure 1.1), i.e. the iterative procedure would involve all 

disciplines rather than leave them until the process is fixed. By evaluating the 

process with respect to all these functions at every stage of design, redesign 

would be minimised. Advantages to be seen in completed processes should be: 

decreased physical size, greater energy efficiency, and improvements in safety and 

maintenance (see Preston [3]). 

Figure 1.1: Integrated Approach to Design 

1.1.1 The Role of Flowsheeting in Design 

The synthesis of process fiowsheets and the evaluation of their mathematical rep-

resentations constitutes only a small part of chemical engineering design. "Flow-

sheeting" programs are used for evaluating flowsheet models in order to calculate 

heat and mass balances and equipment sizes. To establish the extent to which 

fiowsheeting can be applied to a broader range of problems than attempted at 

present, a description of the design procedure and the role currently filled by 

fiowsheeting is necessary. 

The procedure is shown in Figure 1.2. Design is initiated by the need for a 

financially attractive product. Market models assess current product values and 

predict future trends resulting in the suggestion of a product or product area. 
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"Make Money" 

Market Evaluation 

Reaction Path Synthesis 
I 

Process Design 
Block Flow Diagram 

Process Flot, Diagram 
V 

Piping and Instrumentation Diagram 

Construction 

Operation 

Figure 1.2: Procedure for Chemical Plant Design 

lithe product can be made using existing technology, then that technology 

is adapted to suit a particular site and required throughput. If, however, the 

technology does not exist, a chemical reaction sequence is required. Chemists 

provide information about the reactions involved, including kinetic equations, 

by-product and product distributions, etc. - 

There is already a range of possible processes to be evaluated. From this point 

on, increasingly more alternative processes can be generated. The alternatives 

must be evaluated to eliminate the less attractive options, resulting in a single 

completed design. It is infeasible, however, to produce completed designs for 

every alternative generated, so evaluation takes place at different levels of detail. 

Even at the level of minimum input, e.g. only basic reaction information, some 

options can be discarded, if, for example, the raw materials are more expensive 

than the products, or if a catalyst is rapidly poisoned and expensive to regenerate. 

Throughout the process design phase more detail is added to the process 

description, starting with a block flow diagram of conceptual process operations 

and proceeding towards a process flow diagram where the unit operations of the 

completed plant have been defined, as shown in Figure 1.3. In parallel with this 

increase in process detail, more information is available for (and required of) the 

evaluation model. 

The level of description adopted by flowsheeting programs is that of the pro- 
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Figure 1.3: Hierarchical Approach to Design 

cess flow diagram. This seemingly narrow range still accounts for thousands of 

program runs every year. It is, however, desirable to retain the knowledge ac-

cumulated thus fax in the synthesis of the plant and extend it to incorporate 

the mechanical design of plant items, ensuring a consistency of information and 

ease of subsequent data manipulation. To do this in a traditional fiowsheeting 

package would require an impractically large unit model library incorporating 

conceptual process models and detailed individual unit models for every possible 

unit operation. A different approach is necessary and is discussed in Chapter 4. 

The concept of a hierarchical decomposition of a design is now well accepted, 

and should be incorporated in any representation of the design procedure. It 

allows the evaluation of process alternatives with the least possible effort being 

wasted on fruitless ones. 

1.1.2 Design Knowledge 

Modelling the design procedure, and encapsulating the knowledge identified as 

being used by experienced designers is a major research topic. Categorisation 



of the knowledge is necessary for the creation of a representative model which 

allows the designer to perform the required tasks in a flexible and natural way. 

The following types of knowledge used by engineers in design have been identified 

by Beltramini and Motard [4]: 

Laboratory data describing chemical and physical behaviour of materials, 

Data representing standards or specifications, 

Mathematical models for mass balance, thermodynamic laws, chemical 

laws, costing, etc. 

Heuristic and judgemental knowledge: 

subjective decision making exhibited by experienced engineers 

a way of combining information which might not conform to a math-

ematical model 

knowledge which directs the design towards an optimal solution 

skills in focuing on different parts of the design and deriving informa-

tion necessary for decision making 

skills in resolving goal conflicts 

strategic knowledge for controlling the overall problem solving activity. 

Some types of knowledge have already reached a high level of sophistication. 

For instance, numerical and procedural tasks, such as determination of physical 

and chemical property data for materials, and mathematical modelling for simu-

lation are well established techniques. However, implementation of strategic and 

heuristic knowledge is comparatively limited. 

In the encapsulation of strategic knowledge, design tasks can be broadly cat-

egorised into "routine" and "non-routine" activities [5]. Routine design encom-

passes problems which have a well defined design procedure that is essentially 

the samefor any application. The steps in such procedures are known and any 

choices are limited to a known set of alternatives. Distillation column design and 

sequencing, heat exchanger network synthesis and the design of certain types of 

reactors fall into this category, because they require a small, manageable domain 

of knowledge. 
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Overall process design falls into the non-routine category because the required 

amount and diversity of engineering knowledge is extensive, and there is no well 

defined procedure for developing a problem specification into a complete plant 

design. Process synthesis, which is only part of the overall design activity, can be 

considered as a routine task since there are well developed theories for its practice. 

It is possible, therefore, for non-routine tasks to have routine operations within 

them. 

The process of design can be viewed as having a hierarchical structure; a 

structure which has been utilised by many researchers in this field. A plant can 

initially be modelled by a simple block structure representing high level chemical 

processes (such as reaction and separation), and can subsequently be expanded 

incrementally to a more detailed description. Hierarchies have been implemented 

for: 

-.1. directing the course of the design towards a solution, and 

2. providing a structure for the different models which can be used throughout 

the design. 

The hierarchical approach suggested by Douglas [6,7] fits into the first category, 

i.e. as a framework for directing the design. Douglas presents a hierarchy of deci-

sion levels which increases the detail of the process description in an evolutionary 

fashion starting with consideration of the reaction and feeds. This provides a hi-

erarchical structure to the design. At each level, the whole fiowsheet is assessed, 

increasing the amount of detail by the use of heuristics. In situations where no 

heuristics are available and, therefore, no discrete choice can be made, alternative 

processes are generated. The decision hierarchy consists of: 

1 Batch vs continuous, 

2 Input - output structure of the fiowsheet, 

3 Recycle structure of the fiowsheet and reactor considerations, 

4 Separation system specification, 

vapour recovery system, 

liquid recovery system, 



5 Heat exchanger network. 

The hierarchy puts a formal structure on the approach used by engineers in 

the preliminary stages of design. 

A model of the design procedure itself has been proposed by Talukdar et al [8] 

who suggest a structure incorporating "tests", "aspects" and "operators". "As-

pects" are the viewpoints of a design from initial specification to final production 

i.e. equivalent to levels in a hierarchy. "Operators" convert input aspects to 

intermediate and output aspects, i.e. perform the steps between levels which can 

be manual or automatic, "Tests" compare aspects for consistency and report the 

results in another aspect. This is similar to the procedure adopted by Douglas, 

but is intended for a wider range of application. 

The second category above is discussed by Lien et al [9] who identify that 

different levels of model are used throughout the design, ranging from qualitative 

or order of magnitude models at the earliest stages, to rigorous mathematical 

models for later calculations. In the course of design, the designer moves from 

high to low level strategies and back as required. For instance, at one level 

in a design, a rapid, approximate calculation will determine the feasibility of 

distillation for the separation of two components. Once the decision has been 

taken that distillation may be used, a relatively simple model can be used to 

determine the dimensions of the distillation column and approximate capital and 

running costs. This provides the information necessary to evaluate the whole 

design on an economic basis. If that analysis is favourable, a detailed model 

may be used to determine mechanical information such as the dimensions of the 

column and its internal fittings. If, however, the design had proved unfavourable 

then another approximate calculation could be used to evaluate other possibilities. 

During this procedure, the design has only advanced one step, i.e. a separation 

may be carried out by distillation, but the detail of the models used to describe 

it is dependent on the task which the designer is trying to perform. 

Lien et al describe this knowledge as models of the designers and of the avail-

able aids. The knowledge describes the tools available and their applicability to a 

given task. Ideally, the tools would be mathematical models of engineering prin-

ciples, which, when combined in the correct manner, would provide a description 

of the design at an appropriate level of detail. However, many large organisa-

tions have extensive libraries of computer tools for use in the evaluation of design, 



ranging from material and heat balances for entire plants, to programs concerned 

with the detailed design of individual plant items. The utilisation of this existing 

design knowledge, in the form of programs and routines, is an alternative which 

is being investigated by some researchers (see Chapter 2). 

The common theme of the research described above is the use of a central 

model to describe the design. The consistency of data, and the consistent use 

of data by different reasoning modules, requires a common store of information, 

including numerical values for properties and the relationships between the prop-

erties. An individual design task is then interacting with data which has been 

accumulated from other tasks, enabling the identification of contradictions within 

the data. 

1.2 Computer Tools for Chemical Engineering 
Design 

As discussed in Section 1.1, specialists from different functions are involved in 

coordinated, integrated design. The lack of integration, and hence the need for 

significant iteration, in process design is partly due to the range of specialisations 

and partly to the large amount of data generated. 

Many specialist skills have now been encapsulated in computer programs, 

overcoming the difficulty of ensuring that these skills are available at the relevant 

time. Many tools have been developed in the CAD field as well as that of process 

design, and their coordination in large scale environments has been achieved (see 

Section 1.2.3 below). 

Among the earliest tools developed in chemical engineering were "flowsheet-

ing programs". The ability to perform accurate mass and heat balances rapidly 

on a scale which was previously impractical, was an important advance. The ma-

turity of these programs has resulted in this becoming one of the most important 

tools available to a chemical plant designer. Programs for designing individual 

plant items, particularly heat exchange and distillation equipment, are also in 

widespread use. These programs have been complemented by databases of phys-

ical and chemical properties. 

The development of "expert systems" has expanded the area of computer 

applications by considering problems which have no obvious numerical formu- 
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lation, for example, equipment selection and materials of construction. Some 

problems have been approached by both mathematical methods and expert sys- 

tem techniques, each with their particular strengths. The result is a wide range of 

programs and tools applicable to different aspects of chemical engineering design. 

With advances in computer hardware and software, the development of an 

integrated design environment has become an area of growing practical applica- 

tion. Importance is now being placed on coordination of the different aspects 

of design. Databases are now available to support the required management of 

data, but are not alone sufficient to capture "design knowledge". Developments 

in programming techniques, such as object oriented systems, have proved effec- 

tive for managing both data and knowledge about design procedures in general, 

the design in hand and information about the range of tools which can be used. 

1.2.1 The Role of Databases in Design 

For many aspects of design large quantities of data are required. For example, 

physical properties of materials require tables of parameters for use by the differ-

ent models of each property. Chemical data is required, along with information 

about hazards and legal limits for emissions. Further data is generated as a de-

sign proceeds. Every model created provides more data about the plant and its 

operation. Consistent management of the data is therefore essential for its use in 

large multi-user projects. 

When considering integration of computer tools and the associated design 

data, the case for using a database to coordinate the information becomes very 

strong. The maintenance of a consistent store of data, whether it be fundamental 

or generated, is essential if a range of different programs and users is to interact 

effectively. 

Commercial databases were developed for the tabulation of data containing 

few interactions and a large number of similar items. However, Cherry et al 

[10] describe process engineering data as being extremely complex where the 

number of similar items is small. The items also tend to be very strongly related. 

Chemical engineering design data is, therefore, not well suited to the use of 

commercial database management systems (DBMS). Databases specifically for 

chemical process engineering have been developed, which are different from their 

commercial counterparts. A review of engineering database systems has been 
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published by Benayoune and Preece [11]. 

Early attempts at integration used databases to link individual programs. 

Branch [12] describes the implementation of an interlinked database architecture 

where a number of smaller databases, each relating to a particular application 

task, e.g. synthesis, plant layout, etc. were coordinated by a DBMS. Existing 

design programs were incorporated into the various tasks. 

Britt et al [13] point out that such systems have not evolved as design tools, 

because they do not represent the creative, trial and error approach to conceptual 

design tasks performed by engineers. The systems lack the knowledge which an 

engineer uses to guide the design process. To this end, many researchers have 

concentrated effort on the development of "knowledge bases" and associated tools. 

Databases are required for storing data generated during the course of a de-

sign, while knowledge bases store the strategies and assumptions employed by 

the engineer. The advent of knowledge bases, therefore, does not signify the 

demise of databases. Advances in the area of design will involve the combination 

of databases and knowledge bases. 

The most common programming technique for the implementation of knowl-

edge bases is object oriented programming (e.g. DESIGN-KIT (Stephanopoulos 

et al, [14]), KNOD (Beltramini and Motard, [4])), which has provided a format 

natural for use in engineering design due to its modularity. Object oriented pro-

gramming(OOP) is described in detail in Chapter 2. Briefly, OOP is a language 

for representing groups of related information as "objects" and their "attributes". 

Objects can be used to correspond directly to the processing units in a plant. This 

representation is possible using a conventional database, defining each object as 

a table. However, the number and range of relationships employed would be very 

difficult to describe. For example, different properties of the unit can be related 

to each other by means of a mathematical model. 

Recent advances in database technology have produced object-oriented data-

bases, which provide a more powerful representation for relationships between 

stored items of information. However, databases cannot be used to describe all 

of the types of knowledge discussed above, much of which is methodological. 

A hybrid approach is required with information being stored in a database (or 

databases) to maintain the general data, such as physical property parameters, as 

well as the data generated as the design proceeds including the various topologies 
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investigated and results of the associated calculations. Knowledge bases should 

be used for the incorporation of the wide range of relationships which are required 

between the items of design information and for the methodological aspects of 

design. Relationships exist between different classes of data item, e.g. between 

process items and the programs which can be used for their design. In that way 

knowledge about the use of information and design procedures can be captured. 

1.2.2 Process Synthesis 

Many computer tools are available to help in the solution of routine design syn-

thesis problems such as distillation sequences and heat integration networks [15]. 

Synthesis of process fiowsheets can be considered to be a routine task, since 

the conversion of raw materials to products can be regarded as a mathematical 

transformation under a set of known operators i.e. unit operations. 

Two general approaches exist for.the automatic generation of flowsheets: al-

gorithmic and heuristic. The algorithmic approach is mathematically rigorous 

and guarantees to locate an optimal process, but is expensive in computing time. 

The heuristic approach, however, does not guarantee a rigorous mathematical 

result, but tends to produce good flowsheets quickly. The heuristic approach, 

which uses rules of thumb based on past experience, ingenuity and the intuition 

of the designer, therefore more closely emulates the procedures adopted by an 

engineer. 

An example of an algorithmic approach for deriving optimal process fiowsheets 

is described by Johns and Romero [16] who combined dynamic programming and 

branch and bound techniques. A qualitative system for representing high and low 

properties was used because the program was intended to suggest alternatives at 

early stages of development. 

Heuristic synthesis, while maintaining the principle of mathematical transfor-

mation at least in early programs, developed the concept of hierarchical synthesis, 

which has since been incorporated in tools for supporting the design procedure. 

Of the heuristic approaches, the hierarchy of decision levels proposed by Douglas 

[6] has proved most resilient. The expert system, PIP [17], discussed below, is 

a direct implementation of the method, while other authors, notably Lott [18], 

Stephanopoulos (MODEL. LA) [19]and Britt [13], have developed software which 

uses Douglas's approach as a basis for synthesis. 
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Siirola and Rudd [20] propose six steps combining synthesis and analysis. 

Each stage of analysis determines the implications of the previous synthesis step 

and provides appropriate information for the next. The six steps are reaction 

path selection, selection of raw material and product amounts, matching of source 

species to sinks, identification of tasks not involving separation, identification of 

required separations and conversion of specified tasks into items of plant. 

AIDES (Siirola and Rudd [20], Siirola et al [211) is the implementation of the 

above problem solving strategy. The authors have implemented five out of six 

steps of the synthesis and analysis procedure described above. 

The procedure involves matching sources and sinks of components. For exam-

ple, product streams and reactor inlets are sinks, while feeds and reactor outlets 

are sources. Where sinks and sources do not match, AIDES proposes unit oper-

ations to perform the required task. 

Mahalec and Motard [22,23] suggest the use of techniques employed for math-

ematical theorem proving. The procedure starts with a set of goals (products) 

and attempts to derive conflicts among a set of facts and the desired goals. Re-

dundant portions of the initially proposed fiowsheet, which are obtained by a 

depth-first heuristic search, are eliminated using a "look-back" strategy. The 

structure is further improved by an evolutionary search based on a set of rules. 

Kirkwood et al [17] have developed a hierarchical system using the decision 

levels proposed by Douglas. Heuristics are employed to select unit operations 

and identify process alternatives. Quantitative models calculate process flows, 

equipment sizes and cost information. 

The program (PIP) produces alternative processes at points where it can-

not make a decision. A depth-first search of the alternatives is used to locate 

profitable processes. If a process is profitable, more detail is added. If not, the 

sensitivity of the design to changes in product price is evaluated. 

Lu and Motard [24] have combined heuristic production rules and a linear 

programming algorithm to generate a flowsheet structure. They adopt a hier-

archical strategy, allowing the initial level of design to incorporate only process 

concepts, i.e. matrices representing goals and sources. The linear programming 

technique produces a preliminary flowsheet, which provides a basis for an evolu-

tionary search to generate modifications to the flowsheet structure. 

Since overall flowsheet synthesis can be regarded as a routine task, accord- 
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ing to the definition of Davis [25], it can be considered as one of the standard 

tools used in design. In an integrated design system, the other tasks, such as 

safety evaluation and control system synthesis, would require separate tools. An 

integrated system requires interaction between all tasks at all levels of design, sug-

gesting a hierarchical approach. The non-hierarchical programs can still provide 

useful process alternatives for evaluation, but are of less value in an integrated 

system. For that reason the larger design programs and environments which have 

been developed have supported a hierarchical synthesis procedure. 

1.2.3 Design Environments 

"Design environments" provide an interface between designer and tools, main-

taining data in a consistent form. Environments are not intended to automate 

design of chemical plants. They are intended to provide a designer with access 

to the tools required throughout the integrated design process. 

In the most basic sense, the coordination of tools can be achieved by providing 

a user interface to a suite of translation programs. An example of this type of 

mechanism is PROCEDE [26]. The interface allows the graphical description of 

a flowsheet to a high degree of sophistication. The designer is then at liberty to 

invoke any of the design tools in any order. Such flexibility is important, allowing 

the adoption of familiar design procedures rather than being constrained to a 

predefined framework. 

The limitations of systems such as PROCEDE is the lack of information about 

the constituent tools. PROCEDE has a central data store, but no description of 

the relationships between process items or properties of process items. With no 

indication of the validity of the values of properties, or whether they are specified 

or calculated, tools can be invoked with inputs which may be contradictory or 

incomplete. The results of the operations are returned to the central store with 

no indication of where they came from and no means of ensuring consistency. For 

example, a flowsheet simulation may calculate a heat exchanger heat transfer area 

which is subsequently used in a package specifically to design heat exchangers. 

The package may select a tube length from a set of standard lengths which may 

require a revision of the heat transfer area. With no knowledge of the interaction 

between heat transfer and heat load, no indication can be given that the results 

of the simulation may now be inaccurate. 
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A framework incorporating knowledge about the tools, i.e. what can be 

achieved and what is required, has been developed by Daniell and Director [27] 

for the application of CAD tools. The tools have been represented by "objects" 

describing their general abilities and manage the low level programming details of 

their invocation. Not only does this representation allow the, user the flexibility 

of choosing any tool with reference to its abilities, but, since this information is 

explicitly stated, it is possible to provide reasoned advice on tool selection. 

The authors describe the implementation of a "blackboard model" to select 

and invoke the tool most appropriate to a given problem. A blackboard model 

is a representation technique where the knowledge is divided into sets of rules 

each concerned with a particular subject. These "Knowledge Sources" monitor 

the "Blackboard" of data about the problem, waiting for information which they 

can act on. When such a situation is recognised, a Knowledge Source places a 

bid on the Blackboard indicating that it can be used and what it can achieve. 

The program "Interpreter" then determines which of the competing Knowledge 

Sources to invoke. This representation is discussed in Chapter 2. 

Allowing the Interpreter to determine the sequence of actions takes the direc-

tion of the design away from the engineer. To allow the designer to direct the 

procedure the same framework could be used merely to present the tools which 

could be invoked in a given situation. This would be of particular value if a large 

number of tools was available and a particular analysis required only a subset of 

these. Presenting the user with the subset of options could provide guidance for 

- 	completing the analysis. 

The ADVENT system, described by Britt et al [13], adopts a similar philos-

ophy, and is intended to support process synthesis and optimisation for "pinch" 

synthesis of heat exchange networks. An object oriented executive allows the 

user to interact with application programs, in this case synthesis and analysis 

programs for heat exchange networks, as well as a simulator, and a graphical in-

terface. The authors suggest the extension of the system to handle whole plants 

using the synthesis hierarchy of Douglas and a database. 

One of the major objectives in the design of the above systems has been the 

ease of maintenance, i.e. the ease of adding new modules and removing old ones. 

Systems such as PROCEDE have little interaction between tools, implying that 

the addition of new tools only requires the correct mapping between the data 
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structures of the central model in the environment and the application program. 

The system proposed by Daniel! and Director, however, requires additional in-

formation describing the range of applications with associated input and output 

values. The work to incorporate new tools has, therefore, increased. In general, 

the more information that the environment has about its constituent tools, the 

more useful it can be to a designer. With the implementation of appropriate rea-

soning it can provide help about the tasks involved and tools for their solution. 

However, the increase in additional information also increases the effort necessary 

to interface new tools. 

The use of existing application programs alone is not sufficient to provide 

all the flexibility the designer may require. Most programs only perform one 

task representing a single step in the design procedure, e.g. distillation column 

sequencing, flowsheet simulation, heat exchange network design, etc. The models 

which can be created in such systems are restricted to those provided by the 

modules, whereas a designer creates models of processes at different levels of 

abstraction and evaluates them against various criteria. Further, the user does 

not have access to the models used by the application programs. This means that 

the designer may not be able to create exactly the model required, or manipulate 

it to suit particular needs. In most cases, there will not be any way of displaying 

the model being used. 

To provide a better environment for chemical engineering design, it becomes 

necessary to support flexible modelling and allow access to the models created. 

If the knowledge about the problem domain is adequately detailed, in that the 

properties of the items of interest to a designer are characterised along with 

their relationships to each other, then the definition of a mathematical model 

requires only the ability to define the sets of relationships between the properties 

which provide a description of the item. The models are, therefore, created by the 

designer for a particular application, but are available for evaluation by simulators 

or reasoning modules. 

An environment based on this principle is DESIGN-KIT [14] developed using 

the artificial intelligence toolkit, KEE. The system is object oriented with plant 

items represented by objects within an inheritance hierarchy. The designer can 

select from a number of standard units or, more importantly, define the operation 

of a unit by selecting appropriate constituent parts. Rules are used to ensure 
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the consistency of such selections. Further rules infer the configuration of the 

unit, and, hence, the associated mathematical model for the desired task. The 

mathematical model is, therefore, representative of the operation defined by the 

designer. 

The system dynamically generates equations from the model definition and 

interfaces to a range of evaluation modules. These modules can perform, for 

example, a "degrees of freedom" analysis, to aid the selection of design variables, 

and symbolic differentiation prior to equation based simulation. Since the model 

is defined centrally, the same definition can be used to develop a semi-qualitative 

model based on the order of magnitude of unit attributes. Potentially, other 

types of model could be generated for other applications. 

The evaluation modules for such a system must be general in order to accom-

modate the extra interaction designers might require with models. For instance, 

in DESIGN-KIT, instead of interfacing to a specific process flowsheeting pro-

gram, the only part which is incorporated in its original form is the solution 

mechanism. Model libraries have been superseded by the mechanism for model 

definition. The flowsheeting "executive" has been replaced by rules which pro-

vide a more flexible interface to the solver. The removal of these rigid parts of 

the flowsheeting program allows interaction with the model, to evaluate, for ex-

ample, design variable selection. The implication is that for systems based on 

this general modelling concept, there is a need to develop more tools specifically 

for the environment. Tools are required for formulating models for each appli-

cation in order to allow interaction with the models at different levels. Either 

the application modules must be written specifically for the environment, or the 

fundamental evaluation parts of existing programs must be separated from their 

internal model representations, e.g. the solver from the simulator. 

The result is an environment with a high degree of flexibility for the designer, 

who can define models rather than let the application programs develop them,. 

However, the disadvantage for the system developer is the inflexibility of the 

interfacing. The design tasks normally performed by application programs re-

quire either new custom made modules, or major alterations to the application 

programs. 

The emphasis of this type of environment is on a central model definition 

which can be used to formulate models for a range of different types of evaluation. 
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Therefore, interfacing to tools in the manner described by Britt et al, is still an 

option. It is valuable to retain this option as a means of interfacing existing 

packages which a designer has experience of, or are company standard. The 

system can then support the design programs which are available at the point of 

application. 

The model not supported by PROCEDE or DESIGN-KIT is a model of the 

design process itself. This can be used to provide a recorded structure of design 

development and associated decisions, and, from the programmer's point of view, 

to incorporate strategies for directing the design task. MODEL.LA  [19,28,29] 

consists of a modelling language integrated with a model which supports design 

development (see Section 1.2.4) to provide this required extension to DESIGN-

KIT. 

More recently proposed design environments address more fundamentally the 

nature of design. Smithers [30] argues that to provide intelligent support or 

automatically reproduce the design process, it is necessary to understand how 

knowledge is organised, used and generated during design. He describes the 

development of an "exploration based" model of design. The model takes as its 

input a description of the initial requirement, which tends to be incomplete and 

inconsistent. The space of possible designs is "explored" to determine in what 

ways the initial statement is incomplete and inconsistent. These points are used 

to concentrate the design activity and thereby refine the initial description. This 

differs from a search problem in that the initial requirement cannot be regarded 

as a specification due to its inconsistency. A goal state is achieved when a point 

in the design space is found which specifies a design fully satisfying the, now 

revised, requirement. This approach is also taken by Bañares-Alcántara [31] in a 

proposed chemical engineering design environment. 

Study of the nature of the design process has revealed the importance of 

social aspects. Design is typically performed by a team rather than one person. 

Individuals may perform separate tasks, but many are collaborative. Westerberg 

et al [1] and Subrahmanian et al [2] discuss the development of a design support 

environment called N-Dim intended to provide a medium for a multi-disciplinary 

team of designers to communicate on the common design. 

In this system, individual designers may have different viewpoints pertaining 

to their specialities, and should, therefore, be able to access their own models. 
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Obviously, for consistency, only one model should be used. The authors sug-

gest that, to overcome this apparent contradiction, individual designers should 

be able to access a common model but from their own viewpoint. Designers will 

be allowed to work on models in their own space, developing and experimenting. 

When a designer is ready to share a model with other workers, that model be-

comes permanent. The other workers may copy and modify the model in their 

own space, but the "cast in stone" model remains as a record of that state of the 

design. 

The authors also discuss the development of a modelling language, ASCEND, 

which is tailored to suit large scale design activities (see Section 1.2.4) by incor-

porating the notion that data can be accessed with a different viewpoint. The 

language is intended for the formulation and solution of algebraic models, but 

Talukdar and Westerberg [8] discuss its implementation in the wider context of 

multi-user design. Three aspects of design are considered: 

• The information gathering phase prior to the development of a new product. 

• The modelling of the design procedure. The example discussed is the rep-

resentation of test-aspect-operator diagrams. 

• The modelling of the designed artifact in its various stages of development, 

which is the original purpose of ASCEND. 

The discussion of the first two applications is mostly hypothetical, and would 

require the support of an environment such as N-Dim for multi-user access. The 

principle, however, is straightforward. Individuals can develop their own models 

of the artifact, the design or the information, and permit their use to others, at 

which point the models become "cast in stone". This allows different designers 

to create models from their own viewpoint, but accessing a common model. 

As yet, these later systems (Smithers, Banares-Alcántara, Westerberg et al) 

are in the development stage, but they already indicate that future design en-

vironments are going to support the designer in more than the use of a suite 

of tools. Modelling of the design procedure will be valuable, not necessarily in 

automatic design, but for support for the tasks and social interactions involved. 
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1.2.4 Process Modelling 

The importance of modelling as a tool for design has been emphasised by 

Stephanopoulos et al [19] and Westerberg et al [1]. During the course of a 

design, engineers create models which reflect the state of the designed article. 

Traditionally, programs modelling flowsheets or individual plant items have pre-

defined models which constrain the exploratory nature of model building. For 

this reason, systems have been developed to support the modelling task, notably: 

MODEL.LA [28,29], ASCEND [32] and ModAss [33]. A detailed comparison 

of the systems and the present work will be made in Section 5.3. This section 

outlines briefly the capabilities of each system. 

The central theme of these systems is the hierarchical decomposition or con-

struction of models. The mathematical description of large processes can be 

defined as a set of submodels describing parts of the process. The decomposition 

can continue down to the definition of a single variable. For example, the descrip-

tion of a flash vessel can be defined as the summation of the heat contributions 

of input and output streams, which can be further decomposed into enthalpies, 

then to temperatures, heat capacities, etc. 

These tools are most useful when as many fundamental relationships as pos-

sible have been defined. The designer can then create high level models by com-

bining lower level models, e.g. the flash vessel described above can be modelled 

by specifying that it requires mass balance, heat balance and vapour-liquid equi-

librium models. 
-. 	The techniques for describing and developing models are different for the three 

systems discussed. 

ASCEND was developed for formulation and solution of algebraic models. 

The resulting language has some object oriented properties rather than it having 

been developed in an object oriented language (see Chapter 2). The structure of 

a model is similar to that of the concept of an object. Related information, in-

cluding the specification of mathematical relationships between constituent prop-

erties, is classified under a general heading, e.g. a distillation column. Any ex-

amples of distillation columns then have the properties of the general model. 

The different parts of a model are discussed below. Figure 1.4 shows part of the 

definition of a distillation column in ASCEND. 

The variables nt and feed_tray are declared as integers. If subsequent spec- 



MODEL column; 
nt, feed-tray 
tray [integer] 
tray [1] 
trayf2. .feed_tray-1] 
tray [teed_tray] 
tray [feed_tray+1. .nt-1] 
tray [itt] 

IS_A integer; 
IS_A generic-flash; 
IS-REFINED-TO reboiler; 
IS-REFINED-TO stage; 
IS-REFINED-TO feed-stage; 
IS-REFINED-TO stage; 
IS-REFINED-TO condenser; 

FOR i: 1. .nt-2 
CREATE 

tray[i+1] .lout, tray[i] .lin ARE_THE_SAME; 
tray[i] .vout, tray[i+1] .vin ARE-THE-SAME; 

END 

FOR 1: trayEfeed_tray] .feed.comp_name[1. .tray[feed_tray] .feed.nc] 
CREATE 

recovery[i] * tray[feed_tray] .feed.F * tray[feed_tray] .feed.y[i] 
..= tray[1]•.lout.F *.tray[1].lout.y[i] 

END 

END column 

Figure 1.4: Partial View of a Distillation Column Model written in ASCEND 

ification of the values is with a non-integer, the error will be identified. The 

specification of the trays shows how lower level models can beincorporated in 

a higher level one. The specification is made that all trays (tray [integer]) 

are of the type "genericilash", which has been defined as a model in its own 

right, relating input component flowrates to output flowrates with vapour-liquid 

equilibrium relationships. The following lines identify the specific types of model 

which are associated with each tray. For example, the model for a stage is a 

refinement of a generic flash (by the IS-REFINED-TO operator) with two input 

streams. Similarly the refinement to a feed stage has three input streams. 

The properties demonstrated are akin to concepts of object oriented lan-

guages. For example, the IS-REFINED-TO operator is similar to the notion 

of inheritance, whereby the properties of a more general operation, for instance, 

the reboiler, are inherited by a specialisation, i.e. tray[1J. The IS_A operator 

corresponds to the instantiation of specific models. The example in Figure 1.4 
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shows all trays being defined as instances of the generic flash operation. Their 

particular refinements are subsequently detailed. An instance of the column can 

be created by stating that a specific column ISA example of this generic col-

umn, and then providing values for nt, the number of trays, and :feed-tray, the 

number of the feed plate. 

In the description of the relationships between connecting plates, the liquid 

flows between plates must be equated, as do the vapour flows. This can be 

achieved, either by creating equations, or, as here, by specifying that the variables 

ARE-THE-SAME. The equality is represented by one piece of data, in this case 

representing a flowrate, which can be accessed by two names, i.e. the same data 

item is accessed by tray [3] . lout and tray [2] . Un. This facility is important 

in multi-user projects where different people can refer to the same data item by 

their own chosen names. 

Each term is also a path name. For instance, the item in tray [2] . Un is an 

item called un in the model of tray [2]. This avoids the redeclaration of property 

types in higher level models, thus simulating the accessing of an object's slot in 

object oriented programming. 

The specification of an equation is shown at the bottom of Figure 1.4. The 

equation describes the relationships between the feed composition and the prod-

uct composition in terms of recoveries. 

In comparison, MODEL.LA has been developed entirely in an object ori-

ented language. It was developed specifically for chemical process engineering, 

intending that the models be described in terms of the physical and chemical 

phenomena involved. The user does not appear to have direct access to symbolic 

equations. In specifying a model, the modeller creates a generic description of 

the phenomena in the unit. The generic template can then be instantiated to a 

specific instance of the unit in a manner similar to ASCEND. 

Unlike ASCEND, a hierarchy of fundamental, domain specific relationships 

has been defined, providing the basic structure of the mathematical models. The 

relationships describe the balances which may be accommodated , e.g. mass 

balance, energy balance, phase equilibria, etc. The modeller interacts with this 

hierarchy by characterising the model in two ways. A description of the rele-

vant conservation equations is made along with assumptions about the physical 

and chemical phenomena (and in the case of lumped vs distributed, a modelling 
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phenomenon). Figure 1.5 shows how a model of a flash might be defined in 

MODEL.LA. The description has been abridged, to show only the basic relation-

ships. 

((FLASH ItA UNIT) 

((INPUT1-FLASH IS_A CONVECTIVE_PORT)ENDMODEL) 

(THE TYPE-OF-MODEL OF FLASH IS LUMPED) 
(THE BALANCE-EQUATIONS OF FLASH IS (SET.OF(MASS-BALANCE-EQUATION 

ENERGY-BALANCE-EQUATION))) 
(THE PHASES OF FLASH IS (SET.OF(VAPOUR LIQUID-i)) 
(THE PHASE-EQUILIBRIUM-CHARACTERISTICS OF FLASH IS 

PHASE-EQUILIBRIUM) 
(THE PHASE-EQUILIBRIUM-MODEL OF FLASH IS UNIFAC) 
(THE THERMAL-CHARACTERISTICS OF FLASH IS (SET.OF( 

HOMOGENEOUS-TEMPERATURE ADIABATIC))) 
(THE PRESSURE-CHARACTERISTICS OF FLASH IS (SET. OF ( 

HOMOGENEOUS-PRESSURE))) 

ENDMODEL) 

Figure 1.5: A Flash Vessel Model described in MODEL.LA 

A set of rules has been defined to "translate" the above description into a 

functional specification. For example, the combination of the statement that the 

model is lumped and the balance equations include a mass balance equation, 

implies the use of a lumped mass balance equation. The balance equations are 

defined in a completely general form, with terms for any of the rates which might 

be included in them. The other statements perform two functions. 

• They identify additional equations which should be added to the model. 

For example, the specification of homogeneous temperature identifies the 

necessity of the equality between the vessel temperature and the outlet 

temperature. 

• They identify terms in the balance equations which can be removed ac-

cording to the approximation which the assumptions represent. For exam-

ple, the statement in Figure 1.5 that the thermal characteristics include 

adiabatic operation, removes the external heat source term in the energy 

balance. 
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Once low level functional descriptions have been defined, they can be com-

bined into high level operations. For example, emulating the distillation column 

model created in ASCEND in Figure 1.4, a similar description can be defined in 

MODEL.LA  as shown in Figure 1.6. 

((COLUMN IS_A UNIT) 

input and output definitions 

(THE COMPONENTS OF COLUMN IS REBOILER) 
(THE COMPONENTS OF COLUMN IS COLUMN-SECTION) 
(THE COMPONENTS OF COLUMN IS FEED PLATE) 
(THE COMPONENTS OF COLUMN IS COLUMN-SECTION) 
(THE COMPONENTS OF COLUMN IS CONDENSER) 

(THE USER-DEFINED-RELATIONSHIP OF COLUMN IS 
(- (* RECOVERY MOLAR-FLOWRATE-FEED-PLATE) 

MOLAR-FLOWRATE-REBOILER)) 
ENDMO DEL) 

Figure 1.6: A Distillation Column Model described in MODEL.LA 

In ASCEND, models describing the operations of condensers, reboilers and 

plates can be defined as specialisations of a flash with a set number of inputs. 

Conceptually, the same can be done in MODEL.LA by combining a mass balance 

with a heat balance and a vapour-liquid equilibrium, but including no specifica-

tion of the expected number of inputs or outputs. The description possible in 

MODEL.LA does not allow for the identification of individual terms, such as the 

number of inputs. The description of the flash includes a mass balance, which, 

on instantiation of the model, creates a set of symbolic expressions based on the 

specified inputs and outputs. Therefore, the generic flash operation cannot be 

used separately as a model, but once included as part of a higher level model 

where input and output ports have been defined, the mathematical description 

is complete. 

The equations have been arranged in a hierarchy indicating specialisation. 

The distillation column model defined in ASCEND (Figure 1.4) includes a rela-

tionship between the input composition and product composition. This is desir-

able in the description of the column, but the relationship is not included in the 

hierarchy described in MODEL.LA. Requiring the user to place a newly defined 
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relationship in the hierarchy is unacceptable because of the problems of main-

taining the tree and the rules for selection without the specialised knowledge of 

the program developer. For that reason, a relationship has been provided in the 

hierarchy for user-defined expressions. It is not clear from the literature how a 

user-defined relationship is included in a model or placed in the hierarchy. The 

line in Figure 1.6 defining the above relationship is, therefore, conjecture, but is 

possible in some form. 

The column model defined in MODEL.LA is shorter than that in ASCEND 

because the specification of the connections and relationships regarding transfer 

between model components is done at the submodel level, i.e. the connection be-

tween the reboiler to the first column section and the nature of the mass transfer 

is defined within the separate model instances. Column sections have been de-

fined as submodels since, apparently, there, is no method for specifying variable 

numbers of parts, thus the technique employed by ASCEND cannot be used. The 

alternative is to state explicitly the plates to be used between reboiler and feed, 

and between feed and condenser. This then, essentially, becomes an instance of 

a column, a new one being required for each different configuration. The same 

problem exists for the column sections and it is not clear from the literature how 

this is overcome. 

The third system, ModAss [33], despite little published information, seems to 

lie somewhere between MODEL.LA and ASCEND. Certain aspects of a model 

are implied automatically, notably mass and energy balances. These relationships 

are expressed in a very general format, as in MODEL.LA, and can be specialised 

by identifying particular phenomena, e.g. a chemical reaction or specifying ideal 

mixing. 

For more specific modelling applications, a 'model browser" has been created 

to allow the specification of mathematical expressions. These are placed in a 

hierarchy of specialisations and generalisations. For example, an ideal K-value is 

a specialisation of a general K-value. The model can be constructed by defining 

an expression or by referring to other expressions and models which are to be 

included. The generalisations of the model are also searched for their expres-

sions which are then added to the set. This procedure is similar to that used in 

ASCEND. 

The model solver is the mathematical tool-kit Macsyma, which is also capable 
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of algebraic manipulation to simplify models. The example quoted is of six equa-

tions representing the specification of an ideal K-value. Manipulation reduces the 

six equations to the single familiar expression. However, the specification of the 

models to be included as part of the ideal K-value model suggest prior knowledge 

of the solution. 

The structure of the models and available tools imply that a model of a 

distillation column could be constructed in a manner similar to ASCEND, with 

the inclusion of models representing plates, reboilers and condensers. However, 

insufficient information is available to establish whether or not set operations are 

possible, e.g. defining a set of n plates. 

A multi-level approach has been adopted which, potentially, removes the ne-

cessity for describing a generic model of a distillation column with plates. Ini-

tially, the modeller would construct a model of a distillation column, perhaps 

with approximate models such as Fenske's equation, but also, conceptually, with 

a model such as that described above. The model of the column could then be 

decomposed into plates and ancillary equipment which would be modelled indi-

vidually. This would preclude the necessity for defining a generic column model, 

since specific plates would be defined as parts of a specific column. The separate 

parts could then be modelled as specialisations of a generic flash operation as 

before. 

In conclusion, the three systems, ASCEND, MODEL.LA  and ModAss, pro-

mote modelling as a design activity, but with differing emphasis. ASCEND, as 

a pure modelling language, provides great flexibility in defining mathematical 

models in a hierarchical manner. MODEL.LA  is intended less for the modeller 

than the designer, allowing descriptions of the physical and chemical phenomena 

to be made, from which symbolic descriptions can be inferred. The user seems 

to have very limited access to the symbolic expressions, suggesting two distinct 

modes of use: one for the system and model developer, and one for the designer to 

employ the developed models. ModAss attempts to combine the two approaches, 

allowing some automatic inference of models from fundamental phenomena, while 

providing full access to the model development facilities. 
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Chapter 2 

Knowledge Representation 
Techniques 

The scope of this work was presented in Chapter 1; its aim is to provide a flowsheet 

modelling tool which can be used throughout overall plant design. This chapter 

will describe representational formalisms suitable for the task and explain why 

object oriented programming (OOP) was chosen. A description of the principles 

of OOP is followed by a comparison with the properties of the programming 

language used. 

2.1 Classification of Representation Tech-
niques 

Three main knowledge representation techniques have been categorised by Jack-

son [341: 

• Rule based systems 

• Systems of structured objects. 

• Logic based systems 

All three representation schemes can, in principle, be used to represent the same 

information, but the important distinction of their use is the ease of application 

to particular classes of problem. These techniques are described in [34], and 

further techniques, which have found less application in chemical engineering, 

are presented by Rich [35]. 
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Rule Based Systems 

Rule based, or production systems, describe the problem domain by means of a 

set of rules which are condition-action pairs, e.g. 

ifA 1 &...&A 

then 

This rule is interpreted as "if conditions A 1  ... A are true, then actions Bj ... Bm 

can be performed". The rule set is supplemented by an Interpreter which deter-

mines the rules to apply, and a Workspace where goals are stated and information 

is added to the data structure. 

This formulation is sufficient for problems with a well defined domain of 

knowledge. In chemical engineering, however, there is no theory for the prac-

tice of overall plant design. Even if one could be determined, the scope of the 

problem is too great to be represented by a single set of rules. A rule based 

- - description, therefore, could not be developed. An extended discussion of the 

issue of representing chemical engineering design in a knowledge based system is 

presented by Struthers [36]. Reduced domains, however, have provided success-

ful applications in areas such as physical property prediction, distillation column 

sequencing, catalyst selection and heat exchanger network synthesis. 

The CONPHYDE system [37] is a prototype expert system applied to the 

domain of physical property prediction. The program provides advice on the 

selection of thermodynamic models appropriate to particular vapour liquid equi-

librium situations. The authors describe the system as being constructed from 

their interprétátion of textbook knowledge which has been encapsulated in a set 

of rules [38]. This supports the hypothesis that the problem space must be well 

defined for this type of implementation. 

CONPHYDE contains only 37 rules. These, however, appear adequate to 

describe the domain of knowledge. For more complex situations, more rules are 

required, e.g. HEATEX [38], an expert system for aiding heat exchange network 

synthesis, requires 115 rules. As more rules are added to a system it becomes 

more difficult to maintain consistency due to possible interactions between them. 

The Interpreter is required to choose the most appropriate rule from those 

applicable in a given situation. However, as the methods of selection become 

more complex, the program developer must consider how and when the new rules 

should be fired. This is a major disadvantage of the rule based approach. When 



the rule base is large, the addition of new rules creates difficulty in determining 

their effect on program behaviour. 

It is therefore not possible to use simple rule based systems for overall design. 

However, due to the modular nature of design, strategic knowledge tends to be 

concerned with particular tasks. This implies that it can be partitioned into 

Knowledge Sources representing experts in a particular field. Such "blackboard 

systems", use the Workspace to maintain facts about the problem in its context, 

see Figure 2.1, 

CONTROL 
BLACKBOARD 

BIDS 

%'% 	

•\ 
	

a 
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O KNOWLEDGE 
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DOMAIN 
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Data Stnzcture e.g. thjectz 
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Figure 2.1: Structure of Blackboard Systems 

The Knowledge Sources are continually checking the Workspace to identify 

information satisfying the conditions for their invocation. When such a situation 

is found, the Knowledge Source states its ability to fire and what it can achieve as 

a "bid". These operations are represented by solid lines in the figure. The Inter-

preter then determines which of the competing Knowledge Sources to implement. 

The dotted lines indicate the interaction between the Interpreter and the Knowl- 
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edge Sources, and the dashed lines represent the addition of new information to 

the data structure by the action part of a Knowledge Source. 

An example of a blackboard system is DECADE [39] which aids in the se-

lection of a catalyst for a specified single step reaction. There are a number of 

Knowledge Sources concerned with topics such as the specification of the problem, 

thermodynamic consistency and the classification of the target reaction. 

Systems Based on Structured Objects 

Rule based systems lack any relational structure in their constituent knowledge 

bases. The rules are intended to be independent from each other to maintain 

modularity in terms of the knowledge they represent, so characterising relation-

ships between items is not readily achievable in a rule based approach. Systems 

with an underlying structure defining concepts and the relationships between 

them are represented more suitably by object or frame based systems. Chemical 

processes naturally conform to a modular structure, with frames or objects able 

to represent operations. The ability to represent relationships between items, 

such as fiowsheet connectivity, conceptual refinement and property inheritance, 

is also required in order to describe the knowledge used in design effectively. 

The use of objects to describe a problem domain and rules to provide an infer-

ence structure is widespread in the context of large scale design. DESIGN-KIT is 

an object oriented implementation in KEE, an artificial intelligence (Al) toolkit, 

using rules to develop modelling descriptions. A broader viewpoint has been 

adopted by Lien [40] with AKORN D, which was developed with consideration of 

methods of design. Lien's argument is that while process design may conform to 

a seemingly procedural structure, it is not a rigid precedence ordering but merely 

a framework. The hierarchical structure of Douglas (see Section 1.1.2) may pro-

vide a guide to the overall problem solution, but a designer's interpretation may 

be different, moving freely between the tasks involved at the various levels. 

AKORN D is a blackboard system which interacts with a domain knowledge 

base of frames implemented using the Al toolkit, Knowledge Craft. It is intended 

to provide a framework for solving problems in the opportunistic manner of de-

signers, hence the implementation of the Blackboard, where bids by Knowledge 

Sources are the suggestions of members of a design team, and the control sequence 

is driven by the overall goals. AKORN D has been applied to the synthesis of 
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distillation sequences in the program S 5  [33]. 

Logic Based Systems 

The third representational technique is logic, which, in principle, can be used to 

represent any of the above information. The logic referred to here is a type of 

formal language which consists of syntactic rules for deduction. Logic program-

ming as a basis for knowledge based systems uses a subset of predicate logic. 

Levesque and Brachman [41] claim that a tradeoff is required in the use of logic 

for representing knowledge, since, despite the undoubted representational power 

of a formal logic, its full implementation is computationally intractable. There-

fore, the more complete the logic used, the more impractical it becomes. Logic 

programming languages, therefore, can only use a subset of a formal logic; the 

abilities of which, in a representational sense, are offset by the efficiency of its 

implementation.. 

Prolog [42] is an example of a language based on predicate logic possessing 

some considerable advantages over conventional programming languages for use 

in symbolic inference. The main features of Prolog are presented in Appendix A. 

Knowledge is represented as single statement Facts and multi-statement Rules. 

The Rules are constructed from Goals consisting of necessary Facts and Rules 

which must be satisfied. Proving a hypothesis, i.e. executing a Prolog Goal, 

utilises features such as recursion, backtracking, pattern matching and variable 

unification all of which are discussed in the appendix. 

No significant systems have been developed entirely based on logic. However, 

since a logic knowledge base can be constructed similarly to a rule base, in which 

special cases are identified before more general ones, the combination of all three 

representational techniques can be incorporated into one system. This implies 

that the overall design problem can be decomposed into subproblems each of 

which can be represented by the most appropriate technique. The work described 

here has been implemented in an object oriented system which was written in 

Prolog. The combination is a powerful one for process design, allowing an object 

representation of the constituent operations and the relationships between them, 

plus access to the deductive capabilities of a logic based language. 

The following sections describe a model-based approach to chemical engineer-

ing design as a method for structuring knowledge, followed by a discussion of 
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object oriented programming which has been used to implement this structure. 

2.2A Model Based Reasoning Approach to 
Chemical Engineering Design 

During the process of chemical engineering design, many models are created. Lien 

et al [9] identify three classes of model in design. 

• Models of physical things. Such models include the mathematical de-

scriptions of processes with the appropriate degree of complexity. They vary 

between qualitative models reflecting the tendencies of the model, and ac-

curate models incorporating large sets of equations which may be algebraic, 

ordinary differential, partial differential or Boolean. 

Flowsheets are models in this sense, being constructed from individual unit 

• operations; Flowsheets are also part of a model of the design which main-

tains the relationships between flowsheets, both alternatives and structural 

enhancements. 

• Models of the available tools. Before strategies for solving design prob-

lems can be formulated, the tools available to the designer must be mod-

elled, i.e. what the tools provide as an output and what their input require-

ments are. 

• Models of strategies. For any automation of design or the facets of 

design, models of the methods are required. This may be for overall plant 

synthesis, design of an individual item of plant, or the formulation of a 

mathematical description of the process. 

The model based reasoning advocated by Kunz [43] is a technique for struc-

tured development of knowledge based systems and representation of the domain 

knowledge. The basis of the approach is the concept of formal symbolic models 

in which structure and function are defined explicitly. Structure can be thought 

of as the attributes of items within a problem domain. In physical items, struc-

ture could include dimensions and capacities; conceptual items, such as theories, 

would include the parameters appropriate to its description. Function is a sym-

bolic description of the item and what it is supposed to do, whether it be to 
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react two components or solve a set of equations. Thus, model based reason-

ing is a method for solving problems by analysing the structure and function of 

symbolically modelled systems. 

It is important to distinguish between formal symbolic models and the more 

traditional approaches of mathematical and heuristic models. Mathematical 

models, in general, are "black box" models, relating inputs to outputs. Interme-

diate calculations are not intended to be accessed by external models or programs 

and consequently no physical significance is associated with them. The function 

of such models, therefore, is explicit, but without any explicit statement of struc-

ture. The structure of the model is implicit in the mathematical representation, 

thereby limiting the reasoning possible with the model. For example, no infor-

mation can be established as to reasonable input values or the interpretation of 

results, unless, of course, the mathematical model is one part of a formal symbolic 

model detailing this information. 

Similarly, heuristic models relate inputs to outputs without explicit represen-

tation of the structure of the system being modelled. These different types of 

models are not mutually exclusive, and mathematical models and heuristic mod-

els can be complementary to a model based description. However, it could be 

argued that such models are only required when the knowledge of the function 

is incomplete or in the interests of efficiency. For an overall perspective and the 

representation of relationships between items of information, it becomes easier to 

reason when structure and function are stated. 

A formal symbolic model of a system states explicitly the functional behaviour 

of the system and its structure, thus allowing reasoning providing, not only out-

put information from input, but the internal states of the model. The symbolic 

description also has the advantage of being modular, resulting in a model de-

scription closely matching the problem decomposition of practitioners in the field 

of interest. 

In order to communicate information about models and their associated de-

ductions, a symbolic representation should reflect the natural idioms of the do-

main. Since, in chemical engineering particularly, information can be commu-

nicated more efficiently with the use of diagrams, a graphical representation of 

models can readily be implemented, either for displaying the results of some 

reasoning exercise or to allow input to the model. 
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As an example of the use of a- formal symbolic description, consider the rep-

resentation of a plug flow reactor. A black box mathematical model can pro-

vide only the type of information which can be obtained from a simulation, e.g. 

temperature profile, output composition, etc., which are explicit aims of the cal-

culations. These models, however, require reasoned specification of input values 

and interpretation of results. Reasoning about the mathematical description can 

provide little information since the structure has not been stated explicitly, i.e. 

no significance can be attached to any variables in the model. For example, the 

relationship between catalyst deactivation, input temperature and composition 

may be incorporated in the model, but unless it has been identified and labelled, 

it cannot be used in any analysis other than simulation. 

The mathematical model may determine some of its internal states in the 

course of calculation, which are not provided as output values. This information 

is not retained and may not be used for further reasoning. Other reasoning 

modules may require values for these internal states which may be established 

either by user specification or its own reasoning. This may introduce a conflict 

between the results of the mathematical model and the subsequent reasoning in 

situations where the internal states are different. 

A heuristic model may provide the relationship described above, but again, 

reasoning about the structure of the reactor is impossible since heuristics would 

not describe a reactor in those terms. 

A reactor is shown in Figure 2.2.  Here, all structural aspects are available 

for reasoning. The functional description is provided by the statement that the 

reactor is of plug flow character, i.e. it has the properties of a reactor with 

refinements identifying it as plug flow. This description can be used to reason 

about the development of a mass balance. For instance, a reactor mass balance 

can be derived from the stoichiometric equation. In this case, the most efficient 

simulation can be achieved mathematically, but the mathematical model has 

been inferred from the specifications, thus the simulation accurately describes 

the designer's intentions. 

Other types of reasoning could evaluate, for example, the relationship between 

volume, vessel pressure and vessel thickness. 

The individual physical aspects of the model (e.g. vessel thickness, tempera-

ture profile) can be described in a similar manner, with facets such as the range 
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Function - is a: Plug Flow Reactor 
is a type of: Reactor 

Structure -stoichiometric equation : A + B -* C + D 
conversion : f(T, P) 
catalyst 
catalyst deactivation : f(T, composition) 
inlet stream 
outlet stream 
temperature profile 
volume: 
vessel thickness 
pressure 

Figure 2.2: Formal Symbolic Description of a Plug Flow Reactor 

of expected values. 

A further advantage of the approach is the provision of a structured problem 

domain. An overall chemical engineering design problem domain is shown in 

Figure 2.3. This corresponds to the structure of integrated design in Figure 1.1, 

but here illustrates the information maintained in the overall domain and, thus, 

available to all reasoning modules. 

Figure 2.3: Chemical Engineering Problem Domain 

The central problem domain is the model of a current design which contains 

generic information about the subject, e.g. generic descriptions of unit opera-

tions, and specific information pertaining to individual problems specified by the 

designer, i.e. specific plant topologies. 
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The modules connected to the central domain are reasoning modules which 

can be thought of as models of theories. For example, the fiowsheeting "theory 

model" may contain models not necessarily a part of (or of any use to) any other 

modules. 

The fiowsheeting theory model can be expanded as shown in Figure 2.4. The 

solution methods can be items with, as their function, the solution of equations. 

Their structure consists of their requirements, e.g. mathematical model, required 

formulation, specifications, etc. 

CONTROL 	 LAYOUT HAZOP 

Figure 2.4: Flowsheeting Domain Model 

The purpose of this theory model is to solve sets of equations appropriate to 

the status of the design, which is to be established by the. equation generation 

module (Figure 2.4). 

The representation of the models must include unit operations, with their 

structural and functional attributes, and conceptual items such as solvers. 

The reasoning entails generating equations appropriate to the level of design 

and performing calculations appropriate to the structure of the equations, i.e. 

deciding which of the available techniques to use for a particular problem. 

In summary, a formal symbolic description provides a consistent description 

of systems in a modular manner allowing different types of reasoning to be per-

formed on it. This is a natural representation for chemical engineering where 
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the domain is decomposed conveniently into unit operations. A model based de-

scription also provides a structured domain of knowledge which can be divided 

into models of theories. Chemical engineering design, with the different types 

of reasoning appropriate for different evaluations of a process (see Figure 2.3) is 

well suited to such a description. 

2.3 Object Oriented Programming 

Object oriented programming provides a highly modular structure for storing 

information in a manner conceptually similar to the physical description of a 

chemical process. OOP also supports a model based approach, allowing the 

representation of models in terms of their structure and function. The central 

organisational theme of OOP is the use of structured "objects" containing "slots" 

requiring "fillers" which can be data or procedures, to describe items of knowl-

edge. The objects are related by an inheritance mechanism allowing a prototyp-

ical description of concepts reflecting their default states. 

2.3.1 Storing Data in Objects 

Object oriented programming is a language for representing groups of related 

information as objects and their attributes. Objects may represent physical items, 

such as a heat exchanger with its attributes being heat load, heat transfer area, 

etc. (see Figure 2.5), or conceptual items such as graphs with attributes including 

axes, labels, ranges, points, etc. 

Slots- 	heat duty 
heat exchange area 
heat transfer coefficient 
log meanAT 

Relations -inlets 
outlets 
hot side streams 
cold side streams 

Figure 2.5: Object Oriented Description of a Heat Exchanger 

The attributes of an object can be split into data values which can be stored in 

"slots", and those concerned with relationships to other objects, which are stored 



in "relations". This distinction, however, is not made in all OOP languages. For 

example, the Al toolkit Knowledge Craft supports the creation of user-defined 

relationships, but the MODEL.LA project [28] is an implementation using an-

other toolkit, KEE, where the mechanism of such relationships had to be defined 

by the developers. Figure 2.5 shows the conceptual division of properties into 

slots and relations.' Attributes such as heat transfer area and heat load which 

are properties of the object itself, are defined as slots, but the connections to the 

unit refer to objects representing streams and so are relations. 

As objects have slots, slots can have "facets" which are the properties of the 

piece of data stored there. For example, the slot for heat exchange area has the 

defining properties that it is a number, and its expected value will be greater than 

zero. Similarly if a valve object had a slot for status, it would expect the value to 

be an atom and one of the set of enumerated types, "open" or "closed". Facets 

can be described within the structure of the object or separately depending on 

the syntax of the system. Figure 2.5 shows an object without facets as part of 

the structure. An example of a slot definition is shown in Figure 2.6. 

slot definition: 
slot name - heat transfer coefficient 
object - heat-exchanger 
value type - number 
units . W/m2  K 
value range - 0-10000 
default value - databank call... 

Figure 2.6: Definition of a Slot 

Facets can also contain pieces of procedural code, called "demons", which 

are to be invoked whenever the slot is accessed, either to set it or check it. 

The intended function of demons is to perform data validation and verification, 

but they can be used for a wider range of operations. The code may involve 

manipulating the value contained in the slot, or informing other objects and slots 

of a change in value. Demons can wreak havoc, however, if not strictly regulated, 

because the execution, or "firing", of one demon may involve setting a slot in 

another object, which in turn may set another slot, making the creation of loops 

almost inevitable. There is essentially no control over the firing of demons, so 
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they are used with caution. 

The "methods" which are used to manipulate an object are also stored in 

its slots. The code to perform the manipulation is accessed when a "message" is 

passed to an object requiring a particular method to be fired. This is analogous to 

calling a routine or function in a conventional language. For example, a method 

could be used to model the object. It makes sense, therefore, for the code to 

be associated with the object since different items can be modelled by different 

solution techniques. 

Object oriented programming and other frame systems were developed from 

earlier graph based representations (see Jackson [34]) where nodes and links were 

used to represent concepts and their relations. The concept is not as simple in 

practice as it sounds, due, in part, to the ambiguity of node assignments. For 

example, a node labelled "car" could be referring to the concept of a vehicle, 

the class of all cars, a typical car or a specific car. Jackson illustrates part of 

this argument by describing the class of all cars with general properties, such as 

being constructed from a set of wheels, a chassis and an internal propulsion unit. 

An example of a typical car could be a BMW with four wheels and an internal 

combustion engine, as opposed to a three wheeled electric car. In addition to 

these properties, this typical car could be associated with a number of miles per 

gallon of petrol consumed, which may differ from that obtained by a particular 

instance of a BMW. 

The human understanding of the situation is, therefore, dictated by the col-

lection of prototypical structures constructed from previous experience of the 

subject. Rich [35] describes the analysis of new experiences as the evocation of 

the stored structures which are then filled in with the details of the current event. 

Frames and objects were developed in an attempt to capture this type of 

knowledge. Objects are defined in "classes" defining the attributes common to 

all members of the prototypical class. For instance, the "class" or "generic" 

object representing a heat exchanger would contain all slots required by any heat 

exchanger, e.g. slots for heat exchange area and duty. The slots also represent 

prototypes of the properties which, therefore, can contain default values. Figure 

2.5 is a depiction of a generic heat exchanger object. 

A particular heat exchanger or "instance" is a copy of the generic template, 

including the default values for the attributes. The instance is likely to represent 
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an exception to the prototypical heat exchanger, thus the slots will contain values 

consistent with the application to the specific situation, e.g. a heat exchanger 

called E101 may incorporate the general attributes of the class object retaining, 

for example, the default value for the heat transfer coefficient, but the values for 

the heat duty and area slots will refer to its current situation. 

Classes are arranged in a hierarchy where subclasses represent specialisations 

of particular classes. For instance, a heat exchanger is a specialisation of an en-

thalpy change device, which is analogous to a typical car being a specialisation 

of the class of cars in the example above. The enthalpy change object repre-

sents the concept of operations that exchange heat (which can include heaters, 

coolers, boilers and condensers), and the exchanger object describes the class of 

all exchangers. Further specialisations could be plate exchangers and shell and 

tube exchangers. Following the car example, these can be viewed as the typical 

examples of heat exchangers. 

The hierarchy allows inheritance of the prototypical properties of conceptu-

ally more general objects by the specialisations. This implies that information 

describing an enthalpy change device need not be contained in the description of 

a heat exchanger, i.e. the information is inherited by the subclasses. The spe-

cialisation represents an increase in the functional description of the object, so, 

for example, the enthalpy change device may incorporate the concept of a tem-

perature set point, but include nothing about the heat load. The heat exchanger 

object which specialises it may contain the heat load information, but still has 

access to the concept of a temperature set point. An example of an inheritance 

network is shown in Figure 2.7. 

Slots containing methods can also be inherited. The context of inherited 

methods determines the nature of the action. For example, a high level method 

associated with an object called "unit operation" may be to model the process. 

From the viewpoint of overall control, this may be the limit of a designer's in-

terest. Objects defined as specialisations of a unit operation, e.g. a distillation 

unit, might require specific modelling instructions, such as incorporating a Fenske 

distillation model. The high level viewpoint need not be concerned exactly how 

each model is performed, but merely with the decision that this action should be 

taken. 
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Figure 2.7: Example Inheritance Network 

2.3.2 Program Control by Message Passing 

• The flow of information in object oriented systems is determined by the methods 

associated with an object's slots. Methods are fired by passing a "message" to 

the object, normally from another object. An immediate application can be seen 

in simulation, particularly of the sequential modular category. Each object can 

model a flowsheet item and pass messages to downstream objects to start their 

calculations. Loops can be resolved by allowing the natural iteration to take place 

until the convergence requirement is met, in which case message passing would 

cease. 

Methods and message passing differ from demons in that demons are procedu-

ral attachments to slots which provide an action when a slot is accessed. They are 

intended to enhance functionality by maintaining slot consistency, rather than to 

control the running of the program. Methods are supposed to provide the struc-

ture for information flow by manipulating their host objects and passing messages 

to other objects. Obviously, for complex problems, a great deal of planning is re-

quired to ensure methods function as intended and avoid destructive interactions 

with each other (or with demons). The problem is similar to that experienced 

with rule based systems. The addition of new objects and new methods requires 

fundamental knowledge of the existing structure, both of objects and program 

control. 

Hierarchical inheritance systems should, in principle, allow this to be done 
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incrementally, by classifying new objects at the correct position in the hierarchy 

thereby defining their functionality. The nature of knowledge, however, is not 

clearly divisible into concepts that do not interact, which makes convenient clas-

sification more difficult than initially suggested. The problem can be solved in 

part by multiple inheritance, where a method can be constructed by inheriting 

methods from other specialisations in the hierarchy. To conform to any conven-

tion, this information should be inherited from the direct line of ancestors, but 

this is not necessarily the case. For example, the definition of a jacketed tank 

would inherit methods from objects representing a jacket in the class of heat ex-

change equipment, and a tank in the class of storage equipment. This can solve 

complicated situations, but loses the convention of inheritance in a structured 

hierarchy. 

2.3.3 Worlds or Contexts 

"Worlds" or "Contexts" are intended to allow the manipulation of objects for a 

particular purpose without affecting information elsewhere. In Knowledge Craft 

[44], a root context contains the knowledge base representing the problem do-

main. Contexts for different versions of the domain contain new information plus 

any changes from the root context. In this manner, modelling and testing of 

different situations can be performed in separate Contexts. For example, a Con-

text may be used to accommodate synthesis procedures, while another may be 

used for hazard studies. Objects created by the synthesis world may have to be 

manipulated and changed for the purposes of assessing hazards, but since they 

are in separate worlds only a copy of the objects need be altered, the original 

objects being unchanged and available for further synthesis. The Contexts can 

then be "merged" to incorporate the changes into the original objects. 

Contexts are structured in a tree, thus any Context can spawn child Contexts, 

with the intention that as they are developed they automatically copy any objects 

requested from the parent Context. Consistent management is required to ensure 

that when merging is attempted, only a complete version of the object is copied, 

i.e. there are no other versions in child Contexts in a different state. The tree 

structure is equivalent to an inheritance hierarchy for objects. 
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2.4 CLAP - Combined Logic and Procedures 

CLAP is an object oriented programming language developed in Edinburgh by 

A. Struthers [36]. It is written in Prolog, providing full access to its logic pro-

gramming capabilities, traditional object oriented facilities as well as high level 

procedural programming constructs in the CLAP language (such as loops, if-

then-else, etc.) and an extended interface to the C programming language. 

CLAP supports objects as described in Section 2.3.1 with slots, facets and 

demons. The conceptual difference between slots and relations is realised with 

different modes of use for each. Slots have facets and demons as discussed above, 

whereas relations can have inference techniques associated with them (see Section 

2.4.1 below). 

The differences between CLAP and traditional object oriented languages stem 

from its engineering origins. Engineering contains many activities more suited to 

a procedural representation than the concept of message passing incorporated in 

most object oriented languages. In traditional OOP, control is achieved through 

the firing of methods in an undetermined order, or by achieving global constraints 

with the use of global variables. CLAP retains the advantages of message passing 

and objects, but differs from traditional OOP in that methods are removed from 

the objects. This allows a high level control mechanism to be used, i.e. methods 

are fired in a determined order. 

CLAP also displays differences in the use of message passing. Traditionally, 

messages are sent to objects invoking one of the methods in the objects slot?. 

In CLAP, messages are used to allow objects to communicate with each other 

and, more unusually, with methods. A message consists of a piece of information, 

which may be symbolic, numerical or a combination, which can be attached to 

objects or methods and subsequently used to make inferences about the state of 

the object or method. When a method checks what an object has been told, a 

piece of inferential code can be invoked which can' provide some conclusion based 

on all the information received by the object up to the point the inference was 

made. 

The provision of worlds or contexts in CLAP is different from the implementa-

tion in conventional OOP discussed in Section 2.3.3. Each context is held entirely 

separate from every other. There is no organisational structure, so no automatic 
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inheritance is possible. Copies of entire contexts are possible, or the copying of 

individual objects. The operations then carried out do not affect the original 

context. No automatic merge facility is provided, so significant changes must be 

noted and implemented by the programmer. 

Instances of CLAP code appear in various examples throughout this thesis, 

so a brief discussion of the syntax of the language will be given here. Unless 

otherwise stated, any word appearing in an example preceded by a "$", is a CLAP 

keyword. Any term that begins with a capital letter is a variable according to 

the convention of Prolog. 

Generic objects are defined by a type name, a relation to a parent object in 

the inheritance hierarchy, a list of slots, a list of relations and an optional list of 

display commands. Figure 2.8 shows the heat exchanger object from Figure 2.5 

as a CLAP generic object. 

object(heat_exchanger) 
self - 
variables - [Q,A,U,DT,I,O,HS,CS,Pts], 
slots - [is_a - enthalpy-change device, 

heat-duty - 
heat-exchange-area - A, 
heat-transfer-coefficient - U, 
log_mean_T_diff - DT, 
screen-location - Pts], 

relations - [inlets I, 
outlets 0, 
hot-side-streams - HS, 
cold-side-streams - CS], 

display 	Edrav_exchanger(Pts)I. 

Figure 2.8: CLAP Representation of a Generic Heat Exchanger Object 

The variable list allows unification of slot values. For example, when the 

value for the "screen-location" slot is set, the variable Pts in the display call is 

automatically unified to the new value. 

To create an instance of an object, the command is as follows: 

$create..object heat _exchanger-e101 $in worldl 

which creates an instance of the heat exchanger object called e101 in context 

woridi. The specification of the context is optional, the default being the current 

context. 
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To set and check slots and relations, the commands are of the following form: 

$set slot-e101-heat_transfer..coefficient-800 

$set relation-e101-inlets-[sl, 53] 

$check slot-e10 I- (heat -duty-H) 

$check relation-e101-(hotside_streams-S) 

Note that the form of the slot and relation values can be in any format, here 

numbers and lists. This can be constrained by using the facet construct, where 

each slot can be defined in a manner similar to generic objects. 

Slots and relations can have "meta-slots" which describe a particular view 

of a slot. For instance, a fiowrate can be described using a range of different 

units, e.g. kg/s,  tonnes/yr, lbs/s, etc. Different tools and different users may 

wish to access such a slot from different viewpoints. The stored data should be 

consistent, e.g. all SI units. Pieces of code can then be written to provide the 

conversion from one set of units to another. To access a slot by a meta-view the 

call is as follows: 

$check slot-streainl- (flowrate-FlowcDQkgs) 

These examples are sufficient to illustrate the form of CLAP calls. Further 

descriptions will be given as necessary, or see the CLAP reference manual [45]. 

The facilities receiving particular attention in the remainder  of this chapter are 

the range of relations available with their associated inference capabilities, and 

the implementation of CLAP methods with their extension for loosely defined 

procedures. 

2.4.1 CLAP relations 

There are three types of relation available in CLAP: inheritance relations, stan-

dard symbolic relations and user defined relations. 

Inheritance provides a functional relationship between objects, as described 

in Section 2.2, allowing reasoning about the operation of an object. Specification 

of the parent is achieved by placing an "is-a" in the slot list with its value set 

to the generic parent object. This can be left as a variable and subsequently set 

dynamically, but this seems to defy the reason for having it. Objects related in 

this way inherit the slots and relations of their conceptual ancestors along with 

their associated facets and defaults in the case of slots, and inference techniques 
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in the case of relations. Thus, if a shell and tube exchanger is defined as a 

specialisation of the heat exchanger object, it will access its own slots as above 

and also the generic slots of a heat exchanger object. 

Standard symbolic relations are defined within an object in the same manner 

as slots. However, the value stored in the relation can be reasoned about using 

a separate piece of code to make some inference. The inference technique can 

be loaded from a separate file, so can be in any format, e.g. rules, C functions, 

etc. For example, Figure 2.8 shows a heat exchanger with relations for its inlets 

and outlets. There is also a relation to store the hot side stream information, 

which the user would not explicitly have to provide a value for, since an inference 

technique could be used to infer the information from the specification of the 

other relations. In this case, checking the temperatures of all the connecting 

streams would indicate which stream was on the hot side. 

Inference techniques and the relations they operate on, are inheritable. How-

ever, they only apply to the local level of inheritance. The inference method takes 

as one if its arguments, the relation list of the object to allow the use of combi-

nations of the relations in the decision mechanism. Using the above example, the 

shell and tube exchanger may inherit the relations and inference methods of the 

generic heat exchanger, but these are not combined with the local relations in 

any inference, i.e. the four relations in Figure 2.8 cannot be used in conjunction 

with those defined locally for the shell and tube exchanger. 

The third type of relation is defined independently from any object. The 

resulting relation can then be applied to any object to which the relation is 

applicable. There are five fundamental types of these relations arranged in a 

hierarchy as shown in Figure 2.9. The root relation has four subclasses: symbolic, 

constraint, specialise and operator. 

Mass Balance 

Constraint < 
Root 	

Symbolic 
Equation 	Balance 

Specialise 
Inequality 

Operator 

Figure 2.9: CLAP Relation Hierarchy 

Symbolic relations are similar to standard symbolic relations and can be used 
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to represent concepts such as "upstream of" or "connected to". The specifica-

tion of a user defined relation automatically implies its inverse. If a label for 

the opposite definition is given, it is used to describe the opposite relationship, 

otherwise CLAP creates a relation called "inverse". For example, if objects a and 

b are connected by the relation "upstream-of" such that a is "upstream-of" b, 

the inverse is also true. If the name of the inverse is supplied, it can be invoked 

as, for instance, b is "downstream-of" a. If it is not provided, the relation will 

be automatically, b is "upstream-of-inverse" a. 

The second group, constraint relations, are ones describing the form of a 

constraint of an object, typically an equation or expression. When a constraint, 

such as a mass balance, is defined, it is placed in the relation hierarchy as a 

specialisation of the constraint relation, i.e. as a "specialise relation". Code 

written to manipulate the constraint relation can therefore be used to manipulate 

all of its specialisations. Chapter 5 describes the use of constraint relations to 

provide flowsheeting equations and balances. 

Constraint relations are defined similarly to objects, for example the mass 

balance relation shown in Figure 2.10. 

relatiors(mass_balance ,Unit-VaJ.) - 
variables - [Unit,Forin,Bindings], 
bindings - [ I = inlets $of Unit, 

0 = outlets $of Unit], 
return_form - (suin_of(mass_flowrate $of I, $over I) 

= suni_of(mass_flowrate $of 0, $over 0)), 
return-type - equation, 
slots - [is\_a - constraint]. 

Figure 2.10: Example Constraint Relation Describing a Mass Balance 

Constraint relations have two major parts: 

• the "return form" which is the generic description of an equation or expres-

sion, 

• the "bindings" which is a list of variables contained in the equation with 

the objects, slots and relations to which they correspond. 

Relations can be in any of the forms described above, so they could contain refer- 

ence to further mathematical expressions. The implications of this are discussed 
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in Chapter 5. 

The generic constraint form is expanded into a specific form of the constraint 

applied to a particular object by the third user defined relation type, the specialise 

relation, e.g. the mass balance of a particular mixer. The constraint form of a 

mass balance shown in Figure 2.10 can be applied to the mixer by a specialise 

relation which expands the generic equation according to the bindings specific to 

the instance of the mixer. If, for example, the mixer had two inlets, s,  and S2, 

and one outlet, 33, the specialised form of the relation would be: 

In1 + 1712 = Out3  

where: Inj  = mass..fiowrate $of .sj —  > Vail, 

In2  = mass..fiowrate $of 2 -  > Va12, 

Out3  = massilowrate $of .53- > Va13. 

Individual specialise relations for each constraint relation can be written, but the 

default expansion of the generic form is normally sufficient. 

It should be noted that at this point the expression has not been evaluated in 

any way. No specifications have been included. This implies that one specialised 

form can be used to obtain solutions for different problem specifications. 

The fourth subclass, the operator relation, evaluates the specialised form as 

the range of the relation. The default operator relation checks all bindings in the 

specialised form (see above), checking the slots and relations to find values for 

specifications and further expansions of relations. These are placed in the Value 

part of the above binding expressions. The fully specified equations are created 

by unifying the Value part with the variable part also present in the equation (e.g. 

Vail with Ii).  Solution can then be achieved using code in the active-code 

slot of the operator relation, which can then supply the equations to a solution 

method or package. 

2.4.2 CLAP Methods 

Methods are pieces of procedural code used to manipulate objects. The CLAP 

language allows the code to be made up of procedural items such as loops and if-

then-else tests, CLAP calls to set and check slots or make inferences, and Prolog 

calls. It is also possible to define relations which call C subroutines. 
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The single argument to a method is a list of objects whose generic type or 

types are defined in advance. This is intended to provide specific applications 

for specific objects. For example, a method could be used to model a distillation 

operation by the McCabe-Thiele procedure [46]. 

Extra information required by a method can be "attached" in a similar manner 

to slots. This is the CLAP definition of message passing which is in contrast 

to the interpretation used in other object oriented systems (see Section 2.3.2). 

This information can be attached by demons or as the result of an inference. 

More unusually, it allows communication between methods. For example, once 

the McCabe-Thiele method has been completed and the number of plates is 

known, it could send a message to another method for performing distillation 

column plate to plate calculations. The plate to plate method would ensure that 

a message had been received in which case it could proceed. Otherwise it would 

call McCabe-Thiele itself or return, having failed. A section of such a method is 

shown below. 

method(plate_to_plate, distillation-C), 
variables - - - -, 
type - program, 
program( $if not($attached (number_of_plates-N) $to self) 

$then $call inc_cabe_thiele-C, 

Inference techniques can be used to determine the best method by which 

to model a particular object. The inference returns the name of the appropriate 

method and automatically runs it with the object under scrutiny as its argument. 

For example, if it were required to calculate the theoretical number of trays in a 

distillation column and methods were available to perform the calculation using 

McCabe-Thiele, Ponchon-Savarit or Fenske, the appropriate method could be 

inferred by checking the specifications and other information available to the 

distillation object. 

2.4.3 Extended Methods 

Standard CLAP methods provide a means of implementing procedures which are 

well defined in terms of their constituent actions and possible alternatives. The 

steps which make up a procedure and points where a choice can be made are 

known, along with the alternative courses of action. 

50 



This description corresponds with the definition of routine design discussed in 

Section 1.1.2. However, non-routine tasks cannot be represented in this fashion. 

The constituent parts of such tasks are known but are not performed in any 

particular order, or, more likely, the order is dictated by a particular designer 

and a particular design. The choice points are numerous and the alternatives 

prohibitively many to represent using procedural constructions. 

Non-routine procedures can, however, be given some procedural goals even if 

the goals are not achieved by sequentially ordered subgoals. For example, the 

synthesis procedure of Douglas discussed in Section 1.1.2 is a set of procedural 

goals i.e. the input-output structure must be defined before the recycle structure 

can be considered. The goals themselves consist of a wide range of flowsheet 

synthesis decisions, including fiowsheet creation and the analysis and evaluation 

of alternatives. These subgoals, however, are not normally performed in a proce-

dural manner. The designer will switch between the various options as necessary. 

A new type of extended method has been developed to describe non-routine 

procedures. Figure 2,11 shows the structure of an extended method. 

extended-method - Method 
calling-sequence - calll..call2..call3.. •  
guards - guardl..guard2..guard3.. 
macros - 
assertions - assertionl..assertion2..assertion3.. 
loopback_points - pointl..point2..point3.. 
object-of-interest - Object 
other-slots - ..... 

Figure 2.11: General Structure of Extended Methods 

The calls which constitute the method, whether they be sequential or other-

wise, are contained in the calling sequence. If the calls can be made sequentially 

they are simply connected in a dotted sequence (a CLAP structure of the form: 

a..b..c). If, however, some calls have no defined order, they can be represented 

and performed "in parallel". Parallel calls can be included as part of a sequence, 

thus allowing procedural progression and parallel decision making. 

In this context, "parallel" refers to tasks which, when grouped together, rep-

resent the options available at a particular stage and can be performed in any 
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order any number of limes. The physical representation to the user is as a menu 

displaying the courses of action relevant at that point. Ideally, there would be 

different windows for the individual tasks, the user selecting the window, and 

hence the operation to be performed. The graphics package supported in CLAP 

has proved a major limitation in this area, resulting in only a single window being 

used and operations being selected from a menu. 

The relevance or appropriateness of any operation can be assessed by provid-

ing associated "guards", which are conditions that must be met before a call can 

be performed. In the case of a sequential call this prevents any further progress 

until the conditions are met, and in the case of parallel calls this results in exclu-

sion from the menu of options. This is not entirely satisfactory since the designer 

may complete a parallel call unaware that some options are unavailable. The 

intention is to display the excluded calls in the menu to indicate their presence 

at the level of interest but prevent their selection. - 

The structure of extended methods shown in Figure 2.11 allows the replace-

ment of excessively long guard conditions by macros. This makes written methods 

more legible. 

Once a call has been completed it is useful to be able to make some assertion 

about the status of the procedure. This may be in the form of setting slots, 

relations or facts, and may involve the extended method or other relevant ob-

jects. Similarly to guards, assertions are contained in a dotted sequence, each 

one corresponding to a call in the calling sequence. 

When a guard is not satisfied and the execution of its corresponding call 

is prevented, it is desirable to know the reason for the failure and what further 

action to take. The explanation is entirely up to the programmer, while extended 

methods provide the means for obtaining the information required by the guard. 

Each guard is associated with a single call and in turn with a loopback point 

which returns the program to an earlier point in the extended method (or in an 

earlier extended method) where the information can be obtained. This allows 

the user to provide the appropriate information before proceeding. 

One, normally high level, object is provided as an argument to extended meth-

ods thus providing a centre of interest and source of information. The method 

may manipulate the object, and the guards may access its slots and relations. 

Further slots are provided to accommodate the status of the method and a 
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predicate to update the status, plus slots for information about displaying the 

method. 

An application of extended methods in synthesis, in particular the Douglas 

procedure, is discussed in Chapter 6. 
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Chapter 3 

Techniques for Solving 
Flowsheets 

Mathematical modelling programs used in chemical engineering design can be 

broadly divided into one of two categories: those used for overall process flowsheet 

modelling, and those used for modelling specific unit operations. Both types of 

program are used extensively throughout design. One aim of this project was to 

establish the extent to which existing programs can be incorporated in a modelling 

environment to be used during the design procedure. The flexibility required by 

a designer in constructing mathematical descriptions of items of plant or entire 

processes must be weighed against the ease with which it can be provided. This 

chapter discusses the approaches currently used for solving fiowsheets and how 

significantly the flexibility must be compromised for the implementation of each. 

Flowsheeting programs perform mass and heat balances on plant models spec-

ified by a designer or engineer. Additional calculations also provide information 

about the sizing of the items of equipment included in the flowsheet. 

The structure of a typical flowsheeting program is shown in Figure 3.1. It 

consists of an executive which reads the specified plant model from an input 

file and formulates a mathematical model appropriate to the solution method 

available. This formulation uses a library of predefined unit models and physical 

property relations. The model is solved and the solution placed in an output file. 

Conceptually, the simplest and most general way of using existing programs 

in conjunction with an environment is to provide an interface to the input and 

output files. It is the most general approach because any program operating an 

input/output file format can be accommodated by specifying a mapping between 
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Figure 3.1: Structure of Flowsheeting Programs 

the symbolic data structures in the environment-and the format required by the 

program. This is the approach adopted by PROCEDE (see Section 1.2.3). For 

such systems, some correspondence must be found between the process defined 

by the designer as a set of conceptual operations, and the existing library of unit 

models. This constitutes a major drawback. For instance, PROCEDE claims to 

.......have a library of over 200 standard symbols for the conceptual description of the 

process. It is unclear how the system resolves the problem of interfacing to a 

fiowsheeting program with, for instance, a library of 50 unit models. 

The model libraries place some undesirable restrictions on the specification of 

the plant model. Whatever solution method is used (see Section 3.1), the libraries 

provide a range of fixed format mathematical models, whether they be routines or 

sets of equations. The models must be of sufficient detail to provide an accurate 

simulation of the unit operation in question, but if a more approximate model 

is required, either a new unit model must be provided, or the more detailed one 

has still to be used. In the latter case, the input information required for the full 

model must still be provided. For example, the evaluation of a heater may be 

necessary with the intention of calculating its heat load. The library model may 

incorporate the equation: 

Q=UALsT 
	

(3.1) 

for the calculation of heat transfer area, A. However, it requires a value for 

heat transfer coefficient, U, which may not be available or is inappropriate for the 

model of the plant and, therefore, not of interest. In this case an estimate must 

be provided before the model can be used, which, if the estimate is not revised, 

may lead to errors in later stages of design. 
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Due to the wide variety of equipment items used in chemical plants and the 

limited number of models available in a unit library, it will often be the case that 

there is no unit model for the particular process. This may require the combi-

nation of two or more models which together match the necessary performance. 

For instance, in Esspros, discussed in Section 3.3, a model of a nitric acid ab-

sorption column can be created by the combination of a mixer, two reactors and 

a separator. 

In other cases a different model may provide a reasonably accurate description 

of the process being modelled. For example, during a series of interviews designed 

to uncover such problems, a situation was found where an engineer had required 

a model for a condenser. There had not been one available, so a flash had been 

used instead with the outlet vapour flowrate set to zero. The official response 

held that while this was acceptable, a mixer model would have been better. 

The solution suggested for the latter problem is not acceptable in a design 

situation where the information generated as part of the continuous design pro-

cedure is to be maintained with the decisions taken. There is a loss of functional 

knowledge when one conceptual operation is replaced by a completely different 

one, e.g. the replacement of a condenser by a mixer which is conceptually an 

unrelated operation. 

The implication of the above is that maintaining a library of unit models 

provides a restriction on the specification of a flowsheet description. To develop a 

knowledge based fiowsheeting system using an existing library, the mathematical 

relationships incorporated inside each model must be known. Situations such as 

the condenser/flash/mixer example described above can then be resolved, since 

the fact that the mixer model contains the most complete or consistent heat 

balance equations would be encapsulated in the system knowledge base. The 

appropriate combination of models representing the nitric acid absorber could 

also be inferred. 

The determination of suitable models has gone beyond the functional descrip-

tion of both conceptual flowsheet operation and unit model. The suitability of 

models is being determined at the level of equations. Section 3.3 addresses such 

an approach where a model composed of library units is deduced from a set of 

equations. 

Due to the restrictions of the model library format, much of this work has 
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been concerned with developing an alternative approach, which is discussed in 

Section 5.4.2. Removal of the library implies that models must be generated by 

the tool as opposed to the flowsheeting program. Thus, a more flexible modelling 

format must be provided to solve the problems discussed above. 

The part of the flowsheeting program remaining from the structure shown 

in Figure 3.1 is the solver. The remainder of this chapter discusses methods 

of flowsheet sollition and how different techniques satisfy the requirements of a 

flexible flowsheeting tool. 

3.1 Flowsheeting Solution Techniques 

There are three main types of flowsheeting program: sequential modular, equa-

tion based and the slightly less well known simultaneous modular. A general 

discussion of process flowsheeting techniques can be found in Westerberg et al 

[47], and a review of flowsheeting programs is presented by Flower and Whitehead 

[48,49]. 

Sequential modular programs perform calculations on a unit by unit basis. 

Each unit in turn has its outputs calculated from its inputs. The units consist of 

subroutines containing the input/output relationships describing the process and 

the method with which to solve them, i.e. modelling equations are represented 

implicitly. When a recycle is located, a selected stream is "torn" and estimates 

are provided for the variables in that stream. There may, of course, be more than 

one recycle and hence torn stream. Algorithms are available for the selection 

of optimal tear streams, e.g. Lee and Rudd [50]. A pass is made through the 

flowsheet which provides new calculated values for the estimated variables. These 

can, in principle, be used as new estimates, or various standard convergence 

techniques can be used to bring the estimates closer to the true solution. When 

the recycle values match their previous estimates, the recycle is solved. 

The main failing of the sequential modular approach is the difficulty of apply-

ing design constraints. Since outputs are calculated from inputs it is not possible 

to constrain a unit's output directly. This can be overcome by using "control 

units" which allow the user to apply constraints while varying selected design 

variables. 

Most commercial flowsheeting systems are based on sequential modular ar-

chitecture, some examples of which are: FLOWPACK (ICI) [51], PROCESS 
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(Simulation Sciences) [52], FLOWTR.AN (Monsanto) [53] and ASPEN (Aspen 

Technologies) [54]. 

Equation based programs have not been widely used in industrial practice. 

Until recently, no acceptable program was available. The earliest used only lin-

ear models [55] which were inadequate for describing complex unit operations. 

Development of robust non-linear packages has been rather slow. 

Examples of academic equation based systems are: SPEED-UP (Imperial 

College) [56], ASCEND II (Carnegie Mellon University) [57] and QUASILIN 

(Cambridge University) [58,59]. An extensive survey of equation based systems 

is given by Shacham et al [60]. 

Equation based programs explicitly represent the equations of unit operations, 

compared with the implicit representation of the sequential modular approach. 

When a simulation is performed, these equations are solved simultaneously, usu-

ally by a Newton method. This produces a sparse matrix of the coefficients of 

linear and linearised non-linear equations. This is solved by Gaussian elimination. 

The equation based approach has the advantage of being able to accommodate 

design constraints which, being equations themselves, are simply added to the 

equation set. This represents one of the disadvantages of this approach, since 

the arbitrary specification of consistent design variables in systems of hundreds 

of equations is highly intractable. Poor selection of design variables can result in 

a singular matrix and thus no unique solution to the problem can be obtained. 

The main drawback of the equation based approach is the requirement for 

initial valUes for every variable in a given problem. Poor initial estimates often 

result in non-convergence, thus initialisation represents a crucial step in equa-

tion based solution. Initialisation of such a large number of variables must be 

performed by a program. 

Simultaneous modular programs are a combination of the above methods. 

Unit models contain detailed descriptions of input/output relationships, as in 

sequential modular systems, and simpler linear relationships with adjustable pa-

rameters. A sequential pass through the flowsheet is made, providing coefficients 

for the linearised unit models. The linear equations are then solved simultane-

ously as in an equation based system. The sequential pass overcomes the problem 

of variable initialisation for the equation based part of the method. 

The simultaneous modular approach was developed to introduce the desirable 
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aspects of equation based flowsheeting to existing sequential modular programs. 

The large investment in the sequential modular approach has resulted in users 

being reluctant to change to the equation based techniques. The application 

of this combined approach, however, provides some of the speed of an equation 

solver, and the ability to place design specifications in a more flexible way, while 

retaining the numerical stability of the sequential modular method. 

There are few examples of successful simultaneous modular systems, but ex-

amples include the work of Perkins [61] and Mahalec et al [62]. 

A similar system has been proposed by Johns [63,64] where, instead of linear 

models, simplified non-linear representations of the "rigorous" equations con-

tained in the sequential modular units, are used for simultaneous solution. The 

method of solution performs an initial iteration using the rigorous models which 

generate parameters for the simplified models. Iteration on the simplified models 

is then performed until convergence is achieved or the model is no longer valid. 

A further iteration of the detailed model is performed before the simplified model 

is used again. This procedure continues until convergence is achieved. 

3.2 Solution Method Requirements for Flexi-
ble Modelling 

This work has been concerned with developing flexible modelling tools, rather 

than creating the definitive flowsheeting algorithm. Appropriate strategies have 

been developed for formulating problems for solution by suitable techniques. Be-

fore describing formulation methods it is necessary to describe the implementa-

tion of different solvers and their specific requirements. For example, an equation 

based solution technique needs methods for checking design specifications and 

variable initialisation. This discussion also leads to a choice between equation 

based and sequential modular solution approaches for flexible modelling applica-

tions. 

From a modeller's viewpoint, development of mathematical descriptions is 

aided by the ability to express relationships as equations. Mathematics has a 

widely known syntax, so models created as sets of equations should be understood 

by model users as well as developers. If models are created using the "model 

based" techniques described in Section 2.2 then each term in each equation will 
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be available to be reasoned about. In this respect, sequential modular unit models 

are "black boxes". The equations are stated implicitly. Thus the terms are not 

available for reasoning. A model user, therefore, has no access to the equations 

in the model and so has little scope for modifying them. 

An equation based description, however, allows flexible model development 

and use. Mathematical syntax can be used to define sets of equations to represent 

particular operations, such as vapour-liquid equilibrium. These sets can then be 

used as the basis of high level descriptions of flowsheet units, e.g. a flash unit can 

be modelled by a vapour-liquid equilibrium, a mass balance and a heat balance. 

Using a "model based" description, the individual terms of the equations can 

be accessed for modification by the user of the model. For example, a vapour 

pressure may be supplemented by a fugacity coefficient. 

A "model based" approach to mathematical modelling implies that, of the 

flowsheeting solution methods described in Section 3.1, an equation based tech-

nique is most appropriate. However, existing programs with a structure as shown 

in Figure 3.1 do not permit flexible access to their constituent parts. Allowing 

modellers to create descriptions which can be reasoned about for different appli-

cations, e.g. symbolic linea,risation and graphic presentation, and allowing users 

to modify these descriptions, implies that the unit model library is no longer of 

any use. The executive can also be replaced by a reasoning module which permits 

the access to the equations described above, as well as performing the required 

formulation tasks. The input and output file format can also be discarded in 

favour of an interactive system. Therefore, the only required part of as existing 

equation based program is its solver, in which case it may be easier to develop a 

solver specifically for such a modelling system than to modify an existing one. 

If a sequential modular solver is used, more of the program structure is re-

tained. This is a supporting point for this approach which should be considered 

since it is the most widespread of those discussed. Unit models are fundamental 

to the solution technique, so a unit library must be maintained. Since this is the 

case, and no access to the equations can be gained once the model is created, 

no interaction with the formulation executive shown in Figure 3.1 is necessary. 

Thus, problem specifications can be mapped from the symbolic data structures 

of the modelling tool to the input file format of the solver. Similarly, solutions 

can be interpreted from the resultant output file. Despite the restriction of not 
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being able to modify models once they are created, it is still useful to be able to 

build composite models from library units. A method for generating appropriate 

sequential modular models from an equation based description is described in 

Section 3.3. 

Solvers are not only required for flowsheeting calculations. Throughout de-

sign, models of whole flowsheets and smaller models of their constituent parts 

are created. The "model based" approach described above allows construction 

of mathematical descriptions for different levels of complexity, since, throughout, 

they are similarly defined as sets of equations. An equation solver can be used to 

evaluate any such formulation. However, a sequential modular solver is restricted 

to the models available in its library. To describe detailed behaviour of individ-

ual operations, access to the equations is required. For this reason, an equation 

based solver is required to supplement the sequential modular technique for the 

accurate simulation of such situations. 

In summary, a flexible modelling format, for both modellers and users, can 

be developed using equations. Access to individual terms of each equation can 

be permitted using a "model based" representation. An equation based solver is 

the most appropriate of those discussed for evaluating the generated model, but 

most, if not all, of the structure of existing equation based programs should be 

discarded and replaced by the proposed system. A sequential modular program 

could be used with little alteration, but does not provide adequate access to 

modelling equations. 

For these reasons, an equation based technique has been used as the primary 

solution method. The flexibility obtainable from such a technique outweighs the 

robustness achievable by other methods. It should be recognised, however, that 

both equation based and sequential modular methods have been implemented. 

The representation of flowsheet information is such that any solver is merely 

manipulating structured data describing a design. The data can be formulated 

in a manner solvable by a sequential modular approach even if it does not match 

the flexibility of equation based techniques. 

The following sections discuss the implementation of both sequential modular 

and equation based solution techniques. The solvers all take a set of equations 

as their input. 
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3.3 Implementation of a Sequential Modular 
Solver - Esspros 

Sequential modular programs retain most of the original program structure as 

discussed in Section 3.2. Most systems are written in FORTRAN, although the 

program used, Esspros, is also available in Fortran8x and C. The reasoning pro-

vided, converts an equation based model into the Esspros input format. This is 

achieved with a set of rules written in Prolog. 

Esspros [65] is a flowsheet modelling program for performing mass balances 

based on a sequential modular architecture. The unit model library consists of 

a set of fundamental operations which can be used to construct more complex 

processes. For instance, in the synthesis of nitric acid, an absorption column 

is used to react the NO 2  and NO obtained from the reactions, with water, and 

thereby separate them from N 2  and 02. The Esspros model of the absorber 

ini'olves a mixer, two reactors and a separator (see Figure 3.2). 
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Figure 3.2: Esspros Decomposition of a Nitric Acid Absorber 

The input to Esspros is a file which is written as a program. Declarations 



are made for the number of components and, optionally, what they represent. 

The individual items are written as subroutine calls with parameters defining the 

streams in and out, and, where appropriate, additional specifications. 

The library contains the models: mixer, splitter (divider), separator (three 

types), reactor, flash, distillation and two stream types - feed and recycle. Most 

models require some additional parameters which effectively fulfill the degrees of 

freedom or indicate the mode of operation (e.g. the separator has three modes 

where the product specifications can be made as recoveries, flows or mole frac-

tions). 

These models, therefore, contain the basic equations for mass balances, which 

can be associated with particular equations and sets of equations provided by 

the model generation phase. The types of equations generated also indicate the 

mode of operation of the models. 

As an example, consider the absorption column discussed above. The repre-

sentation in CLAP is a single absorber with two associated reactions (see Figure 

3.2). The model generation phase returns a set of mass balance equations incor-

porating the two feeds and the two product streams with the two reactions. The 

specification of the product mole fractions (it could apply equally well to flows 

or recoveries) is inherent in the mass balance equations, i.e. the required quality 

of the nitric acid. 

The general form of the mass balance equations is sufficient to imply the use 

of a mixer as the first operation, i.e. there are two inlet streams. Equally, the two 

outlet streams imply a splitter or separator. The specification is in terms of mole 

fractions and not stream ratios which, therefore, denotes a separator and its mode 

of operation. The mass balance includes a specification of two stoichiometric 

equations, thus indicating two reactor models (with the required stoichiometric 

parameters). Also included will be an expression indicating reaction conversion, 

which is required by the reactor models. 

In this manner, large scale models can be constructed. There are, however, 

significant reservations about this inference mechanism. For example, Esspros 

requires a separator to have one output stream which is completely specified, 

i.e. the mole fractions of all components in either the top or the bottom stream. 

The flexible specification encouraged by the equation based system allows these 

specifications to be mixed as long as they are consistent. Esspros, therefore, 
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requires some major searching for specifications or a fundamental restructuring 

of the model building facilities to prevent such mixed specifications from being 

placed. Thus, a suite of tools is required to aid in the formulation of sequential 

modular problems, on top of those required for the equation based modelling of 

the individual items. 

One such tool required for the Esspros implementation was a method for the 

recognition of recycles and choice of the optimal tear streams. Currently, an 

Esspros user must identify the recycle streams and specify them as such. An 

algorithm has been implemented in Prolog for locating recycles [66]. Since the 

Esspros description of the process generally contains more units than the CLAP 

representation, the algorithm operates on the CLAP structure. 

Once recycles have been identified, other algorithms are available for selecting 

the optimal tear streams (see Rudd and Watson [671). 

3.4 Implementation of Equation Based Solvers 

As discussed in Section 3.2 the implementation of an equation based solution 

technique requires not only a solver, but also additional tools to support formu-

lation. For example, a method for assessing the suitability of design variables has 

been implemented. 

A tool of the type proposed should have a suite of solution methods at its 

disposal. Equation based solvers are well suited to solving models of entire plants, 

but are unwieldy for solving individual units or individual equations. In these 

situations small, simple solvers are more appropriate. There are also programs 

specifically for performing calculations on one particular item of equipment. 

Two small solvers, intended as rapid calculators, have been used to augment 

the capabilities of the large scale fiowsheet solvers. Their range of applicability 

is small, but they provide an example of the use of different solution techniques. 

3.4.1 Degrees of Freedom and Sensitivity 

In specifying theperformance of a plant, section or unit, it is necessary to choose 

variables which can be assigned values without over-constraining the unit. This is 

not straightforward in equation based techniques where constraints can be placed 

arbitrarily. In sequential modular programs each unit must be fully specified since 
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outputs are calculated from inputs. The use of control units to place specifica-

tions necessitates the "freeing" of one variable before another can be constrained, 

making it is easier to identify the effect of a single specification. 

As discussed in Section 3.2, the main solution technique is equation based, so 

a check is required of a designer's specifications to ensure their feasibility as design 

variables. This is measured against several criteria by the following algorithm: 

The number of degrees of freedom is calculated from the equation: 

ND=NV  — NC 	 (3.2) 

where ND = the number of degrees of freedom, N = the number of variables 

in the system, and N. = the number of equations in the model. If the 

number of specified design variables is greater than ND, then the procedure 

stops. 

The variables are then checked using a variation of the Lee, Christensen 

and Rudd algorithm [50] to ensure the specifications do not contradict each 

other. The full algorithm is presented in Appendix B. 

If there is a contradiction, the offending variable is found and an alternative 

suggested. 

If there are any remaining degrees of freedom, suitable design variables are 

found. 

The system of equations is assessed to determine whether or not sequential 

solution is possible given the current set of specifications. This is deter-

mined by the Lee, Christensen and Rudd algorithm in 2. If sequential 

solution is not possible, the equations are checked to see if the selection of 

different design variables would allow sequential solution. In the simple case 

where one solver can only be used for such sequentially soluble problems, 

this approach provides the information necessary to choose the appropriate 

solution procedure. 

This algorithm has been written in Prolog. The result is a compact implemen-

tation which bears a marked similarity to matrix reordering methods. However, 

Prolog is slow in operation and, as the method is mostly array manipulation, it 

is probably more appropriately written in C. 
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A degrees of freedom analysis can only check the correctness of the structure 

of the problem. It cannot detect whether values of variables will interact in a 

destructive manner or are not feasible. In sparse matrix solution such problems 

are common and result in non-convergence. They should, therefore, be identified 

by an analysis of sensitivity before solution commences. 

3.4.2 Analytical Manipulation 

The simplest solver implemented is used to manipulate the analytical expressions 

obtained from the model generation phase. The principle of the method is the 

rearrangement of equations to make a single unsolved variable the subject of 

the equation, whereupon it can be solved for directly. A system containing any 

equations which must be solved simultaneously, e.g. one containing a recycle, 

cannot be solved by this technique. 

The set of equations is delivered to the solver unordered, so the first task is to 

locate an equation containing a single unsolved variable. A set of manipulating 

rules is applied to any such equation in an attempt to make the variable the 

subject of the equation. If successful, the variable is evaluated directly. If not, 

the equation can still be solved numerically, in this case by passing the equation 

to the one-dimensional Newton method described below. If non-linear equations 

can be rearranged resulting in one variable being the subject, then they too can 

be solved analytically. 

The method has been written in Prolog because it facilitates the manipula-

tion of symbolic expressions by way of pattern matching. A further advantage is 

due to the equations having been generated with Prolog variables for each term. 

When any variable is evaluated, Prolog's automatic unification instantiates the 

value in all expressions containing that variable. The procedure can then continue 

searching for equations recursively with the variables being updated automati-

cally, until no more can be solved. 

3.4.3 One-Dimensional Newton 

The purpose of implementing a solver for single equations was for design situa-

tions when a request could be made for a particular property as opposed to the 

solution of a complete unit model. For instance, when evaluating a stream for 

distillation, the K-values might be requested. Instead of formulating the model 



for the large solvers, which for such simple calculations becomes time consum-

ing, a simple equation solver is more appropriate. The manipulative solution 

approach, above, was used for this purpose, but many expressions require some 

iteration, e.g. bubble and dew points. This numerical solver was developed for 

such situations. 

Problem equations are linearised using a symbolic differentiation module im-

plemented in the full Newton's method (see Section 3.4.4 below). The expression 

is then formulated for a single-dimensional Newton's method iteration written 

in Prolog. Since only single equations are being evaluated, the solution is rapid 

enough that an implementation in C is not required. The technique suffers badly, 

however, if a reasonable initial estimate is not given. 

3.4.4 Newton's Method 

No general purpose equation solver was available at the beginning of this work 

so the requirement of an uncomplicated implementation for experimentation was 

met by the choice of Newton's method. The formulation of the problem involves 

three stages, all of which have been written in Prolog. 

Equation Linearisation 

Initially, the equations describing the problem of interest are linearised by tak-

ing the first term of the Taylor expansion and then rewriting them in the form 

required by the normal multi-variable Newton-Raphson iteration scheme. 

The equations are differentiated symbolically using a set of 13 differentiation 

rules which cover most cases: trig, logs, powers, arithmetic functions, etc. The 

form of the linearised equations can be symbolically manipulated to provide an 

understandable written expression, but the likelihood of anyone wanting to see 

these equations is very small. The facility is available for this presentation, but 

the form used internally allows simplified manipulation by the matrix reordering 

algorithms. 

Equation Ordering 

The linearised equations are ordered using the P4 or SPK2 algorithms [68], pro- 

ducing an implicit bordered lower triangular matrix of coefficients. This phase 
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is also performed in Prolog, but, as mentioned above, it may be more efficiently 

implemented in C. 

Variable Initialisation 

In Newton-based methods, initial values must be supplied for all variables. Apart 

from the design variables which must be set before a solution is possible, it is 

unlikely that the designer will want to supply starting values for the variables 

which the program is supposed to calculate. In problems containing thousands 

of variables this is clearly an infeasible request. It is reasonable to assume, there-

fore, that any equation based flowsheeting program should be able to provide all 

necessary initial values. 

In a hierarchical design procedure variable initialisation is readily imple-

mented, since the design is proceeding in stages of increasing complexity. At 

• a given stage of the design,.many ofthe variables can be initialised using values 

calculated in earlier simulations. If a single model is being simulated under dif-

ferent conditions e.g. different feed rates, then the previous solutions can be used 

to initialise the new ones. 

This is achieved when the expanded relation representing the balance equa-

tions is passed to the solver. The specifications have been made and are, therefore, 

already unified throughout the model. The bindings associated with the equa-

tions are then checked for variables not already instantiated. Any such located 

terms are matched against the solution of the specific variable in the stored, 

solved form of the "perform" relation evaluated most recently. The model in 

which this search is performed, must be of the same relation class as the one 

being initialised. 

It is possible for the model to have changed since earlier versions were eval-

uated. In this case, many of the terms will still be present, but some will not. 

The ones not present can then be matched with related variables in simulations 

performed at a level of less functional detail, where applicable. This is also the 

approach used for new simulations at levels of greater functional detail. 

Certain key properties can be matched between levels, mostly belonging to 

equivalent streams. This is particularly useful for recycles which will require 

iteration to solve. All streams defined at a level of lesser detail have an equivalent 

at the level of greater detail (though the inverse does not necessarily hold). This 
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correspondence is defined by the designer as the flowsheet is created. 

This variable initialisation procedure may not be able to provide estimates for 

all variables, however, so some will still require generated values. In most cases, 

though, these variables can be calculated by a forward elimination pass which is 

made simpler, since the reordering step has already been performed. The only 

exceptions are the spikes or tear variables located by the reordering algorithm, 

which can be estimated based on other local values. 

Two approaches have been studied for the estimation of the remaining vari-

ables. Both involve writing the unsolved equations as inequality constraints, e.g. 

Wo = w1  + w2 	 (3.3) 

implies w0  > w1  

and w0 >w2 

assuming all terms are greater than zero. 

Unknown variables are estimated based on the order of magnitude of the other 

variables in the equation. The estimates are then sequentially substituted into 

the unsolved equations, generating values for all other unknowns. The generated 

constraints are then checked to ensure the estimates are within the feasible region. 

If they are not, estimates are provided from other equations and the procedure 

repeated. 

The basic assumption of this method is that in an equation, expressions sub-

jected to the same operator are of the same order of magnitude. For example, in 

Equation 3.3 above, if w 1  had a value of 100, it is assumed that w 2  is of the same 

order of magnitude i.e. 100. The equation can now be evaluated and, if only one 

estimate is required, so can the remaining equations. The constraints generated 

form the unsolved equations can then be checked. In practice, this assumption 

is too basic to be of practical use. The number of possible permutations of equa-

tions and specifications would require a very large number of special conditions 

to be assessed for even a small number of equations. 

The second approach takes an initial estimate for an unknown variable and 

substitutes it into the unsolved equations. This provides values for the constraints 

which are then checked to see what, if any, change is required in the variables 

for a feasible starting point to be found. If no change is necessary then a feasible 



point has been found, otherwise the suggested change is implemented and the 

substitution repeated. Using the above example, the feasible point found is where: 

w. = 101w1 = 100 and w2 = 1. 

The final stage of formulation is the writing of two C routines using the 

ordered, initialised equations. The Ne*ton's method iteration is a C program 

which requires routines to provide the functions for calculating the updated values 

of the variables' coefficients from previous iteration values. The other provides 

initial values of all design variables. The routines are written by Prolog calls. 

Matrix Solution 

The sparse system is solved in C using the CBS algorithm [69], a modification of 

Gaussian Elimination. The solution is placed in a vector accessible from both C 

and Prolog. 

Figure 3.3 shows the sections implemented in Prolog and those in C. 

PROLOG 
Generate Equations 
Linearise Equations 
Order Equations 
Make Initial Estimal 
Write C Functions 

I 	C 

Newton's Method 

CBS Algorithm 

a.j Initial Value Function 
Coefficient Updates 

Figure 3.3: Implementation of Newton's method in C and Prolog 

3.5 Conclusions Concerning Solution Strate-
gies 

Both equation based and sequential modular solution methods have been inves-

tigated to assess their strengths as part of a modelling tool. Implementations of 

both approaches have been achieved, requiring different levels of modification to 

existing program structures. 

Flexible specification of problems requires an alternative to the unit model 

library used in fiowsheeting programs. The concept of a library is central to 

the sequential modular approach, implying that the library should be retained. 

However, to provide a reasoned model, a decomposition of the process is required 
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at the equation level. For both approaches, therefore, an equation generation 

module is the starting point in problem formulation. 

The major differences between the implementations stem from this point. The 

equation based method requires only a mapping between the equation represen-

tations of the symbolic model and the solver. This applies to both, large and small 

problems. The sequential modular solver, however, requires a reasoning module 

to deduce an appropriate unit model, or combination of models, corresponding to 

the generated equation description. For simulations of individual items of plant, 

more detailed models are required, as well as the ability to alter the models for 

particular situations. This suggests, certainly in the case of Esspros, the ne-

cessity of additional modelling capabilities, most appropriately achieved with an 

equation based method. In conclusion, the equation based method allows more 

flexible specification of problems and, consequently, more accurate translation 

into a mathematical description than is achievable with a sequential modular 

strategy. 

The two approaches require a range of tools to support model formulation. 

Both require a method for checking the degrees of freedom, thus constraining 

the specifications to suit the particular solver. A matrix method has been im-

plemented for the equation based approach (Section 3.4.1), while the sequential 

modular method requires a more rigid syntax to be imposed on the CLAP struc-

tures, restricting the range of specifications that could be made on particular unit 

operation models. A procedure is also necessary for the initialisation of variables 

by the equation based implementation, whereas the modular approach needs a 

tool for identification of optimal tear streams. 

A tool of the type proposed should have different solution methods available 

for different applications. For instance, equation based or sequential modular 

solvers are well suited to solving models of entire plants, but for solving individual 

units or individual equations, small solvers are more appropriate. Programs are 

also available specifically for simulating one particular item of equipment. For 

this reason, two small solvers, intended as rapid calculators, have been used to 

augment the capabilities of the large scale flowsheet solvers. 

A solution strategy has been implemented specifically for the equation based 

solver. The evaluation of the degrees of freedom (see Appendix B) indicates the 

solver which is most appropriate for the generated equation set. The method 
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identifies irreducible blocks in the matrix which require simultaneous solution. 

For large problems this is most often the case. The full Newton's method is 

automatically invoked for such situations. - 

Where no irreducible blocks are present, for instance in some models of indi-

vidual unit operations, the simpler solvers can be used to achieve an analytical 

solution where possible. The method involving symbolic manipulation is used for 

such cases. If this method identifies equations which cannot be solved analyti-

cally, the one-dimensional Newton is used. 

The specification of a solution strategy could also be used where programs 

are available for the modelling of individual unit operations. Depending on the 

range of tools, the method would initially select programs on the basis of the 

type of unit being modelled. Subsequently, programs could be invoked when the 

specifications on the CLAP representation match the input requirements of a 

particular solver. 
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Chapter 4 

An Object Oriented 
Representation for Flowsheeting 

The knowledge required by a fiowsheeting tool must include information about: 

• a range of solution methods and their required formulations 

• how to create a consistent mathematical model based on specified informa-

tion 

• use of physical property models 

• the concepts of the design procedure i.e. 

- hierarchical synthesis 

- evaluation of alternatives 

- integrated process evaluation 

Mathematical methods for solving fiowsheets have reached a high level of so-

phistication and new algorithms are not necessary. Different formulations are 

required for different solution techniques, but all are merely different configu-

rations of a single problem. It is, however, desirable to demonstrate that the 

representation of the process and its specifications can be manipulated to pro-

vide valid formulations for different solution methods, as described in Chapter 

3. This chapter addresses the representation of processes in a central model to 

allow consistent formulation for different evaluations. 

Physical property models are also well established with many databases and 

packages either developed by individual companies or commercially available, e.g. 
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PPDS [70]. The constants and parameters for the models should be available to 

the proposed system. However, representation of the associated mathematical 

relationships must be consistent with equations used for describing unit operation 

models. The format for defining mathematical expressions is discussed in Chapter 

5. 

A model based approach has been proposed using object oriented program-

ming (OOP) to represent the process and support the concepts of design discussed 

above. 

In the creation of any knowledge based tool there are five areas for consider-

ation which should be concurrently advanced to maturity (see Kunz [71]) 

• purposes 

• representation 

• reasoning 

• interfacing 

• testing 

Kunz advocates an opportunistic control scheme for selecting the topic which 

should be considered at any point in time. As soon as an issue gives the de-

veloper cause for concern, it should be addressed. Periodically, a review of the 

points covered gives an indication of the areas neglected and thus overdue for 

consideration. 

The five areas indicated are of equal importance and while it cannot be demon-

strated that the concurrent-opportunistic control method was used throughout 

this work, the importance of the five topics will be indicated with respect to the 

development of a useful design tool. 

Purposes. The aim of this project was the development of an experimen-

tal flowsheeting tool suitable for use in calculations throughout the course of a 

chemical engineering design. Such support for a designer involves the creation 

of mathematical models of plant items at wide ranging levels of detail and with 

different foci. 

Representation. The object oriented language, CLAP [45], was chosen for 

the representation of the problem because of its ability to represent not only 

74 



structural items but also the relationships between them. CLAP is a procedural 

language, which has access to Prolog logic programming and C for rapid numerical 

manipulation and evaluation. CLAP is itself written in Prolog. 

Flowsheeting deals with items which can be separated into distinct classes. 

The classes include the following: 

• fiowsheets 

• unit operations 

• streams 

• chemical species 

• modelling equations. 

CLAP objects have been used to represent all of the above classes except mod-

elling equations which have been represented in user defined relations and are 

discussed in Chapter 5. 

Since the tool is intended to be used throughout design, the stages of a de-

sign must also be represented. Process alternatives must be described and the 

relationships between them, e.g. which are developments or refinements of others. 

Reasoning. The reasoning must take the place of the engineer for the task of 

creating a mathematical model and formulating it for a particular solver or other 

external program. This requires, therefore, a model of the solver (for equation 

based simulation) or the flowsheeting program (where the solver is sequential 

modular). 

Interface. The interface to the designer is normally an addition to the pro-

gram tacked on at the end. However, for a final product to be of use to an 

engineer, constant consideration must be given to the aspects of the design, such 

as decisions, calculations and tools appropriate to a given situation, which a de-

signer will wish to see. The limitations of the available software and the dispro-

portionate amount of time required for the development of a graphical interface 

have meant that while interfacing has been considered throughout, it has not 

always been possible to implement a display exactly as envisaged. 

Testing. Examples for testing the various proposed ideas always bring to light 

different aspects of a problem. Therefore, many small examples and some larger 
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examples have been considered during development. Some examples appear in 

the text to illustrate points more clearly, while more detailed tests appear in 

appendices D, F and E. 

4.1 Unit Operations 

Objects have been used to represent a range of unit operations for a flowsheeting 

tool which is to be used at different levels of process design. These objects range 

from conceptual processes representing whole plants to detailed unit models, 

related using an inheritance mechanism as described in Section 2.3 and shown in 

Figure 2.7. 

Slots within the objects have been defined for properties useful in fiowsheet-

ing and synthesis procedures. Further attributes may be necessary for the im-

plementation of other evaluation tools. Inheritance provides a means of collating 

common attributes of related units, e.g. a heater and cooler may both require 

slots for heat load and the utility source, so they are contained within a more 

abstract object describing enthalpy change. In this context heaters and coolers 

imply instances where the requirement for heat exchange has been identified but 

insufficient information is available to specify the source or sink of heat. Since 

objects such as heaters and coolers are ostensibly identical, it could be argued 

that there is only a requirement for one object representing the two operations. 

However, the two operations are conceptually opposite functions, so using one 

object reduces the amount of reasoning possible about the function of the object. 

For this reason, both objects are retained in the inheritance hierarchy. 

Only a subset of the range of operations required in a chemical plant has been 

represented. Many units are similar in character, varying only in small details, 

so creating a unique object for each one is an impractical task. Apart from the 

development work required to do this, a system supporting a large number of 

fiowsheet items becomes unwieldy to use. 

One possible solution to this problem is to use multiple inheritance which 

allows objects to be defined as belonging to more than one class and thus able to 

inherit the properties of more than one object. For example, a flash unit incor-

porating external heating could be defined as being a combination of a flash and 

a heat exchanger. However, this approach presents difficulties where a combined 

unit may not need all the properties available from the constituent operations, 
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which indeed may contradict each other. The structured classification of the ob-

jects is also disrupted, reducing the reasoning possible based on a tree as described 

in Section 2.3.2. 

Multiple inheritance is not used in this system. Instead, objects are described 

with sufficient flexibility to represent a range of flowsheeting applications. Pro-

viding a mathematical model for units involves reasoning about the specified 

properties of the object and constructing a model based on the specifications. 

Using the above example of a heated flash, the appropriate object describes 

a generic flash operation but incorporates slots for heat load and other heat-

ing properties. Thus the flash object is still only a specialisation of the object 

representing vapour-liquid equilibrium separations. If no heating properties are 

required by the designer, then these slots will not have values. When the mathe-

matical model is constructed the slots are checked, and if they have values, then 

a model incorporating external heating will be constructed, otherwise only equa-

tions describing the flash operation are prescribed. This approach removes the 

mathematical description from the object and thus overcomes the problem of a 

rigid format of model described in Chapter 3. The models constructed here are 

based on the information provided both functionally, in the selection of the unit 

operation, and structurally according to the information provided about the unit. 

The most difficult task in representing a problem using OOP is to decide to 

what level operations are to be broken down, and to which objects given informs,-

tion belongs. This is demonstrated by the different characterisations developed 

by other workers in this field, e.g. objects in DESIGN-KIT [14] differ from those 

developed here. The representation adopted here is not definitive, but performs 

adequately for use in flowsheeting and simple synthesis. However, the implemen-

tation of other reasoning modules may require revision of the inheritance tree. 

Objects are used to represent streams as a separate entity for several reasons. 

In the course of a design, it is more natural to refer to streams and properties 

of streams than unit operations. Unit operations can be thought of merely as 

mathematical functions mapping a set of inlet stream properties to a set of outlet 

stream properties. 

Secondly, without the use of stream objects, each unit operation would have 

to incorporate slots for the properties of all inlet streams and all outlet streams. 

The incorporation of a variable number of streams would create problems for 

- 

77 



identifying their individual properties. 

Finally, stream objects provide a better functional description of concepts 

such as temperature than unit operation objects. Within a unit operation object 

there may be several slots to hold different temperatures, which makes it difficult 

to recognise each one as belonging to the single concept of temperature. If, how-

ever, temperatures are stored in separate streams, labelling individual properties 

becomes straightforward. 

Stream objects are used to represent connections between fiowsheet objects, 

and contain the properties common to the connected units, e.g. temperature out 

of one object is assumed to be the same as the temperature into the next. The 

connection is indicated in the objects by setting a slot to contain the relevant 

stream number (Figure 4.1). The objects representing unit operations access the 

stream object when they require values associated with their connecting streams. 

pressure 
inlets -..,. 	 ote 	 > 	inlets-[sl,..j source - unit 1 
outlets - (Si .... ] 	 sink - unit 2 	 outlets-.... 

Figure 4.1: Representation of Streams as Objects 

4.2 Chemical Species 

In general, chemical species might be represented by objects in two different ways: 

1 One generic object, "chemical-species" is defined, containing slots for physi-

cal property parameters which can be used to generate appropriate physical 

property equations as required. All components used in a design are sin-

gle instances of the generic object. For example, a stream object could be 

created which contains components benzene and toluene. Objects are cre-

ated for benzene and toluene containing their physical property parameters. 

These objects could then be referenced by any other stream in the design. 

2 Each chemical component is represented by a generic object which, apart 

from containing physical property parameters, contains slots for properties 



such as temperature and pressure which could be set in local instances. In 

the above example, each component in each stream would be represented 

by an instance of the generic object for the particular component used. 

Both representations have advantages. The first representation is the more 

natural expression of the concept of streams and components. In this description, 

a stream has a temperature, pressure, fiowrate and constituent components as 

opposed to each component having a temperature and pressure. However, some 

calculations require a different emphasis. If, for example, it is required to calcu-

late the relative volatilities of two components, it is normal to compare vapour 

pressures which are calculated based on temperature. In that case, the second 

representation has the advantage of being able to compare two components di-

rectly, with local temperatures and pressures contained in their own slots. 

The representation used is the natural description, i.e. streams have temper-

atures and pressures, and instances of component objects contain only physical 

property parameters. The relative volatility example described above is accom-

modated by creating an instance of a stream which may (or may not) be tempo-

rary. The components are then associated with the stream, and, therefore, with 

local values of temperature and pressure. The problem of referencing different ob-

jects for temperatures and pressures is discussed in Section 5.1. The parameters 

should be available in a physical property database, but such a facility has not 

been incorporated. For the sake of testing programs, values have been provided 

manually. 

The system includes a method of determining physical property data for sub-

stances not detailed in a database [72]. The technique involves estimating critical 

properties from group contributions. The calculated values are adjusted in the 

light of a comparison with the results of known compounds recognised as being 

similar to the compound of interest. 

4.3 Object Representations, for the Design 
Process 

To provide a practical tool for use throughout design, whether it be a design 

environment or a supporting tool, a representation must be provided describing 

the steps taken. This should include the generation and evaluation of alterna- 
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tive processes. Apart from providing consistent support for the development of 

alternatives, the knowledge incorporated in such a characterisation reflects the 

decisions made, from the selection between process alternatives to the placing of 

specifications on the plant operation. Such information is useful for reviewing 

the design, especially if the reviewer had no part in the project itself, but wishes 

to determine the reasoning behind the completed design. 

Lien et al [9] describe an example of preliminary design illustrating the flexi-

bility that will be demanded of such a representation. The designer continually 

moves from levels of greater abstraction to more detailed levels and back again, 

developing models for different evaluations which supply information necessary 

to make synthesis decisions. The designer takes advantage of implicit relation-

ships between levels while modelling and making decisions. For example, the 

choice between a liquid phase and vapour phase reactor is deferred at a high level 

until the associated separation is modelled in sufficient detail to indicate which is 

more economical. The modelling involved is also subject to levels of detail. For 

instance, a simple model of the separations may be sufficient to select between 

reaction schemes. It may be necessary, however, to model the same separations 

at a greater level of detail to provide enough information. 

The discussion of expert system approaches to design in the work by Lien 

et al highlights the key representational issues, but does not, however, discuss 

implementation: 

• the description should be hierarchical, incorporating levels of increasing 

detail as design proceeds, 

• alternative process structures should be accommodated and maintained un-

til the optimal structure can be determined, 

• movement should be possible between levels of detail, taking advantage of 

the relationships between structural abstractions and refinements, 

• data should be shared between levels. 

Two further important points arise from this discussion. Firstly, the authors have 

difficulty in separating the synthesis task from representational issues. The rep-

resentation must be able to support synthesis tools, whether they be algorithmic 

or heuristic, as any other tool would be supported. However, the generic objects 
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used to describe the steps taken during a design are independent of any particular 

tool. The application of tools will ultimately shape the use of specific instances, 

rather than their generic classes. 

The second point is that at any level of detail, there is a range of models 

describing the items depicted at the chosen level at various degrees of complexity, 

e.g. a distillation column can be modelled by an split fraction balance, a Fenske-

Gilliland-Underwood model or a plate model (which, in turn, may incorporate 

different levels of detail). The abstraction of a process description into models of 

differing levels of complexity is discussed in Section 5.4. 

The following sections describe in detail different representational models of 

a hierarchical design with a discussion of the model implemented. 

4.3.1 Hierarchical Representation of Design 

A common representational medium for hierarchical design is the concept of 

design states as nodes in an undirected graph. One view is to consider a 

graph of structural refinements, i.e. explicitly representing a relationship such 

as "has-parts" (and its inverse "is-part-of") as edges connecting nodes describing 

design states, see Figure 4.2 

) plates 

flash 	reboiler 

Figure 4.2: Graph of Design States Related by Refinement 

In this example, the separation operation has been refined as a flash and a dis-

tillation operation. The distillation operation has been refined to the constituent 

parts of the column. 

This graph adequately describes process disaggregation if the design does 

not involve any process alternatives. The expansion of the graph in Figure 4.2 
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to accommodate the alternative structures which the designer might wish to 

explore requires a third dimension to be added. For example, if the separation 

could equally be carried out by two distillation columns, the graph would appear 

as in Figure 4.3 

Figure 4.3: Graph of Design States Representing Structural Alternatives 

The graph now represents the notion of items being refined to more detailed 

parts and accommodates the idea of alternatives being exclusive. The represen-

tational issue not incorporated is the concept of a flowsheet. Using the repre-

sentation suggested by Figure 4.3, flowsheets can be constructed from the nodes 

of the graph by selecting between the alternative refinements of a given node. 

This allows the flexibility of being able to construct models incorporating a wide 

range of complexities, e.g. modelling a reaction section together with detailed 

distillation models. However, 'the onus is on the designer to define a model every 

time one is required. In its current form, the graph can be used to construct 

models of any combination of structurally related parts, of a design. The exten-

sive flexibility of this representation is discussed by Bafiares-Alcántara [73] who 

emphasises its clean semantics as being a benefit for the designer's understanding 

of the development of the design. 

A potential source of inconsistency arises within this representation in cases 

where certain combinations of parts are invalid. In a simple example, a process 

EN 



may be developed with the intention of comparing two reaction schemes, one 

being liquid phase, the other vapour. The reactions may each require specific 

separations. Figure 4.4 shows the graph as represented by relationships of refine-

ment and constituent parts. Potentially, each reaction scheme could be combined 

with each of the separation schemes which were intended to be exclusive. If the 

alternatives are subsequently refined, the confusion is compounded as to which 

structural combinations are intended to be valid. The exclusivity is difficult to 

represent, but Bafiares-Alcántara argues that there may be some benefit to be 

gained from being able to model such combinations and regards this as an area 

of future research. 

• HcH 

Liquid Rmaim 	Vapour j 

Figure 4.4: Graph Showing Potential Combination of Inconsistent Parts 

The implemented representation incorporates relationships describing the no-

tions of refinement and constituent parts. To overcome the inconsistency of al-

ternative refinements, the concept of the flowsheet has been used to constrain the 

potential explosion of combinations. The refinement relationship now refers to 

fiowsheets resulting in a hierarchical development of whole processes. It is, how-

ever, necessary to be able to design the constituent parts of a fiowsheet separately, 

so it must still be possible to support the modelling of incomplete flowsheets. The 

use of the fiowsheet to constrain the number of potential combinations reduces 

the exploration of the problem space to considering valid combinations of units. 

The hierarchy of flowsheets also provides a record of decisions, such as the com-

bination of a vapour phase reactor with a vapour phase separation as opposed to 

a liquid separation. 



This is similar in concept to the notion of "cast in stone" described by West-

erberg et a! [1] and Subrahmanian et al [2] with respect to the sharing of infor-

mation in a group design activity. In the environment proposed by Westerberg 

et al, the authors discuss the large amount of information shared by the mem-

bers of a design project team. While each member maintains their own models 

and data, with the ability to delete it or alter it at will, any shared information 

must remain unaltered, hence "cast in stone". Similarly, in the development of 

flowsheets, many structural alternatives may be modelled, but the maintenance 

of a hierarchy retains the final proposed structures. The information associated 

with the nodes in the hierarchy includes modelling results, relationships reflect-

ing topological components and relationships describing refinement from previous 

levels. 

Figure 4.5 shows the implemented construction of nodes in a design graph. 

The nodes represent flowsheets related by "is..refined_to" from high levels of ab-

straction to levels of greater detail. The inverse relationship is "refinemenLof". 

Between levels of abstraction the relationship of "has-parts" and its inverse 

"is-part-of" indicate which process items in levels of greater detail correspond 

to which more abstract processes, e.g. the liquid phase reactor is a part of the 

reaction section. This relationship is dependent on the current viewpoint of the 

design. Since alternative structures are independent, the designer may only con-

sider one at a time. Therefore, when the design is viewed from node (A), the 

liquid phase reactor is considered as a part of the reaction section, and when 

viewed from node (B), it is the vapour phase reactor. 

4.3.2 Implementation of the Design Development Graph 

A design graph as described above has been implemented in the MODEL.LA  

project [19] using the Context tree structure available in KEE. The resulting 

graph differs from the implementation achieved in CLAP only in the support 

provided for the maintenance of the graph. A discussion of the differences is in 

Section 4.3.3. 

Contexts in CLAP are not related to each other at all, unlike KEE and 

Knowledge Craft. For this reason, objects have been defined that are, concep-

tually, intended to perform the same function. The simplified CLAP descrip-

tion of a generic design node object is shown in Figure 4.6. The objects, called 
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Figure 4.5: Graph Representing Hierarchical Development of Process Flowsheets 

design-nodes, have relations containing information describing the position of 

the node in the graph, i.e. what it is a refinement of and what its refinements 

are, similar to the construction of a Context tree in KEE or Knowledge Craft. In 

instances of design nodes, the ref ineinentof relation contains a single term, the 

name of the only node of which it is a refinement. The is.zefined_to relation 

may contain a list detailing the alternative refinements of the current node. - 

It should be stressed that the design nodes in this implementation are intended 

to be used for structural alternatives. Any numerical alternatives are achieved 

within the design node, i.e. one node is used to contain all models related to 

the same process structure. For instance, a model can be created with a fiowrate 

specified as 10 kg/s. Subsequently the specification may be altered to be 15 kg/s. 

This does not require a separate design node. The models are stored as relations, 

either to the node itself or to an item within the node, thus they can each be 

reviewed within the common context of the fiowsheet. The storing of models as 

relations is discussed in Section 5.1. 

The design node slots are used to describe the topology of the node. The 

objects slot contains a list of the process items contained within the node, and 

the streams slot identifies all streams. These slots effectively restrict the use of 

the constituent instances of process items and streams to the one node, i.e. the 



object - design-node :- 
self-_, 
variables  
slots - [objects - Objects, 

streams - Streams, 
equations Equations], 

relations - [refinement-of - Ref, 
is-refined-to - his]. 

Figure 4.6: Generic Design Node Object Used to Construct Design Graphs 

designer can only access these objects when viewing the design at this node. 

The concept of parts is maintained in the process unit objects as a relation 

between the parent unit and its list of parts. For example, an object representing 

separation has a relation containing the name of the object in the parent node of 

whichit is a part. In this example this could be a specific object representing a 

plant. It also contains a relation which contains a list of parts in the child node. 

The relation is updated as new objects are added to the child node. Here, this 

might include distillation columns and auxiliary equipment. 

This information is also reflected in the objects slots of the nodes. Each 

process in the list is paired with its abstraction in the node above the current one. 

For example, in Figure 4.5, the liquid phase reactor is paired with the reaction 

section. This implementation reduces the amount of computation required to 

establish complex relationships from more fundamental semantics. 

The equations slot has been included to facilitate the mathematical mod-

elling of design nodes, which corresponds to the modelling of flowsheets. It is a 

relatively simple task to construct, such models since the object also contains all 

topology information. 

The relationships linking the design nodes and their constituent parts define 

the structure of the design graph. This provides a high level of functionality which 

should encompass all operations that could be required in the development of a 

design based on the graph structure. 

A generic object, called "design", has been defined to aid in the management 

of the problem hierarchy and movement within it. The object is shown in Figure 

4.7. The object represents the designer's current viewpoint of the design. Its slots 

store the current design node (where) and the section, if any, within the flowsheet 



(section). By changing the value of the where slot, the refinement relationship 

edges in the design graph (Figure 4,5) are traversed. Similarly, altering the 

value of the section slot locates the design object within the graph of part 

relationships. 

object - design 
self -..., 
variables  
slots - [where - 

section - 
levels - LI, 

relations - [technology - Tech]. 

Figure 4.7: Generic Design Object 

In addition to the two objects, extended methods have been written to provide 

a menu of options to develop the topology of the graph and flowsheets within the 

nodes. These provide the ability to: 

• Refine nodes, i.e. create new nodes related to the current node by refine-

ment relations, 

• Move up and down the hierarchy of nodes via the "refinement" relations 

and using the "parts" relations to define the section of interest. The design 

object is used to store the current position. 

s Create objects in nodes for process items, and relate them to abstractions 

in higher nodes ("part-of" relations). 

• Specify connections by creating stream objects, and relating them to the 

equivalent stream in the higher node if necessary. Only some streams axe 

related to higher nodes. These are identified as streams which cross the 

boundaries of sections defined at the higher level of abstraction, e.g. at the 

higher level, objects may be specified for a reaction section and a separa-

tion section. In the node at the level below, streams connecting distillation 

columns are within the boundaries of the separation section and are, there-

fore, not related to any streams in higher nodes. The stream connecting 

the reactor to the first distillation column, however, crosses the boundaries 



of the reaction section and separation section and is, therefore, related to 

the stream connecting the two at the higher level. 

• Delete a process object, removing all objects related to it by "part-of". This 

includes all objects which are part of the parts. Any streams connected to 

the objects deleted must also be removed. Since this action is so drastic, a 

warning is given before commencing. However, if the node has been refined 

to a further structurally complete node, the delete operation will do nothing. 

The decisions incorporated in the graph resulting in the items exclusion 

from further consideration are important when reviewing the design. This 

information describes why this particular combination of items was rejected. 

• Display the processes and streams in a given node or section of a node. 

• Copy the generic description of an equivalent section to a separate node. In 

situations where several alternatives have been created at the same level, 

it might be desirable to copy the particular refinement of one section to 

another node. This is only a copy of the generic objects and their connec-

tions. Any numerical slot values are ignored since, even though the scheme 

is the same, the instance must be considered as entirely separate. For ex-

ample, two reaction schemes may be developed and two possible separation 

schemes, each of which is compatible with either of the reaction schemes. 

It is, therefore, desirable to be able to copy the developed structures into 

separate nodes for subsequent combination and evaluation (see Figure 4.8). 

TRY- 

copy 

COPY 	 copy 

Figure 4.8: Illustration of the Desirability of Copying Sections 

• Move between sections in a node by identifying the objects related by the 

higher level abstraction. 
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Sections are defined by the contents of all "ancestor" design nodes i.e. the par-

ent node and all its precursors. For example, Figure 4.9 shows a node containing 

a model of a distillation column described by a set of plate objects. 

PROCESS DISAGGREGATION 

Level 1: Description. ofaplant 
as a single object. 

Level 2: Plant disaggregated into 	-, 
reaction and separation sections.  

- 
- 

•1 	- 
Level 3: Separation refined to  

individual operations.  

/ 
/ 

/ 	 N 
Level 4. Plate distillation column 

specified with ancillary equipment. 
	 / 

, 

/ 

/ 
/ 

/ 
/ 1 , 

SECTION GROUPINGS 

Model includes all equipment. 
at the level of interest. 

Separation section includes all 
separation equipment defined at 
the level of interest. 

I, 
Level 5: Column disaggregated into 

plates. 

Column (including plates) 
reboiler and condenser grouped 
by distillation operation. 

I 
Plates grouped by distillation 
column 

1' 
Individual plates modelled 
separately. 

Figure 4.9: Illustration of the Different Sections Containing Distillation Trays 

The fiowsheet in that node can have sections defined at several levels. At 

the lowest level, the individual plates could be modelled separately. The set of 

plates may then be modelled together if, as shown in Figure 4.9, the plates are 

defined as "parts of" a distillation column object in the parent node. The parent 

node of that node may include condensers and reboilers as part of a distillation 

operation, thus indicating a broader section. At a higher node still, a separation 

section may have been defined which includes other separations, pumps, etc. The 

limit of section encapsulation would be at the root design node which contains 

an object representing the whole plant. The specification of this as the section 

boundary would include all objects in the flowsheet. In this example, the most 
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detailed node could have sections defined to contain: all plates in a distillation 

column, all distillation equipment, all separation equipment, and finally all plant 

equipment. 

To summarise, the representational issues identified by Lien et al and dis-

cussed in Section 4.3 have been accommodated in the implementation discussed 

above. The concept of a hierarchical development with increasing detail as the 

design proceeds is encapsulated within the definition of the design graph created 

in CLAP. The graph also supports the separate development of structural alterna-

tives which are, however, related to previous levels of abstraction. Methods have 

been defined in CLAP to allow ready movement through the graph, up and down 

and between alternative structures, by utilising the relationships defined between 

nodes and the processes within the nodes. The notion of sharing data between 

levels has been introduced with the idea of relating corresponding streams. A 

more complete discussion of sharing data between levels of abstraction is given 

in Section 4.3.3. 

4.3.3 Consistency Maintenance 

While it is desirable to have a tool for flexible specification of processes and 

their mathematical descriptions, some constraints must be applied to ensure the 

definition of the process remains consistent as it is developed. Since a graph of 

fiowsheet refinements and alternatives is being supported, information from the 

abstract levels of detail can be used to constrain the more detailed development 

of the process to conform to the original conception of its "purpose". Thus if any 

future refinement contradicts the initial aims, this can be viewed either as a failed 

design, or a valid alternative to the high level specification, i.e. an alternative set 

of aims has been identified. 

A mechanism for consistency maintenance has been constructed based on the 

concept of the purpose of processes. Any refinement of a process, i.e. to its parts, 

is constrained by the purpose of the abstract definition. Obviously, being more 

abstract, this constraint is not a great imposition on the flexible specification 

of the refinements, but a guide for development. For example, the high level 

purpose of a plant may be the formation of a particular product by the reaction of 

specified feed components. The purpose would be constrained further by placing 

a requirement on throughput and product quality. This constrains subsequent 
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refinement of the node to incorporating a reaction mechanism and meeting the 

product specification by including a separation operation. 

Consistency of the refinements is checked at two levels: functional and struc-

tural. Functional specifications are communicated by comparing the classes of 

objects defined at more abstract levels with their refinements at more detailed 

levels. Any differences identified in the purposes of the two levels are relayed 

to the designer who must decide if the contradiction discounts the newly stated 

design, or if it should be implemented as an alternative design node at a higher 

level. 

A process is evaluated by locating the separate sections, represented by in-

dividual objects, in the parent node, e.g. a reaction section and a separation 

section. The associated parts of each are located in the new, refined node using 

the "part-of" relation. For example, the separation section may have pumps, 

heat exchangers and a distillation column as its parts. The identification of the 

conceptual relationship between the distillation column and the separation is 

achieved by reference to the inheritance hierarchy, i.e. a distillation column is 

a specialisation of a separation. Any number of valid separation devices may 

be included in the refined section, but at least one must be present to ensure a 

separation is being performed. 

Functional properties are checked by a CLAP method when the designer spec-

ifies the addition of a child node from the current one. 

The second level of checking is made on the structural specifications of the 

parent node. This ensures the specifications placed on the more abstract defini-

tions of the design are still being met by the more detailed ones. This is achieved 

with the use of demons on the slot values. If a contradiction is found, the user is 

informed, again with the option of changing the current model or creating an al-

ternative at a higher level. Either way, the designer is made aware of a deviation 

from the project aims. 

The structural check is based on the streams which have been defined at 

the two levels. When streams are created at a level of increased detail, the 

context of the new stream is compared with the previous level. If the new stream 

corresponds to a connection at the earlier level, then the user is asked to confirm 

it. As an example, the initial description of a plant may be a single unit with two 

inlets and three outlets (see Figure 4.10). The next level might consist of reaction 
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Figure 4.10: Example of Possible Alternative Refinements of a Plant 

and separation sections. The feeds to the plant may be in several different places, 

e.g. both to the reactor, both to the separation, or one to each. In whatever way 

this is achieved, there must be two feeds. The two correspond to the two feeds 

specified for the plant, which enables the specifications placed at that level to be 

communicated to the new level. The same procedure is performed for the outlets. 

The reason for requiring new alternatives to be created at a high level of 

abstraction rather than communicating changes back up the tree, is to maintain 

consistency for all alternatives developed. All of the possible structures are based 

on the original specifications, both functionally and structurally. If one refine-

ment requires the alteration of these specifications, then the alternatives to that 

structure, e.g. the different feed situations illustrated in Figure 4.10, may be 

in contradiction to them. These structures may be entirely valid under the old 

constraints which should, therefore, be rigidly maintained. Thus the new struc-

ture requiring the alteration of the original (or more accurately, any previous) 

constraints should be accommodated in a new branch of the design graph. 

MODEL.LA  [29] approaches consistency in a slightly different way. As dis-

cussed in Section 5.4.1, the generation of models is based most appropriately 

on the assumptions made in the specification of the problem. For mathematical 

descriptions, MODEL.LA requires the user to state the physical and chemical 

phenomena occurring in a particular unit, which implicitly (and in some cases 

explicitly) identifies the associated assumptions. 

A similar technique is used for maintaining consistency in the development of 

a model hierarchy, which is stored in a KEE Context tree. Three areas are con- 

92 



sidered for compatibility between levels: topology, structure and the constituent 

physical and chemical phenomena. The assumptions upon which compatibility 

is determined are implicit, in this case, contained in the description of the design 

at a particular level. 

"Structural compatibility" is established by using relationships of the 

"has-parts" type. As in the CLAP implementation, the user identifies which 

processes in a new Context constitute a disaggregation of which processes in 

the parent Context. This provides a frame of reference for further compatibility 

checks and also for multi-level modelling, i.e. using detailed models as parts of 

more abstract flowsheets. 

Checking "phenomena compatibility" is equivalent to checking a process's 

purpose, as described above. The inference determining the correspondence be-

tween levels is performed automatically, as in CLAP. 

"Topological compatibility" is equivalent to the assessment of structure de-

scribed in the CLAP implementation above. The streams are matched between 

levels; every stream in an abstract level having an equivalent in every one of its 

child Contexts. As in CLAP, when one to one associations are identified, they 

are related automatically. In situations where items have more than one inlet or 

outlet and the correspondence with the child process is ambiguous, the user is 

required to distinguish the links. The difference between MODEL.LA  and CLAP 

is demonstrated when child .Contexts have more streams than the parent in asso-

ciation with a particular unit. CLAP resolves thisbrequiring the addition of a 

new node at a higher point in the design graph. MODEL.LA  accommodates the 

inconsistency by providing a "one-to-a-set" mapping between the single stream 

in the parent Context and the set of streams in the child Context (see Figure 

4.11). In the example, the stream A has been mapped to the set of streams, C 

and D. 

The intentions of consistency checking in MODEL.LA  are the same as in 

CLAP. Both attempt to ensure consistency of design development and to provide 

a structure for inheriting information between levels. Propagating information 

via one-to-one mappings is quite straightforward. For instance, streams can be 

copied to provide default data in a new Context. Any process unit involved in 

a one-to-one mapping, however, must be a more specialised form, or a copy, of 

the object in the parent Context. The values contained in the parent object can 
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LEVEL 1 

Refinement 

LEVEL 2 

Figure 4.11: Illustration of a One to a Set Mapping for Streams 

then be supplied as defaults to the child object in a manner similar to streams. 

Since MODEL.LA  supports one-to-a-set links, these can also be used by child 

Contexts to inherit information from parents. To do this, however, the user 

is required to define mapping functions, relating all relevant variables in the 

individual parent object with the appropriate variables in the set of child objects 

in each specific Context. In the above example, a mapping function could be used 

to relate the flowrate of stream A to the sum of the flowrates of C and D. This is 

implemented by using constructs in the modelling language, and may constitute 

a more natural approach to design development than is possible in the CLAP 

implementation. 

It is also possible for information to be inherited from child Contexts to parent 

Contexts. This has not been implemented in CLAP because values inherited from 

a model of a specific child Context are not necessarily consistent with values 

calculated in other child Contexts. The view of the design at the parent node 

would, therefore, be incompatible with all but one of the child Contexts. 

For similar reasons, a distinction must be made between specified and cal-

culated values. Any model created at a parent node is based on assumptions 

made at its associated level of detail. Any child nodes are refinements, both in 

a functional sense, and in terms of the assumptions. Therefore, any calculated 

values are dependent on the model generated and hence the assumptions made. 

Since there is a refinement between nodes, calculated values will be incompatible 

between levels and, therefore, should not be inherited. The exception to this rule 

is for variable initialisation for the equation solver (see Section 3.4.4). This is 

permissible since the initial values are almost certain to change in the course of 
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iteration. 

To ensure the conceptual division between specified and calculated values is 

maintained, the two groups are stored separately. In order to facilitate access to 

specifications, these are stored directly as slot values in the appropriate objects. 

Calculated values are stored in "operator" relations after solution. This also 

allows specifications to be changed and new solutions generated, each solution 

being stored separately. 

In conclusion, consistency is maintained by ensuring the structure and func-

tion of new design nodes remains compatible with specificitions made at the 

parent node. Any inconsistencies imply the creation of a new alternative node at 

a more abstract level. The consistency of numerical values contained in gener-

ated models is ensured by storing specifications and calculated values separately. 

This allows inheritance of specifications, but not calculated values, except in the 

instance of variable initialisation for equation based solution. 

4.3.4 Complexity Maintenance 

As a process design is developed, the design graph will support several levels of 

increasing complexity and, potentially, a large number of alternatives. If every 

possible variation is represented by a separate node in the graph, it will be very 

unwieldy to use, some nodes being distinguished in some instances only by a 

small detail, e.g. the feed to a distillation column being to different plates. Aside 

from ease of use, the amount of computer memory required to store such a graph 

will be very large. Although computer memory is relatively inexpensive (.C60 

per Mbyte), it is desirable to provide tools in order to reduce the size of the 

graph. The computing power required to run such a system will not only be 

more reasonable, but the resulting design graph will be more understandable for 

the user. 

Douglas [6] proposes a hierarchy of decision levels for proceeding with a design. 

The decisions have been outlined in Section 1.2.2. At each level in the hierar-

chy Douglas identifies possible structural synthesis steps. Figure 4.12 shows the 

structural possibilities developed at the input-output structure level based on 

the decisions described by Douglas. If each of the alternatives was completely 

evaluated the resulting design graph would be impractically large. The simple 

example in the figure results in 4! alternatives at the first synthesis step. 



Decisions 
Purify Feed Stream 
Remove reversible reaction byproducts 
Use excess reactant 
Gas recycle and purge 

Figure 4.12: Possible Structural Alternatives Based on High Level Decisions 

To reduce the number of alternatives that should be evaluated, Douglas de-

scribes heuristics and shortcut calculations indicating the most promising line of 

development. The intention is to guide the designer through the explosion of al-

ternatives with the minimum effort in order to establish the economic viability of 

a process. The premise is that if the process developed using the heuristics is not 

going to be profitable, no more time need be wasted evaluating the alternatives. 

Some decisions, however, may not have suitable heuristics to allow a decision 

to be made. In these cases, nodes representing the alternatives would be added 

to the design graph. Subsequent calculations and evaluations may provide the 

means to distinguish between the alternatives. 

Douglas's method provides a high level means of decreasing the number of 

nodes created in the design graph and consequently reducing the amount of data. 

Section 6.1 describes the implementation of the decision level concept using CLAP 

extended methods. This technique focuses the approach to design in what can 

be considered a depth first evaluation of the process. 

A lower level approach is required for evaluating alternatives which should 

reflect the ability of designers to determine the effect of a structural enhancement 

in the context of a more abstract process. For example, if a distillation column is 

being designed, the specification of feed location can be categorised as a source 

of structural alternatives. The natural approach is to create different models of 

the distillation column incorporating the structural differences. The models are 

initially evaluated separately, whereupon it is possible to eliminate some choices 

without going any further. The nodes containing the distillation column need 

contain no more than is necessary, e.g. only the column, or the column plus its 



auxiliary equipment; condensers and reboilers. It may then be desirable to model 

the alternatives as part of the flowsheet. This is achieved by replacing the high 

level distillation operation with the low level model. See Figure 4.13. 

The method involves creating a design node for each structural alternative, 

but only to contain the items relevant to the evaluation. Eliminating some nodes 

by evaluating them separately, reduces the number of possible combinations. By 

allowing the modelling of a detailed node within the fiowsheeting context of a 

more abstract node, combinations can be evaluated and perhaps rejected without 

having to store them all. The mathematical models should be retained, however, 

as a record of the evaluation of the relationship between the detailed and abstract 

parts. 

Only combinations which cannot be distinguished by the desired criteria, or 

the designer decides have promise, need to be maintained as complete design 

nodes. For example, Figure 4.13 shows a high level node with two distillation 

columns. The structural alternatives to be evaluated are: 

• whether the first column is a packed or plate column, 

• there is also a choice of sidestream location in the second column with a 

corresponding choice of side stream stripper or rectifier. 

The more detailed alternatives are represented in the sub-nodes. The diagram 

shows the relationships between the detailed and abstract levels, the two columns 

being maintained separately. The models which can be constructed, shown as 

boxes in the figure, display the full range of combinations and their association 

with the abstract node. 

On the basis that the column with the sidestream stripper has been rejected 

after individual calculation, only two models of the combinations have been cre-

ated. If one combination can be rejected, only one node need be maintained as 

a full fiowsheet as shown in Figure 4.14. The shaded parts denote nodes which 

have been eliminated. If, however, neither is rejected, two nodes are required to 

be expanded fully. 

In conclusion, two approaches have been used to reduce the amount of data 

requiring to be stored. An implementation of Douglas's hierarchy of decision 

levels focuses the evaluation of process alternatives by using heuristics with the 
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Figure 4.13: Illustration of the Interaction of Models in Abstract and Detailed 
Flowsheets 

aim of providing a good base case design. Many alternatives can be eliminated 

without requiring mathematical modelling. 

The second proposed approach limits the number of complete designs required 

to be held in computer memory by allowing modelling of alternative structures, 

initially separate from other items, and subsequently in the context of a higher 

level flowsheet, i.e. at the sub-node level in the Figure 4.13. 

The relationship between the items in the abstract node and the detailed nodes 

is the has-parts relation discussed above. The implementation of the modelling 

aspects of the approach is discussed in Section 5.5.3. 

4.4 Summary of Object Representation for 
Flowsheeting 

A range of unit operations has been represented using objects related by an 

inheritance hierarchy. Since mathematical models are constructed based on the 

specifications and context of a flowsheet unit, attributes of objects are defined 

with sufficient flexibility to represent a range of applications. Objects are also 
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Figure 4.14: Possible Elimination of Process Alternatives by Modelling 

defined for streams and chemical species. 

Flowsheets representing refinements and alternatives generated during design 

are described by nodes in a graph. Each node is a CLAP object containing 

information describing the associated flowsheet and its position in the graph. 

Hierarchical development of a process is denoted by edges, i.e. an edge linking 

two fiowsheets indicates that one fiowsheet is a refinement of the other. This 

relationship is stored in the node objects. 

Units in one fiowsheet may represent parts of a more abstract unit in a less 

refined fiowsheet. For example, a distillation column may be a part of a separation 

section. This relationship is also stored in the design node objects. 

These two relationships have been used to provide a range of facilities for 

supporting the graph, for example, adding new nodes, adding fiowsheet items, 

traversing the graph, etc. They also provide the basis for ensuring consistency 

and complexity in the graph. Consistency is maintained by checking the structure 

and function of objects related by "part of", thus ensuring new design nodes are 

compatible with specifications made at their parent nodes. Complexity is reduced 

by using the Douglas hierarchy of decision levels to eliminate some alternatives 



without creating a flowsheet. The "part of" and "refinement" relations are also 

used to allow modelling of alternative structures without having to store their 

full fiowsheets. 
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Chapter 5 

A Representation for Modelling 
Flowsheets 

Development of a representation for mathematical models of fiowsheets must 

consider the requirements of model developers and model users. A symbolic, 

...equation based description provides a well known syntax enabling developers 

and users to understand models developed on this basis. 

Automatic generation of models of unit operations is possible based on the 

information specified in the unit objects by the designer. This provides the 

designer with a model which is complete and consistent without having to be an 

expert on modelling. Using "model based" techniques, each term in each equation 

is accessible either by reasoning modules or by the designer which provides a 

means of modifying models for specific applications. 

5.1 . Equations as Constraint Relations 

It is possible to associate high level models with generic unit operation objects, 

but the result is equivalent to a unit model library which is supposed to be 

replaced, as discussed in Section 3.2. The structure of the model is dependent not 

only on the function of the object, but the context it is in and the specifications 

made on the unit operation. For this reason, a full set of equations representing 

the object should not be defined within its generic description. The internal 

structure of the high level model should be determined only when a request is 

made to model the object. A choice can then be made between the modelling 

options available, or some combination of models may be selected. 

Small sets of equations are defined separately and combined to represent a 
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particular unit operation. This also avoids needless repetition of commonly used 

mathematical descriptions, such as heat balance equations. 

It is possible to describe equations as objects with slots for the form of the 

equation, the variables involved and, potentially, linearised and integrated forms. 

However, equations are more appropriately defined as relationships between the 

properties of objects. 

The definition of individual process items involves specification of their func-

tion and assignment of values to their structural attributes. .Function determines 

the type of operations which are likely to be performed by the process, and the 

values of structural attributes indicate the potential range of parameters which 

will be incorporated. For example, the specification of a flash unit with one 

inlet, two outlets and three components, indicates the use of vapour-liquid equi-

librium relationships and mass balance equations applied to a particular number 

- 	of streams and components. 

Equations must, therefore, be defined in a general form in order to produce 

a set of equations for a process where the number and composition of inlet and 

outlet streams is unknown. This applies to any situation where a variable number 

of equations may be generated or there is a summation of a variable number of 

terms. 

A high level description of the equations is possible using predicate calculus. 

For example, the mass balance for a mixer can be written as: 

in E Inlets, out E Outlets, Beqn € Eqns, 

eqn A L in.mass_flowrate = L out.raass_flowrate 	(5.1) 
Inlets 	 Outlets 

where : A E B 	means "A is a member of set B", 

B 	 means "there exists...", 

AA B 	means "A is denoted by B", 

EA 	means "summation over the set A". 

This description explicitly specifies the existence of an equation. In the context 

of algebraic model generation this is implicitly understood, so the definition can 

be reduced to: 

in E Inlets, out € Outlets, 
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E in.mass_flowrate = E out .rnass_f lowrate 	(5.2) 
Inlets 	 . 	 Outlets 

Initially, a modelling system was developed incorporating this general descrip-

tion of equations using macros to describe the predicate calculus operations of V 

("for all"), E B and E. The interpretation of general models applied to specific 

objects provided a set of equations applicable to the description of the object. 

This work was later combined with the structured user defined relation hierarchy 

implemented in CLAP (Section 2.4.1). 

An equation of the form shown above is a constraint relating the properties 

of objects, here, the component mass fiowrates in the inlets and outlets of a 

unit. This form can be applied generally to all units, providing mass balances for 

specific applications. Equations are represented in this form by CLAP "constraint 

relations". Written as a constraint relation, the description is represented as in 

Figure 5.1. 

relation(overall_mass_balance, Unit - Range) 
domain - -, 
variables- [ Unit, Form, Bindings], 
bindings - [ I = inlets Sot Unit, 

o = outlets Sot Unit], 
active-code - [ ], 
return-form - ( sum_of((mass_flowrate Sot I), $over I) 

- sum_of((mass_flowrate Sot 0), $over 0) 
= 0), 

return-type = equation, 
slots - [is_a - constraint] 

Figure 5.1: CLAP representation of an overall mass balance relation 

The slot return-type in Figure 5.1 indicates that the relation is represent-

ing an equation. The slot can also have values of expression and list Sot 

equations. The difference between an equation and an expression is that an 

equation contains an equality and an expression does not. The practical impli-

cations of this are that the equation form is used to represent the highest level 

modelling constraints, e.g. conservation of mass and conservation of energy, while 

the expression form is used to represent the parts of these relations correspond-

ing to properties of an object, e.g. vapour pressure or heat content can either 

be ascribed values as properties or be represented by mathematical expressions 
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for their evaluation from more fundamental properties. The relationship between 

these two forms is further discussed in Section 5.2. 

The remaining form, list Sof equations is self-explanatory. It allows the 

description of more than one equation in a single relation. 

The return..±orm is the direct CLAP equivalent of generic equation (5.2). 

The form can include summation terms, as in Figure 5.1, and specification of a 

set of equations (normally indicated by V), which both include the concept of set 

membership. 

The bindings slot in Figure 5.1 allows reference to a list of properties or a list 

of other units, in this case a list of inlets and a list of outlets. When the relation 

is interpreted, the variables representing these properties (here, I and 0 ) will be 

instantiated and, therefore, unified throughout the relation. The corresponding 

variables in the return-form will then contain the set of properties over which 

mathematical operations are to act, e.g. summation and "for all". 

It should also be noted that the bindings slot provides a mechanism for 

accessing the slots of objects directly associated with the unit of interest. In this 

case, the description uses the fiowrates of streams which are connected to the 

unit of interest. The simple example of a relation representing an overall mass 

balance requires only a simple mode of reference, i.e. the only accessible slots 

belong to the unit itself or to objects associated to the unit directly by static 

relations. 

A more complex mode of reference is required if it is necessary to access slots 

which are related to one another within an object or are in different objects. For 

example, if a component balance is required, it is necessary to be able to write: 

Ycomp € Components, in € Inlets, out € Outlets, 

E in.eomp.molarsate - out.comp.molar..rate = 0 (5.3) 
Inlets 	 Outlets 

or: 

Vcomp € Components, in € Inlets, out € Outlets, 

E (in.raolar_flowrate x in.eornp.mole..fraction) 
Inlets 

- L (out.molar_flowrate x out. comp. mole-f raction) = 0 	(5.4) 
Outlets 
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In both cases it is necessary to refer to a property in a stream corresponding 

to a component. The properties, component molar flowrate and component mole 

fraction, are not considered generic attributes of a component (see Section 4.2), 

but as properties of the stream to which they belong, i.e. composition is a stream 

property despite the temptation to associate properties such as fiowrate, mole 

fraction and temperature with component objects. 

The access of such properties, therefore, requires a different mechanism to 

the simple reference shown in Figure 5.1. Stream objects have slots defined 

for components, mole fraction, component molar fiowrates, etc. which is the 

logical place for such slots. The slots contain lists of corresponding values, e.g. if 

the components slot is set to contain [benzene, toluene] and mole-fraction 

contains [0 .4,0 .6], the implication is that the mole fraction of benzene is 0.4 

and toluene 0.6. 

The properties corresponding in this way are accessed in a constraint relation 

by writing: 

mole-fraction $correspondingso components-C $of Stream 

where C is instantiated to a component in the list of components in object 

Stream. The bindings and return form of a component balance are as follows: 

bindings - [C = components $of Unit, 

inlets $of Unit, 

0 = outlets $of Unit], 

return-form - ( 

set-of( sum-of( component-molar-rate 

$corresponding_to components-C $of I, $over I) 

- sum-of( component_molar_rate 

$corresponding_to components-C Sof 0, $over 0) 

= 0, 

$over C)). 

which is the direct translation of Equation (5.3). 

A further mode of reference has been implemented for conceptually similar 

representational situations, but concerning relations rather than slots. For ex-

ample, in the study of a stream it might be desirable to evaluate the vapour 

pressures of the components of the stream. Using the Antoine equation: 
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lnP*=A_ B 	 (5.5) 
T+C 

where: P* = vapour pressure 

A, B, C = Antoine coefficients 

T = temperature 

A, B and C are all properties of a component, but vapour pressure and 

temperature are properties of the stream, as previously discussed. One solution to 

the representational problem is to make A, B and C stream properties in separate 

lists as with mole fraction, and then access them using Scorresponding_to. 

However, it is equally important to maintain A, B and C as component properties 

as it is to maintain vapour pressure and temperature as stream properties. 

A better solution is the introduction of a reference unit or object. This object 

contains the information not immediately obtainable with direct reference to the 

subject of the relation. In the vapour pressure example, vapour pressure would 

be defined as a property of a component (which is not particularly desirable, as 

discussed previously) at certain reference conditions. The reference unit concept 

provides a degree of flexibility which justifies its use, in that it can be either an 

existing object (in this case the stream of interest) or a separate entity containing 

only the test conditions. This can be used for evaluating a property separately 

from the flowsheet being studied, e.g. if it was required to know the vapour 

pressure of a component at a temperature different from the stream it was in. This 

second application is useful for independent calculations to provide information 

for decision making e.g. the calculation of relative volatilities to indicate the ease 

of separation of components by distillation. An example of a vapour pressure 

relation written using a reference unit is shown in Figure 5.2. 

A more acceptable solution to the problem, and the one implemented, has 

been to adapt the relation mechanism to produce a list in the manner of the 

corresponding slots situation. The mode of reference is subtly altered. Using a 

reference unit, the vapour pressure would be described by: 

vapour-pressure $of Component, 

In the corresponding slot definition, the expression is written: 
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relation(vapour_pressure, Component - Range) :-
domain - component, 
variables - C Component, Form, Bindings], 
bindings - C ], 
active-code - [ref erence_unit(Unit)], 
return-form - ( 

exp( antoine_a $of Component 
(antoine_b $of Component 

/(temperature $of Unit + antoine_c $of Component)) 
)) I 

return-type = expression, 
slots 	[is_a constraint]. 

Figure 5.2: A relation describing vapour pressure using a reference unit 

vapour-pressure $corresponding_to component-Component $of Strew 

The second case has defined vapour pressure as a property of a stream as 

opposed to a component, and, therefore, the relation has direct access to the 

stream slots including temperature. This description has been used to represent 

vapour pressures, K-values and relative volatilities. The bindings and return form 

of a vapour pressure relation with a stream as the subject, are: 

bindings - [C = components $of Stream], 

return-form - (set-of( 

exp(antoine_a $of C antoine_b $of C 

/(temperature Sof Stream + antoine_c $of C)), 

$over C)), 

5.2 Expansion of Generic Equation Descrip-
tions 

The expansion of generic constraint relations to specific relations modelling par-

ticular objects is achieved using a specialise relation, which associates a relation 

with an object. 

The default expansion provided in CLAP expands the description of the math-

ematical relationship into equations (or expressions, see 5.1) containing Prolog 

variables. It is important to note that at this stage no evaluation has taken place. 
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This provides the opportunity to perform some reasoning about the form of the 

equations generated for a particular unit, e.g. to check the degrees of freedom 

of the model and its specifications, or the creation of the linearised form of the 

equations. Individual specialise relations can be defined for individual constraint 

relations, but it has not been found necessary to do so. 

The association of a relation to an object is achieved with a normal 

$set relation call. The name of the specialised form of the relation adds the 

prefix has_ to the constraint relation name. For instance, to associate an overall 

mass balance, as in Figure 5.1, with a mixer, mlOO, the call is: 

$set relation-mlOO-has -overall -mass ..balance-Name. 

The name of the stored relation is returned in the argument Name for subsequent 

recovery and analysis. 

In this way a single unit can be described by as many equations as desired. In a 

mathematical modelling sense, this gives rise to the possibility of the combination 

of what would normally be considered redundant equations describing a single 

unit. However, any relation applied to a unit is a separate entity unless explicitly 

combined in another constraint relation, e.g. the combination of heat and mass 

balances in Figure 5.3. 

relation(heat_and_mass_balance, Unit - Range) 
domain - -, 
variables- [Unit, Form, Bindings], 
bindings 
active-code 
return-form - [overall-mass-balance $of Unit, 

overall-heat-balance $of Unit] 
return_type = (list $of equations), 
slots - [is_a - constraint]. 

Figure 5.3: Combination of heat and mass balance relations 

Being able to associate a range of equations with a single unit means many 

different modelling options are possible. For example, for modelling a distillation 

column, two different mass balances can be used. It is possible to provide a split 

fraction model for simple fiowsheeting calculations, or detailed plate models for 

rigorous simulation of the performance of the column. In both cases it is possible 
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to perform mass balances only or to add a heat balance as required. Further 

equations can be supplied for the determination of the number of plates and 

minimum reflux ratio as design calculations. 

The two different mass balances which can be applied to the column are 

mutually exclusive, i.e. they cannot be combined into a single model without 

including redundant equations, since the modelling of the individual plates will 

inherently contain an overall mass balance which is stated explicitly in the split 

fraction model. The inclusion of a heat balance is a different matter. A heat 

balance can be defined for the whole column, and the same generic heat balance 

can be associated with each of the plates, i.e. one heat balance constraint is 

written which can be applied to a whole column as well as each of its plates. It 

is possible, therefore, to have three modelling combinations: 

• split fraction balance and overall heat balance, 

- 	• plate mass balances and overall heat balance, 

• plate mass balances and plate heat balances. 

In the simplest case, one generic mass balance and one generic heat balance can 

be used to create the specific forms for the column and each of its plates. 

The flexibility this provides is an important asset for a design tool. During 

design, calculations take many different forms, even in the design of a single 

item, such as the distillation column discussed here. The proposed modelling 

representation provides the ability to characterise the design data for a process 

item in a single structure and then model that data as required. 

The specialise relation expands the constraint to a specific form and bindings 

corresponding to the object being modelled (see Section 2.4.1), the form being the 

specific equation, or equations, and the bindings being a list of terms identifying 

the variables in the equation with the location of the stored values. For example, 

if the overall mass balance relation in Figure 5.1 is associated with a mixer with 

two inlets, the form and bindings are as follows: 

Form: 	In1  + In2  = Out 

Bindings: [In1  = mass..flowrate $of stream1 — > Vail, 

In2  = mass..flowrate Sof stream2 — > Va 12, 

Out = mass..fiowrate $of stream 3— > Vai3]. 
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The values of the variables in the bindings are obtained by the "operator" 

relation. The slots and relations indicated by the middle term of each binding 

are checked, the values being unified with the Val part of the expression. 

In the case of slots, this will either be a value, if the slot contains one, or 

the variable will remain uninstantiated, presumably to have its value calculated. 

It is also possible to access other user defined relations which have been defined 

in the return-type slot as "expressions". The return form of the user defined 

relation will be unified with the Val part of the binding and any bindings gen-

erated from its expansion will be appended to the overall list of bindings. It is, 

therefore, possible to construct complex expressions from high level descriptions. 

For example, an overall heat balance could be described by: 

11 E in.heat.content = 	out .heat .content 	(5.6) 
inElnlets 	 outeOutlets 

In CLAP, this is written: 

relation(overall_heat_balance, Unit - Val) 

bindings - [ In = inlets Sot Unit, 

Out = outlets Sot Unit], 

return-form - (sum-of( heat-content Sot In, $over In) 

sum-of( heat-content $of Out, $over Out) 

= 0), 

When the relation is expanded to its specific form, the bindings will contain 

references to the heat-content of all the unit's streams. When the bindings are 

checked, the heat-content may have a specified value, in which case the variable 

will be replaced by a numerical value. Otherwise, the constraint relation for 

heat-content is expanded and the expansion placed in the specialised forth of 

the heat balance equation. The expression is defined by: 

strearn.flowrate x 	E 	(cornp.enthalpy x stream. comp. mole_fractiort) 
compE Components 

(5.7) 

110 



Similarly, the component enthalpies may have values, in which case no further 

expansion is necessary, or enthalpy could be expanded to the more fundamental 

expression for a component: 

PT

ref 
AII 6j + J CpdT 	 (5.8) 

T 

Again, it is possible for a value of Cp to be known, otherwise it is expanded 

to: 

A+BT+CT 2 +DT3 	 (5.9) 

As with numerical values, the expressions ultimately replace the variables in 

the higher level equations and expressions by Prolog unification. Thus, part of 

the overall heat balance relation above may eventually be described as: 

.strearn.flowrate x ((comp.iHrei + cornp.Cp(stream.T - comp.Trej) 

x .stream.cornpsnole_fraction) +...) 

It is possible for such expansion to take the model to a level of complexity 

that is inappropriate for a particular evaluation. 

There are two mechanisms for controlling the depth of expansion: 

• providing a value for a relation, e.g. here, specification of a component 

enthalpy would remove the requirement for its expansion. 

• explicitly requesting the truncation of an expansion. 

Truncating the expansion of a relation by specifying a value raises an inter-

esting point. If, for example, the component enthalpy had been assigned a value 

and its expansion, therefore, was not performed, there would be no expression 

containing temperature as a variable. If one of the purposes of the calculation 

was to determine a temperature, it would now be impossible. For this reason, a 

mechanism has been provided to allow completion of the expansion even though 

a value has been specified for the relation. For example, a heat balance may be 

defined for a unit with one component, where the inlet enthalpy is 500 and the 

outlet enthalpy is 600. The resulting set of equations may then look like: 

inlet.flowrate x (500 x 1) - outlet.flowrate x (600 x 1) = 0 

1111 



600 = zS.H7i + Cp(Tj  - T76f ) 

With known values of tsH1 , Cp and Trej , the temperature of the outlet 

stream can be determined. 

An example application of this type of expansion and truncation of the ex-

pansion, is in the representation of a flash. The vapour product may contain 

identified light components, but the composition of the liquid may not be fully 

known. In this case, the vapour heat capacities would be expanded to the com-

ponent level. Since the components of the liquid are not known, this expansion 

would not be desirable, but a value for the heat capacity of the whole liquid 

stream may be available. The value would be provided at the level of Equation 

5.8, thus truncating the expansion. 

Explicitly requesting the truncation of an expansion allows the definition of 

models of a known structure. This can be achieved either as part of a high level 

• modelling algorithm, where the form of the equations is defined for a particular 

application, or by reasoning about the high level, relation in the context of the 

design, i.e. the level of synthesis and the relationships with other plant items 

may define a level of modelling complexity. 

The truncation is specified with the use of a "meta-slot". The specialise form 

can then be written: 

$set relataQn-mlOO-has..overal -heat _balanceQQlevel2. 

This example will, therefore, only expand as far as component enthalpies and not 

as far as the polynomial Cp expression. 

The expansion of user defined relations may result in the formation of pro-

gramming loops. For example, the definition of mole fraction in a stream relates 

the quantities of the individual components present and the total quantity. A 

subsequent expansion of component quantities may involve mole fractions and 

the total flowrate, in which case a loop has been created. CLAP overcomes this 

by preventing a single expression being expanded more than once in a series of 

expansions. 

5.3 Alternative Modelling Representations 

The description of equations as relations is a powerful tool for the development 

of mathematical models. Once equations have been defined it is a simple task 
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to combine them to create larger models ranging from individual component 

properties to models of whole plants. 

The construction of models in this manner is similar to the approach adopted 

by ASCEND[32], where low level routines are written to model plant operations 

and subsequently combined to form larger models. Similar flexibility is obtained 

by being able to construct models from any parts appropriate or desired. Strict 

type matching prevents obvious errors, e.g. a liquid stream cannot be modelled 

as a vapour stream. 

The representation of equations in the two approaches differs, with ASCEND 

using a procedural language in which equations fill the role of subroutines, com-

pared with the symbolic predicate calculus description used here. It is possible 

to do more reasoning about equations written in a symbolic mathematical form. 

For example, if a sequential modular package is to be used to solve the model, 

it is possible to generate the sequential modular code by reasoning about the 

equations describing the problem (see Section 3.3). If an equation based solver is 

to be used, the same equations can be used to generate the linearised equations 

required by the solver. Since ASCEND has been written for an equation based 

solver only, this has not been considered as part of its development. 

The differences between the representations stem from subtly different aims. 

ASCEND was developed as a modelling environment to allow a designer to de-

velop models rapidly, whereas this project has been to create a flexible flow-

sheeting tool. The two aims appear to be very similar, since fiowsheeting is the 

modelling of whole plants. The similarity is further compounded with the inclu-

sion here of the aim of allowing modelling of individual units. Both modelling 

representations could be used to write unit models which form part of a flowsheet-

ing tool. The subtle difference between the two approaches lies in the interaction 

with the designer. A designer using a flowsheeting program is not necessarily 

interested in creating the model of the plant item or, in some instances, even in 

all the equations constituting the model. In ASCEND, the intention is for the 

user to construct the models of process items and use them to construct higher 

level models of plants. 

This is a significant disadvantage in its wider applicability, since it requires 

the user to be familiar with the concepts of modelling in such an environment, i.e. 

abstracting the unit operation into a complete modelling description. Engineers 
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are familiar with many aspects of modelling, but few engineers are required to 

construct complete (and hence necessarily consistent) models of items of process 

equipment. Facets of the operation of a unit may be modelled separately. For 

instance, modelling a distillation column, an engineer may do a split fraction 

balance followed by a Fenske-Underwood-Gilliland calculation for the number of 

plates. This may be followed by plate to plate calculations. It is not immediately 

obvious how these different models interact and it is, therefore, unfortunately 

simple to construct an over or under-constrained model inadvertently. In this 

example, the combination of a plate to plate model and an overall component 

balance will almost certainly contain some redundant equations. For this reason, 

ASCEND is likely to be of more use to experienced modellers than engineers and 

designers. 

The aspect of flowsheeting making it more widely accepted is the property of 

such programs of allowing the designer to specify the problem and leaving the 

fiowsheeting program to provide the model. 

MODEL.LA [28,29] has taken the position of the designer rather than the 

modeller. Allowing the designer to specify the phenomena in a chemical system 

provides a more natural means for a designer to define a model. However, the 

phenomena-based reasoning is, necessarily, domain specific. The resulting system 

cannot fully define the domain of chemical engineering modelling, so some inter-

action with the designer is required in order to provide mathematical expressions 

for circumstances not covered by the reasoning. For example, the distillation 

column definition in Figure 1.6 requires the additional expressions relating feed 

compositions, recoveries and product compositions. This option is assumed to be 

available to the designer, but no information is provided about the specification 

of such relationships. 

Phenomena-based reasoning provides a different problem for the designer. If 

a model is being written in the script format of MODEL.LA described in [28], 

no guidance is given as to what phenomena are involved. For example, if it is 

not stated that the model is to be lumped, it is not clear what conclusion would 

be reached about the type of mass and energy balances to be included. For this 

reason, a comprehensive model editor has been created which identifies the par- 

ticular areas that should be considered with a range of alternative specifications. 

It is, therefore, important for the designer to be able to create and modify 
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models in two ways. Automatic generation of a model based on system phe-

nomena is valuable to provide the structure of the model without requiring the 

designer to have expert knowledge of modelling principles. Access to the math-

ematical description is also vital, enabling visual evaluation of the model and 

the possibility of modifying the symbolic expressions for cases outwith the scope 

of automatic generation. ASCEND provides the latter functionality, but only 

very limited "reasoning" by which detailed models of high level operations can 

be constructed from low level models. MODEL.LA  places the emphasis on the 

first aspect, but provides limited access to the symbolic expressions. ModAss 

[33] attempts to cover both facets by providing some automatic generation and 

access to the fundamental modelling aspects. The automatic generation appears 

to be restricted, however, to mass and energy balances. 

A concept implemented in both MODEL.LA  and ModAss is a model of the 

state of the design. MODEL.LA  supports the development of a design graph, 

as discussed in Section 4.3, which is similar to the CLAP implementation with 

only slight differences. ModAss, however, supports hierarchical decomposition 

but does not accommodate structural alternatives. The discussion in Section 4.3 

indicates the importance of alternatives in process development and documenta-

tion. The discussion also indicates a restructuring of the data is required for the 

incorporation of alternatives. ASCEND does not contain the concept of a model 

of the design except, to a limited extent, in the decomposition of models, but 

it is discussed as being part of a design environment [1] which would, presum-

ably, incorporate such a model. In that context it is possible that some degree of 

reasoning about models be implemented. 

The modelling representations discussed here cope differently with the notions 

of generic models and model instantiation. The CLAP representation contains 

generic objects describing process operations, separate generic model descriptions 

and the ability to create multiple instances of the models. The multiple instances 

allow the designer to create different formulations interactively and store the 

different results for subsequent review and evaluation. 

ASCEND approaches the concept by defining a novel interpretation of generic 

objects and instances. A generic model can have refinements which, in turn, can 

be further refined. This is conceptually the combination of inheritance and the 

creation of model instances. For example, a model of a generic flash can be RE- 
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FINED-TO a model of a distillation feed tray, an operation which incorporates 

the notion of inheritance. The feed tray, however, can still be treated as a generic 

model allowing a further refinement to be made. This refined model may have a 

specified feed flowrate which would, in object oriented terms, normally be con-

sidered an instance of the model. An instance of a model in ASCEND is created 

when it is being compiled for solving. This approach has not been required in 

CLAP with the separation of the concepts of unit operation objects and mod-

elling relationships. If ASCEND is to be incorporated in a larger environment, as 

has been suggested, the separation of these two individual concepts may require 

some modification of the language in order to provide a relationship between, for 

example, a flash model and a flash object, which could be described as entirely 

separate entities. 

In MODEL.LA , the approach has been to define generic modelling properties 

associated with generic process objects. The implication of this is that instances 

of process objects have the same modelling equations. It is not clear whether 

or not the generic description can be altered dynamically for new instances of 

the operation, or for modifications of an existing one. It would seem unlikely 

because, if so, there is no correspondence between an instance of a model and its 

generic description in a case where this description has been altered. 

It is valuable to be able to represent different instances of a conceptual process 

object by a range of modelling formulations, e.g. model one instance by a shortcut 

method, and another by a more rigorous method. It is equally important to 

be able to model a single instance by different formulations, e.g. to model a 

distillation column by a Fenske-Underwood-Gilliland model and subsequently 

model the same column with a plate-to-plate model. The MODEL.LA  description 

seems to imply that these require different generic descriptions. In cases where 

the only difference between models is a single phenomenon, it would necessitate 

the creation of two generic models for what is, conceptually, a single process. 

During the course of modelling it is quite likely for such a set of models to be 

required, which, initially, provide a level of approximation but on modification, 

provide a more complete realisation of the process. 

In CLAP, defining the models separately from the process operations allows 

model instances to be created reflecting the state of the process object. In effect 

this is equivalent to creating an instance of a model and then further refining it 
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to an instance of a solution. 

The approach adopted in ModAss incorporates models in a manner similar 

to CLAP. The models are separate from fiowsheet items until specified as be-

ing included. Every model created is treated as an instance in that it applies 

specifically to an instance of a unit. It would appear that the modeller is able to 

alter the model and then recompile and solve it. It is not clear, however, if these 

different solutions are maintained along with the description of the model at the 

time of compilation as is done in CLAP. 

The facets of modelling desirable within the context of design and which have 

been identified in the above discussion, are: 

. The ability to provide some automatic model generation, but also to allow 

access to models for modification and specification. 

• That provision must be made for dynamic modification of models rather 

than accepting a generic model for a generic process, which would be equiv-

alent to accepting a library model albeit a custom made one, 

• Instances of models should be retained with their associated solution to 

provide a record of the modelling formulations evaluated. 

• A model of the design is required to provide full scope for evaluation of 

different structural options generated in a design. The model also provides 

a record of the decisions taken. 

The implementation of a design graph in CLAP for maintaining process de-

composition and structural alternatives has been discussed in Chapter 4. The 

definition of the modelling relations allows for instances of relations for different 

formulations of process items. It also allows for multiple instances of solutions 

which maintains the record of evaluations, as described above. The restrictions 

of simply providing a library model have been discussed in Chapter 3, indicating 

a requirement for some compromise. That compromise is as follows. 

1. A model is generated automatically from the specifications made on in-

dividual process items, thus removing the requirement of the engineer to 

have knowledge about available models. The equation representation also 

removes the restriction of a library of fixed models, since models in this 

system are individually constructed from selected equations. 
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The model can be edited at a high level to provide extra modelling flexibility. 

Since the model has been constructed by reasoning about the specifications, 

the alternatives to the chosen model are known and can be presented to 

the user for selection, e.g. a general flash model can be replaced by a split 

fraction model. 

The model can be edited at a low level to provide extra detail, e.g. a K-value 

calculation using vapour pressure can be adapted to use fugacities. 

Entire unit descriptions identified as being functionally equivalent can be 

interchanged to provide a different level of structural detail. For instance, 

an object representing a distillation column may be modelled using Fenske-

Underwood-Gilliland equations. A greater level of detail could be obtained 

by creating objects for the plates of the distillation column and modelling 

each plate as a separate flash operation. The model of the column as plates 

can be included into the model at the level where it is represented as a 

column, thus achieving the greater level of model detail at the higher level 

of abstraction. 

In conclusion, the three systems discussed here in comparison with CLAP 

modelling capabilities demonstrate most of the key issues which must be consid-

ered in the development of a tool for flowsheet modelling within the context of 

a design environment. The three systems, ASCEND, MODEL.LA  and ModAss, 

do not individually provide the full required functionality, but many of the points 

considered in the development of the tool in CLAP can be found in one or other 

of the systems. 

From a model developer's viewpoint, ASCEND and CLAP user-defined re-

lations both allow flexible modelling of unit operations. Both representations 

support the expansion of high level descriptions to low level descriptions, and 

both allow the selection of alternative models for a single application, e.g. short-

cut or rigorous calculations. 

The differences stem from the reasoning to be provided for the intended ap-

plication. As part of a flowsheeting tool intended to be used within a design 

environment, the representation in CLAP has taken into account more general 

aspects of the description of design. Objects have been created in CLAP to rep-

resent process items which can be reasoned about, here, for modelling purposes, 
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in Chapter 6 for synthesis and hypothetically for control, layout and safety (see 

Section 2.2). ASCEND uses object-like structures which are purely for modelling 

purposes, which are, therefore, limited to reasoning about equations. As men-

tioned previously, the representation of equations in predicate calculus may allow 

more reasoning about the equations themselves. 

It should be noted, however, that the definition of modelling equations in 

CLAP is independent of the objects describing unit operations. This suggests the 

possibility of accommodating the ASCEND approach into a wider environment 

in a similar fashion. 

For widespread use, both ASCEND and CLAP descriptions rely ostensibly on 

experienced modellers to create a suite of consistent models which could then be 

used by engineers who are not expert modellers. Mechanisms have been provided 

in CLAP to allow non-expert modellers to take advantage of the flexibility of 

the modelling description. A consistent model is generated automatically, thus 

performing the "expert" tasks, leaving the engineer free to customise the model 

within the limits imposed by the need for consistency. 

The important facet of the MODEL.LA  language is the phenomena-based rea-

soning which provides a structure for the model without requiring expert knowl-

edge of modelling principles. The representation of generic models of specific 

phenomena differs from the CLAP implementation since, in CLAP, an instance 

of an object can have several different formulations depending on the specifica-

tions made. The MODEL.LA representation seems to require separate instances 

of generic models which must be defined for the full range of applications. 

MODEL.LA is built round a graph describing the development of the design. 

This representation can be used as a basis for broader considerations of other 

design tasks. 

The ModAss modelling tool provides two major facilities for the develop-

ment and use of models. The models are partly generated automatically, al-

though with consideration of principles other than mass and energy balances, as 

in MODEL.LA and CLAP (see Section 5.4), the scope of these models could be 

widened. The user also has general access to the models and the parts of the mod-

els, but again could provide some reasoning about their formulation (as in CLAP 

in Section 5.4.4). The existing reasoning is limited to inheritance and reasoning 

about the mathematical properties of the models, e.g. degrees of freedom. 
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5.4 Selection of Unit Models 

Traditional flowsheeting programs model plant items at a predefined level of 

detail. If a unit model is incorporated in a flowsheet then the mathematical 

description contained in the library associated with the specified unit is added 

to the overall plant description. This assumes a level of mathematical detail 

associated with a level of functional detail, e.g. the specification of a heater 

indicates the use of a mass balance, heat balance and pressure balance at a level 

of detail appropriate to its operation despite the requirements of the flowsheet. 

Ideally, there should be unit models to represent every operation required at 

every stage of a hierarchical design procedure. The models provided should also 

be flexible enough to allow a variety of input specifications. 

In order to provide a feasible number of unit models at a level of practical 

use, flowsheeting program writers have necessarily restricted the models provided 

to ones corresponding to the process flow diagram stage of process development. 

Such a restriction makes the modelling of a hierarchical design awkward using 

conventional flowsheeting software. Attempts have been made, however, with 

limited success, to apply an industrial flowsheeting package to such a procedure, 

e.g. FLOWPACK, the ICI flowsheeting program [18]. 

Expert knowledge of the package is necessary for the correct selection of the 

models to represent the high level processes of a block flow diagram. The prob-

lem of model selection extends beyond the block flow diagram stage e.g. the 

condenser-flash-mixer problem in Chapter 3. Further knowledge is required to 

specify the process models involved correctly, so as much of the available infor-

mation is utilised ensuring the degrees of freedom are satisfied. Since the library 

of models is defined at the process flow diagram level, the degrees of freedom are 

likely to be higher than is required for the modelling purpose in question. Certain 

input parameters, therefore, must be estimated to satisfy them. It should not 

be necessary to provide estimates which, apart from annoying the user, may be 

forgotten and subsequently mistakenly used as real data. 

The designer should not have to formulate a design problem to suit a unit 

model library, thus compromising the functional knowledge contained in the 

process description with the limited set of models available. For this reason, 

modelling equations are maintained separately from generic process descriptions. 
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Once a process object has been created and included in a flowsheet, the mod-

elling equations can be selected from a bank of equation models. This allows the 

designer to specify the unit operations required without having to consider which 

models contain which equations. The specification of process structure and func-

tion is sufficient to allow the selection of a set of equations (or fundamental unit 

operation models in the sequential modular case) describing a unit operation. 

The selection of equations appropriate to the level of functional detail can be 

divided into two stages: 

• selection of high level descriptions, e.g. identification of a requirement for 

mass balances, heat balances, phase equilibria, chemical equilibria, etc., 

• identification of the low level form of the high level descriptions applicable 

to the unit being modelled, e.g. if a K-value is required, the expression may 

or may not include a Poynting Correction factor depending on the pressure 

maintained in the unit. 

It is possible to classify both stages under the second heading. The selection 

of high level descriptions can be thought of as being the identification of the 

form of the highest level balance description. The two have been separated, 

however, to allow the use of generic modelling information to ensure that the 

high level descriptions being constructed are consistent across a flowsheet and 

their constituent relations are compatible with ,each other. The selection of the 

appropriate form of the equations is, therefore, a separate problem, describing 

the specified function of the unit in a consistent framework of high level relations. 

The two stages differ in implementation in that the high level description of a 

process unit is a single relation constructed from several lower level relations in the 

manner of the heat and mass balance relation in Figure 5.3. The selection of the 

form of the equation, however, involves identifying the terms of the expressions 

taking different forms depending on the unit and its specifications. 

While it is valuable to have the automatic generation of a mathematical model 

of a unit operation, it is possible for the generated model not to be what was 

intended by  the designer. It can also be argued that automatic model generation 

is almost as inflexible as the system it is supposed to replace. The designer is still 

required to provide certain input parameters which are unavailable, or the model 

may not provide the detail required. For this reason, it is also important that, 
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while a model may be generated automatically thus performing the "expert" task 

of creating a consistent and complete model, the designer still has the freedom 

to modify it to suit a particular application. 

The following subsections discuss the implementation of an automatic model 

generation tool and the interactive manipulation facilities available to the de-

signer. This is illustrated with some examples. 

5.4.1 Selection of High Level Model Descriptions 

The automatic selection of high level descriptions of fiowsheet units is intended to 

perform the "expert" tasks of creating complete and consistent models of process 

items. 

The function of the object can be used to identify all possible types of equation 

that can be used by an object, i.e. mass balances, component balances, phase 

equilibria, heat balances, etc. However, once the equation set has been identified, 

the set which best describes the operation of the object at its state of specification 

must be ascertained. 

It is possible to associate all user defined relations with a domain class of 

objects using their "domain" slot, see Figure 5.1. The relation can then only 

be applied to objects which are instances of the specified class. The default 

interpretation mechanism for relations does not check all "is-a" relations and so 

equations could not be inherited. A mechanism could be provided to perform 

this operation, but in its application several problems would arise: 

• the search space of applicable relations is large and not ordered, making 

any search techniques time consuming, 

• all relations which could be applied to a particular unit would be located, 

but would not necessarily constitute a consistent model, 

• alternative models for a unit would not be recognised as being separate 

entities. 

Several approaches have been investigated with the aim of generating a model 

based on the function of the units contained in the fiowsheet and tailored to suit 

the specifications made. 

Initially, the slots of the streams connected to a plant item object were inves-

tigated in an attempt to identify the operations occurring within the object. For 
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example, if there were components in the output streams of an object which were 

not in the inputs, then one operation of the object is reaction. In this manner, 

various fundamental operations could be identified: reaction, separation, mixing, 

temperature change, pressure change and stream division. However, each indi-

vidual unit in the fiowsheet would have to be completely specified in order to 

provide a complete functional description. This would over-specify the mathe-

matical model and so is not a feasible approach. 

Instead of analysing the streams into and out of objects, the same information 

can be derived from the functional description of the objects, i.e. its purpose and 

internal structure. For instance, as described above, specifying the use of a heater 

implies the modelling requirement for a mass balance, heat balance and pressure 

balance. The important consideration is to establish which are applicable for a 

given level of detail. 

An engineer creates models based on assumptions made at the higher levels 

of a design. As the design progresses, the assumptions either become supported 

and can be accepted as facts, or the evidence accrued contradicts the assumptions 

made, thus forcing the designer to alter earlier decisions. In an attempt to em-

ulate this approach, the selection of appropriate modelling equations was based 

on the assessment of assumptions. Classes of equations were associated with as-

sumptions fundamental to the use of the equations, e.g. Fenske's equation was 

based on constant relative volatility. 

At the start of a design, a set of high level assumptions can be asserted 

with the intention of assessing the evidence supportive or contradictory to them 

which is amassed as the design proceeds. For example, very simple high level 

assumptions could include: constant composition (no reaction), constant enthalpy 

(no specified change of heat) and constant pressure (no specified pressure change). 

As objects are created and slots set, the assumptions are altered in the light of 

the new information. Since the equations are associated with assumptions, a set 

applicable to the level of assumption can be constructed. 

An implementation of the proposed scheme was attempted, whereby assump-

tions were asserted at the beginning of a design and evidence to support or 

contradict these assumptions was accrued as the design developed. The work did 

not provide a satisfactory method for automatic model selection, but provided a 

valuable insight into the associated problems. 
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1 Evidence in support of, or against, assumptions could be regarded as con-

clusive or inconclusive but significant. This appeared to correspond with 

functional and structural aspects respectively. The creation of a new object 

alters the purpose of the flowsheet functionally and, therefore, irrefutably 

alters the assumptions, e.g. the creation of a reactor object implies a change 

of composition and species, hence removing the assumption of constant 

composition. The setting of slots provides structural information which 

tends only to support or contradict assumptions without being conclusive. 

For example, specifying the temperature of a stream does not imply non-

constant enthalpy thereby signifying the requirement for a heat balance, 

but merely indicates that it may be the case. Further specifications of 

temperatures make the evidence more conclusive. 

2 Most assumptions apply locally rather than globally, e.g. the creation of 

• a reactor does not signify the use of a reaction model for every item in 

the ilowsheet but only for reactors. In another case, a flash unit may be 

modelled using an equation of state, while another flash unit may not have 

sufficient data for that level of modelling. 

3 The identification of every slot and object and their interactions with each 

assumption is combinatorially too large to represent. 

4 In many cases it is difficult to assess precisely what affects an assumption. 

Consequently, it may be more advantageous to allow the designer to state 

when assumptions should be added or removed. For example, in the early 

stages of design, initial estimates of design variables can be achieved by 

making assumptions which are known not to be true, e.g. the assumption 

of ideal gas behaviour. However, their use is justifiable as long as models 

developed on this basis provide an acceptable approximation of the process 

being designed. In the case of an ideal gas model, it would almost certainly 

have to be the designer who specifies when this assumption is no longer 

valid. 

5 Although basing the selection of equations on explicitly represented as-

sumptions proved infeasible, the approach did, however, identify some of 

the requirements of sets of equations for their inclusion in a model. 
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In summary, the selection of modelling equations based on the level of as-

sumption incorporated in the fiowsheet description is a valid approach. The 

combinatorial nature of such an approach makes it infeasible to maintain all as-

sumptions and their interactions with slots and objects automatically (3 above). 

The determination and evaluation of some interactions is exceptionally difficult, 

implying that the user will have to define the use of a large number of assump-

tions (4 above). This, however, will present the user with an unwanted barrage of 

questions as to the applicability of assumptions for the modelling of each item in 

the flowsheet. The approach adopted for model selection is intended to provide 

the user with a complete and consistent model of the fiowsheet without requiring 

any further information over and above the design information already available. 

The model created may not necessarily be exactly what the designer was intend-

ing, but it will be consistent and will allow the alteration of the model within the 

- constraint of consistency. The alteration of the model is discussed in 5.5. 

5.4.2 Representation of a Model Library 

The method eventually proposed for model selection corresponds to the unit 

model library of traditional fiowsheeting programs (see Chapter 3) with the ad-

dition of heuristics to select the model which best fits the specification of the 

flowsheet. The recognition of the existence of local and global assumptions (2 

above) suggests a representational mapping close to the unit object hierarchy 

discussed in Section 4.1. This, consequently, implies the use of an inheritance 

mechanism relating the assumptions implicit in the functional description of a 

unit operation to the applicable models. 

An object has been defined to describe a "model" which contains descriptions 

of all high level fiowsheeting models applicable to the level of functional descrip-

tion associated with the object. The information contained in the object includes 

the conditions for the use of the equations and allowable assumptions which can 

be made when a model is invoked. 

Model objects have been associated with generic unit operation objects with 

a relational mechanism, thus allowing inheritance of models from higher levels 

of functional description. This mechanism is used for instances where the model 

suggested by the function of the unit is not applicable because insufficient struc-

tural information is available. For example, the creation of an object representing 
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a flash suggests the use of a vapour-liquid equilibrium model. However, if the 

temperature, pressure or heat load have not been specified, then a model con-

taining only composition balances need be provided. 

Figure 5.4 shows the correspondence between the unit model hierarchy and 

the model objects. The diagram shows the expected model enhancements be-

tween the specification of a plant object and, for instance, a separation object. 

It also shows the further property that a model object need not be associated 

with every generic unit operation object. In the example shown, the mixer unit 

has no model associated with it. Consequently, it will inherit the modelling in-

formation of the flow change object and ultimately the plant object, in this case, 

an overall component balance. The divider object, however, has an associated 

model incorporating divider ratio expressions. If no divider ratio has been speci-

fied, an overall component balance is required. See Section 5.5 for a discussion of 

the editing of the model to allow the use of a ratio model without having ratios 

specified. 

Pi 
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Divider 	Mixer 

Figure 5.4: Correspondence Between Hierarchy of Process Items and Models 

To prevent the inclusion of contradictory equations, e.g. a reaction mass 

balance and an overall compopent balance, "guards" have been associated with 

each model, thus allowing the selection of a single model from a list of potential 

models. The guard expressions must be completely satisfied for the inclusion of 

a model. The expressions normally include the checking of slots and relations of 

the unit being modelled, but may also include checks of the context of the model, 

such as the level of detail of all separators in the fiowsheet. This is, effectively, 

the checking of local and global assumptions respectively. In the example here, if 

any separator is only at a conceptual stage, i.e. not defined as a unit operation, 

then a general heat balance cannot be implemented since the heat requirements 

of a "separator" are unknown. 
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An inheritance mechanism for model refinement implies that more conceptual 

functional descriptions should be continually updated by lower level modelling 

equations as the level of functional detail increases. However, not all modelling 

equations are refined with every increase in functional detail. For instance, a 

flash separator may have sufficient detail to allow an overall heat balance which 

is only available at the functional level of vapour-liquid separation when the type 

of heating is known. However, its composition may only be modelled by an 

overall component balance which is inherited from the "plant" model. For this 

reason, modelling equations have been split into areas of application, each one 

individually inheritable. The areas are: 

• reaction 

• composition 

• energy 

• flow 

• pressure 

Thus the flash object would inherit the energy model - overall heat balance - from 

the vapour-liquid separation model object, and the composition model - overall 

component balance - from the plant model object. 

The structure of a "model" object is shown in Figure 5.5. 

object(model) 
self-.., 
variables - [ReacEqs,CompEqs,EnEqs,Feqs,Peqs,Assum,Unit,Info], 
slots - [reaction_eqns - ReacEqs, 

composition_eqns - CompEqs, 
energy_eqns - EnEqs, 
flow_eqns - Feqs, 
pressure_eqns - ?eqs, 
assumption-level - Assum], 

relations - [unit-model - Unit, 
required-info - Info]. 

Figure 5.5: Generic Model Object 

127 



The two relations contained in the description of the model object are used in 

the interpretation of the object. When the unit -model relation is instantiated to 

the name of the object being modelled, Prolog unifies the name throughout the 

model object and, thus, into the guard expressions. The required-info relation 

is provided for convenience. Several guards within one object may check the 

same slots in the same unit operation object. If the guard fails, backtracking 

uninstantiates the variables requiring the slots to be checked again in subsequent 

guards, The required-info relation is for the checking of slots which would 

otherwise be repeated, thus saving computing effort. 

A example of a model object corresponding to a "plant" object is shown in 

Figure 5.6. 

model - plant-model :- 
variables - [ 

/*reactjon*/ 	reaction-model 
- (not (var (Reacs))) 
- (conversion Sot reactions Sot Unit = 1), 

/*composition*/ overall-component-balance 
- (var(Reacs) 

Sand expand_components(Unit)) 
- inlet-zero-rates, 

/*energy*/ 	$null - $null - $null, 
/*tlow*/ 	$null - $null - $null, 
/*pressure*/ 	Snull - Snull - Snull, 

$null, 
Unit, 
[($check relation-Unit-(reactions-Reacs))]] 

Figure 5.6: Example Instance of a Model Object 

Note that the variable Unit appears throughout the object, so on its instan-

tiation it is unified throughout the model. The required-into is obtained by 

checking the reactions relation of Unit. The value Reacs subsequently appears 

in two guards which would otherwise have had to be checked for each equation 

model. 

The expressions corresponding to each equation slot have been divided into 

three parts: 

• a dotted list of equation models (see Section 2.4.3) 
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• a corresponding dotted list of guards 

• a corresponding dotted list of local assumptions 

The example in Figure 5.6 has only one member in each dotted list, but the 

interpretation mechanism takes each term as a dotted list and processes the 

terms in the corresponding positions in the three lists. - 

There are two levels of assumptions which can be incorporated in the model 

object: those only applicable to the functional description associated with the 

model object; and those applicable to any object invoking the model. For 

example, in Figure 5.6, the local assumption corresponding to the equation 

react ion-model is that the conversion of reactions of the unit of interest is equal 

to 1. This only applies to the modelling of "plant" objects and not to any other 

objects inheriting the model. The assumption-level slot in Figure 5.5 is for 

inheritable assumptions. 

• 	The model in Figure 5.6 potentially allows the inheritance of a reaction model 

and an overall component balance, which as has been previously mentioned, are 

mutually incompatible. The corresponding guards, however, ensure they remain 

so. The reaction model is included in cases where a reaction has been specified 

for the unit, and a component balance in cases where a reaction has not been 

specified. This has implications for the inheritance mechanism. It is possible 

for any object which has had a reaction specified to inherit a reaction model 

instead of a component balance. For example, a heater or a flash model could 

incorporate a reaction mass balance, if so specified. This provides great flexibility 

for the mathematical description of the processes involved in a flowsheet. 

The proposed mechanism for selecting equations is similar to that employed 

by MODEL.LA [28]. MODEL.LA uses the specification of physical and chemical 

phenomena to provide the modelling definition of a generic object. Here, however, 

the concern is with modelling specific instances of objects. The implication of 

the MODEL.LA  work is that when a process is defined, the model is created 

by selecting the generic types of the items of process equipment. The modeller, 

therefore, must know to what degree of detail the resulting model must be taken 

a priori. Further, to provide a range of models of differing detail for a single 

process requires the specification of a .generic object for each one. 

The method outlined here is intended to provide the designer with a means of 

defining a mathematical description by specifying the function and structure of 
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process objects. The function is provided by the generic class of the object, but, 

unlike MODEL.LA, a single instance can be described by a range of different 

models. The structure is detailed by the provision of values for certain key 

properties (in slots). The advantage of allowing models to be defined in this 

way is that the user is performing a natural task - specifying functional detail 

and providing values for design constraints. 

Part of the hierarchy of models is shown in Figure 5.7. Nodes in the graph in 

parentheses have no associated model and thus inherit models from higher levels. 

5.4.3 Example of Model Selection 

The selection of modelling equations based on specifications is best illustrated by 

an example. Consider the description of a flash vessel. In the first instance, an 

object will be created with its connections detailed. If these are the only features 

attributed. the object,, then the model which will be invoked is an overall 

component balance relating the components in the inlet and outlet streams. 

This decision is based on the local specification of the object. However, there 

is another part of the model which could be included which is dependent on 

the context of the object. As part of the flowsheet, the degree of detail of other 

objects determines some aspects of the mathematical description of the individual 

items. In this case, for example, a heat balance will not be proposed unless all 

separation processes have been characterised to the level of a unit operation. Since 

the energy requirements of a "separation" cannot be determined until the type 

of operation is realised, a heat balance would serve no purpose to the complete 

flowsheet. If however, the scope of the model includes no such indeterminate 

processes, an energy balance can be included. 

Depending on the further detailing of the constraints on the flash, the model 

will be constructed accordingly. If split fractions are provided, the object adopts 

the level of a simple separator with its associated mathematical description. If, 

however, a temperature or pressure is supplied, the intention is to model the 

vapour-liquid equilibrium of the vessel. Two equilibrium models have been de-

fined. One has simple convergence properties but is limited to processes with 

single inputs. The other more general description is not as robust. For this rea-

son, the more specific model has been retained, but is only used for processes 

with a single inlet. 
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Once the flash has reached this level of detail, no further choices of model are 

available. The form of the selected equation can be altered, however, to widen 

the scope of their use in order to generate applications for specific processes (see 

Section 5.4.4). This level of model generation concerns the selection of the terms 

of the equations which are relevant to the specifications made on the process. 

5.4.4 Selection of Equation Form 

Section 5,4.2 described reasoning about models at a high level. This reasoning 

ensures model completeness in terms of the calculations achievable in a particular 

context, and consistency by ensuring the interactions between the different parts 

of the model do not result in redundancy or contradiction. 

Within the framework of completeness and consistency, there are certain as-

pects of the model which can be reasoned about. In situations where alternative 

models exist for a single property, it must be possible to select the appropriate 

definition for the current context. For example, the Nusselt number correlations 

for the evaluation of heat transfer coefficient differ for laminar and turbulent flow. 

If it is possible to determine the flow regime at the time of model generation, it 

should be possible to select the appropriate definition. There are occasions, how-

ever, where several, seemingly equivalent, definitions are available with no means 

of distinguishing between them. For example, there are several alternative em-

pirical correlations of Nusselt, Prandtl and Reynolds numbers for the same flow 

regime. In such cases, a choice should be made, but revision of this choice should 

be allowable when more information becomes available. 

A similar case can be made for approximate models. As mentioned in Section 

5.4.1 the assumptions supporting the use of approximations are very difficult to 

justify, so inferring their applicability is equally difficult to implement. If it is 

not possible to define a set of conditions for the use of an approximate model, it 

could be used in the first instance allowing revision of the model at a later stage. 

The inference mechanism for selecting the form of equations is discussed in this 

section. The interactive revision of models with illustrative examples is presented 

in Section 5.5. 

The mechanism for inferring alternative forms of equations involves defining 

an extra call in the active code of the parent relation. The call corresponds to 

a single undetermined term of the return form expression, therefore requiring 
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a call for each such term. The calls are Prolog clauses establishing the form 

of the unknown term, generally by checking slots and relations. The clause, 

select_eqn_type, has four arguments: 

1 the Prôlog variable in the return form which is to be unified to the inferred 

form, 

2 a reference to the term being sought, e.g. fugacity_coefficient, 

3 the object that is the domain of the relation, which, in general, is being 

checked for appropriate slot values, 

4 the reference unit, if applicable. 

The reference term (2) is used to locate the correct Prolog goal and is also 

used for reporting the generic form of the equation. 

When the relation is invoked as part of a model, the active code is run before 

the generation of the return form. The select_eqn_type calls are made, instan-

tiating the undetermined variables in the return form expression which is then 

expanded as normal. 

For example, consider the definition of the vapour-liquid distribution coeffi-

cient: 
K._'7f>< Ob i <Pi* 	 10 ( 5 . 	) 

Oi XPT  

where: -yi  = vapour activity coefficient, 

fi  = fugacity coefficient, 

= Poynting correction factor, 

= vapour pressure, 

Oi  = partial fugacity coefficient, 

14 = pressure. 

If ideality is assumed, values of 'y, f, 'I'j and 4j can all be approximated to 1. 

If this assumption is invalid, the specification of an appropriate equation of state 

can provide values for 'y,  fi  and 4j. In this example, it will be assumed that if no 

equation of state is specified, the system can be approximated to ideality. The 

Poynting correction factor is approximated to 1 except where a high pressure is 

used. Provided some heuristic notion of the definition of "high" can be made, 
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the use of the factor can easily be inferred from the pressure of the unit being 

modelled. 

relation(k_value, Unit-Val) 
domain-.., 
variables - [Unit, Form, Bindings]. 

• 	bindings - [C = components $f Unit]. 
active-code - C 

select_eqn...type(Gamma, vapour-activity-coefficient, Unit, C), 
• 	 select_eqn_type(Phi, fugacity_coefficient, Unit, C), 

select_eqn_type(Poynting, poynting_correction, Unit, _), 
select_eqn.type(PartPhi, partiaLfugacity_coefficient, Unit, C)), 

return_form - (set_of( 
(Gamma * Phi * Poynting * 
(vapour-pressure $corresponding_to components-C $of Unit))! 
(PartPhi * (pressure $f Unit)),$over C)), 

return-type - expression, 
slots - [is_a - constraint]. 

Figure 5,8: Definition of K-value Relation 

The definition of the relation for K1 is shown in Figure 5.8. The terms in the 

return form which are undefined and are thus left as Prolog variables are each 

represented in the active code by a selectsqn_type call. When the specific local 

form of the relation is expanded, the inferred form is generated. In the case where 

no equation of state has been specified, the select _eqn_type calls return a value 

of 1 for the undefined terms as shown in equation 5.11. The non-ideal (but low 

pressure) situation is shown in equation 5.12 where the undetermined terms have 

been replaced by the non-ideal variables. These can simply be referring to slots, 

or, as in this case, to further relations. An example showing the full expansion 

of the expression is given in Appendix C. 

lxix lx 

1 x 14 (5.11) 

'y1xf1xlxF7 	
2 

,x PT 
In this manner, a single relation can be defined to represent an equation in its 

most general and necessarily rigorous form. The approximations of the general 

form which can be made can be incorporated into the relation along with the 
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required assumptions, where such definition is possible. In the above example, 

the definition of the single relation for the distribution coefficient, K1, removes 

the requirement for separate definitions for ideal, non-ideal and high pressure 

situations, 

5.5 Interactive Model Modification 

Section 5.4.2 discussed the representation of the equivalent of a unit model library. 

High level models have been defined which are selected to describe flowsheet items 

based on the context of the item and its specifications. The particular form of 

the selected equations is also inferred locally at the time of generation. 

Combining the two aspects of model selection provides a tool which supplies 

the designer with a model reflecting the level of detail in the design and the 

specifications placed upon it. It can be argued that this amount of reasoning 

- constitutes little improvement over conventional fiowsheeting software where the 

designer selects the high level model to be used. The selection of such models 

is a reasonably expert task, since several models can be available for one unit 

operation. It may be, for example, that several distillation routines exist, each 

with a particular specialisation. Automatic selection of the high level model 

ensures its consistent and correct use. 

Low level reasoning about the form of individual equations provides a signifi-

cant advance over conventional representations. In the approach described here, 

complex models (e.g. non-ideal) are only used when appropriate data is avail-

able. In existing flowsheeting packages, this requires either a range of high level 

models of different degrees of complexity, or one model requiring a large number 

of parameters which may not always be available or significant. 

It is recognised, however, that while the two facets of automatic model selec-

tion provide an important benefit to the designer, it is highly unlikely for such a 

system to be able to provide exactly the model required for every application. As 

discussed in 5.4.4, it is not always possible to define rules for the automatic selec-

tion of the low level form of the equations. It is also common for a designer to be 

trying to calculate a value for a particular property. This would require knowl-

edge of the models available and the specifications to make to invoke the correct 

model involving the desired property. DESIGN-KIT [14] provides a mechanism 

for such situations. The user can specify a property to be calculated, in their 
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example, effluent composition. The inference method identifies the equation in 

the data model of the object under consideration containing the desired property. 

If the equation is fully specified, the value of the property can be calculated. If 

not, further equations are added containing the required unspecified variables of 

the original equation. This analysis and expansion, however, must be terminated 

by the user if a fully specified model cannot be inferred. Specifying the boundary 

of the problem is, effectively, defining the high level model, e.g. if the boundary 

is the limits of a reactor, then the high level specification of a reactor model 

will suffice. The advantage is that the model developed will contain the required 

property. 

This example illustrates the desirability of being able to specify what is re-

quired of a model. It is also desirable for the designer to be able to modify models 

to provide the required mathematical description. This encompasses the ability 

to specify the particular property required of a calculation. 

The following sections describe the methods whereby the designer can interact 

with the model generator. This extra functionality is a more significant increase in 

flowsheeting and modelling ability than automatic model selection. The designer 

can now define the model required for a particular task. The two aspects of model 

selection provide separate foci for interaction. A third is provided by considering 

the relationships existing between nodes in the design graph. 

5.5.1 Modification of High Level Models 

Increases in functional detail imply an increase in detail of the model, as discussed 

in Section 5.4.1. The mechanism for inferring the appropriate parts of the model 

divides the model into several sections, reasoning about each one separately. The 

model corresponding to the level of functional detail closest to the process unit in 

question is incorporated if its conditions are met. If the conditions are not met, 

levels of increasingly less functional detail are considered until an acceptable 

model is located. 

Since each aspect of the model is considered individually, i.e. mass balances, 

energy balance, pressure balance, etc., any combination of the parts is valid. For 

interaction with the user, therefore, each part of the whole model can be modified 

by selecting any of the available models under a particular heading. For example, 

the available mass balance models for a distillation column, in descending order 
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of complexity, are: a plate to plate model, a Fenske-Gilliland-Underwood model, 

a split fraction model and a simple overall component balance. If a different mass 

balance model was required, any of the above would be acceptable. 

The symbolic description of model usage includes the conditions required for a 

model to be considered valid. This means that the modification procedure can be 

presented to the user in an understandable format by reasoning about the model 

objects. When the user selects which of the five parts is to be modified (reaction, 

composition, energy, flow or pressure) the inference mechanism locates all models 

under the selected heading appearing in the model objects of corresponding (and 

less) functional detail. For example, if a distillation column is being modelled, 

model objects corresponding to distillation, vapour-liquid equilibrium separation, 

separation and plant are considered (see Figure 5.7). These models are then 

presented to the user for selection. 

The selected model may not have the requisite information for its use, so 

it cannot be accepted without checking its corresponding guard conditions and 

assumptions. If all conditions are met, the model replaces its equivalent in the 

list of equations contained in the model being modelled. 

When the conditions are not met, the reason for not including the chosen 

model must be presented to the user. This is achieved by interpreting each 

call in the guard and displaying the result. Figure 5.9 shows an example of an 

application to distillation. The user has requested a split fraction model which 

cannot be used because no split fractions have been specified. The unacceptability 

has been displayed in the window as a breakdown of the information in the model 

(which correspond to an interpretation of the required-info slot in the model 

object) and the individual interpretations of each guard. 

The user is then able to return to the process description and provide the 

information necessary in order to implement the desired model. 

The selection of a valid model results in a report of its acceptance. 

The selection of the new model has been achieved within the framework cre-

ated for automatic model selection. This implies that any model which is mod-

ified is still consistent and complete, because the checks required for automatic 

selection must also be satisfied by the modified model. 
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Fenske-Gillhlandmcxjel 

plate_tq.plate_modet 

The requirements of that model have not been fully satisfied. 

The model contains the following informatiorn 

The split fractions slot of separatorl contains the variable C_472694) 

The following conditions must all be true: 

_472694 is not supposed to be a variable, which is false, 

AND expand—fractions of separatorl should succeed, which is true. 

Figure 5.9: Example of High Level Model Modification for Distillation 

5.5.2 Modification of Models at a Low Level 

The interactive modification of the low level form of models is based on the low 

level reasoning about the form of equations. The aspects of the equations which 

can be modified are the terms which have been reasoned about. As discussed in 

Section 5.4.4, it is sometimes difficult to reason about the application of certain 

equations or terms in equations, particularly approximations. In such situations, 

it is safer to apply assumptions thereby instituting the associated approximation, 

than to expand the general expression in full. The approximated model will 

provide solutions, in most cases, which are close to the more rigorous solution, 

but involving significantly less computing effort. 

In many situations only an approximate solution is required. For example, 

there is little point in applying the full, general K-value expression (in equation 

5.10) as part of an evaluation of Fenske's equation, which is itself an approxima-

tion, in that it assumes constant relative volatility. 

The selected equations, whether they be approximations or alternative em 

pirical correlations, may not be adequate for the description of some problems. 

For example, K-values based on ideality may be insufficient for the modelling of 

a flash vessel, requiring modification of the model to incorporate non-ideality. It 

is of value, therefore, to be able to interact with the reasoning mechanism which 
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selects the form of an equation. 

The symbolic representation of equations as relations allows reasoning about 

their structure, in this case, the selectsqn_type calls. The calls are stored in the 

active code of the relation and contain a reference to the property they represent, 

e.g. tugacity..coetficient. The reference is also used to locate the appropriate 

Prolog goals which are used to establish the form of the term in the equation. 

By calling the Prolog clause, the current value can be established. Interpreting 

the remaining goals corresponding to the same term reveals the different values 

that the form of the term can take and also the conditions required (if any) to 

invoke them. 

Conditions may have to be met if the alternative form is to replace an ap-

proximation. In cases where an equivalent choice exists, however, there may be 

none. For example, the non-ideal terms of the K-value expression can only be 

evaluated if a suitable equation of state has been specified, which constitutes a 

condition on the selection of this form. In the case of alternative equations of 

state, there may be no sound basis for selection and thus no conditions to satisfy. 

The conditions involve the checking of slots and relations. This provides a 

simple syntax for reasoning about the conditions and for supplying any missing 

values. If unsatisfied conditions involve properties of objects, it is a straightfor-

ward task then to edit the object appropriately. If a Prolog goal fails, however, 

it is more difficult to inform the user of the correct action to take. 

To illustrate the modification procedure, consider the alteration of a vapour 

liquid equilibrium calculation described by the equation: 

lii = 
	

(5.13) 

When the decision has been taken to modify the model at a low level, the relation 

describing the model is reasoned about. The evaluated instance of the model is 

not used. It represents one modelling option which has been explored and remains 

unaltered as a record of the model development. The generic relation describing 

the high level model is used to convey two points to the user: the facets of the 

equations which can be expanded, e.g. the equilibrium relation contains a K-value 

expression which can be expanded as in equation 5.10, and the facets which can 

be modified, i.e. ones corresponding to select..eqn_type calls. 

In this example, the option is taken to expand the K-value relation. The same 

options are again presented. The relation can be further expanded to vapour 
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pressures, or the non-ideal terms in equation 5.10. Selection of the inclusion of 

fugacity coefficient in the K-value expression instigates the reasoning described 

above. The current value of the approximation, 1, is displayed along with the 

fact that an equation of state is required. If an equation of state is supplied, the 

form of the subsequently generated model includes the non-ideal terms in the 

K-value expression. The terms are expanded according to the specified equation 

of state. 

5.5.3 Refining Model Detail in a Simulation 

Section 4.3.4 described an approach for reducing the number of structural alter-

natives required to be stored and therefore maintained. During design, models 

are constructed at different levels and combined across several levels, so it is im-

portant to be able to use related models in this manner. Rather than imposing a 

modelling philosophy. on .the.designer, this option aims. to provide a facility which 

accommodates normal practices. 

Figure 4.13 shows an example where two distillation units have been described 

at one level and then expanded to two different distillation alternatives each 

at a level of greater detail. The hypothesis is that, instead of creating four 

complete fiowsheets representing the four alternative combinations, the designer 

would evaluate each individual process separately before considering interactions. 

The effect of the proposed alternatives on the complete fiowsheet would then be 

assessed by including the new, more detailed model in the higher level fiowsheet. 

The figure is not a particularly good example of this, but the distillation units 

are intended to represent a subsection of a large process. 

The design graph relationships which have been discussed so far are the no-

tions of refinement and parts. Refinement links fiowsheets at different levels of 

detail. The detailed nodes containing the distillation column alternatives are, 

therefore, refinements of the fiowsheet at the top level. The refinements are, 

however, incomplete in that they do not contain a description of the whole flow-

sheet. The concept of parts is used to identify the evolution of individual items 

in a flowsheet, thus the more detailed operations within the low level nodes are 

each considered to be parts of the high level distillation operations. 

The concept of parts has been used to implement a facility allowing the in-

clusion of a low level model in a higher level fiowsheet. The low level model must 
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completely incorporate the structure and function of the high level operation (see 

Section 4.3.3 for details of how this is established). The streams which correspond 

between the two levels are used as a guide, since any stream entirely within the 

more detailed description are irrelevant to the more abstract flowsheet. 

A model is constructed by temporarily associating the streams from the spec-

ified operations at the abstract level with the detailed operations replacing them. 

The model is generated as described in Section 5.4.2, but now the equations rep-

resenting the detailed operations have been incorporated into the model of the 

flowsheet at the level of greater abstraction. 

To instigate this facility, the designer selects an option from the modelling 

menu which then presents a choice of the lower level nodes which include the 

detailed enhancement of the operation being modelled. Any flowsheet models 

subsequently created will include the description of the refined operation until 

the selection is reversed. - 

To illustrate this capability, consider the simulation of a simple distillation 

column. This can be modelled individually, by, for example, a Fenske-Underwood-

Gilliland model or a plate-to-plate model. However, it may be that the model 

does not correspond to known data about the column. A new node can be added 

to the design graph describing the column as a series of plates, a condenser and 

a reboiler, each a separate object. The generation of the model may use the 

general flash model for each plate. The combination is effectively the same as 

the general plate-to-plate model already implemented, so no advantage has yet 

been achieved. By modelling the plates separately, the model of each plate can 

be edited, as described in Sections 5.5.1 and 5.5.2, by altering, either the type 

of flash model used, or a low level facet, such as the equation of state. Once 

this model is functioning satisfactorily with respect to the known data, it can be 

included in the high level fiowsheet. 

In the current implementation, the designer selects the menu option indicating 

a change in the model of the distillation column. A further selection instigates 

the modelling of the column by its parts. The current node object is accessed to 

locate its refined nodes. An investigation of these nodes reveals those that have 

parts corresponding to the distillation column. The choice is then presented to 

the user. In this case only one option is available, that of the plate, reboiler and 

condenser objects. The single feed to the distillation column is then linked with 
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the stream connecting to the feed plate object (this is merely an instance of a 

plate object with an extra input stream). The column feed stream object is then 

temporarily changed to indicate that its sink is the plate object. The output 

streams are similarly altered, but by changing their sources. 

A model of the flowsheet can then be generated which now includes the plates 

in place of the distillation column. 

The example above illustrates the power of this modelling facility. Not only 

does it reduce the amount of data to be stored (see Section 4.3.4), but it also al-

lows a further degree of model manipulation. The generic model was insufficient 

to describe the operation, so it can be broken down into lower level operations 

which can be altered individually to provide the required mathematical descrip-

tion. Being able to model operations separately before inclusion in a flowsheet 

reflects a natural design practice and is, therefore, a valuable tool for modelling. 

5.6 Model Results 

The presentation and interpretation of model solutions is important for determin-

ing what, if any, modifications are required of the model. It is useful to be able 

to compare results from previous simulations and also to view the mathematical 

representation of the model. These options have been incorporated in extended 

methods. 

Results are presented in three tables. The first displays the high level relations 

which define the model. This is useful for comparing models where the basis for 

the solution must also be evaluated. 

The second table is a stream table which is an accepted method for present-

ing stream data for a flowsheet, so the table and the flowsheet should be viewed 

together. A graphical display of flowsheets has not been incorporated, but in 

principle, should be available. In the stream table, the rows correspond to chem-

ical components, and columns to streams. The entries can be flowrates or mole 

fractions. Total flowrates, temperatures and pressures can also be included if 

data is available. 

Stream tables do not include other stream properties .or attributes of process 

units, such as dimensions. These values are displayed in the third table. In 

principle, these attributes can be divided into groups corresponding to process 

units and the groups displayed individually. 
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Presentation of information to the user is an important consideration in the 

development of an acceptable product and constitutes a research topic on its 

own. For example, stream tables are an accepted means of displaying fiowsheet 

information. However, grouping all data for a stream, including flows, vapour 

pressures, etc., may be more suitable in a different situation. The conclusion 

of this discussion is that data can be presented to the user in a range of styles, 

textual and graphical, so the user should not only be able to define problems in 

different ways, but should also be able to examine the solutions from different 

viewpoints. 

It is important to be able to review the mathematical model being used. This 

provides a means of determining which terms and equations in the model should 

be modified. Westerberg and Benjamin [74] suggest useful properties of such a 

tool. For example, the documented model could be structured as a user's manual 

with chapters and sections. This enables access to individual parts of the model 

through a table of contents. 

A tool has been implemented to display models in this manner. The "spe-

cialise" form of a user-defined relation contains the expanded equations and a 

list of the bindings to object attributes. This relation is interpreted symbolically 

in order to write a formatted input file for I4LTEX, a document preparation sys-

tem[75]. The hierarchical decomposition of equations described in Section 5.2 is 

used to structure the document, the different levels corresponding to chapters, 

sections, subsections, etc. A table of contents is generated automatically. 

Specifications are displayed as part of the model, but not calculated values. 

Three example documents are shown in Appendix D. 

5.7 Summary of Modelling Functionality 

A symbolic representation for modelling equations has been developed in which 

equations are defined as relationships between attributes of process unit objects. 

Equations can also be related to each other in a hierarchical structure where 

individual terms in an equation can be defined by further expressions. For exam-

ple, a heat balance equation contains enthalpy terms, where enthalpy is defined 

in a separate expression. This structure, and the ability to express equations 

symbolically, are useful properties in model development. 

A mechanism has been developed for automatically generating flowsheet mod- 
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els from high level definitions such as "component balance" and "heat balance". 

The details of model definition should be determined by an expert modeller along 

with the rules for their selection for flowsheeting applications. 

A designer, however, uses models rather than creates them. The symbolic 

representation allows reasoning about equations to provide a flexible way of us-

ing models without necessarily having to create new ones. Models are created 

automatically which the designer can modify for specific applications. Access to 

the high level selection method enables the designer to select alternative defini-

tions for individual parts of a model. This alteration of the model is constrained 

by the structure developed by the modeller. At a low level, the designer can 

select different definitions for equations or individual terms. 

Models are associated with the object representing the subject of the model, 

e.g. a node for a flowsheet or an individual distillation column. A symbolic 

description of any model is available to the user for display or documentation. 

Solutions of any previous model can also be reviewed. 

Chapter 4 described the development of tools for supporting generation of 

process flowsheets in a. hierarchical manner and maintenance of the synthesised 

hierarchy. Chapter 5 addressed the automatic generation of flowsheeting models 

and their modification. The tools developed have been integrated in an network 

of extended methods which are shown schematically in Figure 5.10. The group-

ings represent parallel calls within the indicated extended methods. The analyse 

flowsheet method can be accessed from both analyse and topology. 

Most of the options for topology management including movement in the 

design graph have been described in Section 4.3.2. The options under the analyse 

ftowsheet heading of up level, down level, list level, list section, switch section and 

copy equivalent section are also described there. 

The analysis option of analyse components displays a selected component as 

a table of parameters obtained from a database. The analyse stream call displays 

stream attributes, enables editing of their specifications and allows calculation of 

some properties. The operations under analyse unit include: 

• edit object which displays the unit and allows editing of specifications. The 

associated call display object displays the unit but does not allow editing. 

• model object which evaluates the current model of the unit. If no model is 

specified, one is generated. Models provided by other design modules will 
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up level 
down level 

create object 
model flowsheet 
review  flowsheet solutions 

create stream display flowsheet model 

topology 	delete object A list level 

create new node list section 
switch section 

analyse flowsheet copy equivalent section 
analyse components 

analysis 

:: 

object 
display object 
model object 

seamI 

display model 
review solutions 	 model at child level 
select alternative mode l..< model at current level 
modify current model 	select high level model 

Figure 5.10: Schematic Representation of Modelling Extended Methods 

be evaluated without modification (see Section 6.2). The equivalent call 

of model flowsheet in the options of analyse flowsheet performs the same 

task for a whole design node, but does not allow evaluation of separately 

generated models which may be inconsistent with those generated locally. 

• .display model generates a formatted IT&( document [75] describing the 

model in its expanded form and its general equation form. Dependent 

equations are related by sections and subsections in the text. Variables and 

values are identified by their associated slots and relations. Three examples 

are shown in Appendix D. The flowsheet command, display flowsheet model 

does the same for a flowsheet model. 

• review solutions allows browsing of the solutions of all evaluated models of 

a unit, or in the case of flowsheets, review fiowsheet solutions does the same. 

The solutions are divided into the high level relations used in its definition, 

a stream table and a table of other values calculated by the model (see 

Section 6.3.4). 

• select alternative model has three lesser choices. Modelling the unit at a 

level of greater detail as described in Section 5.5.3 is achieved by model at 

child level. Reverting to the current level is performed by model at current 
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level. The high level modification of models discussed in Section 5.5.1 is 

accessed through select high level model. 

• modify current model performs the low level model modification described 

in Section 5.5.2. 

These options provide access to a range of modelling facilities which allow 

modelling of flowsheets and individual units. Automatically generated models 

are available for high and low level modification to represent specific situations. 

Solutions of models can be reviewed and the modelling equations can be docu-

mented. Appendix F shows an example of the different options in use. 
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Chapter 6 

Modelling of Design Strategies 

This chapter discusses strategies used in the course of design. Many of these 

strategies are not well defined. An integrated design environment requires the 

support of different techniques to evaluate the state of a process design. Evalu-

ation may concern the physical ability of a design to meet given specifications, 

its economic feasibility, control and operability, safety and layout. Many of these 

evaluations are procedural, involving detailed algorithms. In other cases only a 

statement of high level goals is possible with little detail to indicate how the goals 

should be achieved. 

The emphasis of this work has been on numerical flowsheet evaluation, in-

corporating algorithms for solution of equations as well as strategies for model 

formulation. There are few aspects of this which can be considered as proce-

durally ill-defined. However, the inclusion of such a modelling tool in a large 

environment requires consideration of how and when it is to be accessed during 

design, which is not well defined. 

The example which have been considered here are as follows: 

Overall flowsheet synthesis. This can be represented as a hierarchy of high 

level tasks with great flexibility required to achieve them. 

Design of individual unit operations. This can also be described by a hier-

archy of tasks. 

Formulation of problems for solution by different solvers, a task which is 

well defined and mostly algorithmic. 

These three examples display a range of representational issues. Their implemen- 

tation must consider how much can be productively achieved automatically and 
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how much interaction with the user is required. The following sections describe 

the implementation of these examples with respect to the efficient representation 

of the procedures while providing the required interaction with the user. 

6.1 Modelling Process Synthesis 

Section 1.2.2 described overall process synthesis as a routine operation in that it 

can be characterised by a procedure or algorithm. Algorithms and heuristic pro-

cedures have both been used in other work to create synthesis tools, as discussed 

in Section 1.2.2. These tools have only limited criteria for evaluating generated 

processes. An economic assessment is the normally only basis for selection of 

the optimal flowsheet in such tools. Other analyses for e.g. control and hazards, 

follow once a base case design has been accepted. The hierarchical decomposi-

tion of decision levels proposed by Douglas [7] provides a high level framework 

for synthesis. By implementing this approach in a flexible manner, analysis by 

a range of evaluation modules, such as control and hazard analyses, becomes 

possible. The work presented here demonstrates this principle by accommodat-

ing the modelling facilities described in Chapters 3, 4 and 5 within a synthesis 

framework. 

The implementation of Douglas's decision level approach requires considera-

tion of the user interface to determine the level and type of interaction required 

with a designer. The hierarchical decomposition of synthesis suggests a number 

of goals which must be attained at each level. The goals are achieved by perform-

ing the tasks in an order depending on the design and the designer. Within each 

level the designer may also want to evaluate the process by means of different 

models. This implies wide integration of tools. Therefore, the synthesis tool can-

not be a single self-contained procedure but must be available throughout process 

development. This is true for all other evaluation tools. 

Section 4.3 identified the requirement for the designer to be able to move 

up and down in the graph of flowsheets. This reinforces the proposed model, 

whereby the synthesis framework is applied to a flexible central representation of 

the design. The fact that synthesis is concerned with enhancing the detail of the 

models does not mean that movement within the hierarchy is not required. On 

the contrary, many decisions require the assessment of the design at more than 

one level. The decision levels, therefore, do not correspond directly to levels in 
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the design graph. 

From the designer's viewpoint, the implementation must allow selection from 

the range of available tools within the constraints applied by the synthesis hi-

erarchy. For example, it is desirable to restrict the type of process item that 

can be selected at the early stages of synthesis. Some structure to the synthesis 

procedure must be visible for the designer to determine the steps which are ap-

propriate, and help should be available if this is insufficient. In situations where 

a particular piece of information is required the user can be informed what the 

missing information is and instructed how to provide it. 

The recognition that synthesis is a procedure with intermediate aims but no 

strict path through the network of decisions led to the work on extended methods 

described in Section 2.4.3. The existing methods in CLAP were intended for 

strict, well defined procedures and were, therefore, of limited use. Extended 

methods allow the specification of general goals and, where applicable, the order 

of execution. The implementation of the synthesis procedure in extended methods 

is constrained by placing guards on the calls, allowing progress only when certain 

conditions have been met. Loopback points provide a method of specifying where 

missing information can be obtained if a guard fails. 

An example extended method is shown in Figure 6.1 which represents the de-

composition of synthesis into the decision levels of Douglas. In principle, different 

extended methods can be defined for batch operation and solids processing, but 

have not been implemented. Douglas suggests procedures for such processes. The 

extended method in Figure 6.1 refers to continuous fluid processes. 

Each call in the calling sequence is to a further extended method incorporating 

the decisions required at the associated level. As described in Section 2.4.3, each 

member of the dotted list representing the calling sequence has corresponding 

entries in the dotted lists of "guards", "assertions" and "loopback points". In 

this example, the guard corresponding to the input output structure decision level 

prevents its execution if the design does not have a specified process-chemistry 

object, which is stored as a relation to the "design" object. The process-chemistry 

object must also have a value for reaction path. If these conditions are not met, 

the corresponding loopback point indicates that the information can be obtained, 

or specified in the extended method collect-input-information. 

On successful completion of a call, the corresponding "assertion" can be made. 
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extended_method - continuous_fluid 

variables - [input_output_structure.. 
recycle_structure.. 
reactor.-system.. 	 Calling Sequence 
separation_system.. 

($check relation-Design-(process_chemistry-Chem) 
$and $check slot-Chem-(pathway-Path).. 

check_boiling_point_data.. 

	

($guard - full_reaction_spec).. 	 Guards 
($guard - separation—spec).. 
$null.. 
($guard - utilities—established)), 

	

[full_reaztiofl_spec - 	
Guard Macros separation—spec - ..... 

utilities—established - 

$set slot.design-synthesis_level-(recycle_structure-start).. 	\ 
$set slot-design-synthesis_level-(reactor_system-start).. 	) 	Assertions 
$set slot-design-synthesis_Ievel-(separation_system-start).. 	/ 

synthesis-collect_input_inlormation.. 
continuous_fluid-input_output_structure.. 	 Loopback Points 
continuous_fluid-recycle_structure.. 
continuous_fluid-reactor_system.. 

Design, 	 Object of Interest 
$null,Status,Surface,Jnfo,Display]. 	 Other Sloth 

Figure 6.1: Extended Method Representing the Synthesis Procedure of Douglas 
for Continuous Fluid Processes 

The assertions here simply inform the design object illustrated in Figure 4.7, of 

the position within the synthesis procedure. 

In order that the synthesis procedure may interact with other tools, a general 

extended method has been defined which contains calls to modelling and evalua-

tion facilities as well as synthesis decisions. These general tools are then available 

whatever stage of synthesis has been reached. Methods for allowing the creation 

of flowsheets i.e. unit specification, connections, and fiowsheet editing, have also 

been provided along with analysis facilities e.g. numerical evaluation and editing 



and reviewing of specifications. These options are all straightforward operations 

and, therefore, can be written as standard CLAP methods or Prolog clauses. 

The decisions associated with each level in Douglas's hierarchy can be divided 

into two classes: 

those requiring action 

those corresponding to advice. 

For example, before the recycle structure can be judged complete, a reaction 

section and a separation seétion must be defined. This corresponds to a decision 

requiring essential action which must be carried out before proceeding to the next 

decision level. 

Decisions involving non-essential action are heuristic evaluations of alternative 

courses of action which can then. be  presented as advice. For example, in the early 

stages of synthesis, the designer should consider whether or not the feeds to the 

reactor require purification. The heuristic evaluation may suggest purification 

of the feeds, but the designer should still be able to evaluate alternatives. The 

designer may decide that this decision is not applicable for a particular design 

and not even consider it. Specific action is, therefore, not essential for this case. 

The designer can accept the heuristic decision or implement an alternative. 

Such choices can be evaluated interactively by presenting them to the designer 

as a menu of choices at the appropriate point in the synthesis hierarchy. The 

designer is then aware of the decisions which can be made even if none of them 

are selected. Those which are selected provide advice indicating heuristically a 

potentially optimal process. The designer can accept this or evaluate any desired 

alternatives. 

The extended method for general process evaluation accommodates different 

evaluation tools as well as non-essential decisions in a framework of high level 

goals. Part of the extended method is shown in Figure 6.2. The user obtains 

access to the non-essential decisions along with other tools in a "parallel" call, 

as described in Section 2.4.3. The essential actions are checked once the parallel 

call is exited, i.e. the designer determines that all that can be achieved at the 

current level has been completed. 

The implementation utilises Prolog unification to invoke the decisions of the 

appropriate synthesis level while providing access to all other tools. 
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extended-method - synthesis 
variables — [current-call.. 

call_inforination(Syn, CallName, CailDecisions, 
CaliChecks)., 

pcall(CallName, 
topology.. 
analysis.. 
help.. 
collect-input -information.. 
store-to-file.. 
CallDecisjons).. 

Caflchecks.. 
final-check, 

/** GUARDS **/ 
• 	($check slot-design-(synthesislevel-(Syn-_)) 

$and calls_and_guards(Tech, Seq. Guards) 
$and corresponding_term(Syn, Seq. Guard, Guards)).. 

• 	vhere(Node).. 
(Syn \ batch_v_cont). .* 
(Syn \ batch_v_cont).. 
$null. .$null..$null. .$null).. 

Guard.. 
($check slot-design-(synthesis_level-(synthesis-complete))), 

/n MACROS **/ 

/** ASSERTIONS **/ 
(bet slot-design-synthesis_level- (Syn-start)).. 
(bet slot-Node-synthesis_level-Syn).. 

*\== is the Frolog inequality test. 

Figure 6.2: Part of an Extended Method for General Process Evaluation 

The first call in the calling sequence in Figure 6.2 informs the designer of the 

current level in the synthesis hierarchy by checking the pertinent slot in the design 

object. The three parts of the corresponding guard locate this information and, 

using the generic synthesis method in Figure 6.1, identify the guards appropriate 

to the current level. The guards are instantiated in the variable Guard which 

appears further down the list of guards, corresponding to the checks for essential 

action. The unification of the term provides the correct guards for the synthesis 

level. 

The second call, call-information, identifies three labels associated with 
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the synthesis level. CaliName is used to provide a tag for the parallel call which 

follows. CaliDecisions refers to an extended method containing the decisions 

involving non-essential action. This variable is unified to a term in the parallel 

call. Calichecks corresponds to an extended method providing verification of 

the essential actions. This is unified with the call following the parallel call. The 

guard on call-information finds the name of the current node in the design 

graph. The "assertion" invoked on completion of the call sets a slot in the design 

node detailing the synthesis level which was applied there. This is updated if a 

new synthesis level is subsequently applied. 

When moving between levels of the design graph, it is important to have ac-

cess to the decisions relevant to the node currently being investigated, otherwise 

inconsistencies could occur. For example, if the synthesis procedure has reached 

the separation system structure level, a review of design nodes evaluated at pre-

vious synthesis levels cannot be allowed access to the unit operations available 

at the separation system level. This would invalidate any assumptions used in 

their modelling. Associating the design nodes with a decision level also provides 

a means of reviewing the decisions which were available at earlier stages in a 

design. 

The third term in the calling sequence is a "pcall"; a list of operations which 

can be performed in "parallel". The name of the "pcall" is unified with the 

variable CailName which is used as a label for the menu of options and as a 

loopback point if the call corresponding to the essential actions is not completed 

successfully. This menu provides access to the main evaluation tools. The menu 

contains the following options: 

• topology. This is an extended method providing options for adding and 

deleting process items and streams from fiowsheets. The method also in-

cludes procedures for adding nodes to the design graph and moving between 

them. This call has a guard which prevents its use when a decision is being 

made between batch and continuous operation. 

• analysis. This is an extended method allowing analysis of flowsheets, i.e. 

movement in the design graph, displaying and modelling of all or part of 

fiowsheets. This option provides access to some of the same operations avail-

able under topology because they are appropriate to both tasks. Individual 

units- can be analysed separately, for editing specifications, modelling and 
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reviewing models. This option also allows reviewing of streams, with ac-

cess to their specifications, and displaying chemical component properties. 

As with topology, this call is blocked during the batch versus continuous 

decision. 

• help. This is a Prolog call to aid in the completion of a synthesis level. 

- The checks on essential action are invisible to the user, so the help option 

attempts to describe the information that is required. The call accesses the 

extended method containing the checks and displays a menu containing the 

calls in the calling sequence. Each call corresponds to an individual goal for 

a particular decision level and has been given a name which describes this 

aim. On selection of a goal, its associated guards in the extended method 

are interpreted and presented to the user as a list of conditions to be met. 

• collect-input-information. This is anextended method providing access 

to fundamental objects describing the overall design, e.g. products, purity, 

process licenser, etc., the process chemistry and the site. 

• store-to-file. This is a Prolog call which stores all objects used in the con-

struction of the design graph including nodes, unit operations and streams. 

All user-defined relations are also stored. This allows interruption and 

recommencement of the design procedure. 

• non-essential decisions - an extended method which corresponds to the cur-

rent level of synthesis. The method typically includes a parallel call of 

decisions and heuristic evaluation options for the current level. 

The fourth call in Figure 6.2, corresponds to an extended method detailing the 

essential action which should be taken for this synthesis level to be deemed com-

plete. The name of the method is supplied by unification with the Calichecks 

variable in the call-information call. Its guard is also obtained by unification. 

The last call, final_check, is a Prolog goal which always succeeds. Its guard, 

however, checks the synthesis-level slot of the design object for a value in-

dicating that the synthesis procedure is complete. If this is true, the extended 

method exits, which has the effect of advancing one level in the synthesis hierar-

chy. If not, the corresponding loopback point returns the procedure to the first 

call in the method, i.e. current-call. 
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As a whole, the extended method in Figure 6.2 provides access to evaluation 

tools and information modules, which, in this case, include steady-state modelling 

and synthesis decisions respectively. The synthesis procedure of Douglas provides 

a framework for developing the design. At any particular level in the synthesis 

hierarchy, a constraint is imposed on what can be achieved, primarily by restrict-

ing the description of a flowsheet to process items relevant at that level. For 

example, at the input-output structure level, only objects describing plants and 

storage are available. At the recycle structure level, additional objects describing 

reaction sections, separations, stream division, mixing, etc. are provided. 

This constraint encourages the designer to complete decision levels. Only a 

limited amount can be achieved with a restricted number of process items, thus 

requiring the designer to exit the "pcall" in order to advance. The subsequent 

verification determines whether the level is complete or not, indicating the ability 

to proceed or a requirement for more information. 

Decisions which do not require action are implemented within the "pcall" 

along with other evaluation tools. This allows the designer to adopt an op-

portunistic approach to process development, i.e. moving between the tasks as 

necessary. As an example, part of the extended method describing the decisions 

at the input-output structure level of the synthesis hierarchy is shown in Figure 

6.3. 

extended-method input-output-decisions :- 
variables 	[decision_level_intro(input_output_structure).. 

pcall(input_output_options, 
no-of-product-streams.. 
purification-of-feeds.. 
by-product-treatment.. 
purge-requirement), 

/** GUARDS **/ 
$null.. 
( 	($guard 	...).. 

($check ...).. 
($check relation-Tech-(process-chemistry-Chem) 

$and $check slpt-Tech-(feeds-Feeds) 
$and $check slot-Chem-(by_products-Bys)).. 

Figure 6.3: Part of an Extended Method Representing Non-Essential Decisions 
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The first call provides a short piece of text describing the current synthe-

sis level. The following "pcall" contains four options which, if selected, invoke 

pieces of code which can be methods, extended methods or Prolog clauses pro-

viding heuristic evaluation of synthesis problems. For example, in the figure, 

no -of -product -streams tabulates all chemical components which are present 

into products, by-products, reactants, intermediates, etc. and uses their boiling 

points to suggest a number of potential output streams from the process. The 

call purificat ion-of ieeds requires additional qualitative information from the 

designer, which is obtained by a series of questions. Heuristics are then used to 

determine whether or not the feeds should be purified and where they should be 

fed to. 

In general, the guards on the decision calls are not inhibitive and protective 

as for essential actions, but are helpful for allowing presentation of appropriate 

information. For example, the decision about by-product -treatment is only 

relevant if there are by-products identified. This is normally the case, but if a 

problem had no by-products the user should not see that option. The guard, 

therefore, removes it from view. A better example of this is given in Appendix 

F, where options for evaluating design of a distillation column are presented as 

the relevant data becomes available. 

When the designer can achieve no more at a particular level, the termination 

of the parallel call, i.e. selecting "finish" on the menu, instigates the checks for 

essential action. This is performed by a separate extended method associated 

with the decision level. Figure 6.4 shows an example of an extended method for 

verifying the completion of the input-output structure level. 

The calling sequence consists of a list of Prolog goals, all of which always 

succeed. They provide a high level statement of the checks being performed, 

which can then be used by the help facility described above. 

The tests are performed by the guards associated with the high level goals 

in the calling sequence, i.e. here, the guards inhibit progress. For example, in 

Figure 6.4 the third goal, output ..atreams..cl ass if led has a guard consisting of 

five tests: 

1. streajus..classif led which ensures that the chemical species in the plant 

have been classified into products, by-products, etc. and a number of prod-

uct streams has been identified. 
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extended-method - input-output-checks 
variables - [unit s_for_purpose.. 

input-for-all-feeds.. 
output-streams-classified, 

/** GUARDS n/ 
(current_level(Objects, Streams) 

Sand plant_exists(Objects)).. 
(($check relation-Tech-(feeds-Feeds)) 

Sand current_system_inputs(Streams, Inputs) 
Sand dotlength(Feeds, FL) 
Sand inpuLlength_chk(Inputs, FL) 
Sand streams_match_materials(Inputs, Feeds, feed)).. 

(streams-classified 
Sand current_product_streains(Streams, Outputs) 
Sand correct_number_of_outputs (Outputs) 
Sand Scheck relation-Tech-(products-Products) 
Sand streams_match_materials(Outputs, Products, product)), 

Figure 6.4: An Example Extended Method For Verification of Synthesis Level 
Completeness 

current -product -streams which locates the streams in the plant which 

constitute outputs. 

correctnumber..of..outputs which checks that the specified number of 

output streams matches the calculated number. If fewer outputs are spec-

ified than are required, additional streams must be provided. If there are 

more than the required number, a warning of excess is given. 

A CLAP call which checks the products relation of the "technology" object 

Tech. The object represents the original design remit and the relation 

contains a statement of the products the plant aims to produce. 

streams-match-materials which ensures that the materials that have been 

specified as products are present in the output streams. 

In general, the associated loopback points return execution to the "pcall" 

where the missing information can be provided. 

In summary, the tools required for synthesis must be available throughout 

design along with other evaluation modules. This has been accomplished by 
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creating a general extended method providing access to evaluation tools and syn-

thesis decisions in the opportunistic manner required by designers. The "pcall" 

construct in extended methods supports this control mechanism. 

The decisions in the synthesis method of Douglas have been divided into those 

requiring action and those providing a heuristic reduction of the search space for 

a base case design. The decisions involving essential action are used to ensure 

that a level in the synthesis hierarchy has been completed. This is achieved 

with a decomposition of the goals which are then written as guards in extended 

methods. The decisions providing advice are represented in a "pcall" in another 

extended method which displays the choices to the user as a menu. 

The use of extended methods supports the opportunistic control mechanism 

used by designers in process synthesis and evaluation. Since the structure is 

based on Prolog, variable instantiation and unification can be utilised to provide 

the internal details of the general extended method appropriate to the synthesis 

level. 

This facility is particularly useful when moving between design nodes, which 

have a synthesis level associated with them corresponding to the level most re-

cently applied there. The general extended method can then adopt the synthesis 

level appropriate to particular nodes in different branches of the design graph. If 

for example, one branch is developed to the level of separation system structure, 

and alternative branches are only at the recycle structure level, when the designer 

moves between them, the decisions pertinent to the node can be made available. 

An example application of the synthesis tool is shown in Appendix E. 

6.2 Design of Unit Operations 

Design activities can be categorised as either "routine" or "non-routine". Routine 

design encompasses problems which have a well defined design procedure which 

is ostensibly the same for any application. Design of distillation columns, heat 

exchange equipment and certain types of reactor fall into this category. The 

different tools which may be used to complete the various stages of the routine 

design are coordinated by the aims, and methods to achieve the aims, which are 

known in advance. Myers et al [5] discuss this approach in the design of distillation 

columns. Their method involves defining all possible courses of action and the 

points where choices are made in the procedure. In this way, the possible range of 
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starting conditions and the different design considerations can all be represented 

and included as a path through the decision tree. 

This type of approach aims to provide automatic design of unit operations, 

the example considered being distillation. In order to achieve this, the design of 

the item must be at a stage where the designer has confidence in the basis of 

the automatic design. For instance, in the case of distillation, once the number 

of plates has been decided, the design of the individual trays can be performed 

automatically with reasonable confidence. The crucial point is the confidence 

that the designer has in the calculated number of plates. Myers et al state that 

the starting point for automatic column design is once the type of column, type 

of tray, reboiler, condenser, performance requirements, etc. have been specified. 

However, at this stage, much of the design of a distillation column has been 

completed. 

There is, therefore, a requirement for a strategy linking the overall synthesis 

procedure to the point where automatic design becomes acceptable. This section 

addresses an approach which extends the overall synthesis method to consider 

the design of individual unit operations. Specialists in design are required to for-

mulate pertinent strategies for particular unit operations, so the work presented 

here only demonstrates the general principle. 

The design of individual unit operations can be considered as an extension of 

the overall synthesis method because an opportunistic approach using different 

modelling methods including the evaluation tools of general synthesis is required. 

Extended methods, therefore, are the most appropriate representational tech-

nique. The example unit operation considered here is distillation. 

The problem can be decomposed into two subproblems: 

Identifying the most suitable point in the synthesis procedure at which the 

unit operation design procedure should be made available. 

Formulating a strategy for developing a loosely defined unit operation into 

a detailed specification. This can then be used to complete the design 

automatically, e.g. by an approach such as Myers et al, or at this point the 

completion of the design becomes the concern of another design function. 

In the case of distillation design, the starting point of the strategy is at the 

liquid separation level of Douglas's decision hierarchy which is detailed in Section 
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1.1.2. At this point, individual separations are identified and possible distillations 

are evaluated. The procedure begins with the calculation of relative volatilities 

which can be used to decide heuristically whether or not distillation is feasible. 

One of the heuristics described by Douglas is if the relative volatility of the 

components in the desired split is less than 1,1 then it is unlikely that distillation 

will be economical. 

Assuming that distillation is economical, the next decision suggested by Dou-

glas is to determine column conditions. For example, if possible the column 

should be operated at, or slightly above, atmospheric pressure. This depends on 

the ability to condense the tops and reboil the bottoms. It is preferable to have 

the tops condensed by cooling water and the bottoms reboiled by low pressure 

steam. To determine suitable column conditions, the bubble point of the tops 

and bottoms are calculated. These indicate whether or not the streams can be 

respectively condensed by cooling water and reboiled by low pressure steam at 

the chosen pressure. If they cannot, a pressure where this is possible can be 

calculated. 

The calculations can all be performed procedurally, requiring no interaction. 

The decision about the selection of column conditions still lies with the designer, 

since some trade-off may be required between pressure and heat exchange media. 

Once column conditions are fixed, the number of plates can be calculated. 

There are several different models with different levels of assumption which can 

be used. Initially, an approximate number of plates and reflux ratio can be 

determined by a Fenske-Underwood-Gilliland method. In the case of a binary 

mixture, McCabe-Thiele and Ponchon-Savarit procedures could also be used. 

When a number of plates has been calculated, a plate-to-plate model can be used 

for more accurate simulation. 

This particular strategy can only be used if the specifications are on the 

product composition. If the number of plates has been defined, the order of the 

tasks is different. 

The example described above identifies the important points of what can be 

considered an extension of a general synthesis procedure: 

1. There are high level procedural goals, e.g. ensuring that distillation is going 

to be feasible, determination of column conditions and calculation of the 

number of plates and refiux ratio. 
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Evaluation of the design remains opportunistic, particularly since different 

specifications can result in revision of the order of the tasks. The designer 

can still instigate different models and modify them as required. Interac-

tion with other tools may also be required to move between nodes in the 

hierarchy, for example, to create a plate model of the column. 

Models specific to the design of the unit operation are required, e.g. Fenske-

Underwood-Gilliland, McCabe-Thiele, etc., but interaction with general 

modelling facilities is still required. For instance, the Fenske model may 

be evaluated at a range of temperatures. Other modifications of the model 

may also be necessary. 

Some models have a specific range of application, e.g. those applying to 

binary separation, and should only be presented to the user in relevant 

- situations. 

These points are similar to those identified in the development of overall 

process synthesis, implying that the same representation of extended methods 

can be used here. 

The extended method for distillation design is accessed as a decision which 

does not require action. This allows the opportunistic use of other tools available 

in the extended method for general process evaluation. The models created in 

the evaluation of distillation can then be modified and reviewed like any other 

models. 

The models created for distillation evaluation, particularly for calculating the 

number of plates, may not correspond to the decomposition of models described in 

Section 5.5.1. Such a situation could arise if the tools are developed independently 

by domain experts, as suggested here. The models will then have been tailored for 

a particular purpose. For example, in distillation, Fenske's equation can be used 

to calculate the minimum number of plates, Underwood's equation determines 

minimum refiux ratio and the Gilliland correlation estimates an actual number 

of plates. 

In a fiowsheeting context the same equations may be used, but in conjunction 

with mass and heat balance equations. The approach for automatic model selec-

tion in Section 5.4.1 was developed specifically for fiowsheeting, and, while this 

facility is available throughout the synthesis procedure, it is not directed towards 
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a particular design task such as estimating the number of plates in a distillation 

column. When models are used for such tasks, it is unlikely for them to conform 

to the decomposition into five subjects used for fiowsheeting . The models do 

not have to be complete in a flowsheeting sense, i.e. they do not necessarily 

incorporate mass and heat balances around a unit. 

For this reason, models developed for design tasks are considered as separate 

from fiowsheeting models even though they may both contain some of the same 

CLAP relations. Therefore the mechanism for automatic model selection has 

been extended to identify groups of relations that do not conform to the five 

topic decomposition. When such situations are identified, the context of the 

model and its application are assessed to ensure the model's acceptability. For 

instance, if a unit is being evaluated individually, then no alteration of the model 

is required. If, however, it is part of a flowsheet then a model based on the 

decomposition replaces the non-standard one. 

This is also the case if the designer attempts to modify the high level model 

description as discussed in Section 5.5.1. It cannot be assumed that a non-

standard description conforms to any prt of five point decomposition, so the 

whole model is replaced to ensure the consistency of modifications. When the 

user decides to modify a model, the current description and a recommendation are 

displayed. If a modification of a non-standard model is attempted, it is replaced 

by the recommended one, the change then being made. 

Appendix F shows a worked example of the interaction of a distillation design 

procedure with the general evaluation method. Different models of a distillation 

column are created for the calculation of particular properties. Subsequent modi-

fication of the model requires a standard fiowsheeting description to be generated. 

Certain classes of model have a particular range of application and it is im-

portant for the designer only to have access to them in relevant situations. For 

example, the example implemented for distillation design includes two models for 

calculating the number of plates. One provides a shortcut estimate for the spe-

cific case of a binary separation. The other - the Fenske model - is more widely 

applicable. For multicomponent separations, therefore, the binary model should 

not be displayed to the user. For binary separations, both can be displayed, 

unless some criteria for selection can be determined. 

The modelling tasks are represented as a network of extended methods, one 
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of which is for the calculation of the number of plates. A parallel call is used 

to present the modelling options to the designer as a menu. The display of the 

options is, therefore, controlled by guards, in this case to restrict the shortcut 

method to binary separation only. The construction of the parallel call and its 

accompanying guards is shown in Figure 6.5. 

pcall(calculate_number..of_trays, 
fensice_underwood_gifliland.. 
shortcut-binary), 

($null.. 
$check slot-Sep- (components-C-, _])) 

Figure 6.5: Guard for Selection of a Binary Separation Model 

The guard on the shortcut binary method checks the components slot of the 

• object, Sep. On calling the method, Sep will be instantiated to the name of the 

distillation column. If the value of the slot is a list with only two members (L, .J) 

the separation is binary and the model usable. 

In conclusion, strategies for the design of individual unit operations can be 

developed as extensions of a general synthesis procedure. A similar structure of 

extended methods can be used for representation., providing high level goals and 

a mechanism for their opportunistic realisation. A domain expert should develop 

the hierarchy of tasks required for a particular unit operation. Mathematical 

models may be developed for specific tasks in the design of a unit operation, 

e.g. the number of plates in a distillation column. These models should be 

considered incompatible with those developed elsewhere, such as fiowsheeting. 

They can, however, be evaluated using the set of tools available, e.g. low level 

modification and re-evaluation with different specifications. When interaction 

with other models is required, for instance, in a ilowsheeting context, the model 

should be replaced. 

6.3 Interface Between Design Data and Flow-
sheet Solvers 

In comparison with the applications of design synthesis discussed in the previous 

sections, model formulation requires little interaction with the designer. The 
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interface between a specified problem and fiowsheet solvers should be invisible to 

the user. The approach to solution is algorithmic as opposed to opportunistic. 

The specification of the problem and the modification of models requires a greater 

degree of flexibility than in model formulation. In all, the numerical evaluation 

procedure can be divided into four tasks: 

Identification of the scope of the problem to be solved. 

Generation of a mathematical model appropriate to the problem. 

Solution of the generated model. 

Presentation of results. 

This procedure is normally iterative. Stage 4 allows a review of the model and its 

basis, which provides an opportunity to return to step 2 and modify the model. 

To accommodate this flexible approach, the high level formulation tools have been 

written as extended methods. The constituent parts have been written variously 

as Prolog goals, CLAP methods, extended methods and C routines, whichever 

was most appropriate. 

6.3.1 Problem Scope 

The scope of the problem ranges between the calculation of a single property and 

the simulation of whole flowsheets. A mechanism has been developed to allow 

the specification of the size of the problem, which depends on the application. 

It is important, therefore, to identify the types of calculations that are required 

and in what situations. 

Individual units may require independent calculations of particular properties, 

e.g. calculation of the number of plates in a distillation column. This type of 

evaluation can be associated with design methods for particular unit operations 

as described in Section 6.2 above. Such calculations can then be presented to the 

designer at the appropriate stage of the process development. 

In an opportunistic development of a design, however, individual properties 

of streams are often calculated. Streams retain a single level of functional and 

structural detail throughout process synthesis, and so can have a range of calcu-

lable properties associated with them. For example, valuable attributes include: 

bubble and dew points, K-values and vapour pressures. This information is made 
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available to the designer in a parallel call in an extended method, allowing anal-

ysis of streams (see Section 5.7). The use of the models can be restricted to the 

later stages of synthesis by the use of guards. The parallel call and associated 

guards from the extended method for stream analysis is shown in Figure 6.6. In 

the example, the synthesis level must be either at the reactor system level or the 

separation system level. 

pcall(stream_options, 
edit-stream.. 
calculate-stream-properties).. 

($null.. 
(temp_and_pressure_known(Streaiu) 

$and member(Syn, [reactor_system, separation-system]))).. 

Figure 6.6: Part of Extended Method for Stream Calculations 

In the wider context of steady state flowsheet modelling, calculations can be 

performed for whole flowsheets, sections and individual units, all of which are 

represented in the design graph. This decomposition of fiowsheets can also be 

used as the subject of other evaluation modules, such as control system design 

or hazard assessment. 

Figure 5.10 shows the division of analysis tasks into four groups, including 

those of flowsheets and units. Selecting analysis of an individual unit defines 

that as the scope of the problem. Any modelling performed under this option 

incorporates only the specified unit. Selection of the fiowsheet analysis tool, 

provides procedures for moving through the design graph, i.e. selecting a whole 

flowsheet, modelling a node i.e. again, a fiowsheet, or identifying a section, as 

described in Section 4.3.2. 

Throughout design, access to mathematical models of fiowsheets and their 

constituent parts is required, but not in a predefinable order. Therefore, gen-

eral steady state modelling tools have been implemented in extended methods. 

Different modelling situations have been identified: 

. Steady state fiowsheet modelling, described in Chapters 3, 4 and 5 

• Calculation tasks as steps in a design procedure, particularly for individual 

165 



unit operations discussed in Section 6.2 

• Calculation of stream properties. 

Appendix F describes an example of the interaction of the different modelling 

facilities. 

6.3.2 Model Generation 

Model generation constitutes an "expert" task and should, therefore, be auto-

mated as fax as possible, as discussed in Chapter 5. The user should be able 

to describe the design in familiar terms, that is, functional .descriptions of the 

processes involved and specifications for their operation. The automatic model 

generator then determines a mathematically consistent equation based descrip-

tion from the process definition. 

Process definition, in terms of process units and specifications, is achieved 

flexibly by using extended methods, as described in Section 5,7. Translating this 

definition into a mathematical model is achieved in two stages: 

Inferring the high level model description, as discussed in Section 5.4.1. 

Generating the equation set from this description. 

This second step corresponds to the creation of the "specialise" form of the rela-

tion from the "constraint" form. The operation involves creating equations con-

taining Prolog variables corresponding to the terms indicated in the constraint 

relation, including the expansion of summations and "for all" statements, e.g. 

E in.massflowrate —* In 1  + In2  + ... + In 
in€ Inlets 

A corresponding list of bindings is generated to associate each Prolog variable 

with a slot or relation, e.g. In1  may correspond to the mass_f lowrate slot of 

stream si. 

The manipulation required in this process uses pattern matching to identify 

terms such as summations. The procedure is also recursive in that a descrip-

tion of an equation can be decomposed by identification of operators used in its 

construction. For example, the expression: 

x - 	= o 
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is first decomposed into: 

and 

ri: 

using the equality operator as the location for the split. The first expression can 

further decomposed by the same coded instructions into: 

and 

Y 
This process continues until a single term is isolated which can then be interpreted 

to provide the appropriate Prolog variable form and associated bindings. 

Since the procedure is recursive and relies on pattern matching, and later 

on unification to match the variables in the equations with their bindings, an 

implementation in Prolog is most appropriate. 

Once a model has been created, and evaluated, options are provided for cus-

tomising it. Specifications can be altered for comparison with other results. The 

high level structure of the model can be modified within guidelines which ensure 

consistency. Individual terms in equations that take different values, or approx-

imating expressions, can be changed to create specific models. These options 

provide flexibility in model definition, but the "expert" knowledge required to 

maintain consistency provides a rigid framework for development. As described 

in Section 5.7, these tools are implemented in a network of extended methods to 

allow flexible access. 

A extended method has been written to provide flexible high level access to 

the modification procedures which are themselves algorithmic, conforming to the 

model decomposition discussed in Chapter 5. These therefore, are written as 

CLAP methods or Prolog goals. Their use is demonstrated in Appendix F 

6.3.3 Model Solution 

The solution of formulated mathematical models is a well defined procedure 

with proven algorithms. The realisation of such techniques is most appropri- 

ately achieved in a procedural language. For example, Newton's method has 
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been written in C and different versions of the sequential modular program, Es-

spros, are written in FORTRAN ,Fortran8x and C. There is little to be gained 

by rewriting these solvers, but better access to their constituent parts can be 

provided for more interactive development of models. For example, the equation 

based solver has been divided into, among others, tools for degrees of freedom 

checking, equation linearisation and variable initialisation. These tools can be 

accessed individually by other solution techniques at suitable points in a solution 

strategy. 

The implemented strategy is defined procedurally in CLAP methods as de-

scribed in Section 3.4. Constructs such as if - then - else were used for the 

limited decision making required, e.g. if non-simultaneous solution is possible 

then solve by symbolic manipulation else use Newton's method. 

6.3.4 Interpretation of Results 

As discussed in Section 5.6, designers may wish to view modelling results in 

different ways. For example, a stream table for displaying fiowsheet data, or 

tables to collate data for individual streams or units. As with modelling tools, 

these options • should be available through menus, which could be achieved with 

an extended method. This has not been implemented in the work described here. 

6.4 Summary of Strategy Representation 

This chapter discussed the use of a range of representational techniques for the 

different aspects of design, as described in Section 2,1. Some problems are well 

defined with proven algorithms, such as solution of sets of non-linear equations or 

sequential modular fiowsheet simulation. The algorithms need not be changed, 

but need to provide wider access to their models and, in some cases, other nor-

mally internal functions, e.g. degrees of freedom checking. The representation of 

these techniques should be procedural. In this work, for example, an equation 

based solver has been written in' C. 

Access to a wide range of tools which have no predefined order of execution 

can be achieved by using extended methods, a representational device developed 

for such situations. Extended methods have also been used for creating a process 

synthesis tool where high level goals can be defined, but, again, there is no strict 



procedure for attaining them. 

Some aspects of process synthesis require reasoning to achieve a solution, e.g. 

whether or not to purify process feed streams. This can be represented by rules. 

Other techniques utilised include an object oriented description of a hierarchy 

of fiowsheets, the consistency of which can be maintained using object oriented 

methods and demons. Logic programming, in the form of Prolog, has been used 

in the translation of "constraint" relations into "specialise" relations. 

In conclusion, reasoning for different situations is performed by the appropri-

ate techniques. In the case of overall design, an opportunistic approach within 

a high level framework can be defined using extended methods. Individual in-

ferences can be made using suitable techniques, e.g. rules for decisions, objects 

to maintain consistency and Prolog for symbolic manipulation. Strategies can 

also be represented procedurally using CLAP methods, e.g. for formulation and 

solution of equation based problems. At the lowest level, algorithms, such as for 

matrix solution, are most suitably implemented in a procedural language such as 

C or FORTRAN. 
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Chapter 7 

Conclusions 

A prototype system has been developed to provide support for fiowsheet mod-

elling throughout design. Issues considered in this work are as follows: 

• Existing fiowsheeting programs are restricted to the range of problems 

which can be created from their unit model libraries. 

• Detailed modelling of individual unit operations is usually performed by 

separate programs. 

• To maintain data consistency between the different models, it is desirable 

to have a central representation of a design from which models can be 

developed. This also allows the development of a single modelling tool 

which can be used for different applications. 

Design has no definite procedure for developing an economically acceptable 

plant from an initial specification. For this reason, a steady state modelling 

tool for use throughout design cannot be considered separately from other design 

tasks. Since no procedure is defined, there is no specific point where a mod-

elling tool is used without reference to other tools. Thus the development of the 

prototype system had to consider providing access to different design evaluation 

modules in the opportunistic manner of designers. 

7.1 Representation 

The prototype system uses model based techniques [43] to represent unit opera- 

tions, streams, chemical species, modelling equations and generated designs in the 
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object oriented language, CLAP [36]. A central model of the design can be con-

structed by the user from generic objects and then manipulated with reasoning 

modules. 

An inheritance hierarchy of objects representing process units has been con-

structed to provide relationships between specialisations. Individual objects have 

been described in a general manner to cover a range of applications. 

Modelling equations have been defined as relationships between attributes of 

process unit objects. Symbolic representation allows access to the equations and 

their terms by a designer. Equations have also been related to each other in 

a hierarchical structure where terms in an equation can be defined by further 

expressions. This structure, and the ability to express equations symbolically, 

are useful properties in model development. 

Process units and streams are related to each other topographically. A struc-

ture of objects has been developed to maintain connected process units and 

streams as flowsheets. The structure permits hierarchical process development 

through "refinement" and "part of" relationships. 

The hierarchy constitutes the central model described above. The definition 

of attributes for process unit objects are concerned with steady state calculations 

and process synthesis. Further attributes will be necessary for implementing 

additional reasoning modules. 

A model based approach has also been used for the representation of high 

level procedures. Extended methods have an explicit structure and function 

allowing reasoning about the individual calls in the procedure. The structure of 

extended methods permits definitions of high level aims which do not necessarily 

have a fixed procedure for their fulfillment. This has been demonstrated with 

applications in overall process synthesis and distillation column modelling. 

Different tasks in design involve different types of reasoning. Chemical engi-

neering has many algorithms which do not require to be altered. A design system 

should be able to accommodate algorithms as well as symbolic inference. This 

has been demonstrated by implementing mathematical solvers in the procedural 

languages C and FORTRAN which can be accessed by the system. Extended 

methods have been used for procedures with high level aims but no low level 

methods for achieving the aims. Prolog has provided symbolic inference using 

logical rules for decision making applications in process synthesis. 
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7.2 Modelling 

A distinction has been made between the requirements of the modeller who de-

velops models and the designer, who uses them. The equation representation 

technique provides a useful structure for developing models. The designer, how-

ever, requires a flexible way of using these models without having to create new 

ones. 

A mechanism has been developed for generating flowsheet models from high 

level definitions such as "component balance" and "heat balance". The details 

of model definition should be determined by an expert modeller along with the 

rules for their selection for flowsheeting applications. 

In this manner, a model is created which the designer can modify for specific 

applications. Access to the high level selection method enables the designer to 

select alternative definitions for individual parts of a model rather than forcing 

acceptance of an automatically generated model. This alteration of the model 

is constrained by the structure developed by the modeller. At a low level, the 

designer can select different definitions for equations or individual terms. 

Different flowsheet alternatives can be evaluated without having to create an 

entire flowsheet. This is done by associating different models with a single unit. 

This reduces the amount of information to be stored and, consequently, to be 

reviewed by the designer. 

Models are associated with the object representing the subject of the model, 

e.g. a node for a flowsheet or an individual distillation column. A symbolic 

description of any model is available to the user for display or documentation. 

Solutions of any previous model can also be reviewed. These modelling facilities 

should be available throughout design. For this reason, they have been imple-

mented in an extended method. 

Since access to equations is required for modification, an equation based so-

lution method has been implemented. A sequential modular technique can be 

used, but does not provide the required flexibility in model representation and 

equation access. 
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7.3 Summary 

In conclusion, the representation of equations used in the developed system pro-

vides a flexible method for model development. Models have been defined for 

analysis of systems ranging from block flow diagrams to unit operations. By 

allowing reasoning about equations, the format also supports interactive model 

modification as part of a design modelling tool. Thus, the symbolic representation 

enhances the modelling capabilities of modellers and designers. 

The use of a central model provides support for different design tasks while 

maintaining data consistency. Thus, the modelling tool which has been developed 

can be used for a range of applications ranging between modelling block flow 

diagrams in a flowsheeting context, and detailed unit operations in individual 

design procedures. 

Support for different design tasks has been demonstrated with the implemen-

tation of steady state modelling and process synthesis tools. The opportunistic 

manner in which designers access individual tools within a framework of high 

level aims is achieved with extended methods. 
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7.4 Future Work 

This work has described development of a flexible steady state modelling system. 

Its position as a design tool has been discussed with respect to other design tasks. 

To demonstrate the principle of a central model accessing different tools, the 

modelling system has been supplemented by an implementation of the Douglas 

synthesis procedure [6]. This work could be extended to include more of the 

functions illustrated in Figure 1.1, e.g. control and hazard analysis. 

Future work couldiddress the implementation of different types of model for 

these different design tasks, e.g. dynamic and qualitative models. The current 

library of steady state models could also be extended. 

More design strategies are required, for instance, to aid in heat exchange 

network design, reactor design and separation sequencing. Some tasks can be 

automated, such as separation sequencing, but reactor design, for example, may 

require a high level strategy such as that used for overall synthesis. Experts in 

the specific functions are required to develop these methods. 

The graphics package used in this work was quite restrictive. However, in 

many cases, more efficient communication of information can be achieved with 

a considered graphical presentation than with text. Further work should be di-

rected to developing an interactive system where relevant information is presented 

as required. It should also be possible to compare results by displaying solutions 

simultaneously. The data is structured and accessible, so different options for 

presentation should be available to the user. 

Development of a practical tool from the prototype presented here, requires 

interfaces to a physical properties package, a robust linearised equation solver 

and a database. The database should maintain the data generated during each 

design including models developed and process refinements and alternatives. 
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Appendix A 

The Prolog Programming 
Language 

In order to use CLAP a knowledge of Prolog is not deemed necessary by the 

author. However, it is necessary to introduce the terminology and principles of 

the language in order to understand the explanation of the tools developed in 

this work. 

A.1 Facts and Rules 

Prolog is a declarative language based on a subset of predicate logic, which 

means that programs are constructed from "Facts" and "Rules", collectively 

called "Clauses". The family tree shown in Figure A.1 is represented by the 

example Prolog program shown in Figure A.2. This example program is used 

throughout this appendix. 

George 	 Steven 
NNI 

Peter-Mary 	Neil 

John 

Ian 

Figure A.1: Family Tree 

Each Clause is constructed from a "Predicate", an optional list of arguments, 

a set of "Goals", and is completed by a full stop. Generally, a Clause with Goals 

is a Rule, other Clauses being Facts. Figure A.2 will be used throughout this 

appendix as an example Prolog program. In the figure, the Clauses called parent 

and grandfather are Rules containing their requisite conditions, while father 
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father(steven,neil). 
father(joIm,ian). 
father(peter.john). 
father(george ,peter). 
father(steven,mary). 

mother(mary,john). 

grandfather(A,B) - 
father(A,X), 
parent(X,B). 

parent(A,X) 
father(A,X). 

parent(A,X) 
rnother(A,X). 

Figure A.2: Example Prolog Program 

and mother are stated Facts. A further property of Rules is that the argument 

list contains some Prolog variables, which are identified by the fact that they 

begin with an upper case letter. For instance, A is a Prolog variable, steven, 

however, is a Prolog atom or value. - 

The labels of the Clauses , e.g. father, mother, etc. are the Predicates and 

provide the relationship between the following list of arguments. For instance, in 

the figure, the statement: 

fa.ther(steven, neil) 

can be read, "Steven is the father of Neil". The Rule: 

grandfather(A,B) 
father(A,X), 
parent(X,B). 

can be read "A person, whom we shall call A, is the grandfather of person, B, if 

A is the father of another person, X, and X is a parent of B". The definition of 

the Rule uses the additional symbols: 

• ":-" the "if" operator, separating the Rule from its Goals, 

• "," the "and" operator, separating the Goals. 
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A third symbol, the "or" operator ";" is not included in the example. 

Figure A.2 shows two types of Rules. The grandfather Clause has a single 

conditional definition. However, parent has two alternatives. In general, logical 

Rules with multiple definitions are ordered with exceptions first and general cases 

last, which reflects the order of execution of Prolog programs. In the case of 

parent, however, neither represents a special case, so the order is unimportant. 

The two statements could equally well have been written as one using the "or" 

operator, as follows: 

parent(A.X) 
father(A,X); 
rnother(A,X). 

In summary: 

. Prolog programs consist of definitions of Facts and Rules, 

• Clauses consist of a Predicate, a list of arguments and a list of Goals, 

• Facts are Clauses which are unconditionally true and are without Goals, 

• Rules are conditional upon the satisfaction of Goals, and can have several 

definitions for special and general cases, 

• Goals are separated by commas Or semi-colons which can be read as the 

conjunctions "and" and "or" respectively. 

A.2 Data Types 

There are six basic data structures supported in Prolog. These are: 

• variables - uninstantiated terms, e.g. A, Father, etc. 

• numbers - real numbers, e.g. 1.3. 

• integers, e.g. 1, 10, etc. 

• atoms - certain sequences of alphanumeric and special characters, e.g. 

john, a, I I (special case of an empty list, see below). 

• compound terms - structured data items related by operators, e.g. P-Q, 

np(john) 
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• lists 

Lists are compound terms which are particularly important data structures for 

combining related information. They are written as a sequence of items separated 

by commas enclosed in square brackets, e.g. [1,2,3], [a, [A, B, [ I]]. 

A.3 Program Execution 

The example program in Figure A.2 has no apparent beginning or end. This is 

a property of declarative programs. The method of execution is to question the 

interpreted program for true statements. For instance, the question: 

grandfather (george ,john). 

receives the response: 

yes 

i.e. the statement is provable with the stated facts. Equally, if the question 

is: 

grandfather(george ,jock). 

the response is: 

no. 

By replacing the arguments by variables, solutions can be generated, apart 

from affirmative or negative answers. For instance, the question could be asked: 

grandfather(george,A). 

the response is: 

A = john. 

When a variable takes a value, in this case A takes the value john, it has been 

"instantiated". 

Questions can be resatisfied where more than one solution exists. Prolog will 

present the first solution generated. The user then types a semi-colon which 

indicates that the goal should be resatisfied. For example, the question: 
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grandfather(A,jolin). 

is satisfied by: 

A = george 

A = steven 

A further semi-colon receives the no response. 

A.4 Recursion 

Prolog allows the specification of recursive Clauses, i.e. Clauses which refer to 

themselves. For example, the following Clauses can be added to the program in 

Figure A.2: 

ancestor(A,X) 
parent(A,X). 

ancestor(A,X) 
parent(A,B), 
ancestor(B,X). 

Here, the second definition of ancestor also calls itself. The first definition 

is a terminating condition, otherwise the recursion would never find a solution. 

This particular Clause can be used to find all ancestors of a particular person in 

the database, or to check whether or not one person is an ancestor of another. 

For instance, the call: 

ancestor(george, john). 

first checks the terminating condition that george is the parent of john. This 

fails and the second definition is called. In this example, george is the parent of 

peter and now the recursive call of ancestor is made with the arguments peter 

and john. The terminating condition is checked and succeeds, i.e. peter is the 

parent of john. Thus the overall Goal is true, that george is an ancestor of john. 

A.5 Variable Unification 

When a Prolog variable in a Clause or other Prolog structure is instantiated, all 

other instances of that variable in the structure are "unified" to the same value. 
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All variables are local to individual Clauses. For example, the argument list of 

the grandfather Clause contains variables A and B which also appear in the 

constituent Goals of the Clause, i.e. father and parent. If A is instantiated to 

george and B to john, the corresponding variables in the Goals also take these 

values.. 

Another example of unification in a complex structure is a representation 

of equations as compound terms of Prolog variables. For instance, the list of 

equations may be: 

[A + B = C, 3*C - D = A, B + D = E] 

Instantiating A to 20 and C to 30 produces the revised structure: 

(20 + B = 30, 3*30 - D = 20, B + D = El 

Solution of the first two equations, provides values for B and D. The structure 

is now: 

[20 + 10 = 30, 3*30 - 70 = 20, 10 + 70 = El 

A.6 Pattern Matching 

Prolog incorporates a mechanism for automatic pattern matching. This allows 

processing of complex data structures without having to write complex string 

processing algorithms. 

Equation manipulation has been an important part of this work and includes 

recognisable patterns of symbols. The patterns have been used to locate variables, 

linearise equations, analytically manipulate and solve equations and generate 

models form generic patterns. 

For example, consider the equation: 

20 + B = 30 

The program in Figure A.3 locates the numbers in the expression by decom-

posing the equation using its operators. 

The equation fails against the conditions of the first two Clauses since it is 

neither a variable or a number. The third Clause matches the equation where A 
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find-number(V) 
var(V). 

find-number(T) :- 
number(T), 
vrite(T). 

find-number(AB) :- 
find_nurnber(A), 
find_nuniber(B). 

find_nuinber(A+B) : - 
find_nuinber(A), 
find_number(B). 

Figure A.3: Prolog Program Illustrating Pattern Matching 

is instantiated to 20 + B and B to 30. The find..number operation is performed 

recursively on the two terms. 20 + B next matches the fourth Clause where it is 

divided into 20 and B. 20 is a number so is printed, B is not, so it matches the 

first Clause which does nothing further. Similarly 30 matches the second Clause 

and is printed. 

A.7 Backtracking 

When Goals fail or resatisfaction is attempted, Prolog "back tracks" through any 

choice points which have been identified during the solution. For example, if the 

question is asked: 

ancestor(steven,A). 

the first solution generated is that steven is an ancestor of neil which is a 

result of the first definition of ancestor, i.e. steven is a parent of neil. 

In the successful completion of the Goal there were three choice points. The 

first was to investigate the first definition of ancestor, the second was to inves-

tigate the first definition of parent and the third, the first definition of father. 

If the Clause is required to be resatisfied, then the program returns to its most 

recent choice point, i.e. the selection of the Clause for father. The remaining 

Choices at that point are tested and here one more is successful, i.e. steven is 

also father to mary. 
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If further resatisfaction is attempted, no more father Clauses remain 

unchecked. Execution now returns to the parent choice point. The second defi-

nition requires steven to be a mother and consequently fails. The last remaining 

choice point is then evaluated by calling the second definition of ancestor. A new 

choice point is added by the call to parent. The first solution generated here, is 

again that steven is the father of neil. However, for the Clause to succeed com-

pletely, neil must be an ancestor of someone. This fails because the database 

contains no reference to neil as a father. 

Since this fails, execution returns to the new parent choice point where mary 

is generated as a solution. Subsequent checking of mary as an ancestor identifies 

her as the mother of john, i.e. steven is an ancestor of john. 

For completeness, the only other solution is ian. 

182 



Appendix B 

Evaluation of Design Variable 
Specifications 

The evaluation of the design variable specifications is based on an incidence ma-

trix which contains rows representing equations and columns representing vari-

ables. The algorithm bears a close resemblance to equation ordering algorithms 

such as P4 [68], in that a forward elimination pass is made, followed by a back-

ward elimination and the evaluation of any irreducible blocks by a variation of a 

Lee, Christensen and Rudd algorithm [50]. 

As an example, consider the incidence matrix below containing equations 

describing a heat exchanger. Sample specifications include U, w1, w3, T and 7'2. 

Q U A AT w1  to2 to3 to4 1'1 2'2 1'3 T4  
 x x x x 
 x x 
 x x 
 x x x x 
 x x x x 
 x x x x x 

A forward elimination searches the matrix for equations containing only one 

unsolved variable. For example, since w 1  and to2 are specified, and hence elim-

inated from the matrix, equations 2 and 3 fit this description. When such an 

equation is located it is removed from the matrix along with the single variable. 

The search then resumes. Now equation 4 contains only one variable, Q, so can 

also be eliminated. This procedure continues until no more equations can be 

eliminated. The order of elimination corresponds to the precedence order for 

solution, i.e. the order in which the equations are to be solved. 
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The backward elimination is similar, only it searches for variables appearing 

in only one equation, for example, variable A, above, i.e. A will be calculated by 

the equation. The variable and the equation are eliminated form the matrix and 

the search continues until no more can be removed. If all equations have been 

eliminated and variables remain, then these variables are valid design specifica-

tions (structurally, not necessarily so in practice). The precedence order is the 

reverse of the order of elimination. 

Any equations remaining are irreducible blocks which require the selection 

of "spikes" or "tears" for elimination to continue. A variation of the algorithm 

presented by Lee, Christensen and Rudd [50] is used to select the spikes. 

A list of the occurrences of each variable in the remaining equations is 

compiled.. The entry for each variable is of the form: [Frequency, [List of 

Equations]]. The list of variables is ordered, those with the lowest Frequency 

being selected first. 

The variable with the lowest frequency is selected from the list of variables. 

A number of equations, one fewer than the frequency, and including all 

members of the associated list of occurrences, is deleted from the irreducible 

block. 

Backward elimination is repeated. If elimination is possible, the variable 

is a spike. The elimination continues until the procedure terminates, or 

another irreducible block is found, in which case return to 1. 

If elimination fails, the procedure is restarted by deleting a different set of 

equations in 3. If this fails, the next variable with its list of occurrences is 

selected from the list of variables in 2. 

These procedures will find a precedence order for solution, any spikes and any 

unspecified design variables. However, they need to be able to identify badly 

specified variables. At any point during the algorithm, if an equation is located 

which has not been eliminated but contains no undeleted variables, then the 

specifications have been contradictory. 

When such situations are encountered, the elimination terminates and an 

attempt is made to find the offending specification. This is achieved with a 

depth first search algorithm shown below. 
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A variable is chosen from the set of specifications. 

The equations in which it occurs are located. 

One equation is selected from the set and any specifications are deleted 

from its list of variables. 

If no variables remain then this equation has been over specified and one 

specification must be released. 

If variables do remain, then the derivation of a solution path for each one 

is attempted by going to 1. Similarly, if each branch terminates in a speci-

fication, or a variable which has already been derived, the equation is over-

specified and the original specification is a candidate for being deleted. 

This is best illustrated by an example. Consider the equations describing the 

heat exchanger above. The list of specifications may include U and A. Selecting 

A, all equations containing that variable are located, the only one being: 

Q = U.AST 	 (13.1) 

U and A are specifications so they are already "derived" and only Q and AT 

need be investigated. Q appears in two more equations: 

Q = Cp.wi.(Ti - T2 ) 	 ( 13.2) 

Q = Cp.ws .(Ta  - T) 	 (B.3) 

If Cp is defined, and from the previous example, w 1 , T1  and 2'2 are, this implies 

that Q can be derived from these specifications. Similarly, AT appears in one 

equation involving 11 , T2 , T3  and T4 . The current specifications do not include 

T3  and T4  and there are no remaining equations containing them. In this case, 

the specification of A can be considered valid. However, if TI'3  and 1'4 had been 

specified, A could be calculated from the other design variables, so is one of a 

contradictory set of equations. 

If all specifications are feasible, the algorithm checks if any spikes have been 

identified. In which case, the full Newton's method will be suggested for solution. 

Otherwise, the simple analytical solver will be used. Additions to the procedure 

determine whether or not the analytical solver could have been used had the 
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specifications been different. In such situations, a feasible set of design variables 

is presented which will achieve this. 

The full algorithm is as follows: 

Determine the number of degrees of freedom from the equation: 

ND=NV  — NC 	 (B.4) 

where ND = the number of degrees of freedom, N. = the number of variables 

in the system, and N = the number of equations in the model. 

If the number of specified design variables is greater than ND, this indicates 

that the problem is over-specified. Use backward elimination to suggest a 

feasible set. 

Construct an incidence matrix and removed specified design variables. 

Check that no equations have had all variables specified. If so, go to 11. 

Forward eliminate. 

Check that no equations have had all variables specified. If so, go to 11. 

Backward eliminate. 

Check that no equations have had all variables specified. If so, go to 11. 

Evaluate irreducible blocks. 

If all equations and variables are eliminated (or are spikes) then specifica-

tions are feasible. Finish by selecting the solver. If variables remain, these 

are suitable design variables. 

Locate contradictory specifications by determining which of them can also 

be calculated. 
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Appendix C 

Expansion of K Value 
Expressions 

This example is intended to show how the general description of an equation may 

be expanded. Using the expression for multicomponent vapour-liquid distribution 

coefficient, K1, two examples will be described: the ideal Raoult's Law expression 

and the expansion of the fugacity coefficient term. These illustrate the range of 

possible expressions derivable for particular situations. 

The most general form of the K value expression is given by the equation: 

K 
= 7j )< f X 'b x 

(C.i) 
$ 	 c6IXPT 

where: 	= vapour activity coefficient, 

fi  = fugacity coefficient, 

qPi = Poynting correction factor, 

P. = vapour pressure, 

= partial fugacity coefficient, 

PT = pressure. 

This general form has been implemented as a single CLAP relation which can 

be adapted to apply under a range of conditions. The above definition has three 

different types of term: 

• A direct reference to a slot in an object. For instance, PT , is a slot in a 

stream object. 

• A reference to a further expression. P above can be further expanded to 

the Antoine correlation, shown below in equation C.3. If, however, the term 
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can be defined by more than one expression, it can be represented by the 

third category, below. 

• A Prolog variable corresponding to a selection of expressions and values 

for cases where a single term can take different definitions according to the 

assumptions made. Terms such as j',  Oj and 0j, can be approximated 

to 1 or can be expanded to large expressions according to the equation of 

state implemented. 

In order to infer the correct ,  model formulation, the types of term are evaluated 

in strict order, 

A choice is made for terms with alternative expansions. In the above exam-

ple, 7j, f, 4j and Oi are determined first to allow any further expansions to 

be carried out in the later stages. This step unifies the Prolog variable in 

the equation with a numerical value or a reference to a further expression. 

The term is then checked to establish whether or not it is a relation. If it is, 

it may be a static relation or a user-defined relation. Static relations may 

have specified values, similar to slots, or require some inference to determine 

their values. The value is established by performing a "$check relation". 

User-defined relations may be expanded to further expressions or may con-

tain specified values. They are evaluated by first checking for specified 

values for the local instance of the relation, e.g. heat load of stream 4. 

If no value is found, the generic definition of the corresponding relation 

is substituted in the place of the term. Rather than repeating the work 

of expanding the relation, the work space is searched to locate one of the 

same type, previously evaluated in this way. If this fails, the relation must 

be expanded as normal. 

If the term is identified as referring to a slot, it is simply checked to retrieve 

any value there. 

The mechanism for selecting between alternative values and expressions is 

currently implemented as a set of Prolog clauses which must be provided by 

the model developer. Future work should address the nature of the interaction 



required with the end user, since the present version requires some knowledge of 

Prolog to be able to provide the correct choices. 

A "selecteqn_type" call is placed in the "active-code" slot of the generic rela-

tion for each term with alternative representations. The call has four parameters, 

the first being a Prolog variable which is unified with the corresponding term in 

the equation definition. When a decision is returned, this variable will be instan-

tiated to either a number or an expression which is then unified throughout the 

relation. The second parameter identifies the term being reasoned about, e.g. 

"fugacity_coefficient". The remaining two parameters are for providing extra ar-

guments for the inference, intended to correspond to the subject of the relation 

and, where required, a reference object. 

The "select_eqn_type" call is evaluated as it normal Prolog goal. An example 

of such a clause is given below, which determines whether or not the "fugac-

ity..coefficient" term should be replaced by the value, 1, or an expression depend-

ing on an equation of state. The clause has three possible ways of succeeding. 

The first case returns a reference to an expression for fugacity coefficient if an 

"eqn..of..state" has been recorded. The second sub-goal of the clause determines 

whether or not a reduced property correlation is appropriate. The expression 

returned in variable Phi is the reference to either a reduced or non-reduced prop-

erty expression. If either sub-goal fails, the value of the fugacity coefficient is 

taken to be 1, from the second major goal. 

select_eqn_type(Phi $corresponding_to components-C $of Unit, 
fugacity_coefficient, Unit, C) :-

recorded(eqn_of_state, Unit-_,j, 
reduced_props(Unit, Phi). 

select_eqn_type(1,fugacity_coefficient, Unit, C). 

If ideality is assumed, which is the default case shown above, values of 'y, f, 
4j and Oi can all be approximated to 1. The identification of ideal conditions is 

based on the specifications which have been made in the context to which the 

expression is applied. For instance, in this case the provision of an equation of 

state implies non-ideality, i.e. the validity of the assumption of ideality depends 

on information not being provided. The specification of ideal conditions results 

in the following expression: 

1 x 1 x 1 x 
(C.2) 

1 x PT 
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Any term in equation C.2 instantiated to 1 has been through the selection 

process detailed above. 

The vapour pressure term is expanded to the Antoine expression which is 

represented in a separate relation. 

lnPt=zA_ B 
T+C 	

(C.3) 

where: T = temperature, 

A l  B and C = Antoine coefficients. 

lithe ideality assumption is invalid, the identification of an appropriate equa-

tion of state can provide values for 7j, fi  and Oi . The same CLAP relation can 

be used to generate both ideal and non-ideal cases with optional high pressure 

deviations. The second example is concerned with the expansion of the fugacity 

coefficient, f, only, since the expansion of the other terms is performed similarly. 

The non-ideal, but low pressure, K value expression has become: 

#yjxfjxlxPj* 	
C 

lix PT 

The fugacity coefficient relation is in a general format which can be tailored 

to accommodate different equations of state. The ones implemented axe Van 

der Waals, Redlich-Kwong, Soave and Peng-Robinson. The general expression 

implemented was obtained from Smith and Van Ness [76], although several other 

expressions are reported (see Reid et al [771). The expression is given by: 

fj  = exp(z - 1 - log(zj x (1 -- b, 
	

x log(1 + )) 	(C.5) 
 Vi 

where: z i  = compressibility, 

vi = molar volume, 

R = universal gas constant, 

T = temperature. 

The terms a i  and bi depend on the equation of state chosen. The correct 

forms are established from the definition of the specified equation. If, as in this 

example, the Soave correlation is used, the terms are given by: 
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0.42748 x 	x T 
= 	 x (1 + fw(i - T 5)) 2  

PC 	
(C.6) 

bi = 0.8664 x R x T, 	
(C.7) 

PC 

where: fw = temperature dependence factor, 

= critical temperature, 

P0  = critical pressure, 

Tr = reduced temperature. 

The temperature dependence factor is only incorporated in Soave and Peng-

Robinson of the implemented models. The Soave expression being: 

fw 1  = 0.48 + 1.574w1 - 0.176w,? 	 (C.8) 

where: wi  = acentric factor. 

The initial statement of the general form of the equation has, therefore, been 

through several levels of reasoning to reach the final model. The first decision was 

to implement a non-ideal model and then to ignore high pressure deviations. The 

terms of the non-ideal expressions were further altered according to the equation 

of state which had been selected to model the system. 

It is worth noting here that the implemented cubic equation of state has been 

described in a general form which can be adapted to one of four correlations, 

namely Van der Waals, Redlich-Kwong Soave and Peng-Robinson. Four terms 

are expressed as variables in order to accommodate the appropriate parts of the 

equations of state, which is shown below with the relevant terms. The selection 

of a particular equation determines the set of terms implemented. The general 

correlation and the definitions of the terms was obtained from Reid et al [77]. 
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FIT 
V—b V 2 +ubV+wb2  

(0.9) 

Equation a b ulw 

Van der Waals 27R2 0 0 841'., 81'., 

Redlich-Kwong 0.42748R2T3 0.08864RL 10 
Pc P., 

Soave 
0.42748R2V 

(1 + fw(1 - T,95))2 
O.08664RT.,  1 0 PC PC  

Peng-Robinson 0.0.457242T  (1 + fw(1 - T5fl2 
O.07780RT.,  2 -1 PC  PC 

The value of fw for the Soave and Peng-Robinson correlations differs. The 

Soave expression is given above in equation 0.8. The Peng-Robinson expression 

is: 

fw1 = 0.37464 + 1.54226w1 - 0.26992w 
	

(0.10) 

This appendix has demonstrated the expansion of a single expression which 

may be part of a larger model. The use of the K-value expression as part of a 

distillation column model is shown in Appendix D. Two forms of the expression 

are demonstrated, one using the ideal Racult's Law expression, the other an 

expansion of the fugacity coefficient term. 
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Appendix D 

Example Output of Generated 
Models 

It is important for a designer or modeller to be able to evaluate models visually as 

well as numerically. This provides information allowing modification of models as 

described in Section 5.5. Presentation of models can be achieved by interpreting 

their symbolic definitions. 

Displaying the mathematical representation of models requires a structured 

output allowing the designer to locate and study particular sections of a model. 

The CLAP representation of equations as relations provides such a structure. In-

dividual equations can have terms which can be expanded to further expressions. 

For example, the Fenske equation is an expression relating K-values of compo-

nents in the feed, distillate and bottoms streams of a distillation column. The 

K-value definition can be expanded to an expression relating vapour pressure to 

total pressure. This decomposition can be continued for vapour pressure. 

The decomposition of equations and expressions into the definitions of their 

terms corresponds to the division of aAocument into sections, subsections, para-

graphs, etc. Thus a model can be displayed, showing this decomposition, which 

allows the user to assess what modifications are required. Using a document 

preparation system, such as JELTEX,  a table of contents can be generated auto-

matically once the structure of sections and subsections is complete. Not only 

does this provide the necessary means of locating parts of a model, but it can 

also be used to document models used throughout a design. 

Two types of model can be displayed: generic descriptions and particular 

instances. Instances are restricted to the current model of a particular unit, 

while any other models of the unit which have been generated can be displayed 
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in their generic form. When a model is displayed it can be stored in a file, so a 

library of documented models can be created. The following examples have all 

been generated by the program from the symbolic definition of the models. 

The Fenske equation Example 1 is a generic model, i.e. the definitions of the 

terms in the equation are not presented. This example contains most of the points 

discussed above. Only one equation is shown so the decomposition into sections 

and subsections is not demonstrated. Examples of this type of decomposition are 

in Example 2 and Example 3. The name of the equation is, however, used as 

a section heading which is numbered. Numbering follows normal patterns, but 

sections here are labelled "Example" for clarity. A table of contents is generated 

for the sections and subsections. This is shown in Example 2 and Example 3. 

Equations are presented in two ways. The first is the specialise form of the 

relation, i.e. all summations and "for all" statements are expanded. The terms of 

the equation can be constants, specifications or Prolog variables. Prolog variables 

are replaced by labels constructed of "x" and a unique number. For example, the 

variable corresponding to the minimum number of plates is replaced by xS. 

The second form of equations displayed is the generic definition contained in 

the constraint form of the relation. Thus summations and "for all" statements 

can be identified. Each term in the return form of the constraint relation is 

translated into a LTX format. For example the two terms in Example 1: 

min_number_of_plates co,umni 

are generated from the CLAP representation: 

inin..nuinberof..plates Sof Unit 

k_value $corresponding_to components-LK $of Feed. 

The variables LK and Feed are ihstantiated to terms in the list of bindings 

and Unit is instantiated to the subject of the relation by unification. 

In addition to the generic description, a reference for the equation is given 

where one is available. This allows the designer to investigate the models which 

have been implemented, and maintains a record of their sources for the model 

developer. 
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Definitions for the terms of an equation are presented below its general de-

scription. Terms with values and those replaced by labels are displayed with the 

name of the slot or relation to which they are bound. In Example 1, for instance, 

zS is defined as the min-number-of-plates slot in object columni. Since this is the 

generic description of the model, all terms are presented in this manner, including 

ones that are defined by other relations, e.g. k..value. 

Where the current model instance is being displayed, as in D and Example 

3, terms defined by further user-defined relations are presented as lesser sec-

tions to the original equation. For instance in Example 2 the definition of the 

Fenske equation is the same as in Example 1. However, only the definition of 

min-number-of-plates is listed as in the previous example. The definition of the 

IC-value is displayed in a format similar to the Fenske equation. Where the Fenske 

equation is a "subsection", the K-value is a dependent "subsubsection". 

Example 2 represents the default fenske_gilliland_model which contains a com-

ponent balance and the Fenske equation. Example 3 is a modified version of the 

same model. In this example, the definition of k_value has been changed from 

the ideal vapour pressure model to one incorporating a fugacity coefficient. This 

was achieved using the model modification tool described in Section 5.5. 

The revised model has one of the constants in the original expression replaced 

by variable xli which correspohds to the definition of fugacity coefficient. 
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Example 1 fenske_equation of column 1 

The expression is represented by: 

A = log(x2)1log(x11xO) 

which is a specific form of the general equation: 

minsumber..ofplates, umn i = 
log (separation_factor)/log(k_valuezjghf_Jcey ,jn zets  /k_valueheav y _jcey ,jn:eta ) 

(see literature [1]) 
A = minsurnberofplates of column 1 
x2 = mi_separation_factor of column ]. 
xl = k_value corresponding to components benzene in object s4 
xO = k_value corresponding to components toluene in object s4 

References 
[1] Douglas J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New 

York, 1988. 
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Example 2 balance of column 1 
The expression is represented by: 

xO 

which is a specific form of the general equation: 

• 	 equations 

Example 2.1 fenske_gilliland_model of columnl 
(xO) 
The expression is represented by: 

X1 

which is a specific form of the general equation: 

I enske_equationj tmni 
Vu g ht_component s , molar_f lowratejn,et s  * 7nole_fractionhjght_,,mponents ,jnz eta  = 
molar_f lowratedjstj:late_afream  * 

Vheav y .componenis, molar_f lowratei1 3  * mole_f ractionheavy _componen ts,jnlcts  = 
rnolar_flowratebotjoms _ajream  * mole_f ractionh eavy _,Omponen gs ,bou oma_stream 

Example 2.1.1 feuske_equation of colurnnl (xl) 
The expression is represented by: 

x7 = log(x6)1log(x41x2) 

which is a specific form of the general equation: 

minsumben.ofplates ct,jumn j = 
log (separation-factor) / log(k-valUeligh Jcey ,in:ets/k_valueheav y _jccij ,inl eta) 

(see literature 1 11) 
x7 = minsumben.ofplates of columnl 

Example 2.1.1.1 mf_separation_factor of columnl (x6) 
The expression is represented by: 

0.995/0.005 * (0.99/0.01) 

which is a specific form of the general equation: 

* 
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(see literature 111) 
0.995 = mole-fraction corresponding to components benzene in object s5 
0.005 = mole-fraction corresponding to components toluene in object s5 
0.99 = mole-fraction corresponding to components toluene in object s6 
0.01 = mole-fraction corresponding to components benzene in object s6 

Example 2.1.1.2 k_value corresponding to components benzene in 
object s4 (x4) 
The expression is represented by: 

1 * 1 * 1 * x5/(1 * 760) 

which is a specific form of the general equation: 

Vcomponents, vapour..activityxoefficient * fugacity_coefficient * 
poynting_correction * 

vapour_pressurecomponenj,,4/partial_fugacity_coefficient * pressure34  

(see literature [21) 

vapour-pressure corresponding to components bénzene in object s4 (x5) 
The expression is represented by: 

exp(15.9008 - 2788.51/(366 + (-52.36))) 

which is a specific form of the general equation: 

Vcomponenta, exp(ant oine_A components - antoine_Bcomponenj, /temperature, 4  + 

(see literature [31) 
15.9008 = antoine_A of benzene 
2788.51 = antoine_B of benzene 
—52.36 = antoine_C of benzene 
366 = temperature of s4 
760 = pressure of s4 

Example 2.1.1.3 k_value corresponding to components toluene in 
object s4 (x2) 
The expression is represented by: 

1 + 1 * 1 *x3/(1 * 760) 

which is a specific form of the general equation: 

Vcomponen ts , vapoursctivitysoefficient * fugacity_coefficient * 
poynting_correction * 

vapour_pressure,,,mponent,,,4 /partial_fugacity-coefficient * pressure34  

(see literature [2]) 
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vapour-pressure corresponding to components toluene in object .s4 (x3) 
The expression is represented by: 

exp(16.0137 - 3096.52/(366 + (-53.67))) 

which is a specific form of the general equation: 

Vcomponents, exp(antoineAcomponents - antoine_Bcomponents /temperature84  + 
ant oine_Ccomponents) 

(see literature [3]) 
16.0137 = antoine_A of toluene 
3096.52 = antoine_B of toluene 
—53.67 = antoine_C of toluene 
366 = temperature of s4 

References 
Douglas J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New 
York, 1988. 
Reid R.C., Prausnitz J.M. & Poling B.E., The Properties of Gases and Liquids, 
4th Edition, McGraw-Hill, New York, 1987. 

McCabe W.L. & Smith J.C., Unit Operations of Chemical Engineering, 3rd 
Ed., McGraw-Hill, 1976. 
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Example 3 balance of column 1 
The expression is represented by: 

xO 

which is a specific form of the general equation: 

equations 

Example 3.1 fenske_gilliland_model of columml 
(xO) 
The expression is represented by: 

xl 

which is a specific form of the general equation: 

fenske_equation a,,tmni  

VIi ght..components, rno1ar_f1owrate1,j 3  * rnole_fractionhighf_components,inlets = 
rnolar_flo'wratedjstjjjajetream * rrLole_fraction:jght_, mponents,dj,tjlzate_stream 

Vheav v _compoments, rnolar_flowrate,t3  * rnole_fractio'nheavy _componen ts ,inlcta  = 

rnolar_flowratebouoma_3gream * rnole_fractzonhcavy _.,,,mpongnts,bottoms_nream 

Example 3.1.1 fertske_equation of column]. (xl) 
The expression is represented by: 

X19 = log(x18)1log(xlO1x2) 

which is a specific form of the general equation: 

mzvtnumberofplates wjumni = 
log (separation_f act 	 /k_valueh eavy jcey ,im lets ) 

(see literature 111) 
x19 = min-number-of -plates of columnl 

Example 3.1.1.1 mf_separatiori_factor of columnl (xiS) 
The expression is represented by: 

0.995/0.005 * (0.99/0.01) 

which is a specific form of the general equation: 

rnole_fractionught_key ,aistizzate_stream / mole_f ractionh eavy _k cy ,distie:ate _sfream  * 

mole_fr act ion heavy_kcvoottoma_.tream/rnole_fractionught..key,bottoms_stream 



(see literature 111) 
0.995 = mote-fraction corresponding to components benzene in object s5 
0.005 = mole-fraction corresponding to components toluene in object aS 
0.99 = mole-fraction corresponding to components toluene in object 86 
0.01 = mole-fraction corresponding to components benzene in object s6 

Example 3.1.1.2 k_value corresponding to components benzene in 
object s4 (xlO) 
The expression is represented by: 

1 * xli * 1 * x17/(1 * 760) 

which is a specific form of the general equation: 

Vcomponents, vapour—activity—coefficient * fugacity_coefficient * 
poyntingcorrection * 

vapour_pressure1,,mponej5 , 54 /partial_fugacity.coefficient * pressure34  

(see literature [2]) 

vapour-pressure corresponding to components benzene in object s4 
(x17) The expression is represented by: 

exp(15.9008 - 2788.51/(366 + (-52.36))) 

which is a specific form of the general equation: 

Vcomponents, exp(antoine_Acomponengs - ant oine..B components /temperatures4 + 
ant oine_Ccomponents) 

(see literature [3]) 
15.9008 = antoine_A of benzene 
2788.51 = antoine_B of benzene 
—52.36 = antoine_C of benzene 
366 = temperature of s4 

fugacity_coefficient corresponding to components benzene in object s4 
(xli) The expression is represented by: 

exp(x12 - 1 - log(x12 * (1 - z13/x14)) - xiS * xi6/(x13 * 8.314 * 366) * log(i + 
x13/x14)) 

which is a specific form of the general equation: 

Vcomponents, exp(compressibility components  - 1 - log(comyressibility 0pc,nenjs  * 1 - 
state _eq_b_coeffwmponents  /molar_volumecomponents) - state_eqs_coeff componentg  * 

r_k_.soaveslpha/state_cq_b_coeff components  * universal-gas-constant * 
temperature84  * 109(1 + state_cq_b_coeffcompongnjs  /molar_volume component4) 

(see literature [4]) 
x12 = compressibility of benzene 
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state_eq_b_coeff of benzene (x13) The expression is represented by: 

0.08664 * 8.314 * 562.1/48.9 

which is a specific form of the general equation: 

state..eqeoefficient_b * universal-gas -constant * 
crzticaliemperaturebenzene /crztzcal4iressureoenzene  

(see literature [4]) 
48.9 = critical-pressure of benzene 
562.1 = critical-temperature of benzene 
x14 = molar-volume of benzene 

state_eq_a_coeff of benzene (xis) The expression is represented by: 

0.42748 * 1 * 8.3142  * 562.1 2 /48.9 

which is a specific form of the general equation: 

state_eq_coefficient_a * state..eq..T_dependence * (universal 4a5_constant) 2  * 
(criticaliemperaturebenzen42 /critical_pressurebenzene  

(see literature [41) 
x16 = redlich_kwong_alpha of benzene 
760 = pressure of s4 

Example 3.1.1.3 k_value corresponding to components toluene in 
object s4 (x2) 
The expression is represented by: 

1 *x3* 1 *x9/(1 *760) 

which is a specific form of the general equation: 

Vcomponents, vapour-activity-coefficient * fugacity_eoefficient * 
poyntingco'rrection * 

vapour_pressurecomponent ,,,4 /partial_ftigacity_eoefficient * pressure,4  

(see literature [2]) 

vapour-pressure corresponding to components toluene in object s4 (x9) 
The expression is represented by: 

exp(16.0137 - 3096.52/(366 + (-53.67))) 

which is a specific form of the general equation: 

Vcomponen ts , exp(ant oine_A components - antoine_.B componen t,/temperature,4 + 
ant oine_Ccomponents) 

(see literature [31) 
16.0137 = antoine_A of toluene 
3096.52 = antoine_B of toluene 
—53.67 = antoine_C of toluene 
366 = temperature of s4 
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fugacity_coefficient corresponding to components toluene in object s4 
(x3) The expression is represented by: 

exp(x4 - 1— log(x4 * (1 - x5/x6)) - x7 * x8/(x5 * 8.314 * 366) * log(i + x5/x6)) 

which is a specific form of the general equation: 

Ycomponenta, exp(compressibility comp ,.entj  - 1 - log(compressibility componenta  * 1 - 
state_eq_b_coeffcomponents /molar_volumecomponenta) - state_eqs_coeffcopoent8  * 

r_k_soaveslpha/stat&eq_b..coeffcomponcnt . * universal -gas -constant * 
temperature84  * I09(1 + state_eq..b..coeffcomponcnjs  /molar_volume component4) 

(see literature [4]) 
A = compressibility of toluene 

state_eq_b_coeff of toluene (x5) The expression is represented by: 

0.08664 * 8.314 * 591.7/41.1 

which is a specific form of the general equation: 

stata.eq.coefficienti * universal-gas -constant * 
criticaliemperaturesojtene/criticalpressUreuguene 

(see literature [41) 
41.1 = critical pressure of toluene 
591.7 = critical-temperature of toluene 

= molar-volume of toluene 

statc_cq_a_coeff of toluene (x7) . The expression is represented by: 

0.42748 * 1 * 8.3142 * 591.72/41.1 

which is a specific form of the general equation: 

state_eq_coefficient_a * state_c q_T_dependence * (universaLgas_constant)2  * 
(criticalicmperatureto,uen42 /criticaLpressurcto:tenc 

(see literature [4]) 
A = redlichicwong_alpha of toluene 
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Appendix E 

Application of Overall Process 
Synthesis Procedure 

This appendix illustrates the application of extended methods to process synthe-

sis. For this example, design of an ammonia synthesis loop is considered. The 

Douglas hierarchy of decision levels [7] has been implemented as described in 

Chapter 6. The figures were produced by the system as screendumps. 

Is_a 

licenser 

prod uction—rate IOO 

prod uct_state 

prod uct_purity 55400 

raw —material _costs 

raw_rn ate rial _pu rity 

supply—temperature 

supply—pressure 

supply—phase 

site romfWd 

parent —slots 
Is_a 
licenser 
production—rate 
prod uct—state 
prod uct_purity 
raw —mate rial _costs 
raw —mate rial—purity 
supply —tam perature 
supply—pressure 
supply—phase 
site 

Figure E.1: Object Describing Initial Process Specification 

Four objects were defined which provide a high level description of the design 

available for review throughout the synthesis procedure. These objects are in- 
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tended to provide common data structures for design and other functions, such 

as preliminary economic analysis as discussed in Section 1.1.1. 

The technology object corresponds to the initial statement of the require-

ments of the design. Figure E.1 shows the technology object defined for the 

ammonia synthesis loop. The slots which have values represent high level deci-

sions from which the design is developed. Production rate, state and purity, and 

the choice of site are business decisions not necessarily made by design engineers. 

These slot values may be changed as the design develops. Economic assess-

ment of a design may indicate that these constraints cannot be met profitably 

unless the specifications are revised. Furthermore, the initial statement is often 

incomplete. Preliminary design may reveal that a particular process cannot be 

profitable without having to waste time and effort on an extensive information 

gathering exercise. However, if the process has potential, the information will be 

required at the point of development which has been reached. It is undesirable 

to have to restart the synthesis procedure for individual pieces of information, so 

access to this object is required throughout synthesis. 

A+B. 
foods N2 I 

112 I 
Pathway N2431,122I11H3t.p 	 1000 

pc...r 	600 	 I 
oib.t 	03970 	I 

serial —re actione 1000 

600  

03570 parent _slots 
'feeds 

products P643 Ipathway 

side_products 
I serial 	reactions 
I products 

catalysts .13670 Iside—products 
I catalysts 

conversions 0260 I conversions 

selectivity I selectivity 
I equ III brium_constants 

equilibrlu rn_constants I heats —of —reaction 

he arts _of_reaction -2706 
I  rates
$Tinish 

rates I 

Figure E.2: Object Describing Process Chemistry 

The second new object represents the process chemistry. The instance for 
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ammonia synthesis is shown in Figure E.2. 

This object is distinct from objects representing individual reactions which 

can be associated with individual reactors. As with the technology object, 

the process-chemistry object is intended to provide a link to other functions. 

The process-chemistry object should be prepared by chemists investigating the 

reaction path and its associated properties, or as a result of a database search. 

The object contains a list of reactions occurring in parallel or series. The 

list of reactions is stored in the pathway slot and the conditions are repeated in 

the serial reactions slot. In this example, only one reaction is investigated. 

Reactions which are carried out separately, i.e. have different conditions, are 

described in individual reaction objects which are associated with specific reac-

tors. A process-chemistry object is associated with a particular technology. 

For example, the Haber ammonia synthesis process has an associated process 

chemistry, while a particular company may have a different process with its own 

reaction scheme. In this way, different process chemistries can be evaluated as 

discussed in Section 1.1.1. 

present —steam _co pa city 	 IlgPLp 	 1000  

.W-p 	 1600 

Iøp 

present _cw_capacity 	 GOW 

p rase nt_flIuent_ea pa city 	 parent _910t9 

present— tea rn  —cap acity 
pre sent— cw —capacity 
pre aant_etrluent —cap a city 

required —ate om —ca poclty requIred_steam—capacity 

requ Ire d_cooling_w ate r 
if in ish 

required —cooling —water 

Figure E.3: Object Describing Potential Site 

The third class of object represents the site under consideration for the plant, 



as shown in Figure E.3. This choice has a direct bearing on the economics of 

a particular design because all plant utilities, such as cooling water, steam and 

electricity need to be provided. A new site, therefore, requires extra plant at 

greater expense. It is important to have a model of the utilities available so that 

any extra requirements are considered in an economic evaluation of the design. 

The fourth object is used to represent bulk materials. A material object, as 

shown in Figure E.4, does not describe a stream in the plant, but a commodity 

which is bought or sold. In this example, material objects are used to represent 

the feed which is either bought and transported to the plant, or is imported 

from another plant on the same site, the product crude ammonia, and the waste 

produced. 

M00 
con tituent_com ponents 

mole—Traction 	 mow 

melting —point 

boiling—point 

toxicity 

flammability 

storage -prop erti as 

tran spa rtotion_p tops rtiea 

post—pricing 

current—pricing 

projected - pricing 

conetitus nt_CO m pone nta 
male—traction 
matting—point 
boiling—point 

flamma bility 
etoroge —props rtlea 
trans portoti on —pro peril as 
post _pricing 
current—pricing 
projected —pricing 

Figure E.4: Object Describing Product Material 

As with the previous three objects, the material object is intended to provide 

consistent access to the design by different design functions. The object shown 

in Figure E.4 includes slots for pricing, transportation and storage properties. 

These are not necessarily for use by a design engineer except for reference, 
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E.1 The Implemented Hierarchy of Decision 
Levels 

The extended methods used to implement the hierarchy of decision levels are de-

tailed in Section 6.1. A design is initiated with the specification of a technology, 

a process-chemistry, a site and the feed and product materials. A design 

object is created which refers only to a single design of a specific technology, 

thus individual designs can, in principle, be documented and stored in a database. 

The system developed uses a window which is divided into a text section and 

a graphics section. The user is presented with a menu of design options in the 

graphics section as described in Section 6.1. The menu is labelled with the name 

of the current synthesis level and a message is displayed in the text window to 

highlight this. 

The first decision is to determine whether the process should be continuous 

or operated in batches. The first menu, shown in Figure E.5 is a reduced form 

of the general menu, in that the analysis and topology options are not made 

available. 

help 
collect_Input _InormatIan 
batch _' _c ant_d eel s 
$inish 

Figure E.5: Menu Presented at the Batch vs Continuous Decision Level 

The help option, discussed in Section 6. 1, details the requirements for comple-

tion of a decision level. The collect J.nputJnformation entry provides access 

to the four classes of high level object described above, which represent the cur-

rent design. 

If $finish is selected, a message appears in the text window explaining that 

a decision is required before being able to continue. Thus, in order to proceed 

with the design, bat ch_v_cont-decisions must be selected. This choice invokes 

a heuristic decision, coded as Prolog rules, assessing the choice of a batch or 

continuous process. Figure E.6 shows the output from this evaluation. In this 

example, a continuous process is advised, but the menu allows the selection of 

either, to allow both alternatives to be assessed should this be required. The 
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entry in the menu refers to a continuous fluid process since the product and feeds 

are both fluids. If solids are specified in the technology object, this choice would 

be for a continuous solid process. 

After assessing the products, the required production rate, 
product lifetime etc. a continuous process seems most 
suitable. However, you can choose Whichever you prefer. 

(IIIflhIflhtlII 

batch—operation 
continuous—fluid  

in I sh 

Figure E.6: Result of Batch vs Continuous Heuristic Decision 

Once the decision has been made, in this case to design a continuous process, 

the "batch versus continuous" decision level is complete. The next level is the 

input-output structure level which is indicated by a message in the text window 

and a new label for the main menu. The choices in the menu shown in Figure 

E.5 now include analysis and topology which were inappropriate before where 

no flowsheet items were present. The new menu is shown in Figure E.11. 

Any option in the main menu can be selected, but without any flowsheet 

items, only messages are displayed indicating that a flowsheet should be specified 

first. Selection of topology provides access to the flowsheet specification options 

which have been detailed in Appendix F. The initial step is to create units for the 

flowsheet. Figure E.7 shows the limited choice of units restricted by the synthesis 

level. 

plant 
storage 
*finlsh 

Figure E.7: Menu of Flowsheet Items Available at the Input Output Structure 
Level 

In this example, a plant object called ammonia-plant is created with one 

inlet stream and one outlet. The streams are named automatically. Returning to 
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the main menu, the input-output level decisions may be accessed to evaluate the 

fiowsheet. Three decisions are available at this level: calculation of the number 

of product streams, a decision about whether or not to purify the feed stream, 

and the assessment of the requirement of a purge. The choices are displayed as a 

menu as shown in Figure E.8. The diagram also shows the output generated by 

the no-of -product -streams option. 

The components have been classified as follows 
stream oiouifioatlion 
prod iete NH3 
by_ prod uctb 
reaotonte 142 

N2 
r.ction_ I rt.rm.dIot.i 
f..d_impurltl.. Ar 

2 output streams have been identified, compared with the 1 specified. 
There are also 1 recycle streams identified. 
The streams have been classified according to the component, Its 
intended destination and its boiling paint. 
These streams are  

no—of—product—streams 
purification —of —feed s 

Stream 	 pt eetInation pure_requirement 
-186,000 r.'cia..and_purge 	k 1$f In I sh 
-is.eoo rec_and_purg. 	N2 i 
—252 recycle_and_purge 	H2 
—3.5OO primary—product 	NH3 I 

Figure E.8: Classification of Output Streams and Input Output Level Decisions 

This operation classifies the components present in the process, i.e. N 2 , 112 , 

Ar and NH3 , as products, by-products, reactants, reaction intermediates or feed 

impurities. These are then ordered by boiling point. Neighbouring components 

in the same class are lumped together in a single stream and associated with a 

destination. 

Figure E.8 shows two output streams compared with only one so far specified. 

It also indicates that the reactants should be recycled, and since an impurity, Ar, 

is present, the recycle should also have a purge. 

A purge may not be required if the impurity can be removed before the 

reactor. In this case, it is likely to be impractical, but it may be considered 

using the purification-of -feeds option shown in the menu in Figure E.8. A 

short question and answer session provides the qualitative information required 

for a decision to be made. This is shown in Figure E.9. The recommendation 
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here is that the raw materials should not be purified. 

The feed impurities are [Ar] 
Are all components considered inert? y. 
Are any catalyst poisons? n. 
At this stage It Is probably best not to purify the raw materials. 

Figure E.9: Heuristic Judgement of Requirement for Feed Purification 

Since the impurity is not to be removed, a gas recycle and purge must be 

considered. To investigate this, the remaining decision in the menu in Figure E.8 

is selected. The output is shown in Figure E.10, confirming that the reactants to 

be recycled are incondensible and the presence of an impurity implies the use of 

a purge. 

A gas recycle Is required because some reactants which, presumably, 
are to be recycled, boil at sufficiently low temperatures that condensing 
them is not possible with cooling water even at high pressure. 
A purge may be required as some impurities are also incondensible. 

Figure E.10: Heuristic Judgement of Requirement for Purge 

The decisions which have been considered using the menu have not required 

any action. The aim is to provide advice and make the designer aware of the 

decisions that can be made at a particular level of detail. As a result action may 

be taken but it is not essential. 

Certain actions are essential for the completion of a decision level. For exam-

ple, at the input-output structure level, a plant object must be present in the 

flowsheet with sufficient inlet and outlet streams to transport the specified bulk 

materials. These essential actions are checked when $finish is selected on the 

main menu. 

12 output streams have been Identified, compared with the 1 specified.. 

topology 
analysis 
help 
collect—input—information 
In put—output—decisions 
$fini sh 

Figure E.11: Message Indicating Incomplete Output Stream Specification 

In the case of the ammonia synthesis process so far defined, selection of 

$finish at the input-output level invokes a list of checks which identify that 
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only one output stream has been specified where two are required. The message 

is shown in Figure E.11. 

In addition to the statement of the required action, notice is given of the point 

in the synthesis procedure where the information can be provided. Execution is 

returned to that point. In this example, progress to the recycle structure level is 

blocked and the input-output structure level is recalled. The input-output level 

menu is also shown in Figure E.11. 

This message prompts the creation of a new output stream followed by Se-

lection of $finish once more. The checks this time discover that the inlet and 

outlet streams do not contain any of the specified materials. Figure E.12 shows 

the message displayed in the text window. 

Stream sO is not associated with a feed material (syriloop_feed. .$null). 
More Information is required at the input—output—level. 

Figure E.12: Input Output Structure Message Indicating Required Action 

This message prompts the user to edit stream sO using the analysis menu, 

associating the stream with a material, in this case syn.loop..±eed. Figure E.13 

shows the result of setting the material slot to synJoop.Ieed. The composi-

tion properties of the syni.00p.ieed object are copied to the components and 

mole..±raction slots of the stream object. 

The output streams, si and s2, are similarly associated with material objects, 

corresponding to crude ammonia and purge respectively. 

The conditions for completion of the input-output structure level have now 

been met. Selection of $finish in the menu shown in Figure E.11 advances syn-

thesis to the recycle structure level. The structure of the main menu is unaltered. 

However, its label is changed to indicate the new synthesis level and a new set of 

decisions is available. 

The synthesis level has advanced, but the flowsheet has only the detail pro-

vided by the input-output structure level, as shown by the plant object in Figure 

E.14. The first choice at the new level may be to develop the fiowsheet. Alter-

natively, the help option can provide a high level statement of the goals to be 

achieved at this level. Another option is to assess the non-essential decisions. 
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Figure E.13: Object Describing Stream SO 

Figure E.14: High Level Object Describing an Ammonia Plant 
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In this case, if help is selected, a requirement for objects representing reaction 

and separation is identified. If decisions is chosen, a message is displayed again 

indicating that at least one reactor is necessary to perform the reactions specified 

in the process-chemistry object. Figure E.15 shows the message generated for 

the ammonia process. 

There Is no reactor performing reaction: 
[(N2+3*H22*NH3) -[temp- 1000,pressure-500, catal yst-c13B7O]J 

Figure E.15: Recycle Structure Message Indicating Required Action 

The first action, therefore, is to develop the flowsheet. Using the topology 

option, a new design node is added as a refinement of the initial description. 

Objects representing reaction, separation and a divider are created, and the 

connecting streams are defined. 

As a result of the heuristic evaluations made at the input-output structure 

level, attention is focused on a single process. However, if the designer is not 

satisfied with a particular judgement, an alternative can be investigated. For 

example, at this point, an alternative design node can be created to investigate 

the possibility of removing the feed impurity before the reactor, thus avoiding a 

purge. In this example, this is impractical, but for a different process there is a 

range of alternatives which could be assessed at this level. 

In this example, there is only one reaction, so only one reactor is required. 

However, where there are multiple reactions, they must be ordered and the re-

actants and recycles fed appropriately. One of the heuristic assessments at the 

recycle structure level provides a judgement on the required number of reactors 

and the different feed arrangements. The output for the current design is shown 

in Figure E.16. 

The other options available for evaluation are also shown in the menu in Figure 

E.16. One option which has not been shown in this example, is for the assessment 

of the number of recycle streams. Here, the requirement for a single recycle was 

identified at the input-output structure level. This was provided when the refined 

flowsheet was described. Since the single recycle required has been specified, the 

option is not required, and so is not displayed. 

The excess-reactants option is to make the designer aware of the possibility 

of shifting the product distribution in the reactor by feeding an excess of one 

reactant. This has an effect on the quantity and cost of recycling the excess, so 

216 



There is 1 separate reaction I.e. serial reaction 
steps with different reaction conditions 

S.parct R.t1ona 
I 	1000 

600 
,:1 3070 

IIJ,IIIu 

I a am pressor _req Ireem e 
number_of_reactors T I excess —reactants 

I $finish 

Figure E.16: Recycle Structure Options Menu and Assessment of Reactions 

an optimum should be found. This requires an economic analysis of the different 

arrangements so the menu option is only to bring the possibilities to the designer's 

attention. 

The other heuristic evaluation available at the recycle structure level is of 

the need for a compressor on the recycle stream. If a gas recycle is to be used, 

a major process cost will be incurred by the need for a gas compressor. This 

decision is introduced at this level because of the effect on the total process cost. 

It is possible that this process alternative can be eliminated with minimum time 

being expended. 

Figure E.17 shows the response to the selection of compressor-requirement 

with the current data. The recycle is correctly identified, but the compressor 

requirement cannot be evaluated until there is information about the components 

in s6, one of the streams in the recycle. 

1 recycle stream has been specified. 
sB does not have any components specified, so no conclusion about the 
necessity of a gas compressor- can be made. 

Figure E.17: Message Indicating Incomplete Process Specification 

When the components slot of s6 has been set to the list of components being 

recycled, reselection of this option results in the judgement shown in Figure 

E.18. In this example, the recycle will be a gas stream, i.e. it has a boiling point 

less than that of propane, which, heuristically, is the limit for condensing under 

pressure by cooling water. 

It is important to model the fiowsheet to give values to the fiowrates into and 

out of the process which can then be used in an economic analysis. It is necessary, 

therefore, to ensure that the fiowsheet is complete at this level. This can be done 
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1 recycle stream has been specified. 
The chances are that s6 will be a gas recycle stream, because it cannot 
be completely condensed by cooling water even at high pressure. 

Figure E.18: Heuristic Judgement of Compressor Requirement 

either by selecting help on the main menu, or $finish and reacting to any error 

messages. If the synthesis procedure advances to the next level, the flowsheet is 

structurally complete. 

Here, if $finish is selected, the recycle structure checks ensure that a reaction 

section and separation section have been defined, all components leave the system 

and purity specifications are maintained. For example, Figure E.19 shows a 

message indicating that 112 is not leaving the system. 

Component H2 is not in any of the output streams. 
More Information Is required at the recycle—structure—level. 

Figure E.19: Message Indicating Components Not Leaving the System 

This is rectified by adding H 2  to the components slot of the appropriate outlet 

stream, in this case, the purge. On reselection of $finish, a change in product 

specification is highlighted, as shown in Figure E.20. The technology object has 

a specification for 99.5% pure ammonia while the product stream has a value 

of 99%. The inconsistency is resolved by changing the product specification to 

99.5%. 

The product NH3 Is not in any of the outlet streams ([sB,s7]) as pure 
as 99.5%, as was specified. 
More information is required at the recycle—structure—level. 

Figure E.20: Message Indicating that the Original Purity Specification is Con-
tradicted 

The conditions for progress have now been met, so a model of the fiowsheet can 

be constructed using the modeLflowsheet option in the flowsheet analysis 

menu. This instigates the model generation methods which select equations for 

each unit in the flowsheet and each stream. In this example, a reaction balance 

is used for the reaction object, a component balance for the separation and a 

component balance incorporating divider ratios for the divider. The equations 

for the streams relate mole fractions of constituent components, component molar 

flowrates and the overall molar fiowrate. 
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The specifications placed on the process are 100000tonnes/yr of ammonia to 

be produced from a given feed and the mole fraction of Ar in the system must 

not exceed 0.01. The Ar constraint is placed on the reaction section output. The 

product is assumed to be pure since the separation is not sufficiently detailed to 

determine which other components would be in that stream. 

The model is then evaluated by the degrees of freedom algorithm described in 

Appendix B. Here, the specifications are acceptable and the equations are solved 

simultaneously. The results are shown in Figure E.21. 

03 e4 e6 so v7 Be 

NH3 700.0 0 0 0.0 700.0 0.0 
N2 37500 1100 3750.0 300010 0 750.0 
H2 3150.0 100.0 3150.0 2520.0 0 030.0 
Ar 75 15 75,0 60.0 0 1510 
TotI 7675.0 2705.0 675.0 550.0 700 1.35.0 

Figure E.21: Solution of Flowsheet at Recycle Structure Level 

The display used here is different from that discussed in Appendix F. The 

form of the display was determined by the presence of the graphical description 

which was provided manually. The stream table was generated automatically. 

The synthesis procedure has now advanced to consideration of the reactor 

system. Again, the main menu retains the same structure, only altering the label 

and the available decisions. As discussed above, the first action could be to refine 

the fiowsheet, or select help, or heuristically evaluate the flowsheet with the 

decision option. 
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If help is selected, the extended method containing the checks for essential 

action is interpreted to describe the requirements of the current synthesis level. 

The calling sequence of the extended method is a set of high level statements of 

the aims of the level. The associated guards are the criteria for meeting these 

aims. The high level aims are presented as a menu. 

In this case the only goal is that the reactors must be "fully specified". Se-

lection of an aim from the menu produces a list of criteria as a rough translation 

of the code in the guard associated with the chosen aim. Here, the only choice 

produces the list of statements shown in Figure E.22. 

reactors-suitable must be satisfied. 
knctu_adiabatic_delta_t must be satisfied. 
process-chemistry must be specified 
reactions-associated-with-reactors must be satisfied. 

Figure E.22: Output from Help Option at Reactor System Level 

Those ending with "must be satisfied" refer to Prolog goals, the predicate 

of which is displayed as the condition. The predicates were named to pro-

vide as much information as possible, e.g. know-adiabatic-delta-t. State-

ments ending in "must be specified" refer to slots which must have values, e.g. 

process-chemistry. 

The first statement in Figure E.22 suggests that the specified reactor may not 

be of sufficient detail for further evaluation. This is confirmed by the heuristic 

design decisions at this level. The first of these options is to evaluate the reactor 

heating characteristics, which, on initial selection, displays a message stating the 

requirement of a more detailed reactor for this operation. This is shown in Figure 

E.23. 

The reactors specified 80 far are not of sufficient detail 
to allow an investigation of their heating properties. 
More information is required at the reactor_system_level. 

Figure E.23: Message Indicating Detail of Reactor System is Insufficient 

The decisions menu includes an option to propose a reactor configuration 

based on reaction kinetics. This is detailed by Douglas [7], but has not been fully 

implemented. 

To advance the design, a new node is added to the graph as a refinement 

of the developed recycle structure. A plug flow reactor, vlOO, is placed in this 

220 



new flowsheet, providing the increase in detail required for the evaluation of the 

reactor heating properties. Further requirements for this judgement are values 

for reactor heat load and adiabatic temperature rise as indicated in Figure E.22. 

These values are calculated as part of the design method for the reactor. 

The decisions menu is shown in Figure E.24 with the output from the 

reactor-heating evaluation. The results indicate adiabatic operation. 

The heat load and adiabatic temperature rise indicate 
adiabatic operation, 

reactor-heating 
shift_eq rn_conversion 
reactor—configuration 
$t in ish 

Figure E.24: Heuristic Assessment of Reaction Heating Requirements 

Consideration of the reactor system is now complete, but as Figure E.25 

shows, the information describing the plug flow reactor is not. This requires the 

development of a plug flow reactor design procedure similar to that described for 

a distillation column in Appendix F. The use of models specific to such reactors 

can then be made available. 

Figure E.25 shows the slots which distinguish a plug flow reactor from the 

prototype reaction object. The slots defined for a reaction object are inherited 

by the plug flow reactor and are accessed by selecting parent-slots in the slot 

editor menu. Figure E.26 shows these slots with their values many of which 

have been automatically copied from the more abstract reactor defined in the 

previous level of the graph. Other values are provided manually after heuristic 

evaluation using the decisions option on the main synthesis menu. 

The synthesis procedure now advances to the separation structure level which 

is divided into liquid separation and vapour recovery. In this example, the reactor 

output is a gas, and even with cooling water cannot condense to afford liquid and 

vapour phases requiring separate treatment. The options for vapour recovery are 

presented as a table ordered by increasing cost. Normally, the least expensive 

recovery is condensation, which in this example requires refrigeration. It is a 

feasible approach since, as Figure E.8 shows, the boiling point of ammonia is 

significantly higher than the other components. An alternative which could be 
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Figure E.25: Object Representing Plug Flow Reactor V100 

considered is absorption into water. The two proposals can be distinguished 

on the basis of which is most expensive, separating ammonia from water or a 

refrigerated condenser. 

As with the reactor described above, consideration of these separation alter-

natives is complete. Design procedures are required to continue the design of the 

unit operations. 

In summary, this example has illustrated the flexible access to synthesis de-

cisions as well as tools for describing flowsheets and modelling them. The main 

menu is presented in a consistent format throughout, altering only the label, 

which informs the designer of the level of synthesis, and the decisions which can 

be accessed. Action which is essential form the completion of a decision level is 

ensured by preventing advance to the next level until the information is provided. 

Options which the designer should be aware of at each level are presented in a 

separate menu. Heuristic advice is available where appropriate. 

The Douglas synthesis procedure is intended to guide the designer to a good 

base case design. It is used here to aid the reduction of stored information by 

focusing design effort on the process alternatives which, on the basis of heuris- 
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Figure E.26: Slots of V100 Showing Access to Less Detailed Definition 

tics, show most potential. However, to complete a design, strategies should be 

available to support design of individual unit operations. 
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Appendix F 

Worked Example of 
Opportunistic Modelling in 
Distillation Column Design 

The example in this appendix demonstrates the opportunistic approach to de-

sign of a unit operation, in this case, a distillation column. The diagrams were 

produced as screendumps from the prototype system discussed in the main body 

of this thesis. The procedure adopted is detailed in Chapter 6. A structure of 

extended methods provides a framework for high level aims, which, in this ex-

ample, first allow assessment of the feasibility of distillation, then determination 

of column conditions and finally calculation of the number of trays. Within that 

structure, parallel calls use menus to allow the opportunistic selection of tasks. 

Thus, appropriate options are provided as the need arises, and flexible use of the 

tools is achieved. 

The initial menu shown in Figure F.1, is the general design options menu 

discussed in Section 6.1. In this example, the menu corresponds to the liquid 

separation system structure level of the Douglas decision hierarchy. 

oflolysI 
topology 
colIct_ln put _ln?ormotlon 	4 

help 
store—to—file 
Stinish 

Figure F.1: Menu of Design Options 

The options of help, store-to-f ile and collect -input -information are 

discussed in Section 6.1. The other choices are demonstrated in this appendix. 
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The separationdecisions method, which is highlighted in Figure F.1 ap-

plies to a single separation object. For this reason, when it is selected, the user 

is required to indicate the separation to which the method is referring. In this 

example only one separation is defined, that of benzene and toluene shown in 

Figure F.2. The composition of the inlet stream is known and specifications have 

been placed on the purities of the outlet streams. The remaining mole fractions 

have been determined by demons on the mole fraction slot of each stream. 

t1iji 	0.006 

o4u.r. 	06400  

i1u.e 	0.900 

b..r. SOlO 

distillation feasibility 	 I 
I othr_IIquId_paration 

I $flnlsh 	 I 

Figure F.2: Separation Design Alternatives 

The information that is available at this point allows the choice of evaluating 

the feasibility of distillation or assessing other liquid separations. These options 

are supplemented later when more is known. 

If distillation-f easibility is selected, the relative volatilities of the com-

ponents in the feed stream are calculated. If more than one stream is fed to 

the separation, all components are collected and evaluated. Douglas [7] suggests 

a heuristic method for determining whether or not distillation will be feasible 

without designing a column. If the relative volatilities of the key split is less than 

1.1 then distillation will probably not be economical. 

A summary of the results of the relative volatility calculations is shown in 

Figure F.3. The individual results are presented as they are calculated. The 

figure shows the split window used for this design tool. The top section is for 

textual presentation and input. The bottom part is for graphical presentation 

and menu input. Here, the text window reports that calculations have been 

performed and the result is that distillation is feasible. The graphical window 

summarises the calculations with a table of relative volatilities. Here, benzene has 

a relative volatility of 3.3 compared to toluene 
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run, 

?- cpcpil.(store_initial). 

?- run. 

rfortning r.lative_o1stility calculation, for .L... 
a relative volatilities of the components involved indicate that separation 
distillation I. possible. 

tde 	ua 
h.e.. 	Oaa td.ar 	U4 

bes.. O 

b.ee... 0.010 

I o 	 ha 	 I 

7.;1h.1

I
lquId_uparotI 
	 I 

Figure F.3: Result of Relative Volatility Calculations 

The menu still presents the option of evaluating other liquid separations. 

In this example, selection of this option results in a table of liquid separations 

ordered by increasing cost. This is shown in Figure F.4. A full implementation 

should provide similar help in the design of these alternatives as with the design 

of distillation. 

The lollowing IIuid separation options are 
ordered downwards by increasing cost. 

UJId Skaa 
,ek.ai_.dreat!on 

ale,.d.tIIetIon 

Figure F.4: Selection of Alternative Separations 

No further information can be generated from these decision options, so the 

designer must return to the main menu by selecting $finish. 

Other evaluation options are available at this stage, so the designer is able to 
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analyse the fiowsheet as in Figure F.5. The figure shows the "Analysis" menu 

which is described in Section 5.7. 

analyse—unit 
analy._atreom 
analyse—components 
$rinleh 

Figure F.5: Analysis Menu Options 

The options to analyse a fiowsheet include calls to move within the design 

graph, i.e. select a fiowsheet for analysis, and model the selected plant. In this 

example, the separation section has been modelled, the results being displayed 

in Figure F.6. The solution has been displayed in two parts: 

. A stream table of mole fractions for each component in each stream, and 

total stream fiowrates. 

. A table of other values produced during calculation. In this case, this 

corresponds to the individual component flowrates in each stream. 

of balan 

si 	92 	93 
benzene G6O0 	0.995 	0.010 
toluene 0.400 	0.005 	0.990 

Total 100 	59.898 40,099 

of ModW 
ompmI._rt. 	b.1.A. 60.000 

I..., .1 40 
.2 0.209 

b.s.... .2 Go AN 
ftmp- 30.09 

b.,a.,. .3 5401 

Figure F.6: Solution of Flowsheet Model 

The model generated for this separation has been an overall component bal-

ance. The greatest amount of detail that can be provided in a model of a separator 

is a mass balance including split fractions. Here, no fractions have been specified, 



so the next best model is either a reaction balance or a component balance. Since 

no reaction is associated with this unit the component balance is chosen. 

So far, a mass balance has been performed around the separation section, and 

it has been determined that distillation is a feasible method for the separation 

indicated. To further investigate distillation an additional design node is required. 

This is achieved via the topology option on the main menu. The full range of 

operations is shown in Figure F.7. 

Pisase provide a name for the unit: colLonni. 
SPeCIfY the two unite to be connected (by name). 
Stream source : source. 
Stream sink 	columnS. 
Specify the two unite to be connected (by name). 
treem source : colunni. 

Stream sink 	s,nk. 
Does the now stream correspond to any of these from the level above? 
Specify the two units to be connected (by name). 
Stream source 	colLilini. 
Stream elr,k : sink. 

Inlets 	 .4 

outlets 	 .5 

.4 

120 

components 
light_key 
heavy_kay 
m In _nam bar_of_plates 
number_of_plates  
minlmum_reflue_ratlo 	 or 	—object 
reflus_rotlo 	 creote_utreom 
distillate—stream 	 delete—stream 
bottoms—stream 	 enhanoe_ltem_datalt 

more —volatile —component 	 0na1yee_t1oeeht 

lght_o am pan ante 
heavy _camp unanta 
key —re ntlae_volotluity 

Figure F.7: Addition of a Design Node Containing a Distillation Column 

Selection of enhance -it em_detail creates a new design node as a child of the 

current one and moves the current focus there. Figure F.7 shows the result of 

creating a new design node. The create-object option has been used to create 

an object representing a distillation column. The text window shows the textual 

input of the column's name "columni". 

Streams are associated with the column using create-stream. A message 

is printed in the text window asking for the specification of the units to be 

connected. In this example, the first stream is the feed to the column. This is 
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specified as a connection between a source and coluinni. The new stream is 

named automatically as "s4" and is associated with the equivalent stream at the 

level above, i.e. si. The specification of the outlet streams is achieved similarly, 

except that there are two outlets from the separation section at both levels. In 

this case, the program asks for the association between equivalent streams to be 

performed by the user. A message appears in the text window indicating that 

the association is required, as in Figure F.7, and a menu of the relevant streams 

is displayed in the graphics window. This menu is not shown in the figure. 

Figure F.7 shows the resulting column object. The only values specified at 

this point are the names of the inlet and outlets streams and the generic type of 

which distillation is a specialisation, i.e. Vie-separation 

Returning to the main menu shown in Figure F.1, selection of 

separation_decisions reveals an additional operation at this level. Since a 

distillation column is now present in the current design node the option of 

distillation_evaluation is made available, as shown in Figure F.8. The graph-

ical representation of the separation is unaltered. 

bwknm 0.010 

101W~ 	 M400 	 toli..n. 	0.00 

0. 800  b4n,. 0.006 

0.005 

dstiIIatIon f000lbllty 	 I 
other _Ilqtild_oeparotlans 	I 
'dtIIIotIon_eoluotIon 	 I 
I $InIoh 	 I 

Figure F.8: Additional Call for Separation Evaluation 

It is possible for the designer to have changed the inlet specifications of the 

column so the options for reassessing distillation feasibility and other liquid sep-

arations are available. 

Selection of distillation-evaluation invokes a method which determines 

details of the distillation operation from the separation at the level above. The 

components are located and the corresponding slot in coluinni is set. The relative 

volatility information is used along with the specifications on the product streams 

to determine the light and heavy keys. The distillate and bottoms streams are 

deduced by locating which of the output streams has most of the light key. This 



stream is taken to be the distillate, implying that the other is the bottoms. In 

the example here, benzene and toluene are the only two components present, so 

the mixture is binary. Thus the slots for more and less volatile components can 

be set. The resulting specifications are shown in Figure F.9. 

Inlets .4 

outlets .4 

.6 

is_a vW_"WaNan  

components bwzom 

light—key bele.. 

heavy—key tolu.r. 

m In _num bar_aT_plates 
flu m ber_of_piates 
min Imum—rallux—ratio 
ref lux —ratio 

distillate —stream 16 

bottoms—stream 06 

more—volatile—component 

less_volatI Is—corn ponant te1u.l 

light—components 

heavy—components 
key _relative_volatility 

distillation_epa citiCot I 
column _condftions 
di still ation_design 
distillation_e con omice 

Figure F.9: Distillation Evaluation Choices 

The evaluation options open to the designer at this stage are shown in the 

menu in Figure F.9. distillation-specification allows editing of the slots 

shown in the figure. 

If a strict procedure is adhered to, the specification of column conditions 

should be performed now using the column-conditions option. However, they 

may have been specified before this point, in which case, column-conditions can 

be used to check the specifications against the criteria that it is desirable to have 

a column pressure near atmospheric and temperatures such that the distillate can 

be condensed by cooling water and the bottoms boiled by low pressure steam. 

The column-conditions method calculates the bubble point of the tops and 

bottoms streams at the specified pressure or 760mmHg if no value is given. These 

are checked against the temperatures of cooling water and low pressure steam 

respectively. If the values are acceptable, the specified pressure is accepted, oth- 
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erwise the pressure required to meet the temperature constraints is calculated. 

The designer is able to accept the calculated values or select different ones. 

Figure F.10 shows the result of the bubble point evaluation for the ben-

zene/toluene example. The text window provides a history of the method. 

treon nource 	001 

Stniaje sink 	sink. 

°erfontiiing bubble-point calculations for s5. 
Since no strum prunure was provided, a value of 760mm Hg was taken to be 
esirabls, 

the reoulting distillate bubble point 1. 363.352K which in totally condensible 
33 cooling dater. 

forming bubble-point calculations for aS.... 
column temperature is between 363.352K and 383.306K. 

sot s suitable feud temperature 9 

Solution of bubble—pointi 

SolutIon of Model 
bubble_poInt to 303.306 
k_value benzan. se 2.320 
vapour _preeeur, berizen, e6 1763.255 
temperature .6 363,300 
k_value tolueroe .8 0,007 
vapaur_preeeur, toluene 86 749.608 

Figure F.10: Verification of Column Feed Temperature 

Initially, the bubble point of distillate stream s5 was calculated. Since no 

pressure was specified, a value of 760mmHg was used. The solution was presented 

in the graphics window with a summary in the text window. In this case, the 

bubble point is 353K which, as has been reported, is condensible using cooling 

water. The same evaluation was performed for bottoms stream s6. The solution 

of the calculation is shown in the graphics window. The column temperature 

range is thus identified and a request is made for a suitable feed temperature. 

Once column conditions are set, the menu of distillation evaluation choices 

as shown in Figure F.9, is presented again. Selection of distillation-design 

should invoke a procedure for calculating column dimensions, such as number of 

trays, tray sizes, column diameter, etc. For this example, only calculation of the 
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number of trays has been implemented. It is sufficient, however, to demonstrate 

the principles discussed in Section 6.2, i.e. design of unit operations has a proce-

dural structure which depends on the specifications, and full access to modelling 

facilities is required. 

Selection of distillation-design invokes the design method which, in this 

example, only contains a procedure for calculating the number of plates in the 

column. For the current distillation column, two applicable models are presented: 

the Fenske equation and a shortcut binary model. If the separation had not been 

binary, the shortcut binary model would not have been presented. 

It is possible to use both models separately. They involve different assump-

tions so the designer must determine which is most suitable. Here, both models 

have been evaluated. The results of the Fenske model are shown in Figure F.11. 

The available stream data is printed in a stream table, and other values in a 

second table. The missing totals in the stream table indicate the incompleteness 

of the model for fiowsheeting purposes. The aim of the calculation was to de-

termine the number of plates in the column, but other useful information has 

been generated by the model. This data, including minimum refiux ratio and the 

minimum number of plates, is displayed in the second table. 

Solution of boiancdI 

94 	95 	aS 
benzene 0.600 	0.995 	0.010 
toluene 0.400 	0.005 	0.990 

Total 

SOILft 	Of Modal 
rallox_rallo oo*nyxl 1,014 

oo*rn*1 I,cse 
n,nb.r_of_ploi.. WW" 267* 
rth,_nxnbar_&4ot.. oohnrol I040 

loh,.n. ,4 0.645 
V',OLWpf.l.ur. 	bILWO *4 446( 
6_volu. 	 b.an. *4 1,497 
VQw_pfu..41r. 	baan 14 1101,454 

uolxrxl t 670 JWO 

Figure F.11: Solution of Fenske Model for Column 

The models used to evaluate the distillation column can be modified to assess 

different specifications and levels of assumption. By returning to the main menu, 

the analysis options are made available. In order to try different specifications, the 

feed stream must be edited. Selection of the analysis option on the main menu 
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followed by analyse-stream (see Figure F.5) provides access to the slots of a 

particular stream. Here, the feed stream s4 is edited in Figure F.12. Temperature 

is selected from the edit menu and the value, 380, entered in the text window. 

ecify a feed pressure (tnt hg); 760. 
able estimate of the operating reflux ratio Is 
icceptebla for the current problem? y. 

7

thi

suitable feed temperature 	366. 

r,g balinc. calculations for coli.tonl.... 
able estimate of the operating reflux ratio is 
acceptable for the current probls? yes. 

ng balance calculations for colunni..,. 
ur. - Places provide a value ; 380. 

1.2 * Rain. 

1,2 ' 11n, 

milli 
source 

sink 

temperature sea 

pressure 740 

niohar_flowrats 100 

ap.otfha_h.at 

components 
parent—slots 

mote_fractIon 0,400 pressure 

0400 mOlar_tlowrcts 
specific—heat 

comp—moss—rate components 

comp_mols_rate male—traction 
comp—moss—rats 

material comp—mole—rate 

reference—component material 
reference_cOrn potent 
tfln lab 

Figure F.12: Altering the Feed Temperature Specification 

Once the specification has been changed, the models of the distillation column 

can be re-evaluated. The analyse-unit option in the analysis menu provides 

access to the choices shown in Figure F.13, including modelling facilities. The 

choices are detailed in Section 5.7. 

The model with revised specifications is evaluated by selecting model_obj ect. 

When the results are presented as in Figure F.11, the designer may recognise 

that they are different from those calculated previously. To review all solutions 

generated for models of this unit, review-solutions is selected. The chosen 

model is displayed as shown in Figure F.14. This is the Fenske model with 

revised specifications. When compared with Figure F.11 it can be seen that the 

number of plates and the refiux ratio is different in the two solutions. 
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Figure F.13: Options for Process Unit Analysis 
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Figure F.14: Reviewed Fenske Model 
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The solution in Figure F.14 is supplemented by an additional table detailing 

the models used. This is useful for comparing results from two different models. 

For instance, the solution of the shortcut binary model can be reviewed as in 

Figure F.15, This extra table details the difference in the basis of the models. 

Solution of balonce4 

lTh. —del hos boon oon*u.d from the oH.wIrç 
Ih.4_r4lio._rb 	 col,,nnl 

I 	 oebo.nnl 

.4 	.6 	.6 

bo.w.ro. 0.6 	01666 	0.0*0 

ioluo.o. 0,4* 	0.h 	0660 

101.1 

WOO of  
r01wrIo oob..mI 1.3*4 
L..Iu. 	 tolovo. 04 0666 

toluene 04 446, 
.4 1,467 

v0w..pr..o..r. 	boozo.. 04 1107.664 
01ptknboo4 oekuro.1 *6701000 
no..*oo_o*.ploI.. ..U.,..,1 *0.734 

1.006 

Figure F.15: Reviewed Binary Distillation Model 

Other facilities would be useful for displaying models. In particular, simulta-

neous displaying of different models would allow direct comparison. The graph-

ics system used in the development of CLAP, however, cannot support multiple 

windows and graphical input together. Another useful feature would be a ta-

ble displaying the specifications on the model, thus highlighting the differences 

between models such as the two Fenske models here. 

The analyse-unit method supports the models used for fiowsheet modelling. 

These are now available to the designer to replace those generated by the distil-

lation design method. 

The option select ..alt ernative..model informs the user of the current model 

and the one suggested as most appropriate for the current unit. Figure F.16 shows 

the model currently used for describing the distillation column and the suggested 

fenske.gi11ilanduodel. The two models here may be very similar, but the old 

model is not decomposed into the five modelling areas shown in the menu, so if 

the model is being altered according to this decomposition, one that is known to 

conform to it must be in place. 

It may be decided here to model the distillation column with a simple mass 
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Cuffed Roe 
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I Su lod 	I reaction eqna 
corn posftlon_eqna 
energy_eqna 

Illow_eqns 

I Stinish 

Figure F.16: Selection of an Alternative Distillation Model 

balance. The current Fenske model does not incorporate a full mass balance 

as is shown in Figure F.14, so composition_eqns is selected from the menu 

in Figure F.16. The alternative composition models include the recommended 

Fenske- Gillilandmodel, a split fraction model and an overall component balance. 

Selection of the overall component balance requires the replacement of the old 

model which does not conform to the five point decomposition. This is reported 

to the designer in the text window as shown in Figure F.17. The subsequent 

selection of model-object in the analyse-unit produces the stream table also 

in Figure F.17. 

The existing model is not standard - replacing with standard. 
The (overall—component—balance of columni] has been implemented. 

Performing balance calculations for colunni.... 

Solution of balancel 

94 	23 	s6 
benzene 0.600 	0.99 	0.010 
toluene 0.400 	0.005 	0.990 

Total 100 	59.898 40.099 

Figure F.17: Solution of Overall Component Balance 

Once the component balance is completed it can be reviewed with other mod-

els. The designer is able to change the model again, this time using the recom-

mended fenske..gillilan&iuodel of Figure F.16. 

Models can be evaluated visually as opposed to numerically by using the 
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display-model option of the analyse-unit menu. Up to this point many models 

have been created to describe the distillation column. These are presented to the 

user as shown in Figure F.18. 

balance 
anti mate _of _th earetica I —trays _b Ina ry 
tanaka_equation 
fan eke _g 11111 and -model 

11111 and _corral ati on 
heu net Ic_rellux —ratio 
mf_aeporatlon _factor 
ova roil_corn pan ant— balance 
underwood _mlnlmu m._rellux_ratlo 

Figure F.18: Selection of Models for Display 

Two types of model are represented in the menu in Figure F.18. The first 

choice, balance is the expanded version of the current model of the item. The 

other choices are the generic descriptions of the individual models which have 

been used so far, in their unexpanded forms. For example, the Fenske equation 

model does not include the definition of K-value which is one of its constituent 

parts. The current model which includes the Fenske equation does, however, 

incorporate the expansion of the K-value. 

Examples of both types of model are presented in Appendix D. The visual 

presentation is achieved using Jà.TEX [75]. The symbolic description of the model 

is translated into a formatted ITEX  file. Once processed, the document is dis-

played using a MTEX  previewer program. 

As a result of viewing the expanded version of the current model the designer 

might decide that the model could be modified to provide more accuracy. In 

particular the definition of the distribution coefficient, K, could be revised. This 

requires selection of modifycurrentmodel from the analyse-unit menu. 

The method presents the model to the user, separating terms which can be 

expanded from those which can be edited. For instance, Figure F.19 shows the 

terms of the Fenske equation which can be expanded to be the definition of K and 

the separation factor. The separation factor is also a term which can be edited. 

This implementation of the Fenske equation is valid for three definitions of the 

separation factor: one based on mole fractions, which is used in this instance, 

one based on molar flowrates and one on fractional recoveries. 

Here, the model is further expanded by selecting expansion of the K-value 
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Figure F.19: Options for Investigating Fenske Model Modifications 

expression. Similarly to the decomposition of the Fenske equation, K can be 

further expanded to investigate the vapour pressure expression. However, as 

shown in Figure F.20 the terms which can be edited include fugacity coefficient. 

IThe options to expand ore:I 	 IThe options to edit are, 

Your_..r. .4 	 kQMV__M1W0d 	04 
plj.a..4a.4.M 04 
pmtfag_aorNat!or, 	04 

.ayoo.ff$.4.ni .4 

.pnn 
vapour-activity-coefficient 
lug ac lty _coeltici ant 
pynting _correction 
partial_tugocity_coeflicient 
$tln xi, 

Figure F.20: Selection of Fugacity Coefficient as the Term to Modify 

Choosing to edit this term instigates the inference discussed in Section 5.5. 

The conditions required for the inclusion of an alternative definition are presented 

to the user. Here, the current value of the fugacity coefficient, 1, is displayed 

along with the suggestion that selection of an equation of state will allow the 

replacement of the approximation with a full definition. 

There are four equations of state available: Van der Waals, Redlich-Kwong, 

Soave and Peng-Robinson. Here, Redlich-Kwong was chosen. Once the model is 

completed, either by selection of an equation of state, or acknowledging accep-

tance of the original model, it is then evaluated. 

Figure F.21 shows part of the solution of the new model. The table includes 

values which could not be solved which are marked "unsolved". The blank terms 

in the table correspond to the unspecified variables which are required before the 

model can be solved completely. 

In summary, this example has demonstrated the opportunistic approach to 

238 



Solution of Model 
Ic_volue tolu.n s4 unsolved 

fugoolty_oceiflolent toluen. .4 un.olved 
oompre.lbtIlty tølun. 
state _.q_b_ooeff tolu.n. 10.370 
molar_vol urn. tolu.r. 
.iat,_.q__oo.if tolu.n. 261708.080 
r.dllch_wong_olph tolu.n* 
vapour-pressure tolu.n. .4 881.828 
k_value benzene ,  .4 unoIved 
fugoclty_ocoiflcl,nt ber.ri. .4 unsolved 
oompr.,,lblifty benzene 

.iat._._b_ooeff beriz.n. 8.280 
n,olor_ vol urn. benz.ne 
state _.q_o_oo.if b.,.ni 100021.100 
red loh_kwong_olphe b.i.n. 
vapour _pr...ur. ben.n. .4 1610.550 

mf.....patlon_footor column 1 10701.000 
rnln_numb.r_of-plates column 1 

Figure F.21: Solution of Modified Fenske Model 

design of a unit operation. Strategies can be developed to guide the decision 

making procedure. However, these strategies change according to the informa-

tion available at particular choice points. It has been shown that a structure of 

extended methods can be used to implement such strategies and make available 

the tools appropriate to the specifications. 

Full access to modelling facilities was required throughout the example, show-

ing the interaction required between strategies and other tools. The use of a range 

of modelling tools has also been demonstrated. 
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