
Knowledge Based Flowsheet Modelling For
Chemical Process Design

Douglas Hutton

Thesis presented for Degree of Doctor of Philisophy
University of Edinburgh

1990

Declaration

I declare that this thesis was composed by myself and that it describes my
own work except where specifically stated in the text. The work was carried
out between October 1987 and October 1990 in the Department of Chemical
Engineering at the University of Edinburgh under the supervision of Prof. J.W.
Ponton.

Douglas Hutton

Acknowledgements

I would like to thank ICI for funding this project and providing the expertise
in design and ilowsheeting which I was lacking. In particular, the time and effort
of Alistair Struthers in developing CLAP and all its little nasties was greatly
appreciated. I should also like to thank Prof. Ponton for initiating the project
and allowing me freedom to explore. Thanks to Neil Skilling and Murray Laing
for proofreading this thesis and to René Bafiares Alcántara for some enlightening
discussions.

Abstract

The aim of this work was to develop an experimental tool to perform flow-

sheeting tasks throughout the course of chemical process design. Such design

proceeds in a hierarchical manner increasing the amount of detail in the de-

scription of the plant, and, correspondingly, in the mathematical models used to

describe the plant. The models range from the simplest overall mass balance to

rigorous unit models, and the calculations required in the course of a design may

include the modelling of the complete plant or any of its constituent parts at any

level of detail between these two extremes. Object oriented programming has

been used to represent the hierarchy of units required throughout a hierarchical

design.

A flexible modelling tool requires that models compatible with both the de-

signer's intention and the context of the design are created. Sets of equations

are defined in a generic form independent of process units with their selection as

part of a model being dependent on the function and context of the unit being

modelled. The expansion of the generic equation descriptions is achieved with

reference to the structure of the unit, e.g. number of inlets and outlets, while the

context of an equation determines the form of the equation to be applied, e.g.

ideal or non-ideal behaviour. Equations are, therefore, represented as relations

between a process item and its structural and contextual properties.

An increase in modelling flexibility is obtained by allowing the designer to

interact with generated models. Different sets of equations can be selected within

constraints imposed by the system. At a lower level, terms in individual equations

can be modified for particular applications.

In chemical process design, many different analyses are performed. To demon-

strate the application of different tools to a central model, the modelling system

has been incorporated within a process synthesis framework.

The application of the system to simple design case studies is described.

Contents
I

1 	Introduction 1
1.1 	Chemical Engineering Design 2

1.1.1 	The Role of Flowsheeting in Design 4
1.1.2 	Design Knowledge 6

1.2 	Computer Tools for Chemical Engineering Design 10
1.2.1 	The Role of Databases in Design 11
1.2.2 	Process Synthesis 13

1..2 ! 3 	Design Environments 15
1.2.4 	Process Modelling 21

2 	Knowledge Representation Techniques 28
2.1 Classification of Representation Techniques 28
2.2 A Model Based Reasoning Approach to Chemical Engineering Design 33
2.3 Object Oriented Programming 38

2.3.1 	Storing Data in Objects 38
2.3.2 	Program Control by Message Passing 42
2.3.3 	Worlds or Contexts 43

2.4 CLAP - Combined Logic and Procedures 44
2.4.1 	CLAP relations 46
2.4.2 	CLAP Methods 49

2.4.3 	Extended Methods 50

3 	Techniques for Solving Flowsheets 54
3.1 Flowsheeting Solution Techniques 57
3.2 Solution Method Requirements for Flexible Modelling 59
3.3 Implementation of a Sequential Modular Solver - Esspros62
3.4 Implementation of Equation Based Solvers 64

3.4.1 	Degrees of Freedom and Sensitivity 64

3.4.2 	Analytical Manipulation 66
3.4.3 	One-Dimensional Newton 66

3.4.4 	Newton's Method 67

3.5 Conclusions Concerning Solution Strategies 70

1

4 	An Object Oriented Representation for Flowsheeting 73
4.1 	Unit Operations 76
4.2 	Chemical Species 78
4.3 	Object Representations for the Design Process 79

4.3.1 	Hierarchical Representation of Design 81
4.3.2 	Implementation of the Design Development Graph 84
4.3.3 	Consistency Maintenance 90
4.3.4 	Complexity Maintenance 95

4.4 	Summary of Object Representation for Flowsheeting 98

6 	A Representation for Modelling Flowsheets 101
5.1 Equations as Constraint Relations 101
5.2 Expansion of Generic Equation Descriptions 107
5.3 Alternative Modelling Representations 112
5.4 Selection of Unit Models 120

5.4.1 	Selection of High Level Model Descriptions 122
5.4.2 	Representation of a Model Library 125

5.4.3 	Example of Model Selection 130

5.4.4 	Selection of Equation Form 132
5.5 Interactive Model Modification 135

5.5.1 	Modification of High Level Models 136
5.5.2 	Modification of Models at a Low Level 138
5.5.3 	Refining Model Detail in a Simulation 140

5.6 Model Results 142
5.7 Summary of Modelling Functionality 143

6 	Modelling of Design Strategies 147
6.1 Modelling Process Synthesis 148
6.2 Design of Unit Operations 158
6.3 Interface Between Design Data and Flowsheet Solvers 163

6.3.1 	Problem Scope 164
6.3.2 	Model Generation 166
6.3.3 	Model Solution 167
6.3.4 	Interpretation of Results 168

6.4 Summary of Strategy Representation 168

7 	Conclusions 170
7.1 	Representation 170
7.2 	Modelling 171
7.3 	Summary 172
7.4 	Future Work 174

Ii

A The Prolog Programming Language 175
A.1 Facts and Rules 175
A.2 Data Types 177
A.3 Program Execution 178
A.4 Recursion 179
A.5 Variable Unification 179
A.6 Pattern Matching 180
A.7 Backtracking 181

B Evaluation of Design Variable Specifications 	 183

C Expansion of K Value Expressions
	 187

D Example Output of Generated Models 	
1 	

193

E Application of Overall Process Synthesis Procedure 	 206
E.1 The Implemented Hierarchy of Decision Levels 210

...F. Worked Example. of Opportunistic Modelling in Distillation Col-
umn Desigi 	 . 	 224

References
	

240

111

Chapter 1

Introduction

The aim of this work has been to develop an experimental tool to perform flow-

sheeting tasks throughout the course of a design. Design proceeds in a hierarchi-

cal manner increasing the amount of detail in the description of the plant, and,

correspondingly, in the mathematical models used to describe the plant. Models

range from the simplest overall mass balance to rigorous, fully detailed unit mod-

els, and the calculationè required in the course of a design include the modelling

of complete plants or any of their constituent parts at any level of detail between

these two extremes.

As a design develops, many alternative flowsheets may be generated reflecting

the opportunistic way in which a designer works. The tool has been developed to

support the numerical and heuristic evaluation of the alternatives, with the aim

of producing, ultimately, a single design.

Most current flowsheeting technology is intended for modelling plants at a sin-

gle level of complexity. In situations where several levels can be handled, there is

no means of ensuring a consistency of data between them, or between the flow-

sheeting program and other programs used for design. This work aims to extend

the applicability of flowsheet modelling as a tool to be used throughout the design

process while considering the requirements of integrated process evaluation.

The justification for characterising the work in this thesis as knowledge based,

is that, in comparison with more conventional programming techniques, the

knowledge, both about the subject and the nature of the problem solving ac-

tivity, has been coded explicitly in a modular manner. Inference is then possible

based on the classification of the encoded knowledge.

The major area of work has been in knowledge representation. The repre-

1

sentation of information must be able to describe the structure and function of

plant items and the relationships between them. Relationships define topology,

the position of a unit in a design hierarchy, its functional description and its

modelling capability. Section 1.1 and Chapter 2 discuss the knowledge appropri-

ate to flowsheeting and its representation. The application of the representation

techniques to flowsheeting is discussed in Chapter 4.

The work described here has addressed the implementation of a solution

method, together with its support facilities, appropriate for flexible fiowsheet

modelling. Chapter 3 discusses the advantages and diadvantages of the flow-

sheeting techniques currently in widespread use, providing the basis for the se-

lection of the most suitable approach. The system could, however, be altered to

accommodate a range of solution techniques as demonstrated in Chapter 3.

Integration with other design functions has been considered as part of knowl-

edge representation. A tool for aiding in process synthesis has been developed

to demonstrate the principle of wider integration. Process synthesis has a hier-

archical structure providing an overall framework for design. The discrete levels

suggested by the procedure allow a structured analysis of flowsheets, providing

information for their subsequent modelling. The structure and its representation

are discussed in Chapter 6.

1.1 Chemical Engineering Design

To provide a tool to facilitate process flowsheet modelling in the context of an

integrated design, it is first necessary to define the scope of design and the level

to which integration of different design functions is desirable and supportable.

Chemical engineering design is a multi-disciplinary exercise involving chemical

engineers and chemists who define the process, mechanical and civil engineers who

design process equipment and the site, and electrical and control engineers who

provide power and control system design for the plant. Commercial pressures

require that the design be completed in as short a time as possible. This can

only be achieved by successful coordination of all these functions.

The different functions may view the same information in different ways, using

terminology and notation unfamiliar outside their own fields. The coordination

of information which is to be used from different viewpoints is itself a major

research topic and has been given only brief consideration here. A discussion of

2

the implications for a multi-disciplinary design environment has been pres ented '

by Westerberg et al [1] and Subrahmanian et al [2]. -

Design has traditionally been performed in two distinct phases [3] - concep-

tual design of the process and physical design of the items of plant. Initially,

the process is defined by the chemists and chemical engineers. Specialists from

other functions only become involved once the process definition is completed and

their involvement is economically justifiable. This implies that once the design

has reached the stage of involving the specialist functions, the process is fixed.

Any fundamental alterations required as a result of consideration of the different

functions are added to the design rather than integrated into the development of

the process.

Process design is necessarily performed in an iterative manner. A number

of designs will be considered initially and carried forward in enough detail to

enable evaluation and, thereby, a choice to be made between them. The number

of alternatives will be reduced as the degree of detail is increased, until a single

process design may be chosen for progression to the plant and equipment design

stage.

The present approach to design is to advance progressively from block flow

diagram level (BFD) to the description of the individual unit operations. At this

stage, a single design is accepted on economic grounds. Subsequently, a piping

and instrumentation diagram (PID) is constructed, where control and layout are

considered.

This is followed by a safety and hazard analysis where each line in the plant is

investigated to see if variations from the specified conditions can occur and what,

if any, hazards will result. Similarly, procedures for plant start-up and shut-down

are determined.

Any of these evaluations could result in a major redesign of a plant which

has been accepted without detailed consideration of the different functions. For

example, a hazard analysis might reveal a failure resulting in an unanticipated

explosive mixture of components. The solution to the problem at this stage of

the design is to implement a control strategy ensuring that in the event of the

identified failure, the explosive mixture is not formed. This may involve the

specification of extra items of process equipment. If this eventuality had been

considered earlier in the design, it may have been possible to define the process

3

such that a failure of this sort would not occur.

An integrated approach to design would prevent such costly errors by en-

couraging the consideration of all facets of design throughout the hierarchical

synthesis procedure (Figure 1.1), i.e. the iterative procedure would involve all

disciplines rather than leave them until the process is fixed. By evaluating the

process with respect to all these functions at every stage of design, redesign

would be minimised. Advantages to be seen in completed processes should be:

decreased physical size, greater energy efficiency, and improvements in safety and

maintenance (see Preston [3]).

Figure 1.1: Integrated Approach to Design

1.1.1 The Role of Flowsheeting in Design

The synthesis of process fiowsheets and the evaluation of their mathematical rep-

resentations constitutes only a small part of chemical engineering design. "Flow-

sheeting" programs are used for evaluating flowsheet models in order to calculate

heat and mass balances and equipment sizes. To establish the extent to which

fiowsheeting can be applied to a broader range of problems than attempted at

present, a description of the design procedure and the role currently filled by

fiowsheeting is necessary.

The procedure is shown in Figure 1.2. Design is initiated by the need for a

financially attractive product. Market models assess current product values and

predict future trends resulting in the suggestion of a product or product area.

4

"Make Money"

Market Evaluation

Reaction Path Synthesis
I

Process Design
Block Flow Diagram

Process Flot, Diagram
V

Piping and Instrumentation Diagram

Construction

Operation

Figure 1.2: Procedure for Chemical Plant Design

lithe product can be made using existing technology, then that technology

is adapted to suit a particular site and required throughput. If, however, the

technology does not exist, a chemical reaction sequence is required. Chemists

provide information about the reactions involved, including kinetic equations,

by-product and product distributions, etc. -

There is already a range of possible processes to be evaluated. From this point

on, increasingly more alternative processes can be generated. The alternatives

must be evaluated to eliminate the less attractive options, resulting in a single

completed design. It is infeasible, however, to produce completed designs for

every alternative generated, so evaluation takes place at different levels of detail.

Even at the level of minimum input, e.g. only basic reaction information, some

options can be discarded, if, for example, the raw materials are more expensive

than the products, or if a catalyst is rapidly poisoned and expensive to regenerate.

Throughout the process design phase more detail is added to the process

description, starting with a block flow diagram of conceptual process operations

and proceeding towards a process flow diagram where the unit operations of the

completed plant have been defined, as shown in Figure 1.3. In parallel with this

increase in process detail, more information is available for (and required of) the

evaluation model.

The level of description adopted by flowsheeting programs is that of the pro-

5

t
'C

Figure 1.3: Hierarchical Approach to Design

cess flow diagram. This seemingly narrow range still accounts for thousands of

program runs every year. It is, however, desirable to retain the knowledge ac-

cumulated thus fax in the synthesis of the plant and extend it to incorporate

the mechanical design of plant items, ensuring a consistency of information and

ease of subsequent data manipulation. To do this in a traditional fiowsheeting

package would require an impractically large unit model library incorporating

conceptual process models and detailed individual unit models for every possible

unit operation. A different approach is necessary and is discussed in Chapter 4.

The concept of a hierarchical decomposition of a design is now well accepted,

and should be incorporated in any representation of the design procedure. It

allows the evaluation of process alternatives with the least possible effort being

wasted on fruitless ones.

1.1.2 Design Knowledge

Modelling the design procedure, and encapsulating the knowledge identified as

being used by experienced designers is a major research topic. Categorisation

of the knowledge is necessary for the creation of a representative model which

allows the designer to perform the required tasks in a flexible and natural way.

The following types of knowledge used by engineers in design have been identified

by Beltramini and Motard [4]:

Laboratory data describing chemical and physical behaviour of materials,

Data representing standards or specifications,

Mathematical models for mass balance, thermodynamic laws, chemical

laws, costing, etc.

Heuristic and judgemental knowledge:

subjective decision making exhibited by experienced engineers

a way of combining information which might not conform to a math-

ematical model

knowledge which directs the design towards an optimal solution

skills in focuing on different parts of the design and deriving informa-

tion necessary for decision making

skills in resolving goal conflicts

strategic knowledge for controlling the overall problem solving activity.

Some types of knowledge have already reached a high level of sophistication.

For instance, numerical and procedural tasks, such as determination of physical

and chemical property data for materials, and mathematical modelling for simu-

lation are well established techniques. However, implementation of strategic and

heuristic knowledge is comparatively limited.

In the encapsulation of strategic knowledge, design tasks can be broadly cat-

egorised into "routine" and "non-routine" activities [5]. Routine design encom-

passes problems which have a well defined design procedure that is essentially

the samefor any application. The steps in such procedures are known and any

choices are limited to a known set of alternatives. Distillation column design and

sequencing, heat exchanger network synthesis and the design of certain types of

reactors fall into this category, because they require a small, manageable domain

of knowledge.

7

Overall process design falls into the non-routine category because the required

amount and diversity of engineering knowledge is extensive, and there is no well

defined procedure for developing a problem specification into a complete plant

design. Process synthesis, which is only part of the overall design activity, can be

considered as a routine task since there are well developed theories for its practice.

It is possible, therefore, for non-routine tasks to have routine operations within

them.

The process of design can be viewed as having a hierarchical structure; a

structure which has been utilised by many researchers in this field. A plant can

initially be modelled by a simple block structure representing high level chemical

processes (such as reaction and separation), and can subsequently be expanded

incrementally to a more detailed description. Hierarchies have been implemented

for:

-.1. directing the course of the design towards a solution, and

2. providing a structure for the different models which can be used throughout

the design.

The hierarchical approach suggested by Douglas [6,7] fits into the first category,

i.e. as a framework for directing the design. Douglas presents a hierarchy of deci-

sion levels which increases the detail of the process description in an evolutionary

fashion starting with consideration of the reaction and feeds. This provides a hi-

erarchical structure to the design. At each level, the whole fiowsheet is assessed,

increasing the amount of detail by the use of heuristics. In situations where no

heuristics are available and, therefore, no discrete choice can be made, alternative

processes are generated. The decision hierarchy consists of:

1 Batch vs continuous,

2 Input - output structure of the fiowsheet,

3 Recycle structure of the fiowsheet and reactor considerations,

4 Separation system specification,

vapour recovery system,

liquid recovery system,

5 Heat exchanger network.

The hierarchy puts a formal structure on the approach used by engineers in

the preliminary stages of design.

A model of the design procedure itself has been proposed by Talukdar et al [8]

who suggest a structure incorporating "tests", "aspects" and "operators". "As-

pects" are the viewpoints of a design from initial specification to final production

i.e. equivalent to levels in a hierarchy. "Operators" convert input aspects to

intermediate and output aspects, i.e. perform the steps between levels which can

be manual or automatic, "Tests" compare aspects for consistency and report the

results in another aspect. This is similar to the procedure adopted by Douglas,

but is intended for a wider range of application.

The second category above is discussed by Lien et al [9] who identify that

different levels of model are used throughout the design, ranging from qualitative

or order of magnitude models at the earliest stages, to rigorous mathematical

models for later calculations. In the course of design, the designer moves from

high to low level strategies and back as required. For instance, at one level

in a design, a rapid, approximate calculation will determine the feasibility of

distillation for the separation of two components. Once the decision has been

taken that distillation may be used, a relatively simple model can be used to

determine the dimensions of the distillation column and approximate capital and

running costs. This provides the information necessary to evaluate the whole

design on an economic basis. If that analysis is favourable, a detailed model

may be used to determine mechanical information such as the dimensions of the

column and its internal fittings. If, however, the design had proved unfavourable

then another approximate calculation could be used to evaluate other possibilities.

During this procedure, the design has only advanced one step, i.e. a separation

may be carried out by distillation, but the detail of the models used to describe

it is dependent on the task which the designer is trying to perform.

Lien et al describe this knowledge as models of the designers and of the avail-

able aids. The knowledge describes the tools available and their applicability to a

given task. Ideally, the tools would be mathematical models of engineering prin-

ciples, which, when combined in the correct manner, would provide a description

of the design at an appropriate level of detail. However, many large organisa-

tions have extensive libraries of computer tools for use in the evaluation of design,

ranging from material and heat balances for entire plants, to programs concerned

with the detailed design of individual plant items. The utilisation of this existing

design knowledge, in the form of programs and routines, is an alternative which

is being investigated by some researchers (see Chapter 2).

The common theme of the research described above is the use of a central

model to describe the design. The consistency of data, and the consistent use

of data by different reasoning modules, requires a common store of information,

including numerical values for properties and the relationships between the prop-

erties. An individual design task is then interacting with data which has been

accumulated from other tasks, enabling the identification of contradictions within

the data.

1.2 Computer Tools for Chemical Engineering
Design

As discussed in Section 1.1, specialists from different functions are involved in

coordinated, integrated design. The lack of integration, and hence the need for

significant iteration, in process design is partly due to the range of specialisations

and partly to the large amount of data generated.

Many specialist skills have now been encapsulated in computer programs,

overcoming the difficulty of ensuring that these skills are available at the relevant

time. Many tools have been developed in the CAD field as well as that of process

design, and their coordination in large scale environments has been achieved (see

Section 1.2.3 below).

Among the earliest tools developed in chemical engineering were "flowsheet-

ing programs". The ability to perform accurate mass and heat balances rapidly

on a scale which was previously impractical, was an important advance. The ma-

turity of these programs has resulted in this becoming one of the most important

tools available to a chemical plant designer. Programs for designing individual

plant items, particularly heat exchange and distillation equipment, are also in

widespread use. These programs have been complemented by databases of phys-

ical and chemical properties.

The development of "expert systems" has expanded the area of computer

applications by considering problems which have no obvious numerical formu-

10

lation, for example, equipment selection and materials of construction. Some

problems have been approached by both mathematical methods and expert sys-

tem techniques, each with their particular strengths. The result is a wide range of

programs and tools applicable to different aspects of chemical engineering design.

With advances in computer hardware and software, the development of an

integrated design environment has become an area of growing practical applica-

tion. Importance is now being placed on coordination of the different aspects

of design. Databases are now available to support the required management of

data, but are not alone sufficient to capture "design knowledge". Developments

in programming techniques, such as object oriented systems, have proved effec-

tive for managing both data and knowledge about design procedures in general,

the design in hand and information about the range of tools which can be used.

1.2.1 The Role of Databases in Design

For many aspects of design large quantities of data are required. For example,

physical properties of materials require tables of parameters for use by the differ-

ent models of each property. Chemical data is required, along with information

about hazards and legal limits for emissions. Further data is generated as a de-

sign proceeds. Every model created provides more data about the plant and its

operation. Consistent management of the data is therefore essential for its use in

large multi-user projects.

When considering integration of computer tools and the associated design

data, the case for using a database to coordinate the information becomes very

strong. The maintenance of a consistent store of data, whether it be fundamental

or generated, is essential if a range of different programs and users is to interact

effectively.

Commercial databases were developed for the tabulation of data containing

few interactions and a large number of similar items. However, Cherry et al

[10] describe process engineering data as being extremely complex where the

number of similar items is small. The items also tend to be very strongly related.

Chemical engineering design data is, therefore, not well suited to the use of

commercial database management systems (DBMS). Databases specifically for

chemical process engineering have been developed, which are different from their

commercial counterparts. A review of engineering database systems has been

11

published by Benayoune and Preece [11].

Early attempts at integration used databases to link individual programs.

Branch [12] describes the implementation of an interlinked database architecture

where a number of smaller databases, each relating to a particular application

task, e.g. synthesis, plant layout, etc. were coordinated by a DBMS. Existing

design programs were incorporated into the various tasks.

Britt et al [13] point out that such systems have not evolved as design tools,

because they do not represent the creative, trial and error approach to conceptual

design tasks performed by engineers. The systems lack the knowledge which an

engineer uses to guide the design process. To this end, many researchers have

concentrated effort on the development of "knowledge bases" and associated tools.

Databases are required for storing data generated during the course of a de-

sign, while knowledge bases store the strategies and assumptions employed by

the engineer. The advent of knowledge bases, therefore, does not signify the

demise of databases. Advances in the area of design will involve the combination

of databases and knowledge bases.

The most common programming technique for the implementation of knowl-

edge bases is object oriented programming (e.g. DESIGN-KIT (Stephanopoulos

et al, [14]), KNOD (Beltramini and Motard, [4])), which has provided a format

natural for use in engineering design due to its modularity. Object oriented pro-

gramming(OOP) is described in detail in Chapter 2. Briefly, OOP is a language

for representing groups of related information as "objects" and their "attributes".

Objects can be used to correspond directly to the processing units in a plant. This

representation is possible using a conventional database, defining each object as

a table. However, the number and range of relationships employed would be very

difficult to describe. For example, different properties of the unit can be related

to each other by means of a mathematical model.

Recent advances in database technology have produced object-oriented data-

bases, which provide a more powerful representation for relationships between

stored items of information. However, databases cannot be used to describe all

of the types of knowledge discussed above, much of which is methodological.

A hybrid approach is required with information being stored in a database (or

databases) to maintain the general data, such as physical property parameters, as

well as the data generated as the design proceeds including the various topologies

12

investigated and results of the associated calculations. Knowledge bases should

be used for the incorporation of the wide range of relationships which are required

between the items of design information and for the methodological aspects of

design. Relationships exist between different classes of data item, e.g. between

process items and the programs which can be used for their design. In that way

knowledge about the use of information and design procedures can be captured.

1.2.2 Process Synthesis

Many computer tools are available to help in the solution of routine design syn-

thesis problems such as distillation sequences and heat integration networks [15].

Synthesis of process fiowsheets can be considered to be a routine task, since

the conversion of raw materials to products can be regarded as a mathematical

transformation under a set of known operators i.e. unit operations.

Two general approaches exist for.the automatic generation of flowsheets: al-

gorithmic and heuristic. The algorithmic approach is mathematically rigorous

and guarantees to locate an optimal process, but is expensive in computing time.

The heuristic approach, however, does not guarantee a rigorous mathematical

result, but tends to produce good flowsheets quickly. The heuristic approach,

which uses rules of thumb based on past experience, ingenuity and the intuition

of the designer, therefore more closely emulates the procedures adopted by an

engineer.

An example of an algorithmic approach for deriving optimal process fiowsheets

is described by Johns and Romero [16] who combined dynamic programming and

branch and bound techniques. A qualitative system for representing high and low

properties was used because the program was intended to suggest alternatives at

early stages of development.

Heuristic synthesis, while maintaining the principle of mathematical transfor-

mation at least in early programs, developed the concept of hierarchical synthesis,

which has since been incorporated in tools for supporting the design procedure.

Of the heuristic approaches, the hierarchy of decision levels proposed by Douglas

[6] has proved most resilient. The expert system, PIP [17], discussed below, is

a direct implementation of the method, while other authors, notably Lott [18],

Stephanopoulos (MODEL. LA) [19]and Britt [13], have developed software which

uses Douglas's approach as a basis for synthesis.

13

Siirola and Rudd [20] propose six steps combining synthesis and analysis.

Each stage of analysis determines the implications of the previous synthesis step

and provides appropriate information for the next. The six steps are reaction

path selection, selection of raw material and product amounts, matching of source

species to sinks, identification of tasks not involving separation, identification of

required separations and conversion of specified tasks into items of plant.

AIDES (Siirola and Rudd [20], Siirola et al [211) is the implementation of the

above problem solving strategy. The authors have implemented five out of six

steps of the synthesis and analysis procedure described above.

The procedure involves matching sources and sinks of components. For exam-

ple, product streams and reactor inlets are sinks, while feeds and reactor outlets

are sources. Where sinks and sources do not match, AIDES proposes unit oper-

ations to perform the required task.

Mahalec and Motard [22,23] suggest the use of techniques employed for math-

ematical theorem proving. The procedure starts with a set of goals (products)

and attempts to derive conflicts among a set of facts and the desired goals. Re-

dundant portions of the initially proposed fiowsheet, which are obtained by a

depth-first heuristic search, are eliminated using a "look-back" strategy. The

structure is further improved by an evolutionary search based on a set of rules.

Kirkwood et al [17] have developed a hierarchical system using the decision

levels proposed by Douglas. Heuristics are employed to select unit operations

and identify process alternatives. Quantitative models calculate process flows,

equipment sizes and cost information.

The program (PIP) produces alternative processes at points where it can-

not make a decision. A depth-first search of the alternatives is used to locate

profitable processes. If a process is profitable, more detail is added. If not, the

sensitivity of the design to changes in product price is evaluated.

Lu and Motard [24] have combined heuristic production rules and a linear

programming algorithm to generate a flowsheet structure. They adopt a hier-

archical strategy, allowing the initial level of design to incorporate only process

concepts, i.e. matrices representing goals and sources. The linear programming

technique produces a preliminary flowsheet, which provides a basis for an evolu-

tionary search to generate modifications to the flowsheet structure.

Since overall flowsheet synthesis can be regarded as a routine task, accord-

14

ing to the definition of Davis [25], it can be considered as one of the standard

tools used in design. In an integrated design system, the other tasks, such as

safety evaluation and control system synthesis, would require separate tools. An

integrated system requires interaction between all tasks at all levels of design, sug-

gesting a hierarchical approach. The non-hierarchical programs can still provide

useful process alternatives for evaluation, but are of less value in an integrated

system. For that reason the larger design programs and environments which have

been developed have supported a hierarchical synthesis procedure.

1.2.3 Design Environments

"Design environments" provide an interface between designer and tools, main-

taining data in a consistent form. Environments are not intended to automate

design of chemical plants. They are intended to provide a designer with access

to the tools required throughout the integrated design process.

In the most basic sense, the coordination of tools can be achieved by providing

a user interface to a suite of translation programs. An example of this type of

mechanism is PROCEDE [26]. The interface allows the graphical description of

a flowsheet to a high degree of sophistication. The designer is then at liberty to

invoke any of the design tools in any order. Such flexibility is important, allowing

the adoption of familiar design procedures rather than being constrained to a

predefined framework.

The limitations of systems such as PROCEDE is the lack of information about

the constituent tools. PROCEDE has a central data store, but no description of

the relationships between process items or properties of process items. With no

indication of the validity of the values of properties, or whether they are specified

or calculated, tools can be invoked with inputs which may be contradictory or

incomplete. The results of the operations are returned to the central store with

no indication of where they came from and no means of ensuring consistency. For

example, a flowsheet simulation may calculate a heat exchanger heat transfer area

which is subsequently used in a package specifically to design heat exchangers.

The package may select a tube length from a set of standard lengths which may

require a revision of the heat transfer area. With no knowledge of the interaction

between heat transfer and heat load, no indication can be given that the results

of the simulation may now be inaccurate.

15

A framework incorporating knowledge about the tools, i.e. what can be

achieved and what is required, has been developed by Daniell and Director [27]

for the application of CAD tools. The tools have been represented by "objects"

describing their general abilities and manage the low level programming details of

their invocation. Not only does this representation allow the, user the flexibility

of choosing any tool with reference to its abilities, but, since this information is

explicitly stated, it is possible to provide reasoned advice on tool selection.

The authors describe the implementation of a "blackboard model" to select

and invoke the tool most appropriate to a given problem. A blackboard model

is a representation technique where the knowledge is divided into sets of rules

each concerned with a particular subject. These "Knowledge Sources" monitor

the "Blackboard" of data about the problem, waiting for information which they

can act on. When such a situation is recognised, a Knowledge Source places a

bid on the Blackboard indicating that it can be used and what it can achieve.

The program "Interpreter" then determines which of the competing Knowledge

Sources to invoke. This representation is discussed in Chapter 2.

Allowing the Interpreter to determine the sequence of actions takes the direc-

tion of the design away from the engineer. To allow the designer to direct the

procedure the same framework could be used merely to present the tools which

could be invoked in a given situation. This would be of particular value if a large

number of tools was available and a particular analysis required only a subset of

these. Presenting the user with the subset of options could provide guidance for

- 	completing the analysis.

The ADVENT system, described by Britt et al [13], adopts a similar philos-

ophy, and is intended to support process synthesis and optimisation for "pinch"

synthesis of heat exchange networks. An object oriented executive allows the

user to interact with application programs, in this case synthesis and analysis

programs for heat exchange networks, as well as a simulator, and a graphical in-

terface. The authors suggest the extension of the system to handle whole plants

using the synthesis hierarchy of Douglas and a database.

One of the major objectives in the design of the above systems has been the

ease of maintenance, i.e. the ease of adding new modules and removing old ones.

Systems such as PROCEDE have little interaction between tools, implying that

the addition of new tools only requires the correct mapping between the data

tI1

structures of the central model in the environment and the application program.

The system proposed by Daniel! and Director, however, requires additional in-

formation describing the range of applications with associated input and output

values. The work to incorporate new tools has, therefore, increased. In general,

the more information that the environment has about its constituent tools, the

more useful it can be to a designer. With the implementation of appropriate rea-

soning it can provide help about the tasks involved and tools for their solution.

However, the increase in additional information also increases the effort necessary

to interface new tools.

The use of existing application programs alone is not sufficient to provide

all the flexibility the designer may require. Most programs only perform one

task representing a single step in the design procedure, e.g. distillation column

sequencing, flowsheet simulation, heat exchange network design, etc. The models

which can be created in such systems are restricted to those provided by the

modules, whereas a designer creates models of processes at different levels of

abstraction and evaluates them against various criteria. Further, the user does

not have access to the models used by the application programs. This means that

the designer may not be able to create exactly the model required, or manipulate

it to suit particular needs. In most cases, there will not be any way of displaying

the model being used.

To provide a better environment for chemical engineering design, it becomes

necessary to support flexible modelling and allow access to the models created.

If the knowledge about the problem domain is adequately detailed, in that the

properties of the items of interest to a designer are characterised along with

their relationships to each other, then the definition of a mathematical model

requires only the ability to define the sets of relationships between the properties

which provide a description of the item. The models are, therefore, created by the

designer for a particular application, but are available for evaluation by simulators

or reasoning modules.

An environment based on this principle is DESIGN-KIT [14] developed using

the artificial intelligence toolkit, KEE. The system is object oriented with plant

items represented by objects within an inheritance hierarchy. The designer can

select from a number of standard units or, more importantly, define the operation

of a unit by selecting appropriate constituent parts. Rules are used to ensure

17

the consistency of such selections. Further rules infer the configuration of the

unit, and, hence, the associated mathematical model for the desired task. The

mathematical model is, therefore, representative of the operation defined by the

designer.

The system dynamically generates equations from the model definition and

interfaces to a range of evaluation modules. These modules can perform, for

example, a "degrees of freedom" analysis, to aid the selection of design variables,

and symbolic differentiation prior to equation based simulation. Since the model

is defined centrally, the same definition can be used to develop a semi-qualitative

model based on the order of magnitude of unit attributes. Potentially, other

types of model could be generated for other applications.

The evaluation modules for such a system must be general in order to accom-

modate the extra interaction designers might require with models. For instance,

in DESIGN-KIT, instead of interfacing to a specific process flowsheeting pro-

gram, the only part which is incorporated in its original form is the solution

mechanism. Model libraries have been superseded by the mechanism for model

definition. The flowsheeting "executive" has been replaced by rules which pro-

vide a more flexible interface to the solver. The removal of these rigid parts of

the flowsheeting program allows interaction with the model, to evaluate, for ex-

ample, design variable selection. The implication is that for systems based on

this general modelling concept, there is a need to develop more tools specifically

for the environment. Tools are required for formulating models for each appli-

cation in order to allow interaction with the models at different levels. Either

the application modules must be written specifically for the environment, or the

fundamental evaluation parts of existing programs must be separated from their

internal model representations, e.g. the solver from the simulator.

The result is an environment with a high degree of flexibility for the designer,

who can define models rather than let the application programs develop them,.

However, the disadvantage for the system developer is the inflexibility of the

interfacing. The design tasks normally performed by application programs re-

quire either new custom made modules, or major alterations to the application

programs.

The emphasis of this type of environment is on a central model definition

which can be used to formulate models for a range of different types of evaluation.

iII

Therefore, interfacing to tools in the manner described by Britt et al, is still an

option. It is valuable to retain this option as a means of interfacing existing

packages which a designer has experience of, or are company standard. The

system can then support the design programs which are available at the point of

application.

The model not supported by PROCEDE or DESIGN-KIT is a model of the

design process itself. This can be used to provide a recorded structure of design

development and associated decisions, and, from the programmer's point of view,

to incorporate strategies for directing the design task. MODEL.LA [19,28,29]

consists of a modelling language integrated with a model which supports design

development (see Section 1.2.4) to provide this required extension to DESIGN-

KIT.

More recently proposed design environments address more fundamentally the

nature of design. Smithers [30] argues that to provide intelligent support or

automatically reproduce the design process, it is necessary to understand how

knowledge is organised, used and generated during design. He describes the

development of an "exploration based" model of design. The model takes as its

input a description of the initial requirement, which tends to be incomplete and

inconsistent. The space of possible designs is "explored" to determine in what

ways the initial statement is incomplete and inconsistent. These points are used

to concentrate the design activity and thereby refine the initial description. This

differs from a search problem in that the initial requirement cannot be regarded

as a specification due to its inconsistency. A goal state is achieved when a point

in the design space is found which specifies a design fully satisfying the, now

revised, requirement. This approach is also taken by Bañares-Alcántara [31] in a

proposed chemical engineering design environment.

Study of the nature of the design process has revealed the importance of

social aspects. Design is typically performed by a team rather than one person.

Individuals may perform separate tasks, but many are collaborative. Westerberg

et al [1] and Subrahmanian et al [2] discuss the development of a design support

environment called N-Dim intended to provide a medium for a multi-disciplinary

team of designers to communicate on the common design.

In this system, individual designers may have different viewpoints pertaining

to their specialities, and should, therefore, be able to access their own models.

19

Obviously, for consistency, only one model should be used. The authors sug-

gest that, to overcome this apparent contradiction, individual designers should

be able to access a common model but from their own viewpoint. Designers will

be allowed to work on models in their own space, developing and experimenting.

When a designer is ready to share a model with other workers, that model be-

comes permanent. The other workers may copy and modify the model in their

own space, but the "cast in stone" model remains as a record of that state of the

design.

The authors also discuss the development of a modelling language, ASCEND,

which is tailored to suit large scale design activities (see Section 1.2.4) by incor-

porating the notion that data can be accessed with a different viewpoint. The

language is intended for the formulation and solution of algebraic models, but

Talukdar and Westerberg [8] discuss its implementation in the wider context of

multi-user design. Three aspects of design are considered:

• The information gathering phase prior to the development of a new product.

• The modelling of the design procedure. The example discussed is the rep-

resentation of test-aspect-operator diagrams.

• The modelling of the designed artifact in its various stages of development,

which is the original purpose of ASCEND.

The discussion of the first two applications is mostly hypothetical, and would

require the support of an environment such as N-Dim for multi-user access. The

principle, however, is straightforward. Individuals can develop their own models

of the artifact, the design or the information, and permit their use to others, at

which point the models become "cast in stone". This allows different designers

to create models from their own viewpoint, but accessing a common model.

As yet, these later systems (Smithers, Banares-Alcántara, Westerberg et al)

are in the development stage, but they already indicate that future design en-

vironments are going to support the designer in more than the use of a suite

of tools. Modelling of the design procedure will be valuable, not necessarily in

automatic design, but for support for the tasks and social interactions involved.

Pill

1.2.4 Process Modelling

The importance of modelling as a tool for design has been emphasised by

Stephanopoulos et al [19] and Westerberg et al [1]. During the course of a

design, engineers create models which reflect the state of the designed article.

Traditionally, programs modelling flowsheets or individual plant items have pre-

defined models which constrain the exploratory nature of model building. For

this reason, systems have been developed to support the modelling task, notably:

MODEL.LA [28,29], ASCEND [32] and ModAss [33]. A detailed comparison

of the systems and the present work will be made in Section 5.3. This section

outlines briefly the capabilities of each system.

The central theme of these systems is the hierarchical decomposition or con-

struction of models. The mathematical description of large processes can be

defined as a set of submodels describing parts of the process. The decomposition

can continue down to the definition of a single variable. For example, the descrip-

tion of a flash vessel can be defined as the summation of the heat contributions

of input and output streams, which can be further decomposed into enthalpies,

then to temperatures, heat capacities, etc.

These tools are most useful when as many fundamental relationships as pos-

sible have been defined. The designer can then create high level models by com-

bining lower level models, e.g. the flash vessel described above can be modelled

by specifying that it requires mass balance, heat balance and vapour-liquid equi-

librium models.
-. 	The techniques for describing and developing models are different for the three

systems discussed.

ASCEND was developed for formulation and solution of algebraic models.

The resulting language has some object oriented properties rather than it having

been developed in an object oriented language (see Chapter 2). The structure of

a model is similar to that of the concept of an object. Related information, in-

cluding the specification of mathematical relationships between constituent prop-

erties, is classified under a general heading, e.g. a distillation column. Any ex-

amples of distillation columns then have the properties of the general model.

The different parts of a model are discussed below. Figure 1.4 shows part of the

definition of a distillation column in ASCEND.

The variables nt and feed_tray are declared as integers. If subsequent spec-

MODEL column;
nt, feed-tray
tray [integer]
tray [1]
trayf2. .feed_tray-1]
tray [teed_tray]
tray [feed_tray+1. .nt-1]
tray [itt]

IS_A integer;
IS_A generic-flash;
IS-REFINED-TO reboiler;
IS-REFINED-TO stage;
IS-REFINED-TO feed-stage;
IS-REFINED-TO stage;
IS-REFINED-TO condenser;

FOR i: 1. .nt-2
CREATE

tray[i+1] .lout, tray[i] .lin ARE_THE_SAME;
tray[i] .vout, tray[i+1] .vin ARE-THE-SAME;

END

FOR 1: trayEfeed_tray] .feed.comp_name[1. .tray[feed_tray] .feed.nc]
CREATE

recovery[i] * tray[feed_tray] .feed.F * tray[feed_tray] .feed.y[i]
..= tray[1]•.lout.F *.tray[1].lout.y[i]

END

END column

Figure 1.4: Partial View of a Distillation Column Model written in ASCEND

ification of the values is with a non-integer, the error will be identified. The

specification of the trays shows how lower level models can beincorporated in

a higher level one. The specification is made that all trays (tray [integer])

are of the type "genericilash", which has been defined as a model in its own

right, relating input component flowrates to output flowrates with vapour-liquid

equilibrium relationships. The following lines identify the specific types of model

which are associated with each tray. For example, the model for a stage is a

refinement of a generic flash (by the IS-REFINED-TO operator) with two input

streams. Similarly the refinement to a feed stage has three input streams.

The properties demonstrated are akin to concepts of object oriented lan-

guages. For example, the IS-REFINED-TO operator is similar to the notion

of inheritance, whereby the properties of a more general operation, for instance,

the reboiler, are inherited by a specialisation, i.e. tray[1J. The IS_A operator

corresponds to the instantiation of specific models. The example in Figure 1.4

22

shows all trays being defined as instances of the generic flash operation. Their

particular refinements are subsequently detailed. An instance of the column can

be created by stating that a specific column ISA example of this generic col-

umn, and then providing values for nt, the number of trays, and :feed-tray, the

number of the feed plate.

In the description of the relationships between connecting plates, the liquid

flows between plates must be equated, as do the vapour flows. This can be

achieved, either by creating equations, or, as here, by specifying that the variables

ARE-THE-SAME. The equality is represented by one piece of data, in this case

representing a flowrate, which can be accessed by two names, i.e. the same data

item is accessed by tray [3] . lout and tray [2] . Un. This facility is important

in multi-user projects where different people can refer to the same data item by

their own chosen names.

Each term is also a path name. For instance, the item in tray [2] . Un is an

item called un in the model of tray [2]. This avoids the redeclaration of property

types in higher level models, thus simulating the accessing of an object's slot in

object oriented programming.

The specification of an equation is shown at the bottom of Figure 1.4. The

equation describes the relationships between the feed composition and the prod-

uct composition in terms of recoveries.

In comparison, MODEL.LA has been developed entirely in an object ori-

ented language. It was developed specifically for chemical process engineering,

intending that the models be described in terms of the physical and chemical

phenomena involved. The user does not appear to have direct access to symbolic

equations. In specifying a model, the modeller creates a generic description of

the phenomena in the unit. The generic template can then be instantiated to a

specific instance of the unit in a manner similar to ASCEND.

Unlike ASCEND, a hierarchy of fundamental, domain specific relationships

has been defined, providing the basic structure of the mathematical models. The

relationships describe the balances which may be accommodated , e.g. mass

balance, energy balance, phase equilibria, etc. The modeller interacts with this

hierarchy by characterising the model in two ways. A description of the rele-

vant conservation equations is made along with assumptions about the physical

and chemical phenomena (and in the case of lumped vs distributed, a modelling

23

phenomenon). Figure 1.5 shows how a model of a flash might be defined in

MODEL.LA. The description has been abridged, to show only the basic relation-

ships.

((FLASH ItA UNIT)

((INPUT1-FLASH IS_A CONVECTIVE_PORT)ENDMODEL)

(THE TYPE-OF-MODEL OF FLASH IS LUMPED)
(THE BALANCE-EQUATIONS OF FLASH IS (SET.OF(MASS-BALANCE-EQUATION

ENERGY-BALANCE-EQUATION)))
(THE PHASES OF FLASH IS (SET.OF(VAPOUR LIQUID-i))
(THE PHASE-EQUILIBRIUM-CHARACTERISTICS OF FLASH IS

PHASE-EQUILIBRIUM)
(THE PHASE-EQUILIBRIUM-MODEL OF FLASH IS UNIFAC)
(THE THERMAL-CHARACTERISTICS OF FLASH IS (SET.OF(

HOMOGENEOUS-TEMPERATURE ADIABATIC)))
(THE PRESSURE-CHARACTERISTICS OF FLASH IS (SET. OF (

HOMOGENEOUS-PRESSURE)))

ENDMODEL)

Figure 1.5: A Flash Vessel Model described in MODEL.LA

A set of rules has been defined to "translate" the above description into a

functional specification. For example, the combination of the statement that the

model is lumped and the balance equations include a mass balance equation,

implies the use of a lumped mass balance equation. The balance equations are

defined in a completely general form, with terms for any of the rates which might

be included in them. The other statements perform two functions.

• They identify additional equations which should be added to the model.

For example, the specification of homogeneous temperature identifies the

necessity of the equality between the vessel temperature and the outlet

temperature.

• They identify terms in the balance equations which can be removed ac-

cording to the approximation which the assumptions represent. For exam-

ple, the statement in Figure 1.5 that the thermal characteristics include

adiabatic operation, removes the external heat source term in the energy

balance.

24

Once low level functional descriptions have been defined, they can be com-

bined into high level operations. For example, emulating the distillation column

model created in ASCEND in Figure 1.4, a similar description can be defined in

MODEL.LA as shown in Figure 1.6.

((COLUMN IS_A UNIT)

input and output definitions

(THE COMPONENTS OF COLUMN IS REBOILER)
(THE COMPONENTS OF COLUMN IS COLUMN-SECTION)
(THE COMPONENTS OF COLUMN IS FEED PLATE)
(THE COMPONENTS OF COLUMN IS COLUMN-SECTION)
(THE COMPONENTS OF COLUMN IS CONDENSER)

(THE USER-DEFINED-RELATIONSHIP OF COLUMN IS
(- (* RECOVERY MOLAR-FLOWRATE-FEED-PLATE)

MOLAR-FLOWRATE-REBOILER))
ENDMO DEL)

Figure 1.6: A Distillation Column Model described in MODEL.LA

In ASCEND, models describing the operations of condensers, reboilers and

plates can be defined as specialisations of a flash with a set number of inputs.

Conceptually, the same can be done in MODEL.LA by combining a mass balance

with a heat balance and a vapour-liquid equilibrium, but including no specifica-

tion of the expected number of inputs or outputs. The description possible in

MODEL.LA does not allow for the identification of individual terms, such as the

number of inputs. The description of the flash includes a mass balance, which,

on instantiation of the model, creates a set of symbolic expressions based on the

specified inputs and outputs. Therefore, the generic flash operation cannot be

used separately as a model, but once included as part of a higher level model

where input and output ports have been defined, the mathematical description

is complete.

The equations have been arranged in a hierarchy indicating specialisation.

The distillation column model defined in ASCEND (Figure 1.4) includes a rela-

tionship between the input composition and product composition. This is desir-

able in the description of the column, but the relationship is not included in the

hierarchy described in MODEL.LA. Requiring the user to place a newly defined

PN

relationship in the hierarchy is unacceptable because of the problems of main-

taining the tree and the rules for selection without the specialised knowledge of

the program developer. For that reason, a relationship has been provided in the

hierarchy for user-defined expressions. It is not clear from the literature how a

user-defined relationship is included in a model or placed in the hierarchy. The

line in Figure 1.6 defining the above relationship is, therefore, conjecture, but is

possible in some form.

The column model defined in MODEL.LA is shorter than that in ASCEND

because the specification of the connections and relationships regarding transfer

between model components is done at the submodel level, i.e. the connection be-

tween the reboiler to the first column section and the nature of the mass transfer

is defined within the separate model instances. Column sections have been de-

fined as submodels since, apparently, there, is no method for specifying variable

numbers of parts, thus the technique employed by ASCEND cannot be used. The

alternative is to state explicitly the plates to be used between reboiler and feed,

and between feed and condenser. This then, essentially, becomes an instance of

a column, a new one being required for each different configuration. The same

problem exists for the column sections and it is not clear from the literature how

this is overcome.

The third system, ModAss [33], despite little published information, seems to

lie somewhere between MODEL.LA and ASCEND. Certain aspects of a model

are implied automatically, notably mass and energy balances. These relationships

are expressed in a very general format, as in MODEL.LA, and can be specialised

by identifying particular phenomena, e.g. a chemical reaction or specifying ideal

mixing.

For more specific modelling applications, a 'model browser" has been created

to allow the specification of mathematical expressions. These are placed in a

hierarchy of specialisations and generalisations. For example, an ideal K-value is

a specialisation of a general K-value. The model can be constructed by defining

an expression or by referring to other expressions and models which are to be

included. The generalisations of the model are also searched for their expres-

sions which are then added to the set. This procedure is similar to that used in

ASCEND.

The model solver is the mathematical tool-kit Macsyma, which is also capable

26

of algebraic manipulation to simplify models. The example quoted is of six equa-

tions representing the specification of an ideal K-value. Manipulation reduces the

six equations to the single familiar expression. However, the specification of the

models to be included as part of the ideal K-value model suggest prior knowledge

of the solution.

The structure of the models and available tools imply that a model of a

distillation column could be constructed in a manner similar to ASCEND, with

the inclusion of models representing plates, reboilers and condensers. However,

insufficient information is available to establish whether or not set operations are

possible, e.g. defining a set of n plates.

A multi-level approach has been adopted which, potentially, removes the ne-

cessity for describing a generic model of a distillation column with plates. Ini-

tially, the modeller would construct a model of a distillation column, perhaps

with approximate models such as Fenske's equation, but also, conceptually, with

a model such as that described above. The model of the column could then be

decomposed into plates and ancillary equipment which would be modelled indi-

vidually. This would preclude the necessity for defining a generic column model,

since specific plates would be defined as parts of a specific column. The separate

parts could then be modelled as specialisations of a generic flash operation as

before.

In conclusion, the three systems, ASCEND, MODEL.LA and ModAss, pro-

mote modelling as a design activity, but with differing emphasis. ASCEND, as

a pure modelling language, provides great flexibility in defining mathematical

models in a hierarchical manner. MODEL.LA is intended less for the modeller

than the designer, allowing descriptions of the physical and chemical phenomena

to be made, from which symbolic descriptions can be inferred. The user seems

to have very limited access to the symbolic expressions, suggesting two distinct

modes of use: one for the system and model developer, and one for the designer to

employ the developed models. ModAss attempts to combine the two approaches,

allowing some automatic inference of models from fundamental phenomena, while

providing full access to the model development facilities.

27

Chapter 2

Knowledge Representation
Techniques

The scope of this work was presented in Chapter 1; its aim is to provide a flowsheet

modelling tool which can be used throughout overall plant design. This chapter

will describe representational formalisms suitable for the task and explain why

object oriented programming (OOP) was chosen. A description of the principles

of OOP is followed by a comparison with the properties of the programming

language used.

2.1 Classification of Representation Tech-
niques

Three main knowledge representation techniques have been categorised by Jack-

son [341:

• Rule based systems

• Systems of structured objects.

• Logic based systems

All three representation schemes can, in principle, be used to represent the same

information, but the important distinction of their use is the ease of application

to particular classes of problem. These techniques are described in [34], and

further techniques, which have found less application in chemical engineering,

are presented by Rich [35].

0

Rule Based Systems

Rule based, or production systems, describe the problem domain by means of a

set of rules which are condition-action pairs, e.g.

ifA 1 &...&A

then

This rule is interpreted as "if conditions A 1 ... A are true, then actions Bj ... Bm

can be performed". The rule set is supplemented by an Interpreter which deter-

mines the rules to apply, and a Workspace where goals are stated and information

is added to the data structure.

This formulation is sufficient for problems with a well defined domain of

knowledge. In chemical engineering, however, there is no theory for the prac-

tice of overall plant design. Even if one could be determined, the scope of the

problem is too great to be represented by a single set of rules. A rule based

- - description, therefore, could not be developed. An extended discussion of the

issue of representing chemical engineering design in a knowledge based system is

presented by Struthers [36]. Reduced domains, however, have provided success-

ful applications in areas such as physical property prediction, distillation column

sequencing, catalyst selection and heat exchanger network synthesis.

The CONPHYDE system [37] is a prototype expert system applied to the

domain of physical property prediction. The program provides advice on the

selection of thermodynamic models appropriate to particular vapour liquid equi-

librium situations. The authors describe the system as being constructed from

their interprétátion of textbook knowledge which has been encapsulated in a set

of rules [38]. This supports the hypothesis that the problem space must be well

defined for this type of implementation.

CONPHYDE contains only 37 rules. These, however, appear adequate to

describe the domain of knowledge. For more complex situations, more rules are

required, e.g. HEATEX [38], an expert system for aiding heat exchange network

synthesis, requires 115 rules. As more rules are added to a system it becomes

more difficult to maintain consistency due to possible interactions between them.

The Interpreter is required to choose the most appropriate rule from those

applicable in a given situation. However, as the methods of selection become

more complex, the program developer must consider how and when the new rules

should be fired. This is a major disadvantage of the rule based approach. When

the rule base is large, the addition of new rules creates difficulty in determining

their effect on program behaviour.

It is therefore not possible to use simple rule based systems for overall design.

However, due to the modular nature of design, strategic knowledge tends to be

concerned with particular tasks. This implies that it can be partitioned into

Knowledge Sources representing experts in a particular field. Such "blackboard

systems", use the Workspace to maintain facts about the problem in its context,

see Figure 2.1,

CONTROL
BLACKBOARD

BIDS

%'% 	

•\
	

a

KEY

O KNOWLEDGE

SOURCES

ED . AcrJoN

DOMAIN
BLACKBOARD

Data Stnzcture e.g. thjectz

X~_o

Figure 2.1: Structure of Blackboard Systems

The Knowledge Sources are continually checking the Workspace to identify

information satisfying the conditions for their invocation. When such a situation

is found, the Knowledge Source states its ability to fire and what it can achieve as

a "bid". These operations are represented by solid lines in the figure. The Inter-

preter then determines which of the competing Knowledge Sources to implement.

The dotted lines indicate the interaction between the Interpreter and the Knowl-

Ku]

edge Sources, and the dashed lines represent the addition of new information to

the data structure by the action part of a Knowledge Source.

An example of a blackboard system is DECADE [39] which aids in the se-

lection of a catalyst for a specified single step reaction. There are a number of

Knowledge Sources concerned with topics such as the specification of the problem,

thermodynamic consistency and the classification of the target reaction.

Systems Based on Structured Objects

Rule based systems lack any relational structure in their constituent knowledge

bases. The rules are intended to be independent from each other to maintain

modularity in terms of the knowledge they represent, so characterising relation-

ships between items is not readily achievable in a rule based approach. Systems

with an underlying structure defining concepts and the relationships between

them are represented more suitably by object or frame based systems. Chemical

processes naturally conform to a modular structure, with frames or objects able

to represent operations. The ability to represent relationships between items,

such as fiowsheet connectivity, conceptual refinement and property inheritance,

is also required in order to describe the knowledge used in design effectively.

The use of objects to describe a problem domain and rules to provide an infer-

ence structure is widespread in the context of large scale design. DESIGN-KIT is

an object oriented implementation in KEE, an artificial intelligence (Al) toolkit,

using rules to develop modelling descriptions. A broader viewpoint has been

adopted by Lien [40] with AKORN D, which was developed with consideration of

methods of design. Lien's argument is that while process design may conform to

a seemingly procedural structure, it is not a rigid precedence ordering but merely

a framework. The hierarchical structure of Douglas (see Section 1.1.2) may pro-

vide a guide to the overall problem solution, but a designer's interpretation may

be different, moving freely between the tasks involved at the various levels.

AKORN D is a blackboard system which interacts with a domain knowledge

base of frames implemented using the Al toolkit, Knowledge Craft. It is intended

to provide a framework for solving problems in the opportunistic manner of de-

signers, hence the implementation of the Blackboard, where bids by Knowledge

Sources are the suggestions of members of a design team, and the control sequence

is driven by the overall goals. AKORN D has been applied to the synthesis of

31

distillation sequences in the program S 5 [33].

Logic Based Systems

The third representational technique is logic, which, in principle, can be used to

represent any of the above information. The logic referred to here is a type of

formal language which consists of syntactic rules for deduction. Logic program-

ming as a basis for knowledge based systems uses a subset of predicate logic.

Levesque and Brachman [41] claim that a tradeoff is required in the use of logic

for representing knowledge, since, despite the undoubted representational power

of a formal logic, its full implementation is computationally intractable. There-

fore, the more complete the logic used, the more impractical it becomes. Logic

programming languages, therefore, can only use a subset of a formal logic; the

abilities of which, in a representational sense, are offset by the efficiency of its

implementation..

Prolog [42] is an example of a language based on predicate logic possessing

some considerable advantages over conventional programming languages for use

in symbolic inference. The main features of Prolog are presented in Appendix A.

Knowledge is represented as single statement Facts and multi-statement Rules.

The Rules are constructed from Goals consisting of necessary Facts and Rules

which must be satisfied. Proving a hypothesis, i.e. executing a Prolog Goal,

utilises features such as recursion, backtracking, pattern matching and variable

unification all of which are discussed in the appendix.

No significant systems have been developed entirely based on logic. However,

since a logic knowledge base can be constructed similarly to a rule base, in which

special cases are identified before more general ones, the combination of all three

representational techniques can be incorporated into one system. This implies

that the overall design problem can be decomposed into subproblems each of

which can be represented by the most appropriate technique. The work described

here has been implemented in an object oriented system which was written in

Prolog. The combination is a powerful one for process design, allowing an object

representation of the constituent operations and the relationships between them,

plus access to the deductive capabilities of a logic based language.

The following sections describe a model-based approach to chemical engineer-

ing design as a method for structuring knowledge, followed by a discussion of

32

object oriented programming which has been used to implement this structure.

2.2A Model Based Reasoning Approach to
Chemical Engineering Design

During the process of chemical engineering design, many models are created. Lien

et al [9] identify three classes of model in design.

• Models of physical things. Such models include the mathematical de-

scriptions of processes with the appropriate degree of complexity. They vary

between qualitative models reflecting the tendencies of the model, and ac-

curate models incorporating large sets of equations which may be algebraic,

ordinary differential, partial differential or Boolean.

Flowsheets are models in this sense, being constructed from individual unit

• operations; Flowsheets are also part of a model of the design which main-

tains the relationships between flowsheets, both alternatives and structural

enhancements.

• Models of the available tools. Before strategies for solving design prob-

lems can be formulated, the tools available to the designer must be mod-

elled, i.e. what the tools provide as an output and what their input require-

ments are.

• Models of strategies. For any automation of design or the facets of

design, models of the methods are required. This may be for overall plant

synthesis, design of an individual item of plant, or the formulation of a

mathematical description of the process.

The model based reasoning advocated by Kunz [43] is a technique for struc-

tured development of knowledge based systems and representation of the domain

knowledge. The basis of the approach is the concept of formal symbolic models

in which structure and function are defined explicitly. Structure can be thought

of as the attributes of items within a problem domain. In physical items, struc-

ture could include dimensions and capacities; conceptual items, such as theories,

would include the parameters appropriate to its description. Function is a sym-

bolic description of the item and what it is supposed to do, whether it be to

33

react two components or solve a set of equations. Thus, model based reason-

ing is a method for solving problems by analysing the structure and function of

symbolically modelled systems.

It is important to distinguish between formal symbolic models and the more

traditional approaches of mathematical and heuristic models. Mathematical

models, in general, are "black box" models, relating inputs to outputs. Interme-

diate calculations are not intended to be accessed by external models or programs

and consequently no physical significance is associated with them. The function

of such models, therefore, is explicit, but without any explicit statement of struc-

ture. The structure of the model is implicit in the mathematical representation,

thereby limiting the reasoning possible with the model. For example, no infor-

mation can be established as to reasonable input values or the interpretation of

results, unless, of course, the mathematical model is one part of a formal symbolic

model detailing this information.

Similarly, heuristic models relate inputs to outputs without explicit represen-

tation of the structure of the system being modelled. These different types of

models are not mutually exclusive, and mathematical models and heuristic mod-

els can be complementary to a model based description. However, it could be

argued that such models are only required when the knowledge of the function

is incomplete or in the interests of efficiency. For an overall perspective and the

representation of relationships between items of information, it becomes easier to

reason when structure and function are stated.

A formal symbolic model of a system states explicitly the functional behaviour

of the system and its structure, thus allowing reasoning providing, not only out-

put information from input, but the internal states of the model. The symbolic

description also has the advantage of being modular, resulting in a model de-

scription closely matching the problem decomposition of practitioners in the field

of interest.

In order to communicate information about models and their associated de-

ductions, a symbolic representation should reflect the natural idioms of the do-

main. Since, in chemical engineering particularly, information can be commu-

nicated more efficiently with the use of diagrams, a graphical representation of

models can readily be implemented, either for displaying the results of some

reasoning exercise or to allow input to the model.

34

As an example of the use of a- formal symbolic description, consider the rep-

resentation of a plug flow reactor. A black box mathematical model can pro-

vide only the type of information which can be obtained from a simulation, e.g.

temperature profile, output composition, etc., which are explicit aims of the cal-

culations. These models, however, require reasoned specification of input values

and interpretation of results. Reasoning about the mathematical description can

provide little information since the structure has not been stated explicitly, i.e.

no significance can be attached to any variables in the model. For example, the

relationship between catalyst deactivation, input temperature and composition

may be incorporated in the model, but unless it has been identified and labelled,

it cannot be used in any analysis other than simulation.

The mathematical model may determine some of its internal states in the

course of calculation, which are not provided as output values. This information

is not retained and may not be used for further reasoning. Other reasoning

modules may require values for these internal states which may be established

either by user specification or its own reasoning. This may introduce a conflict

between the results of the mathematical model and the subsequent reasoning in

situations where the internal states are different.

A heuristic model may provide the relationship described above, but again,

reasoning about the structure of the reactor is impossible since heuristics would

not describe a reactor in those terms.

A reactor is shown in Figure 2.2. Here, all structural aspects are available

for reasoning. The functional description is provided by the statement that the

reactor is of plug flow character, i.e. it has the properties of a reactor with

refinements identifying it as plug flow. This description can be used to reason

about the development of a mass balance. For instance, a reactor mass balance

can be derived from the stoichiometric equation. In this case, the most efficient

simulation can be achieved mathematically, but the mathematical model has

been inferred from the specifications, thus the simulation accurately describes

the designer's intentions.

Other types of reasoning could evaluate, for example, the relationship between

volume, vessel pressure and vessel thickness.

The individual physical aspects of the model (e.g. vessel thickness, tempera-

ture profile) can be described in a similar manner, with facets such as the range

35

Function - is a: Plug Flow Reactor
is a type of: Reactor

Structure -stoichiometric equation : A + B -* C + D
conversion : f(T, P)
catalyst
catalyst deactivation : f(T, composition)
inlet stream
outlet stream
temperature profile
volume:
vessel thickness
pressure

Figure 2.2: Formal Symbolic Description of a Plug Flow Reactor

of expected values.

A further advantage of the approach is the provision of a structured problem

domain. An overall chemical engineering design problem domain is shown in

Figure 2.3. This corresponds to the structure of integrated design in Figure 1.1,

but here illustrates the information maintained in the overall domain and, thus,

available to all reasoning modules.

Figure 2.3: Chemical Engineering Problem Domain

The central problem domain is the model of a current design which contains

generic information about the subject, e.g. generic descriptions of unit opera-

tions, and specific information pertaining to individual problems specified by the

designer, i.e. specific plant topologies.

36

The modules connected to the central domain are reasoning modules which

can be thought of as models of theories. For example, the fiowsheeting "theory

model" may contain models not necessarily a part of (or of any use to) any other

modules.

The fiowsheeting theory model can be expanded as shown in Figure 2.4. The

solution methods can be items with, as their function, the solution of equations.

Their structure consists of their requirements, e.g. mathematical model, required

formulation, specifications, etc.

CONTROL 	 LAYOUT HAZOP

Figure 2.4: Flowsheeting Domain Model

The purpose of this theory model is to solve sets of equations appropriate to

the status of the design, which is to be established by the. equation generation

module (Figure 2.4).

The representation of the models must include unit operations, with their

structural and functional attributes, and conceptual items such as solvers.

The reasoning entails generating equations appropriate to the level of design

and performing calculations appropriate to the structure of the equations, i.e.

deciding which of the available techniques to use for a particular problem.

In summary, a formal symbolic description provides a consistent description

of systems in a modular manner allowing different types of reasoning to be per-

formed on it. This is a natural representation for chemical engineering where

37

the domain is decomposed conveniently into unit operations. A model based de-

scription also provides a structured domain of knowledge which can be divided

into models of theories. Chemical engineering design, with the different types

of reasoning appropriate for different evaluations of a process (see Figure 2.3) is

well suited to such a description.

2.3 Object Oriented Programming

Object oriented programming provides a highly modular structure for storing

information in a manner conceptually similar to the physical description of a

chemical process. OOP also supports a model based approach, allowing the

representation of models in terms of their structure and function. The central

organisational theme of OOP is the use of structured "objects" containing "slots"

requiring "fillers" which can be data or procedures, to describe items of knowl-

edge. The objects are related by an inheritance mechanism allowing a prototyp-

ical description of concepts reflecting their default states.

2.3.1 Storing Data in Objects

Object oriented programming is a language for representing groups of related

information as objects and their attributes. Objects may represent physical items,

such as a heat exchanger with its attributes being heat load, heat transfer area,

etc. (see Figure 2.5), or conceptual items such as graphs with attributes including

axes, labels, ranges, points, etc.

Slots- 	heat duty
heat exchange area
heat transfer coefficient
log meanAT

Relations -inlets
outlets
hot side streams
cold side streams

Figure 2.5: Object Oriented Description of a Heat Exchanger

The attributes of an object can be split into data values which can be stored in

"slots", and those concerned with relationships to other objects, which are stored

in "relations". This distinction, however, is not made in all OOP languages. For

example, the Al toolkit Knowledge Craft supports the creation of user-defined

relationships, but the MODEL.LA project [28] is an implementation using an-

other toolkit, KEE, where the mechanism of such relationships had to be defined

by the developers. Figure 2.5 shows the conceptual division of properties into

slots and relations.' Attributes such as heat transfer area and heat load which

are properties of the object itself, are defined as slots, but the connections to the

unit refer to objects representing streams and so are relations.

As objects have slots, slots can have "facets" which are the properties of the

piece of data stored there. For example, the slot for heat exchange area has the

defining properties that it is a number, and its expected value will be greater than

zero. Similarly if a valve object had a slot for status, it would expect the value to

be an atom and one of the set of enumerated types, "open" or "closed". Facets

can be described within the structure of the object or separately depending on

the syntax of the system. Figure 2.5 shows an object without facets as part of

the structure. An example of a slot definition is shown in Figure 2.6.

slot definition:
slot name - heat transfer coefficient
object - heat-exchanger
value type - number
units . W/m2 K
value range - 0-10000
default value - databank call...

Figure 2.6: Definition of a Slot

Facets can also contain pieces of procedural code, called "demons", which

are to be invoked whenever the slot is accessed, either to set it or check it.

The intended function of demons is to perform data validation and verification,

but they can be used for a wider range of operations. The code may involve

manipulating the value contained in the slot, or informing other objects and slots

of a change in value. Demons can wreak havoc, however, if not strictly regulated,

because the execution, or "firing", of one demon may involve setting a slot in

another object, which in turn may set another slot, making the creation of loops

almost inevitable. There is essentially no control over the firing of demons, so

39

they are used with caution.

The "methods" which are used to manipulate an object are also stored in

its slots. The code to perform the manipulation is accessed when a "message" is

passed to an object requiring a particular method to be fired. This is analogous to

calling a routine or function in a conventional language. For example, a method

could be used to model the object. It makes sense, therefore, for the code to

be associated with the object since different items can be modelled by different

solution techniques.

Object oriented programming and other frame systems were developed from

earlier graph based representations (see Jackson [34]) where nodes and links were

used to represent concepts and their relations. The concept is not as simple in

practice as it sounds, due, in part, to the ambiguity of node assignments. For

example, a node labelled "car" could be referring to the concept of a vehicle,

the class of all cars, a typical car or a specific car. Jackson illustrates part of

this argument by describing the class of all cars with general properties, such as

being constructed from a set of wheels, a chassis and an internal propulsion unit.

An example of a typical car could be a BMW with four wheels and an internal

combustion engine, as opposed to a three wheeled electric car. In addition to

these properties, this typical car could be associated with a number of miles per

gallon of petrol consumed, which may differ from that obtained by a particular

instance of a BMW.

The human understanding of the situation is, therefore, dictated by the col-

lection of prototypical structures constructed from previous experience of the

subject. Rich [35] describes the analysis of new experiences as the evocation of

the stored structures which are then filled in with the details of the current event.

Frames and objects were developed in an attempt to capture this type of

knowledge. Objects are defined in "classes" defining the attributes common to

all members of the prototypical class. For instance, the "class" or "generic"

object representing a heat exchanger would contain all slots required by any heat

exchanger, e.g. slots for heat exchange area and duty. The slots also represent

prototypes of the properties which, therefore, can contain default values. Figure

2.5 is a depiction of a generic heat exchanger object.

A particular heat exchanger or "instance" is a copy of the generic template,

including the default values for the attributes. The instance is likely to represent

40

an exception to the prototypical heat exchanger, thus the slots will contain values

consistent with the application to the specific situation, e.g. a heat exchanger

called E101 may incorporate the general attributes of the class object retaining,

for example, the default value for the heat transfer coefficient, but the values for

the heat duty and area slots will refer to its current situation.

Classes are arranged in a hierarchy where subclasses represent specialisations

of particular classes. For instance, a heat exchanger is a specialisation of an en-

thalpy change device, which is analogous to a typical car being a specialisation

of the class of cars in the example above. The enthalpy change object repre-

sents the concept of operations that exchange heat (which can include heaters,

coolers, boilers and condensers), and the exchanger object describes the class of

all exchangers. Further specialisations could be plate exchangers and shell and

tube exchangers. Following the car example, these can be viewed as the typical

examples of heat exchangers.

The hierarchy allows inheritance of the prototypical properties of conceptu-

ally more general objects by the specialisations. This implies that information

describing an enthalpy change device need not be contained in the description of

a heat exchanger, i.e. the information is inherited by the subclasses. The spe-

cialisation represents an increase in the functional description of the object, so,

for example, the enthalpy change device may incorporate the concept of a tem-

perature set point, but include nothing about the heat load. The heat exchanger

object which specialises it may contain the heat load information, but still has

access to the concept of a temperature set point. An example of an inheritance

network is shown in Figure 2.7.

Slots containing methods can also be inherited. The context of inherited

methods determines the nature of the action. For example, a high level method

associated with an object called "unit operation" may be to model the process.

From the viewpoint of overall control, this may be the limit of a designer's in-

terest. Objects defined as specialisations of a unit operation, e.g. a distillation

unit, might require specific modelling instructions, such as incorporating a Fenske

distillation model. The high level viewpoint need not be concerned exactly how

each model is performed, but merely with the decision that this action should be

taken.

41

SHELL &
HEAT 	- TUBE

ENTH 	
EXCHANGER 	

PLATE
COOLER CHANGE <
	

PLATE

BEATER

REACTION .czc CSTR

PFR

DISTILLATION

ABSORPTION
EPARATION

ADSORPTION

EXTRACTION

FLOW 	 MIXER
CHANGE CC DIVIDER

Figure 2.7: Example Inheritance Network

2.3.2 Program Control by Message Passing

• The flow of information in object oriented systems is determined by the methods

associated with an object's slots. Methods are fired by passing a "message" to

the object, normally from another object. An immediate application can be seen

in simulation, particularly of the sequential modular category. Each object can

model a flowsheet item and pass messages to downstream objects to start their

calculations. Loops can be resolved by allowing the natural iteration to take place

until the convergence requirement is met, in which case message passing would

cease.

Methods and message passing differ from demons in that demons are procedu-

ral attachments to slots which provide an action when a slot is accessed. They are

intended to enhance functionality by maintaining slot consistency, rather than to

control the running of the program. Methods are supposed to provide the struc-

ture for information flow by manipulating their host objects and passing messages

to other objects. Obviously, for complex problems, a great deal of planning is re-

quired to ensure methods function as intended and avoid destructive interactions

with each other (or with demons). The problem is similar to that experienced

with rule based systems. The addition of new objects and new methods requires

fundamental knowledge of the existing structure, both of objects and program

control.

Hierarchical inheritance systems should, in principle, allow this to be done

42

incrementally, by classifying new objects at the correct position in the hierarchy

thereby defining their functionality. The nature of knowledge, however, is not

clearly divisible into concepts that do not interact, which makes convenient clas-

sification more difficult than initially suggested. The problem can be solved in

part by multiple inheritance, where a method can be constructed by inheriting

methods from other specialisations in the hierarchy. To conform to any conven-

tion, this information should be inherited from the direct line of ancestors, but

this is not necessarily the case. For example, the definition of a jacketed tank

would inherit methods from objects representing a jacket in the class of heat ex-

change equipment, and a tank in the class of storage equipment. This can solve

complicated situations, but loses the convention of inheritance in a structured

hierarchy.

2.3.3 Worlds or Contexts

"Worlds" or "Contexts" are intended to allow the manipulation of objects for a

particular purpose without affecting information elsewhere. In Knowledge Craft

[44], a root context contains the knowledge base representing the problem do-

main. Contexts for different versions of the domain contain new information plus

any changes from the root context. In this manner, modelling and testing of

different situations can be performed in separate Contexts. For example, a Con-

text may be used to accommodate synthesis procedures, while another may be

used for hazard studies. Objects created by the synthesis world may have to be

manipulated and changed for the purposes of assessing hazards, but since they

are in separate worlds only a copy of the objects need be altered, the original

objects being unchanged and available for further synthesis. The Contexts can

then be "merged" to incorporate the changes into the original objects.

Contexts are structured in a tree, thus any Context can spawn child Contexts,

with the intention that as they are developed they automatically copy any objects

requested from the parent Context. Consistent management is required to ensure

that when merging is attempted, only a complete version of the object is copied,

i.e. there are no other versions in child Contexts in a different state. The tree

structure is equivalent to an inheritance hierarchy for objects.

43

2.4 CLAP - Combined Logic and Procedures

CLAP is an object oriented programming language developed in Edinburgh by

A. Struthers [36]. It is written in Prolog, providing full access to its logic pro-

gramming capabilities, traditional object oriented facilities as well as high level

procedural programming constructs in the CLAP language (such as loops, if-

then-else, etc.) and an extended interface to the C programming language.

CLAP supports objects as described in Section 2.3.1 with slots, facets and

demons. The conceptual difference between slots and relations is realised with

different modes of use for each. Slots have facets and demons as discussed above,

whereas relations can have inference techniques associated with them (see Section

2.4.1 below).

The differences between CLAP and traditional object oriented languages stem

from its engineering origins. Engineering contains many activities more suited to

a procedural representation than the concept of message passing incorporated in

most object oriented languages. In traditional OOP, control is achieved through

the firing of methods in an undetermined order, or by achieving global constraints

with the use of global variables. CLAP retains the advantages of message passing

and objects, but differs from traditional OOP in that methods are removed from

the objects. This allows a high level control mechanism to be used, i.e. methods

are fired in a determined order.

CLAP also displays differences in the use of message passing. Traditionally,

messages are sent to objects invoking one of the methods in the objects slot?.

In CLAP, messages are used to allow objects to communicate with each other

and, more unusually, with methods. A message consists of a piece of information,

which may be symbolic, numerical or a combination, which can be attached to

objects or methods and subsequently used to make inferences about the state of

the object or method. When a method checks what an object has been told, a

piece of inferential code can be invoked which can' provide some conclusion based

on all the information received by the object up to the point the inference was

made.

The provision of worlds or contexts in CLAP is different from the implementa-

tion in conventional OOP discussed in Section 2.3.3. Each context is held entirely

separate from every other. There is no organisational structure, so no automatic

44

inheritance is possible. Copies of entire contexts are possible, or the copying of

individual objects. The operations then carried out do not affect the original

context. No automatic merge facility is provided, so significant changes must be

noted and implemented by the programmer.

Instances of CLAP code appear in various examples throughout this thesis,

so a brief discussion of the syntax of the language will be given here. Unless

otherwise stated, any word appearing in an example preceded by a "$", is a CLAP

keyword. Any term that begins with a capital letter is a variable according to

the convention of Prolog.

Generic objects are defined by a type name, a relation to a parent object in

the inheritance hierarchy, a list of slots, a list of relations and an optional list of

display commands. Figure 2.8 shows the heat exchanger object from Figure 2.5

as a CLAP generic object.

object(heat_exchanger)
self -
variables - [Q,A,U,DT,I,O,HS,CS,Pts],
slots - [is_a - enthalpy-change device,

heat-duty -
heat-exchange-area - A,
heat-transfer-coefficient - U,
log_mean_T_diff - DT,
screen-location - Pts],

relations - [inlets I,
outlets 0,
hot-side-streams - HS,
cold-side-streams - CS],

display 	Edrav_exchanger(Pts)I.

Figure 2.8: CLAP Representation of a Generic Heat Exchanger Object

The variable list allows unification of slot values. For example, when the

value for the "screen-location" slot is set, the variable Pts in the display call is

automatically unified to the new value.

To create an instance of an object, the command is as follows:

$create..object heat _exchanger-e101 $in worldl

which creates an instance of the heat exchanger object called e101 in context

woridi. The specification of the context is optional, the default being the current

context.

45

To set and check slots and relations, the commands are of the following form:

$set slot-e101-heat_transfer..coefficient-800

$set relation-e101-inlets-[sl, 53]

$check slot-e10 I- (heat -duty-H)

$check relation-e101-(hotside_streams-S)

Note that the form of the slot and relation values can be in any format, here

numbers and lists. This can be constrained by using the facet construct, where

each slot can be defined in a manner similar to generic objects.

Slots and relations can have "meta-slots" which describe a particular view

of a slot. For instance, a fiowrate can be described using a range of different

units, e.g. kg/s, tonnes/yr, lbs/s, etc. Different tools and different users may

wish to access such a slot from different viewpoints. The stored data should be

consistent, e.g. all SI units. Pieces of code can then be written to provide the

conversion from one set of units to another. To access a slot by a meta-view the

call is as follows:

$check slot-streainl- (flowrate-FlowcDQkgs)

These examples are sufficient to illustrate the form of CLAP calls. Further

descriptions will be given as necessary, or see the CLAP reference manual [45].

The facilities receiving particular attention in the remainder of this chapter are

the range of relations available with their associated inference capabilities, and

the implementation of CLAP methods with their extension for loosely defined

procedures.

2.4.1 CLAP relations

There are three types of relation available in CLAP: inheritance relations, stan-

dard symbolic relations and user defined relations.

Inheritance provides a functional relationship between objects, as described

in Section 2.2, allowing reasoning about the operation of an object. Specification

of the parent is achieved by placing an "is-a" in the slot list with its value set

to the generic parent object. This can be left as a variable and subsequently set

dynamically, but this seems to defy the reason for having it. Objects related in

this way inherit the slots and relations of their conceptual ancestors along with

their associated facets and defaults in the case of slots, and inference techniques

46

in the case of relations. Thus, if a shell and tube exchanger is defined as a

specialisation of the heat exchanger object, it will access its own slots as above

and also the generic slots of a heat exchanger object.

Standard symbolic relations are defined within an object in the same manner

as slots. However, the value stored in the relation can be reasoned about using

a separate piece of code to make some inference. The inference technique can

be loaded from a separate file, so can be in any format, e.g. rules, C functions,

etc. For example, Figure 2.8 shows a heat exchanger with relations for its inlets

and outlets. There is also a relation to store the hot side stream information,

which the user would not explicitly have to provide a value for, since an inference

technique could be used to infer the information from the specification of the

other relations. In this case, checking the temperatures of all the connecting

streams would indicate which stream was on the hot side.

Inference techniques and the relations they operate on, are inheritable. How-

ever, they only apply to the local level of inheritance. The inference method takes

as one if its arguments, the relation list of the object to allow the use of combi-

nations of the relations in the decision mechanism. Using the above example, the

shell and tube exchanger may inherit the relations and inference methods of the

generic heat exchanger, but these are not combined with the local relations in

any inference, i.e. the four relations in Figure 2.8 cannot be used in conjunction

with those defined locally for the shell and tube exchanger.

The third type of relation is defined independently from any object. The

resulting relation can then be applied to any object to which the relation is

applicable. There are five fundamental types of these relations arranged in a

hierarchy as shown in Figure 2.9. The root relation has four subclasses: symbolic,

constraint, specialise and operator.

Mass Balance

Constraint <
Root 	

Symbolic
Equation 	Balance

Specialise
Inequality

Operator

Figure 2.9: CLAP Relation Hierarchy

Symbolic relations are similar to standard symbolic relations and can be used

47

to represent concepts such as "upstream of" or "connected to". The specifica-

tion of a user defined relation automatically implies its inverse. If a label for

the opposite definition is given, it is used to describe the opposite relationship,

otherwise CLAP creates a relation called "inverse". For example, if objects a and

b are connected by the relation "upstream-of" such that a is "upstream-of" b,

the inverse is also true. If the name of the inverse is supplied, it can be invoked

as, for instance, b is "downstream-of" a. If it is not provided, the relation will

be automatically, b is "upstream-of-inverse" a.

The second group, constraint relations, are ones describing the form of a

constraint of an object, typically an equation or expression. When a constraint,

such as a mass balance, is defined, it is placed in the relation hierarchy as a

specialisation of the constraint relation, i.e. as a "specialise relation". Code

written to manipulate the constraint relation can therefore be used to manipulate

all of its specialisations. Chapter 5 describes the use of constraint relations to

provide flowsheeting equations and balances.

Constraint relations are defined similarly to objects, for example the mass

balance relation shown in Figure 2.10.

relatiors(mass_balance ,Unit-VaJ.) -
variables - [Unit,Forin,Bindings],
bindings - [I = inlets $of Unit,

0 = outlets $of Unit],
return_form - (suin_of(mass_flowrate $of I, $over I)

= suni_of(mass_flowrate $of 0, $over 0)),
return-type - equation,
slots - [is_a - constraint].

Figure 2.10: Example Constraint Relation Describing a Mass Balance

Constraint relations have two major parts:

• the "return form" which is the generic description of an equation or expres-

sion,

• the "bindings" which is a list of variables contained in the equation with

the objects, slots and relations to which they correspond.

Relations can be in any of the forms described above, so they could contain refer-

ence to further mathematical expressions. The implications of this are discussed

ritt]

in Chapter 5.

The generic constraint form is expanded into a specific form of the constraint

applied to a particular object by the third user defined relation type, the specialise

relation, e.g. the mass balance of a particular mixer. The constraint form of a

mass balance shown in Figure 2.10 can be applied to the mixer by a specialise

relation which expands the generic equation according to the bindings specific to

the instance of the mixer. If, for example, the mixer had two inlets, s, and S2,

and one outlet, 33, the specialised form of the relation would be:

In1 + 1712 = Out3

where: Inj = mass..fiowrate $of .sj — > Vail,

In2 = mass..fiowrate $of 2 - > Va12,

Out3 = massilowrate $of .53- > Va13.

Individual specialise relations for each constraint relation can be written, but the

default expansion of the generic form is normally sufficient.

It should be noted that at this point the expression has not been evaluated in

any way. No specifications have been included. This implies that one specialised

form can be used to obtain solutions for different problem specifications.

The fourth subclass, the operator relation, evaluates the specialised form as

the range of the relation. The default operator relation checks all bindings in the

specialised form (see above), checking the slots and relations to find values for

specifications and further expansions of relations. These are placed in the Value

part of the above binding expressions. The fully specified equations are created

by unifying the Value part with the variable part also present in the equation (e.g.

Vail with Ii). Solution can then be achieved using code in the active-code

slot of the operator relation, which can then supply the equations to a solution

method or package.

2.4.2 CLAP Methods

Methods are pieces of procedural code used to manipulate objects. The CLAP

language allows the code to be made up of procedural items such as loops and if-

then-else tests, CLAP calls to set and check slots or make inferences, and Prolog

calls. It is also possible to define relations which call C subroutines.

49

The single argument to a method is a list of objects whose generic type or

types are defined in advance. This is intended to provide specific applications

for specific objects. For example, a method could be used to model a distillation

operation by the McCabe-Thiele procedure [46].

Extra information required by a method can be "attached" in a similar manner

to slots. This is the CLAP definition of message passing which is in contrast

to the interpretation used in other object oriented systems (see Section 2.3.2).

This information can be attached by demons or as the result of an inference.

More unusually, it allows communication between methods. For example, once

the McCabe-Thiele method has been completed and the number of plates is

known, it could send a message to another method for performing distillation

column plate to plate calculations. The plate to plate method would ensure that

a message had been received in which case it could proceed. Otherwise it would

call McCabe-Thiele itself or return, having failed. A section of such a method is

shown below.

method(plate_to_plate, distillation-C),
variables - - - -,
type - program,
program($if not($attached (number_of_plates-N) $to self)

$then $call inc_cabe_thiele-C,

Inference techniques can be used to determine the best method by which

to model a particular object. The inference returns the name of the appropriate

method and automatically runs it with the object under scrutiny as its argument.

For example, if it were required to calculate the theoretical number of trays in a

distillation column and methods were available to perform the calculation using

McCabe-Thiele, Ponchon-Savarit or Fenske, the appropriate method could be

inferred by checking the specifications and other information available to the

distillation object.

2.4.3 Extended Methods

Standard CLAP methods provide a means of implementing procedures which are

well defined in terms of their constituent actions and possible alternatives. The

steps which make up a procedure and points where a choice can be made are

known, along with the alternative courses of action.

50

This description corresponds with the definition of routine design discussed in

Section 1.1.2. However, non-routine tasks cannot be represented in this fashion.

The constituent parts of such tasks are known but are not performed in any

particular order, or, more likely, the order is dictated by a particular designer

and a particular design. The choice points are numerous and the alternatives

prohibitively many to represent using procedural constructions.

Non-routine procedures can, however, be given some procedural goals even if

the goals are not achieved by sequentially ordered subgoals. For example, the

synthesis procedure of Douglas discussed in Section 1.1.2 is a set of procedural

goals i.e. the input-output structure must be defined before the recycle structure

can be considered. The goals themselves consist of a wide range of flowsheet

synthesis decisions, including fiowsheet creation and the analysis and evaluation

of alternatives. These subgoals, however, are not normally performed in a proce-

dural manner. The designer will switch between the various options as necessary.

A new type of extended method has been developed to describe non-routine

procedures. Figure 2,11 shows the structure of an extended method.

extended-method - Method
calling-sequence - calll..call2..call3.. •
guards - guardl..guard2..guard3..
macros -
assertions - assertionl..assertion2..assertion3..
loopback_points - pointl..point2..point3..
object-of-interest - Object
other-slots -

Figure 2.11: General Structure of Extended Methods

The calls which constitute the method, whether they be sequential or other-

wise, are contained in the calling sequence. If the calls can be made sequentially

they are simply connected in a dotted sequence (a CLAP structure of the form:

a..b..c). If, however, some calls have no defined order, they can be represented

and performed "in parallel". Parallel calls can be included as part of a sequence,

thus allowing procedural progression and parallel decision making.

In this context, "parallel" refers to tasks which, when grouped together, rep-

resent the options available at a particular stage and can be performed in any

51

order any number of limes. The physical representation to the user is as a menu

displaying the courses of action relevant at that point. Ideally, there would be

different windows for the individual tasks, the user selecting the window, and

hence the operation to be performed. The graphics package supported in CLAP

has proved a major limitation in this area, resulting in only a single window being

used and operations being selected from a menu.

The relevance or appropriateness of any operation can be assessed by provid-

ing associated "guards", which are conditions that must be met before a call can

be performed. In the case of a sequential call this prevents any further progress

until the conditions are met, and in the case of parallel calls this results in exclu-

sion from the menu of options. This is not entirely satisfactory since the designer

may complete a parallel call unaware that some options are unavailable. The

intention is to display the excluded calls in the menu to indicate their presence

at the level of interest but prevent their selection. -

The structure of extended methods shown in Figure 2.11 allows the replace-

ment of excessively long guard conditions by macros. This makes written methods

more legible.

Once a call has been completed it is useful to be able to make some assertion

about the status of the procedure. This may be in the form of setting slots,

relations or facts, and may involve the extended method or other relevant ob-

jects. Similarly to guards, assertions are contained in a dotted sequence, each

one corresponding to a call in the calling sequence.

When a guard is not satisfied and the execution of its corresponding call

is prevented, it is desirable to know the reason for the failure and what further

action to take. The explanation is entirely up to the programmer, while extended

methods provide the means for obtaining the information required by the guard.

Each guard is associated with a single call and in turn with a loopback point

which returns the program to an earlier point in the extended method (or in an

earlier extended method) where the information can be obtained. This allows

the user to provide the appropriate information before proceeding.

One, normally high level, object is provided as an argument to extended meth-

ods thus providing a centre of interest and source of information. The method

may manipulate the object, and the guards may access its slots and relations.

Further slots are provided to accommodate the status of the method and a

52

predicate to update the status, plus slots for information about displaying the

method.

An application of extended methods in synthesis, in particular the Douglas

procedure, is discussed in Chapter 6.

53

Chapter 3

Techniques for Solving
Flowsheets

Mathematical modelling programs used in chemical engineering design can be

broadly divided into one of two categories: those used for overall process flowsheet

modelling, and those used for modelling specific unit operations. Both types of

program are used extensively throughout design. One aim of this project was to

establish the extent to which existing programs can be incorporated in a modelling

environment to be used during the design procedure. The flexibility required by

a designer in constructing mathematical descriptions of items of plant or entire

processes must be weighed against the ease with which it can be provided. This

chapter discusses the approaches currently used for solving fiowsheets and how

significantly the flexibility must be compromised for the implementation of each.

Flowsheeting programs perform mass and heat balances on plant models spec-

ified by a designer or engineer. Additional calculations also provide information

about the sizing of the items of equipment included in the flowsheet.

The structure of a typical flowsheeting program is shown in Figure 3.1. It

consists of an executive which reads the specified plant model from an input

file and formulates a mathematical model appropriate to the solution method

available. This formulation uses a library of predefined unit models and physical

property relations. The model is solved and the solution placed in an output file.

Conceptually, the simplest and most general way of using existing programs

in conjunction with an environment is to provide an interface to the input and

output files. It is the most general approach because any program operating an

input/output file format can be accommodated by specifying a mapping between

54

Figure 3.1: Structure of Flowsheeting Programs

the symbolic data structures in the environment-and the format required by the

program. This is the approach adopted by PROCEDE (see Section 1.2.3). For

such systems, some correspondence must be found between the process defined

by the designer as a set of conceptual operations, and the existing library of unit

models. This constitutes a major drawback. For instance, PROCEDE claims to

.......have a library of over 200 standard symbols for the conceptual description of the

process. It is unclear how the system resolves the problem of interfacing to a

fiowsheeting program with, for instance, a library of 50 unit models.

The model libraries place some undesirable restrictions on the specification of

the plant model. Whatever solution method is used (see Section 3.1), the libraries

provide a range of fixed format mathematical models, whether they be routines or

sets of equations. The models must be of sufficient detail to provide an accurate

simulation of the unit operation in question, but if a more approximate model

is required, either a new unit model must be provided, or the more detailed one

has still to be used. In the latter case, the input information required for the full

model must still be provided. For example, the evaluation of a heater may be

necessary with the intention of calculating its heat load. The library model may

incorporate the equation:

Q=UALsT
	

(3.1)

for the calculation of heat transfer area, A. However, it requires a value for

heat transfer coefficient, U, which may not be available or is inappropriate for the

model of the plant and, therefore, not of interest. In this case an estimate must

be provided before the model can be used, which, if the estimate is not revised,

may lead to errors in later stages of design.

55

Due to the wide variety of equipment items used in chemical plants and the

limited number of models available in a unit library, it will often be the case that

there is no unit model for the particular process. This may require the combi-

nation of two or more models which together match the necessary performance.

For instance, in Esspros, discussed in Section 3.3, a model of a nitric acid ab-

sorption column can be created by the combination of a mixer, two reactors and

a separator.

In other cases a different model may provide a reasonably accurate description

of the process being modelled. For example, during a series of interviews designed

to uncover such problems, a situation was found where an engineer had required

a model for a condenser. There had not been one available, so a flash had been

used instead with the outlet vapour flowrate set to zero. The official response

held that while this was acceptable, a mixer model would have been better.

The solution suggested for the latter problem is not acceptable in a design

situation where the information generated as part of the continuous design pro-

cedure is to be maintained with the decisions taken. There is a loss of functional

knowledge when one conceptual operation is replaced by a completely different

one, e.g. the replacement of a condenser by a mixer which is conceptually an

unrelated operation.

The implication of the above is that maintaining a library of unit models

provides a restriction on the specification of a flowsheet description. To develop a

knowledge based fiowsheeting system using an existing library, the mathematical

relationships incorporated inside each model must be known. Situations such as

the condenser/flash/mixer example described above can then be resolved, since

the fact that the mixer model contains the most complete or consistent heat

balance equations would be encapsulated in the system knowledge base. The

appropriate combination of models representing the nitric acid absorber could

also be inferred.

The determination of suitable models has gone beyond the functional descrip-

tion of both conceptual flowsheet operation and unit model. The suitability of

models is being determined at the level of equations. Section 3.3 addresses such

an approach where a model composed of library units is deduced from a set of

equations.

Due to the restrictions of the model library format, much of this work has

56

been concerned with developing an alternative approach, which is discussed in

Section 5.4.2. Removal of the library implies that models must be generated by

the tool as opposed to the flowsheeting program. Thus, a more flexible modelling

format must be provided to solve the problems discussed above.

The part of the flowsheeting program remaining from the structure shown

in Figure 3.1 is the solver. The remainder of this chapter discusses methods

of flowsheet sollition and how different techniques satisfy the requirements of a

flexible flowsheeting tool.

3.1 Flowsheeting Solution Techniques

There are three main types of flowsheeting program: sequential modular, equa-

tion based and the slightly less well known simultaneous modular. A general

discussion of process flowsheeting techniques can be found in Westerberg et al

[47], and a review of flowsheeting programs is presented by Flower and Whitehead

[48,49].

Sequential modular programs perform calculations on a unit by unit basis.

Each unit in turn has its outputs calculated from its inputs. The units consist of

subroutines containing the input/output relationships describing the process and

the method with which to solve them, i.e. modelling equations are represented

implicitly. When a recycle is located, a selected stream is "torn" and estimates

are provided for the variables in that stream. There may, of course, be more than

one recycle and hence torn stream. Algorithms are available for the selection

of optimal tear streams, e.g. Lee and Rudd [50]. A pass is made through the

flowsheet which provides new calculated values for the estimated variables. These

can, in principle, be used as new estimates, or various standard convergence

techniques can be used to bring the estimates closer to the true solution. When

the recycle values match their previous estimates, the recycle is solved.

The main failing of the sequential modular approach is the difficulty of apply-

ing design constraints. Since outputs are calculated from inputs it is not possible

to constrain a unit's output directly. This can be overcome by using "control

units" which allow the user to apply constraints while varying selected design

variables.

Most commercial flowsheeting systems are based on sequential modular ar-

chitecture, some examples of which are: FLOWPACK (ICI) [51], PROCESS

57

(Simulation Sciences) [52], FLOWTR.AN (Monsanto) [53] and ASPEN (Aspen

Technologies) [54].

Equation based programs have not been widely used in industrial practice.

Until recently, no acceptable program was available. The earliest used only lin-

ear models [55] which were inadequate for describing complex unit operations.

Development of robust non-linear packages has been rather slow.

Examples of academic equation based systems are: SPEED-UP (Imperial

College) [56], ASCEND II (Carnegie Mellon University) [57] and QUASILIN

(Cambridge University) [58,59]. An extensive survey of equation based systems

is given by Shacham et al [60].

Equation based programs explicitly represent the equations of unit operations,

compared with the implicit representation of the sequential modular approach.

When a simulation is performed, these equations are solved simultaneously, usu-

ally by a Newton method. This produces a sparse matrix of the coefficients of

linear and linearised non-linear equations. This is solved by Gaussian elimination.

The equation based approach has the advantage of being able to accommodate

design constraints which, being equations themselves, are simply added to the

equation set. This represents one of the disadvantages of this approach, since

the arbitrary specification of consistent design variables in systems of hundreds

of equations is highly intractable. Poor selection of design variables can result in

a singular matrix and thus no unique solution to the problem can be obtained.

The main drawback of the equation based approach is the requirement for

initial valUes for every variable in a given problem. Poor initial estimates often

result in non-convergence, thus initialisation represents a crucial step in equa-

tion based solution. Initialisation of such a large number of variables must be

performed by a program.

Simultaneous modular programs are a combination of the above methods.

Unit models contain detailed descriptions of input/output relationships, as in

sequential modular systems, and simpler linear relationships with adjustable pa-

rameters. A sequential pass through the flowsheet is made, providing coefficients

for the linearised unit models. The linear equations are then solved simultane-

ously as in an equation based system. The sequential pass overcomes the problem

of variable initialisation for the equation based part of the method.

The simultaneous modular approach was developed to introduce the desirable

61.1

aspects of equation based flowsheeting to existing sequential modular programs.

The large investment in the sequential modular approach has resulted in users

being reluctant to change to the equation based techniques. The application

of this combined approach, however, provides some of the speed of an equation

solver, and the ability to place design specifications in a more flexible way, while

retaining the numerical stability of the sequential modular method.

There are few examples of successful simultaneous modular systems, but ex-

amples include the work of Perkins [61] and Mahalec et al [62].

A similar system has been proposed by Johns [63,64] where, instead of linear

models, simplified non-linear representations of the "rigorous" equations con-

tained in the sequential modular units, are used for simultaneous solution. The

method of solution performs an initial iteration using the rigorous models which

generate parameters for the simplified models. Iteration on the simplified models

is then performed until convergence is achieved or the model is no longer valid.

A further iteration of the detailed model is performed before the simplified model

is used again. This procedure continues until convergence is achieved.

3.2 Solution Method Requirements for Flexi-
ble Modelling

This work has been concerned with developing flexible modelling tools, rather

than creating the definitive flowsheeting algorithm. Appropriate strategies have

been developed for formulating problems for solution by suitable techniques. Be-

fore describing formulation methods it is necessary to describe the implementa-

tion of different solvers and their specific requirements. For example, an equation

based solution technique needs methods for checking design specifications and

variable initialisation. This discussion also leads to a choice between equation

based and sequential modular solution approaches for flexible modelling applica-

tions.

From a modeller's viewpoint, development of mathematical descriptions is

aided by the ability to express relationships as equations. Mathematics has a

widely known syntax, so models created as sets of equations should be understood

by model users as well as developers. If models are created using the "model

based" techniques described in Section 2.2 then each term in each equation will

59

be available to be reasoned about. In this respect, sequential modular unit models

are "black boxes". The equations are stated implicitly. Thus the terms are not

available for reasoning. A model user, therefore, has no access to the equations

in the model and so has little scope for modifying them.

An equation based description, however, allows flexible model development

and use. Mathematical syntax can be used to define sets of equations to represent

particular operations, such as vapour-liquid equilibrium. These sets can then be

used as the basis of high level descriptions of flowsheet units, e.g. a flash unit can

be modelled by a vapour-liquid equilibrium, a mass balance and a heat balance.

Using a "model based" description, the individual terms of the equations can

be accessed for modification by the user of the model. For example, a vapour

pressure may be supplemented by a fugacity coefficient.

A "model based" approach to mathematical modelling implies that, of the

flowsheeting solution methods described in Section 3.1, an equation based tech-

nique is most appropriate. However, existing programs with a structure as shown

in Figure 3.1 do not permit flexible access to their constituent parts. Allowing

modellers to create descriptions which can be reasoned about for different appli-

cations, e.g. symbolic linea,risation and graphic presentation, and allowing users

to modify these descriptions, implies that the unit model library is no longer of

any use. The executive can also be replaced by a reasoning module which permits

the access to the equations described above, as well as performing the required

formulation tasks. The input and output file format can also be discarded in

favour of an interactive system. Therefore, the only required part of as existing

equation based program is its solver, in which case it may be easier to develop a

solver specifically for such a modelling system than to modify an existing one.

If a sequential modular solver is used, more of the program structure is re-

tained. This is a supporting point for this approach which should be considered

since it is the most widespread of those discussed. Unit models are fundamental

to the solution technique, so a unit library must be maintained. Since this is the

case, and no access to the equations can be gained once the model is created,

no interaction with the formulation executive shown in Figure 3.1 is necessary.

Thus, problem specifications can be mapped from the symbolic data structures

of the modelling tool to the input file format of the solver. Similarly, solutions

can be interpreted from the resultant output file. Despite the restriction of not

RE

being able to modify models once they are created, it is still useful to be able to

build composite models from library units. A method for generating appropriate

sequential modular models from an equation based description is described in

Section 3.3.

Solvers are not only required for flowsheeting calculations. Throughout de-

sign, models of whole flowsheets and smaller models of their constituent parts

are created. The "model based" approach described above allows construction

of mathematical descriptions for different levels of complexity, since, throughout,

they are similarly defined as sets of equations. An equation solver can be used to

evaluate any such formulation. However, a sequential modular solver is restricted

to the models available in its library. To describe detailed behaviour of individ-

ual operations, access to the equations is required. For this reason, an equation

based solver is required to supplement the sequential modular technique for the

accurate simulation of such situations.

In summary, a flexible modelling format, for both modellers and users, can

be developed using equations. Access to individual terms of each equation can

be permitted using a "model based" representation. An equation based solver is

the most appropriate of those discussed for evaluating the generated model, but

most, if not all, of the structure of existing equation based programs should be

discarded and replaced by the proposed system. A sequential modular program

could be used with little alteration, but does not provide adequate access to

modelling equations.

For these reasons, an equation based technique has been used as the primary

solution method. The flexibility obtainable from such a technique outweighs the

robustness achievable by other methods. It should be recognised, however, that

both equation based and sequential modular methods have been implemented.

The representation of flowsheet information is such that any solver is merely

manipulating structured data describing a design. The data can be formulated

in a manner solvable by a sequential modular approach even if it does not match

the flexibility of equation based techniques.

The following sections discuss the implementation of both sequential modular

and equation based solution techniques. The solvers all take a set of equations

as their input.

61

3.3 Implementation of a Sequential Modular
Solver - Esspros

Sequential modular programs retain most of the original program structure as

discussed in Section 3.2. Most systems are written in FORTRAN, although the

program used, Esspros, is also available in Fortran8x and C. The reasoning pro-

vided, converts an equation based model into the Esspros input format. This is

achieved with a set of rules written in Prolog.

Esspros [65] is a flowsheet modelling program for performing mass balances

based on a sequential modular architecture. The unit model library consists of

a set of fundamental operations which can be used to construct more complex

processes. For instance, in the synthesis of nitric acid, an absorption column

is used to react the NO 2 and NO obtained from the reactions, with water, and

thereby separate them from N 2 and 02. The Esspros model of the absorber

ini'olves a mixer, two reactors and a separator (see Figure 3.2).

H 	N2102

I NO +o3O2 =N 	1)

N2 	K-1 2NO2i- ;o + 	= 2HNO3 (R2)

02
NO
NO 	 HNO3

ow.

N2

02
NO 2
NO

HNO3 (iq)
ESSPROS MODEL

Figure 3.2: Esspros Decomposition of a Nitric Acid Absorber

The input to Esspros is a file which is written as a program. Declarations

are made for the number of components and, optionally, what they represent.

The individual items are written as subroutine calls with parameters defining the

streams in and out, and, where appropriate, additional specifications.

The library contains the models: mixer, splitter (divider), separator (three

types), reactor, flash, distillation and two stream types - feed and recycle. Most

models require some additional parameters which effectively fulfill the degrees of

freedom or indicate the mode of operation (e.g. the separator has three modes

where the product specifications can be made as recoveries, flows or mole frac-

tions).

These models, therefore, contain the basic equations for mass balances, which

can be associated with particular equations and sets of equations provided by

the model generation phase. The types of equations generated also indicate the

mode of operation of the models.

As an example, consider the absorption column discussed above. The repre-

sentation in CLAP is a single absorber with two associated reactions (see Figure

3.2). The model generation phase returns a set of mass balance equations incor-

porating the two feeds and the two product streams with the two reactions. The

specification of the product mole fractions (it could apply equally well to flows

or recoveries) is inherent in the mass balance equations, i.e. the required quality

of the nitric acid.

The general form of the mass balance equations is sufficient to imply the use

of a mixer as the first operation, i.e. there are two inlet streams. Equally, the two

outlet streams imply a splitter or separator. The specification is in terms of mole

fractions and not stream ratios which, therefore, denotes a separator and its mode

of operation. The mass balance includes a specification of two stoichiometric

equations, thus indicating two reactor models (with the required stoichiometric

parameters). Also included will be an expression indicating reaction conversion,

which is required by the reactor models.

In this manner, large scale models can be constructed. There are, however,

significant reservations about this inference mechanism. For example, Esspros

requires a separator to have one output stream which is completely specified,

i.e. the mole fractions of all components in either the top or the bottom stream.

The flexible specification encouraged by the equation based system allows these

specifications to be mixed as long as they are consistent. Esspros, therefore,

63

requires some major searching for specifications or a fundamental restructuring

of the model building facilities to prevent such mixed specifications from being

placed. Thus, a suite of tools is required to aid in the formulation of sequential

modular problems, on top of those required for the equation based modelling of

the individual items.

One such tool required for the Esspros implementation was a method for the

recognition of recycles and choice of the optimal tear streams. Currently, an

Esspros user must identify the recycle streams and specify them as such. An

algorithm has been implemented in Prolog for locating recycles [66]. Since the

Esspros description of the process generally contains more units than the CLAP

representation, the algorithm operates on the CLAP structure.

Once recycles have been identified, other algorithms are available for selecting

the optimal tear streams (see Rudd and Watson [671).

3.4 Implementation of Equation Based Solvers

As discussed in Section 3.2 the implementation of an equation based solution

technique requires not only a solver, but also additional tools to support formu-

lation. For example, a method for assessing the suitability of design variables has

been implemented.

A tool of the type proposed should have a suite of solution methods at its

disposal. Equation based solvers are well suited to solving models of entire plants,

but are unwieldy for solving individual units or individual equations. In these

situations small, simple solvers are more appropriate. There are also programs

specifically for performing calculations on one particular item of equipment.

Two small solvers, intended as rapid calculators, have been used to augment

the capabilities of the large scale fiowsheet solvers. Their range of applicability

is small, but they provide an example of the use of different solution techniques.

3.4.1 Degrees of Freedom and Sensitivity

In specifying theperformance of a plant, section or unit, it is necessary to choose

variables which can be assigned values without over-constraining the unit. This is

not straightforward in equation based techniques where constraints can be placed

arbitrarily. In sequential modular programs each unit must be fully specified since

64

outputs are calculated from inputs. The use of control units to place specifica-

tions necessitates the "freeing" of one variable before another can be constrained,

making it is easier to identify the effect of a single specification.

As discussed in Section 3.2, the main solution technique is equation based, so

a check is required of a designer's specifications to ensure their feasibility as design

variables. This is measured against several criteria by the following algorithm:

The number of degrees of freedom is calculated from the equation:

ND=NV — NC 	 (3.2)

where ND = the number of degrees of freedom, N = the number of variables

in the system, and N. = the number of equations in the model. If the

number of specified design variables is greater than ND, then the procedure

stops.

The variables are then checked using a variation of the Lee, Christensen

and Rudd algorithm [50] to ensure the specifications do not contradict each

other. The full algorithm is presented in Appendix B.

If there is a contradiction, the offending variable is found and an alternative

suggested.

If there are any remaining degrees of freedom, suitable design variables are

found.

The system of equations is assessed to determine whether or not sequential

solution is possible given the current set of specifications. This is deter-

mined by the Lee, Christensen and Rudd algorithm in 2. If sequential

solution is not possible, the equations are checked to see if the selection of

different design variables would allow sequential solution. In the simple case

where one solver can only be used for such sequentially soluble problems,

this approach provides the information necessary to choose the appropriate

solution procedure.

This algorithm has been written in Prolog. The result is a compact implemen-

tation which bears a marked similarity to matrix reordering methods. However,

Prolog is slow in operation and, as the method is mostly array manipulation, it

is probably more appropriately written in C.

IT

A degrees of freedom analysis can only check the correctness of the structure

of the problem. It cannot detect whether values of variables will interact in a

destructive manner or are not feasible. In sparse matrix solution such problems

are common and result in non-convergence. They should, therefore, be identified

by an analysis of sensitivity before solution commences.

3.4.2 Analytical Manipulation

The simplest solver implemented is used to manipulate the analytical expressions

obtained from the model generation phase. The principle of the method is the

rearrangement of equations to make a single unsolved variable the subject of

the equation, whereupon it can be solved for directly. A system containing any

equations which must be solved simultaneously, e.g. one containing a recycle,

cannot be solved by this technique.

The set of equations is delivered to the solver unordered, so the first task is to

locate an equation containing a single unsolved variable. A set of manipulating

rules is applied to any such equation in an attempt to make the variable the

subject of the equation. If successful, the variable is evaluated directly. If not,

the equation can still be solved numerically, in this case by passing the equation

to the one-dimensional Newton method described below. If non-linear equations

can be rearranged resulting in one variable being the subject, then they too can

be solved analytically.

The method has been written in Prolog because it facilitates the manipula-

tion of symbolic expressions by way of pattern matching. A further advantage is

due to the equations having been generated with Prolog variables for each term.

When any variable is evaluated, Prolog's automatic unification instantiates the

value in all expressions containing that variable. The procedure can then continue

searching for equations recursively with the variables being updated automati-

cally, until no more can be solved.

3.4.3 One-Dimensional Newton

The purpose of implementing a solver for single equations was for design situa-

tions when a request could be made for a particular property as opposed to the

solution of a complete unit model. For instance, when evaluating a stream for

distillation, the K-values might be requested. Instead of formulating the model

for the large solvers, which for such simple calculations becomes time consum-

ing, a simple equation solver is more appropriate. The manipulative solution

approach, above, was used for this purpose, but many expressions require some

iteration, e.g. bubble and dew points. This numerical solver was developed for

such situations.

Problem equations are linearised using a symbolic differentiation module im-

plemented in the full Newton's method (see Section 3.4.4 below). The expression

is then formulated for a single-dimensional Newton's method iteration written

in Prolog. Since only single equations are being evaluated, the solution is rapid

enough that an implementation in C is not required. The technique suffers badly,

however, if a reasonable initial estimate is not given.

3.4.4 Newton's Method

No general purpose equation solver was available at the beginning of this work

so the requirement of an uncomplicated implementation for experimentation was

met by the choice of Newton's method. The formulation of the problem involves

three stages, all of which have been written in Prolog.

Equation Linearisation

Initially, the equations describing the problem of interest are linearised by tak-

ing the first term of the Taylor expansion and then rewriting them in the form

required by the normal multi-variable Newton-Raphson iteration scheme.

The equations are differentiated symbolically using a set of 13 differentiation

rules which cover most cases: trig, logs, powers, arithmetic functions, etc. The

form of the linearised equations can be symbolically manipulated to provide an

understandable written expression, but the likelihood of anyone wanting to see

these equations is very small. The facility is available for this presentation, but

the form used internally allows simplified manipulation by the matrix reordering

algorithms.

Equation Ordering

The linearised equations are ordered using the P4 or SPK2 algorithms [68], pro-

ducing an implicit bordered lower triangular matrix of coefficients. This phase

67

is also performed in Prolog, but, as mentioned above, it may be more efficiently

implemented in C.

Variable Initialisation

In Newton-based methods, initial values must be supplied for all variables. Apart

from the design variables which must be set before a solution is possible, it is

unlikely that the designer will want to supply starting values for the variables

which the program is supposed to calculate. In problems containing thousands

of variables this is clearly an infeasible request. It is reasonable to assume, there-

fore, that any equation based flowsheeting program should be able to provide all

necessary initial values.

In a hierarchical design procedure variable initialisation is readily imple-

mented, since the design is proceeding in stages of increasing complexity. At

• a given stage of the design,.many ofthe variables can be initialised using values

calculated in earlier simulations. If a single model is being simulated under dif-

ferent conditions e.g. different feed rates, then the previous solutions can be used

to initialise the new ones.

This is achieved when the expanded relation representing the balance equa-

tions is passed to the solver. The specifications have been made and are, therefore,

already unified throughout the model. The bindings associated with the equa-

tions are then checked for variables not already instantiated. Any such located

terms are matched against the solution of the specific variable in the stored,

solved form of the "perform" relation evaluated most recently. The model in

which this search is performed, must be of the same relation class as the one

being initialised.

It is possible for the model to have changed since earlier versions were eval-

uated. In this case, many of the terms will still be present, but some will not.

The ones not present can then be matched with related variables in simulations

performed at a level of less functional detail, where applicable. This is also the

approach used for new simulations at levels of greater functional detail.

Certain key properties can be matched between levels, mostly belonging to

equivalent streams. This is particularly useful for recycles which will require

iteration to solve. All streams defined at a level of lesser detail have an equivalent

at the level of greater detail (though the inverse does not necessarily hold). This

Me-

correspondence is defined by the designer as the flowsheet is created.

This variable initialisation procedure may not be able to provide estimates for

all variables, however, so some will still require generated values. In most cases,

though, these variables can be calculated by a forward elimination pass which is

made simpler, since the reordering step has already been performed. The only

exceptions are the spikes or tear variables located by the reordering algorithm,

which can be estimated based on other local values.

Two approaches have been studied for the estimation of the remaining vari-

ables. Both involve writing the unsolved equations as inequality constraints, e.g.

Wo = w1 + w2 	 (3.3)

implies w0 > w1

and w0 >w2

assuming all terms are greater than zero.

Unknown variables are estimated based on the order of magnitude of the other

variables in the equation. The estimates are then sequentially substituted into

the unsolved equations, generating values for all other unknowns. The generated

constraints are then checked to ensure the estimates are within the feasible region.

If they are not, estimates are provided from other equations and the procedure

repeated.

The basic assumption of this method is that in an equation, expressions sub-

jected to the same operator are of the same order of magnitude. For example, in

Equation 3.3 above, if w 1 had a value of 100, it is assumed that w 2 is of the same

order of magnitude i.e. 100. The equation can now be evaluated and, if only one

estimate is required, so can the remaining equations. The constraints generated

form the unsolved equations can then be checked. In practice, this assumption

is too basic to be of practical use. The number of possible permutations of equa-

tions and specifications would require a very large number of special conditions

to be assessed for even a small number of equations.

The second approach takes an initial estimate for an unknown variable and

substitutes it into the unsolved equations. This provides values for the constraints

which are then checked to see what, if any, change is required in the variables

for a feasible starting point to be found. If no change is necessary then a feasible

point has been found, otherwise the suggested change is implemented and the

substitution repeated. Using the above example, the feasible point found is where:

w. = 101w1 = 100 and w2 = 1.

The final stage of formulation is the writing of two C routines using the

ordered, initialised equations. The Ne*ton's method iteration is a C program

which requires routines to provide the functions for calculating the updated values

of the variables' coefficients from previous iteration values. The other provides

initial values of all design variables. The routines are written by Prolog calls.

Matrix Solution

The sparse system is solved in C using the CBS algorithm [69], a modification of

Gaussian Elimination. The solution is placed in a vector accessible from both C

and Prolog.

Figure 3.3 shows the sections implemented in Prolog and those in C.

PROLOG
Generate Equations
Linearise Equations
Order Equations
Make Initial Estimal
Write C Functions

I 	C

Newton's Method

CBS Algorithm

a.j Initial Value Function
Coefficient Updates

Figure 3.3: Implementation of Newton's method in C and Prolog

3.5 Conclusions Concerning Solution Strate-
gies

Both equation based and sequential modular solution methods have been inves-

tigated to assess their strengths as part of a modelling tool. Implementations of

both approaches have been achieved, requiring different levels of modification to

existing program structures.

Flexible specification of problems requires an alternative to the unit model

library used in fiowsheeting programs. The concept of a library is central to

the sequential modular approach, implying that the library should be retained.

However, to provide a reasoned model, a decomposition of the process is required

70

at the equation level. For both approaches, therefore, an equation generation

module is the starting point in problem formulation.

The major differences between the implementations stem from this point. The

equation based method requires only a mapping between the equation represen-

tations of the symbolic model and the solver. This applies to both, large and small

problems. The sequential modular solver, however, requires a reasoning module

to deduce an appropriate unit model, or combination of models, corresponding to

the generated equation description. For simulations of individual items of plant,

more detailed models are required, as well as the ability to alter the models for

particular situations. This suggests, certainly in the case of Esspros, the ne-

cessity of additional modelling capabilities, most appropriately achieved with an

equation based method. In conclusion, the equation based method allows more

flexible specification of problems and, consequently, more accurate translation

into a mathematical description than is achievable with a sequential modular

strategy.

The two approaches require a range of tools to support model formulation.

Both require a method for checking the degrees of freedom, thus constraining

the specifications to suit the particular solver. A matrix method has been im-

plemented for the equation based approach (Section 3.4.1), while the sequential

modular method requires a more rigid syntax to be imposed on the CLAP struc-

tures, restricting the range of specifications that could be made on particular unit

operation models. A procedure is also necessary for the initialisation of variables

by the equation based implementation, whereas the modular approach needs a

tool for identification of optimal tear streams.

A tool of the type proposed should have different solution methods available

for different applications. For instance, equation based or sequential modular

solvers are well suited to solving models of entire plants, but for solving individual

units or individual equations, small solvers are more appropriate. Programs are

also available specifically for simulating one particular item of equipment. For

this reason, two small solvers, intended as rapid calculators, have been used to

augment the capabilities of the large scale flowsheet solvers.

A solution strategy has been implemented specifically for the equation based

solver. The evaluation of the degrees of freedom (see Appendix B) indicates the

solver which is most appropriate for the generated equation set. The method

71

identifies irreducible blocks in the matrix which require simultaneous solution.

For large problems this is most often the case. The full Newton's method is

automatically invoked for such situations. -

Where no irreducible blocks are present, for instance in some models of indi-

vidual unit operations, the simpler solvers can be used to achieve an analytical

solution where possible. The method involving symbolic manipulation is used for

such cases. If this method identifies equations which cannot be solved analyti-

cally, the one-dimensional Newton is used.

The specification of a solution strategy could also be used where programs

are available for the modelling of individual unit operations. Depending on the

range of tools, the method would initially select programs on the basis of the

type of unit being modelled. Subsequently, programs could be invoked when the

specifications on the CLAP representation match the input requirements of a

particular solver.

72

Chapter 4

An Object Oriented
Representation for Flowsheeting

The knowledge required by a fiowsheeting tool must include information about:

• a range of solution methods and their required formulations

• how to create a consistent mathematical model based on specified informa-

tion

• use of physical property models

• the concepts of the design procedure i.e.

- hierarchical synthesis

- evaluation of alternatives

- integrated process evaluation

Mathematical methods for solving fiowsheets have reached a high level of so-

phistication and new algorithms are not necessary. Different formulations are

required for different solution techniques, but all are merely different configu-

rations of a single problem. It is, however, desirable to demonstrate that the

representation of the process and its specifications can be manipulated to pro-

vide valid formulations for different solution methods, as described in Chapter

3. This chapter addresses the representation of processes in a central model to

allow consistent formulation for different evaluations.

Physical property models are also well established with many databases and

packages either developed by individual companies or commercially available, e.g.

73

PPDS [70]. The constants and parameters for the models should be available to

the proposed system. However, representation of the associated mathematical

relationships must be consistent with equations used for describing unit operation

models. The format for defining mathematical expressions is discussed in Chapter

5.

A model based approach has been proposed using object oriented program-

ming (OOP) to represent the process and support the concepts of design discussed

above.

In the creation of any knowledge based tool there are five areas for consider-

ation which should be concurrently advanced to maturity (see Kunz [71])

• purposes

• representation

• reasoning

• interfacing

• testing

Kunz advocates an opportunistic control scheme for selecting the topic which

should be considered at any point in time. As soon as an issue gives the de-

veloper cause for concern, it should be addressed. Periodically, a review of the

points covered gives an indication of the areas neglected and thus overdue for

consideration.

The five areas indicated are of equal importance and while it cannot be demon-

strated that the concurrent-opportunistic control method was used throughout

this work, the importance of the five topics will be indicated with respect to the

development of a useful design tool.

Purposes. The aim of this project was the development of an experimen-

tal flowsheeting tool suitable for use in calculations throughout the course of a

chemical engineering design. Such support for a designer involves the creation

of mathematical models of plant items at wide ranging levels of detail and with

different foci.

Representation. The object oriented language, CLAP [45], was chosen for

the representation of the problem because of its ability to represent not only

74

structural items but also the relationships between them. CLAP is a procedural

language, which has access to Prolog logic programming and C for rapid numerical

manipulation and evaluation. CLAP is itself written in Prolog.

Flowsheeting deals with items which can be separated into distinct classes.

The classes include the following:

• fiowsheets

• unit operations

• streams

• chemical species

• modelling equations.

CLAP objects have been used to represent all of the above classes except mod-

elling equations which have been represented in user defined relations and are

discussed in Chapter 5.

Since the tool is intended to be used throughout design, the stages of a de-

sign must also be represented. Process alternatives must be described and the

relationships between them, e.g. which are developments or refinements of others.

Reasoning. The reasoning must take the place of the engineer for the task of

creating a mathematical model and formulating it for a particular solver or other

external program. This requires, therefore, a model of the solver (for equation

based simulation) or the flowsheeting program (where the solver is sequential

modular).

Interface. The interface to the designer is normally an addition to the pro-

gram tacked on at the end. However, for a final product to be of use to an

engineer, constant consideration must be given to the aspects of the design, such

as decisions, calculations and tools appropriate to a given situation, which a de-

signer will wish to see. The limitations of the available software and the dispro-

portionate amount of time required for the development of a graphical interface

have meant that while interfacing has been considered throughout, it has not

always been possible to implement a display exactly as envisaged.

Testing. Examples for testing the various proposed ideas always bring to light

different aspects of a problem. Therefore, many small examples and some larger

75

examples have been considered during development. Some examples appear in

the text to illustrate points more clearly, while more detailed tests appear in

appendices D, F and E.

4.1 Unit Operations

Objects have been used to represent a range of unit operations for a flowsheeting

tool which is to be used at different levels of process design. These objects range

from conceptual processes representing whole plants to detailed unit models,

related using an inheritance mechanism as described in Section 2.3 and shown in

Figure 2.7.

Slots within the objects have been defined for properties useful in fiowsheet-

ing and synthesis procedures. Further attributes may be necessary for the im-

plementation of other evaluation tools. Inheritance provides a means of collating

common attributes of related units, e.g. a heater and cooler may both require

slots for heat load and the utility source, so they are contained within a more

abstract object describing enthalpy change. In this context heaters and coolers

imply instances where the requirement for heat exchange has been identified but

insufficient information is available to specify the source or sink of heat. Since

objects such as heaters and coolers are ostensibly identical, it could be argued

that there is only a requirement for one object representing the two operations.

However, the two operations are conceptually opposite functions, so using one

object reduces the amount of reasoning possible about the function of the object.

For this reason, both objects are retained in the inheritance hierarchy.

Only a subset of the range of operations required in a chemical plant has been

represented. Many units are similar in character, varying only in small details,

so creating a unique object for each one is an impractical task. Apart from the

development work required to do this, a system supporting a large number of

fiowsheet items becomes unwieldy to use.

One possible solution to this problem is to use multiple inheritance which

allows objects to be defined as belonging to more than one class and thus able to

inherit the properties of more than one object. For example, a flash unit incor-

porating external heating could be defined as being a combination of a flash and

a heat exchanger. However, this approach presents difficulties where a combined

unit may not need all the properties available from the constituent operations,

76

which indeed may contradict each other. The structured classification of the ob-

jects is also disrupted, reducing the reasoning possible based on a tree as described

in Section 2.3.2.

Multiple inheritance is not used in this system. Instead, objects are described

with sufficient flexibility to represent a range of flowsheeting applications. Pro-

viding a mathematical model for units involves reasoning about the specified

properties of the object and constructing a model based on the specifications.

Using the above example of a heated flash, the appropriate object describes

a generic flash operation but incorporates slots for heat load and other heat-

ing properties. Thus the flash object is still only a specialisation of the object

representing vapour-liquid equilibrium separations. If no heating properties are

required by the designer, then these slots will not have values. When the mathe-

matical model is constructed the slots are checked, and if they have values, then

a model incorporating external heating will be constructed, otherwise only equa-

tions describing the flash operation are prescribed. This approach removes the

mathematical description from the object and thus overcomes the problem of a

rigid format of model described in Chapter 3. The models constructed here are

based on the information provided both functionally, in the selection of the unit

operation, and structurally according to the information provided about the unit.

The most difficult task in representing a problem using OOP is to decide to

what level operations are to be broken down, and to which objects given informs,-

tion belongs. This is demonstrated by the different characterisations developed

by other workers in this field, e.g. objects in DESIGN-KIT [14] differ from those

developed here. The representation adopted here is not definitive, but performs

adequately for use in flowsheeting and simple synthesis. However, the implemen-

tation of other reasoning modules may require revision of the inheritance tree.

Objects are used to represent streams as a separate entity for several reasons.

In the course of a design, it is more natural to refer to streams and properties

of streams than unit operations. Unit operations can be thought of merely as

mathematical functions mapping a set of inlet stream properties to a set of outlet

stream properties.

Secondly, without the use of stream objects, each unit operation would have

to incorporate slots for the properties of all inlet streams and all outlet streams.

The incorporation of a variable number of streams would create problems for

-

77

identifying their individual properties.

Finally, stream objects provide a better functional description of concepts

such as temperature than unit operation objects. Within a unit operation object

there may be several slots to hold different temperatures, which makes it difficult

to recognise each one as belonging to the single concept of temperature. If, how-

ever, temperatures are stored in separate streams, labelling individual properties

becomes straightforward.

Stream objects are used to represent connections between fiowsheet objects,

and contain the properties common to the connected units, e.g. temperature out

of one object is assumed to be the same as the temperature into the next. The

connection is indicated in the objects by setting a slot to contain the relevant

stream number (Figure 4.1). The objects representing unit operations access the

stream object when they require values associated with their connecting streams.

pressure
inlets -..,. 	 ote 	 > 	inlets-[sl,..j source - unit 1
outlets - (Si] 	 sink - unit 2 	 outlets-....

Figure 4.1: Representation of Streams as Objects

4.2 Chemical Species

In general, chemical species might be represented by objects in two different ways:

1 One generic object, "chemical-species" is defined, containing slots for physi-

cal property parameters which can be used to generate appropriate physical

property equations as required. All components used in a design are sin-

gle instances of the generic object. For example, a stream object could be

created which contains components benzene and toluene. Objects are cre-

ated for benzene and toluene containing their physical property parameters.

These objects could then be referenced by any other stream in the design.

2 Each chemical component is represented by a generic object which, apart

from containing physical property parameters, contains slots for properties

such as temperature and pressure which could be set in local instances. In

the above example, each component in each stream would be represented

by an instance of the generic object for the particular component used.

Both representations have advantages. The first representation is the more

natural expression of the concept of streams and components. In this description,

a stream has a temperature, pressure, fiowrate and constituent components as

opposed to each component having a temperature and pressure. However, some

calculations require a different emphasis. If, for example, it is required to calcu-

late the relative volatilities of two components, it is normal to compare vapour

pressures which are calculated based on temperature. In that case, the second

representation has the advantage of being able to compare two components di-

rectly, with local temperatures and pressures contained in their own slots.

The representation used is the natural description, i.e. streams have temper-

atures and pressures, and instances of component objects contain only physical

property parameters. The relative volatility example described above is accom-

modated by creating an instance of a stream which may (or may not) be tempo-

rary. The components are then associated with the stream, and, therefore, with

local values of temperature and pressure. The problem of referencing different ob-

jects for temperatures and pressures is discussed in Section 5.1. The parameters

should be available in a physical property database, but such a facility has not

been incorporated. For the sake of testing programs, values have been provided

manually.

The system includes a method of determining physical property data for sub-

stances not detailed in a database [72]. The technique involves estimating critical

properties from group contributions. The calculated values are adjusted in the

light of a comparison with the results of known compounds recognised as being

similar to the compound of interest.

4.3 Object Representations, for the Design
Process

To provide a practical tool for use throughout design, whether it be a design

environment or a supporting tool, a representation must be provided describing

the steps taken. This should include the generation and evaluation of alterna-

79

tive processes. Apart from providing consistent support for the development of

alternatives, the knowledge incorporated in such a characterisation reflects the

decisions made, from the selection between process alternatives to the placing of

specifications on the plant operation. Such information is useful for reviewing

the design, especially if the reviewer had no part in the project itself, but wishes

to determine the reasoning behind the completed design.

Lien et al [9] describe an example of preliminary design illustrating the flexi-

bility that will be demanded of such a representation. The designer continually

moves from levels of greater abstraction to more detailed levels and back again,

developing models for different evaluations which supply information necessary

to make synthesis decisions. The designer takes advantage of implicit relation-

ships between levels while modelling and making decisions. For example, the

choice between a liquid phase and vapour phase reactor is deferred at a high level

until the associated separation is modelled in sufficient detail to indicate which is

more economical. The modelling involved is also subject to levels of detail. For

instance, a simple model of the separations may be sufficient to select between

reaction schemes. It may be necessary, however, to model the same separations

at a greater level of detail to provide enough information.

The discussion of expert system approaches to design in the work by Lien

et al highlights the key representational issues, but does not, however, discuss

implementation:

• the description should be hierarchical, incorporating levels of increasing

detail as design proceeds,

• alternative process structures should be accommodated and maintained un-

til the optimal structure can be determined,

• movement should be possible between levels of detail, taking advantage of

the relationships between structural abstractions and refinements,

• data should be shared between levels.

Two further important points arise from this discussion. Firstly, the authors have

difficulty in separating the synthesis task from representational issues. The rep-

resentation must be able to support synthesis tools, whether they be algorithmic

or heuristic, as any other tool would be supported. However, the generic objects

01

used to describe the steps taken during a design are independent of any particular

tool. The application of tools will ultimately shape the use of specific instances,

rather than their generic classes.

The second point is that at any level of detail, there is a range of models

describing the items depicted at the chosen level at various degrees of complexity,

e.g. a distillation column can be modelled by an split fraction balance, a Fenske-

Gilliland-Underwood model or a plate model (which, in turn, may incorporate

different levels of detail). The abstraction of a process description into models of

differing levels of complexity is discussed in Section 5.4.

The following sections describe in detail different representational models of

a hierarchical design with a discussion of the model implemented.

4.3.1 Hierarchical Representation of Design

A common representational medium for hierarchical design is the concept of

design states as nodes in an undirected graph. One view is to consider a

graph of structural refinements, i.e. explicitly representing a relationship such

as "has-parts" (and its inverse "is-part-of") as edges connecting nodes describing

design states, see Figure 4.2

) plates

flash 	reboiler

Figure 4.2: Graph of Design States Related by Refinement

In this example, the separation operation has been refined as a flash and a dis-

tillation operation. The distillation operation has been refined to the constituent

parts of the column.

This graph adequately describes process disaggregation if the design does

not involve any process alternatives. The expansion of the graph in Figure 4.2

riii
at!

to accommodate the alternative structures which the designer might wish to

explore requires a third dimension to be added. For example, if the separation

could equally be carried out by two distillation columns, the graph would appear

as in Figure 4.3

Figure 4.3: Graph of Design States Representing Structural Alternatives

The graph now represents the notion of items being refined to more detailed

parts and accommodates the idea of alternatives being exclusive. The represen-

tational issue not incorporated is the concept of a flowsheet. Using the repre-

sentation suggested by Figure 4.3, flowsheets can be constructed from the nodes

of the graph by selecting between the alternative refinements of a given node.

This allows the flexibility of being able to construct models incorporating a wide

range of complexities, e.g. modelling a reaction section together with detailed

distillation models. However, 'the onus is on the designer to define a model every

time one is required. In its current form, the graph can be used to construct

models of any combination of structurally related parts, of a design. The exten-

sive flexibility of this representation is discussed by Bafiares-Alcántara [73] who

emphasises its clean semantics as being a benefit for the designer's understanding

of the development of the design.

A potential source of inconsistency arises within this representation in cases

where certain combinations of parts are invalid. In a simple example, a process

EN

may be developed with the intention of comparing two reaction schemes, one

being liquid phase, the other vapour. The reactions may each require specific

separations. Figure 4.4 shows the graph as represented by relationships of refine-

ment and constituent parts. Potentially, each reaction scheme could be combined

with each of the separation schemes which were intended to be exclusive. If the

alternatives are subsequently refined, the confusion is compounded as to which

structural combinations are intended to be valid. The exclusivity is difficult to

represent, but Bafiares-Alcántara argues that there may be some benefit to be

gained from being able to model such combinations and regards this as an area

of future research.

• HcH

Liquid Rmaim 	Vapour j

Figure 4.4: Graph Showing Potential Combination of Inconsistent Parts

The implemented representation incorporates relationships describing the no-

tions of refinement and constituent parts. To overcome the inconsistency of al-

ternative refinements, the concept of the flowsheet has been used to constrain the

potential explosion of combinations. The refinement relationship now refers to

fiowsheets resulting in a hierarchical development of whole processes. It is, how-

ever, necessary to be able to design the constituent parts of a fiowsheet separately,

so it must still be possible to support the modelling of incomplete flowsheets. The

use of the fiowsheet to constrain the number of potential combinations reduces

the exploration of the problem space to considering valid combinations of units.

The hierarchy of flowsheets also provides a record of decisions, such as the com-

bination of a vapour phase reactor with a vapour phase separation as opposed to

a liquid separation.

This is similar in concept to the notion of "cast in stone" described by West-

erberg et a! [1] and Subrahmanian et al [2] with respect to the sharing of infor-

mation in a group design activity. In the environment proposed by Westerberg

et al, the authors discuss the large amount of information shared by the mem-

bers of a design project team. While each member maintains their own models

and data, with the ability to delete it or alter it at will, any shared information

must remain unaltered, hence "cast in stone". Similarly, in the development of

flowsheets, many structural alternatives may be modelled, but the maintenance

of a hierarchy retains the final proposed structures. The information associated

with the nodes in the hierarchy includes modelling results, relationships reflect-

ing topological components and relationships describing refinement from previous

levels.

Figure 4.5 shows the implemented construction of nodes in a design graph.

The nodes represent flowsheets related by "is..refined_to" from high levels of ab-

straction to levels of greater detail. The inverse relationship is "refinemenLof".

Between levels of abstraction the relationship of "has-parts" and its inverse

"is-part-of" indicate which process items in levels of greater detail correspond

to which more abstract processes, e.g. the liquid phase reactor is a part of the

reaction section. This relationship is dependent on the current viewpoint of the

design. Since alternative structures are independent, the designer may only con-

sider one at a time. Therefore, when the design is viewed from node (A), the

liquid phase reactor is considered as a part of the reaction section, and when

viewed from node (B), it is the vapour phase reactor.

4.3.2 Implementation of the Design Development Graph

A design graph as described above has been implemented in the MODEL.LA

project [19] using the Context tree structure available in KEE. The resulting

graph differs from the implementation achieved in CLAP only in the support

provided for the maintenance of the graph. A discussion of the differences is in

Section 4.3.3.

Contexts in CLAP are not related to each other at all, unlike KEE and

Knowledge Craft. For this reason, objects have been defined that are, concep-

tually, intended to perform the same function. The simplified CLAP descrip-

tion of a generic design node object is shown in Figure 4.6. The objects, called

M

E i-(=>~

REFJNEMBNT_OP__..

- 	 -2rfrEvNED3o; 	 - 	 - 	 -

/Ø
ISJART_OF -, 	 I 	N

- -'HAS_PART' 	 N

Figure 4.5: Graph Representing Hierarchical Development of Process Flowsheets

design-nodes, have relations containing information describing the position of

the node in the graph, i.e. what it is a refinement of and what its refinements

are, similar to the construction of a Context tree in KEE or Knowledge Craft. In

instances of design nodes, the ref ineinentof relation contains a single term, the

name of the only node of which it is a refinement. The is.zefined_to relation

may contain a list detailing the alternative refinements of the current node. -

It should be stressed that the design nodes in this implementation are intended

to be used for structural alternatives. Any numerical alternatives are achieved

within the design node, i.e. one node is used to contain all models related to

the same process structure. For instance, a model can be created with a fiowrate

specified as 10 kg/s. Subsequently the specification may be altered to be 15 kg/s.

This does not require a separate design node. The models are stored as relations,

either to the node itself or to an item within the node, thus they can each be

reviewed within the common context of the fiowsheet. The storing of models as

relations is discussed in Section 5.1.

The design node slots are used to describe the topology of the node. The

objects slot contains a list of the process items contained within the node, and

the streams slot identifies all streams. These slots effectively restrict the use of

the constituent instances of process items and streams to the one node, i.e. the

object - design-node :-
self-_,
variables
slots - [objects - Objects,

streams - Streams,
equations Equations],

relations - [refinement-of - Ref,
is-refined-to - his].

Figure 4.6: Generic Design Node Object Used to Construct Design Graphs

designer can only access these objects when viewing the design at this node.

The concept of parts is maintained in the process unit objects as a relation

between the parent unit and its list of parts. For example, an object representing

separation has a relation containing the name of the object in the parent node of

whichit is a part. In this example this could be a specific object representing a

plant. It also contains a relation which contains a list of parts in the child node.

The relation is updated as new objects are added to the child node. Here, this

might include distillation columns and auxiliary equipment.

This information is also reflected in the objects slots of the nodes. Each

process in the list is paired with its abstraction in the node above the current one.

For example, in Figure 4.5, the liquid phase reactor is paired with the reaction

section. This implementation reduces the amount of computation required to

establish complex relationships from more fundamental semantics.

The equations slot has been included to facilitate the mathematical mod-

elling of design nodes, which corresponds to the modelling of flowsheets. It is a

relatively simple task to construct, such models since the object also contains all

topology information.

The relationships linking the design nodes and their constituent parts define

the structure of the design graph. This provides a high level of functionality which

should encompass all operations that could be required in the development of a

design based on the graph structure.

A generic object, called "design", has been defined to aid in the management

of the problem hierarchy and movement within it. The object is shown in Figure

4.7. The object represents the designer's current viewpoint of the design. Its slots

store the current design node (where) and the section, if any, within the flowsheet

(section). By changing the value of the where slot, the refinement relationship

edges in the design graph (Figure 4,5) are traversed. Similarly, altering the

value of the section slot locates the design object within the graph of part

relationships.

object - design
self -...,
variables
slots - [where -

section -
levels - LI,

relations - [technology - Tech].

Figure 4.7: Generic Design Object

In addition to the two objects, extended methods have been written to provide

a menu of options to develop the topology of the graph and flowsheets within the

nodes. These provide the ability to:

• Refine nodes, i.e. create new nodes related to the current node by refine-

ment relations,

• Move up and down the hierarchy of nodes via the "refinement" relations

and using the "parts" relations to define the section of interest. The design

object is used to store the current position.

s Create objects in nodes for process items, and relate them to abstractions

in higher nodes ("part-of" relations).

• Specify connections by creating stream objects, and relating them to the

equivalent stream in the higher node if necessary. Only some streams axe

related to higher nodes. These are identified as streams which cross the

boundaries of sections defined at the higher level of abstraction, e.g. at the

higher level, objects may be specified for a reaction section and a separa-

tion section. In the node at the level below, streams connecting distillation

columns are within the boundaries of the separation section and are, there-

fore, not related to any streams in higher nodes. The stream connecting

the reactor to the first distillation column, however, crosses the boundaries

of the reaction section and separation section and is, therefore, related to

the stream connecting the two at the higher level.

• Delete a process object, removing all objects related to it by "part-of". This

includes all objects which are part of the parts. Any streams connected to

the objects deleted must also be removed. Since this action is so drastic, a

warning is given before commencing. However, if the node has been refined

to a further structurally complete node, the delete operation will do nothing.

The decisions incorporated in the graph resulting in the items exclusion

from further consideration are important when reviewing the design. This

information describes why this particular combination of items was rejected.

• Display the processes and streams in a given node or section of a node.

• Copy the generic description of an equivalent section to a separate node. In

situations where several alternatives have been created at the same level,

it might be desirable to copy the particular refinement of one section to

another node. This is only a copy of the generic objects and their connec-

tions. Any numerical slot values are ignored since, even though the scheme

is the same, the instance must be considered as entirely separate. For ex-

ample, two reaction schemes may be developed and two possible separation

schemes, each of which is compatible with either of the reaction schemes.

It is, therefore, desirable to be able to copy the developed structures into

separate nodes for subsequent combination and evaluation (see Figure 4.8).

TRY-

copy

COPY 	 copy

Figure 4.8: Illustration of the Desirability of Copying Sections

• Move between sections in a node by identifying the objects related by the

higher level abstraction.

F:!:]

Sections are defined by the contents of all "ancestor" design nodes i.e. the par-

ent node and all its precursors. For example, Figure 4.9 shows a node containing

a model of a distillation column described by a set of plate objects.

PROCESS DISAGGREGATION

Level 1: Description. ofaplant
as a single object.

Level 2: Plant disaggregated into 	-,
reaction and separation sections.

-
-

•1 	-
Level 3: Separation refined to

individual operations.

/
/

/ 	 N
Level 4. Plate distillation column

specified with ancillary equipment.
	 /

,

/

/
/

/
/ 1 ,

SECTION GROUPINGS

Model includes all equipment.
at the level of interest.

Separation section includes all
separation equipment defined at
the level of interest.

I,
Level 5: Column disaggregated into

plates.

Column (including plates)
reboiler and condenser grouped
by distillation operation.

I
Plates grouped by distillation
column

1'
Individual plates modelled
separately.

Figure 4.9: Illustration of the Different Sections Containing Distillation Trays

The fiowsheet in that node can have sections defined at several levels. At

the lowest level, the individual plates could be modelled separately. The set of

plates may then be modelled together if, as shown in Figure 4.9, the plates are

defined as "parts of" a distillation column object in the parent node. The parent

node of that node may include condensers and reboilers as part of a distillation

operation, thus indicating a broader section. At a higher node still, a separation

section may have been defined which includes other separations, pumps, etc. The

limit of section encapsulation would be at the root design node which contains

an object representing the whole plant. The specification of this as the section

boundary would include all objects in the flowsheet. In this example, the most

01

detailed node could have sections defined to contain: all plates in a distillation

column, all distillation equipment, all separation equipment, and finally all plant

equipment.

To summarise, the representational issues identified by Lien et al and dis-

cussed in Section 4.3 have been accommodated in the implementation discussed

above. The concept of a hierarchical development with increasing detail as the

design proceeds is encapsulated within the definition of the design graph created

in CLAP. The graph also supports the separate development of structural alterna-

tives which are, however, related to previous levels of abstraction. Methods have

been defined in CLAP to allow ready movement through the graph, up and down

and between alternative structures, by utilising the relationships defined between

nodes and the processes within the nodes. The notion of sharing data between

levels has been introduced with the idea of relating corresponding streams. A

more complete discussion of sharing data between levels of abstraction is given

in Section 4.3.3.

4.3.3 Consistency Maintenance

While it is desirable to have a tool for flexible specification of processes and

their mathematical descriptions, some constraints must be applied to ensure the

definition of the process remains consistent as it is developed. Since a graph of

fiowsheet refinements and alternatives is being supported, information from the

abstract levels of detail can be used to constrain the more detailed development

of the process to conform to the original conception of its "purpose". Thus if any

future refinement contradicts the initial aims, this can be viewed either as a failed

design, or a valid alternative to the high level specification, i.e. an alternative set

of aims has been identified.

A mechanism for consistency maintenance has been constructed based on the

concept of the purpose of processes. Any refinement of a process, i.e. to its parts,

is constrained by the purpose of the abstract definition. Obviously, being more

abstract, this constraint is not a great imposition on the flexible specification

of the refinements, but a guide for development. For example, the high level

purpose of a plant may be the formation of a particular product by the reaction of

specified feed components. The purpose would be constrained further by placing

a requirement on throughput and product quality. This constrains subsequent

!II]

refinement of the node to incorporating a reaction mechanism and meeting the

product specification by including a separation operation.

Consistency of the refinements is checked at two levels: functional and struc-

tural. Functional specifications are communicated by comparing the classes of

objects defined at more abstract levels with their refinements at more detailed

levels. Any differences identified in the purposes of the two levels are relayed

to the designer who must decide if the contradiction discounts the newly stated

design, or if it should be implemented as an alternative design node at a higher

level.

A process is evaluated by locating the separate sections, represented by in-

dividual objects, in the parent node, e.g. a reaction section and a separation

section. The associated parts of each are located in the new, refined node using

the "part-of" relation. For example, the separation section may have pumps,

heat exchangers and a distillation column as its parts. The identification of the

conceptual relationship between the distillation column and the separation is

achieved by reference to the inheritance hierarchy, i.e. a distillation column is

a specialisation of a separation. Any number of valid separation devices may

be included in the refined section, but at least one must be present to ensure a

separation is being performed.

Functional properties are checked by a CLAP method when the designer spec-

ifies the addition of a child node from the current one.

The second level of checking is made on the structural specifications of the

parent node. This ensures the specifications placed on the more abstract defini-

tions of the design are still being met by the more detailed ones. This is achieved

with the use of demons on the slot values. If a contradiction is found, the user is

informed, again with the option of changing the current model or creating an al-

ternative at a higher level. Either way, the designer is made aware of a deviation

from the project aims.

The structural check is based on the streams which have been defined at

the two levels. When streams are created at a level of increased detail, the

context of the new stream is compared with the previous level. If the new stream

corresponds to a connection at the earlier level, then the user is asked to confirm

it. As an example, the initial description of a plant may be a single unit with two

inlets and three outlets (see Figure 4.10). The next level might consist of reaction

91

Figure 4.10: Example of Possible Alternative Refinements of a Plant

and separation sections. The feeds to the plant may be in several different places,

e.g. both to the reactor, both to the separation, or one to each. In whatever way

this is achieved, there must be two feeds. The two correspond to the two feeds

specified for the plant, which enables the specifications placed at that level to be

communicated to the new level. The same procedure is performed for the outlets.

The reason for requiring new alternatives to be created at a high level of

abstraction rather than communicating changes back up the tree, is to maintain

consistency for all alternatives developed. All of the possible structures are based

on the original specifications, both functionally and structurally. If one refine-

ment requires the alteration of these specifications, then the alternatives to that

structure, e.g. the different feed situations illustrated in Figure 4.10, may be

in contradiction to them. These structures may be entirely valid under the old

constraints which should, therefore, be rigidly maintained. Thus the new struc-

ture requiring the alteration of the original (or more accurately, any previous)

constraints should be accommodated in a new branch of the design graph.

MODEL.LA [29] approaches consistency in a slightly different way. As dis-

cussed in Section 5.4.1, the generation of models is based most appropriately

on the assumptions made in the specification of the problem. For mathematical

descriptions, MODEL.LA requires the user to state the physical and chemical

phenomena occurring in a particular unit, which implicitly (and in some cases

explicitly) identifies the associated assumptions.

A similar technique is used for maintaining consistency in the development of

a model hierarchy, which is stored in a KEE Context tree. Three areas are con-

92

sidered for compatibility between levels: topology, structure and the constituent

physical and chemical phenomena. The assumptions upon which compatibility

is determined are implicit, in this case, contained in the description of the design

at a particular level.

"Structural compatibility" is established by using relationships of the

"has-parts" type. As in the CLAP implementation, the user identifies which

processes in a new Context constitute a disaggregation of which processes in

the parent Context. This provides a frame of reference for further compatibility

checks and also for multi-level modelling, i.e. using detailed models as parts of

more abstract flowsheets.

Checking "phenomena compatibility" is equivalent to checking a process's

purpose, as described above. The inference determining the correspondence be-

tween levels is performed automatically, as in CLAP.

"Topological compatibility" is equivalent to the assessment of structure de-

scribed in the CLAP implementation above. The streams are matched between

levels; every stream in an abstract level having an equivalent in every one of its

child Contexts. As in CLAP, when one to one associations are identified, they

are related automatically. In situations where items have more than one inlet or

outlet and the correspondence with the child process is ambiguous, the user is

required to distinguish the links. The difference between MODEL.LA and CLAP

is demonstrated when child .Contexts have more streams than the parent in asso-

ciation with a particular unit. CLAP resolves thisbrequiring the addition of a

new node at a higher point in the design graph. MODEL.LA accommodates the

inconsistency by providing a "one-to-a-set" mapping between the single stream

in the parent Context and the set of streams in the child Context (see Figure

4.11). In the example, the stream A has been mapped to the set of streams, C

and D.

The intentions of consistency checking in MODEL.LA are the same as in

CLAP. Both attempt to ensure consistency of design development and to provide

a structure for inheriting information between levels. Propagating information

via one-to-one mappings is quite straightforward. For instance, streams can be

copied to provide default data in a new Context. Any process unit involved in

a one-to-one mapping, however, must be a more specialised form, or a copy, of

the object in the parent Context. The values contained in the parent object can

93

LEVEL 1

Refinement

LEVEL 2

Figure 4.11: Illustration of a One to a Set Mapping for Streams

then be supplied as defaults to the child object in a manner similar to streams.

Since MODEL.LA supports one-to-a-set links, these can also be used by child

Contexts to inherit information from parents. To do this, however, the user

is required to define mapping functions, relating all relevant variables in the

individual parent object with the appropriate variables in the set of child objects

in each specific Context. In the above example, a mapping function could be used

to relate the flowrate of stream A to the sum of the flowrates of C and D. This is

implemented by using constructs in the modelling language, and may constitute

a more natural approach to design development than is possible in the CLAP

implementation.

It is also possible for information to be inherited from child Contexts to parent

Contexts. This has not been implemented in CLAP because values inherited from

a model of a specific child Context are not necessarily consistent with values

calculated in other child Contexts. The view of the design at the parent node

would, therefore, be incompatible with all but one of the child Contexts.

For similar reasons, a distinction must be made between specified and cal-

culated values. Any model created at a parent node is based on assumptions

made at its associated level of detail. Any child nodes are refinements, both in

a functional sense, and in terms of the assumptions. Therefore, any calculated

values are dependent on the model generated and hence the assumptions made.

Since there is a refinement between nodes, calculated values will be incompatible

between levels and, therefore, should not be inherited. The exception to this rule

is for variable initialisation for the equation solver (see Section 3.4.4). This is

permissible since the initial values are almost certain to change in the course of

Pu

iteration.

To ensure the conceptual division between specified and calculated values is

maintained, the two groups are stored separately. In order to facilitate access to

specifications, these are stored directly as slot values in the appropriate objects.

Calculated values are stored in "operator" relations after solution. This also

allows specifications to be changed and new solutions generated, each solution

being stored separately.

In conclusion, consistency is maintained by ensuring the structure and func-

tion of new design nodes remains compatible with specificitions made at the

parent node. Any inconsistencies imply the creation of a new alternative node at

a more abstract level. The consistency of numerical values contained in gener-

ated models is ensured by storing specifications and calculated values separately.

This allows inheritance of specifications, but not calculated values, except in the

instance of variable initialisation for equation based solution.

4.3.4 Complexity Maintenance

As a process design is developed, the design graph will support several levels of

increasing complexity and, potentially, a large number of alternatives. If every

possible variation is represented by a separate node in the graph, it will be very

unwieldy to use, some nodes being distinguished in some instances only by a

small detail, e.g. the feed to a distillation column being to different plates. Aside

from ease of use, the amount of computer memory required to store such a graph

will be very large. Although computer memory is relatively inexpensive (.C60

per Mbyte), it is desirable to provide tools in order to reduce the size of the

graph. The computing power required to run such a system will not only be

more reasonable, but the resulting design graph will be more understandable for

the user.

Douglas [6] proposes a hierarchy of decision levels for proceeding with a design.

The decisions have been outlined in Section 1.2.2. At each level in the hierar-

chy Douglas identifies possible structural synthesis steps. Figure 4.12 shows the

structural possibilities developed at the input-output structure level based on

the decisions described by Douglas. If each of the alternatives was completely

evaluated the resulting design graph would be impractically large. The simple

example in the figure results in 4! alternatives at the first synthesis step.

Decisions
Purify Feed Stream
Remove reversible reaction byproducts
Use excess reactant
Gas recycle and purge

Figure 4.12: Possible Structural Alternatives Based on High Level Decisions

To reduce the number of alternatives that should be evaluated, Douglas de-

scribes heuristics and shortcut calculations indicating the most promising line of

development. The intention is to guide the designer through the explosion of al-

ternatives with the minimum effort in order to establish the economic viability of

a process. The premise is that if the process developed using the heuristics is not

going to be profitable, no more time need be wasted evaluating the alternatives.

Some decisions, however, may not have suitable heuristics to allow a decision

to be made. In these cases, nodes representing the alternatives would be added

to the design graph. Subsequent calculations and evaluations may provide the

means to distinguish between the alternatives.

Douglas's method provides a high level means of decreasing the number of

nodes created in the design graph and consequently reducing the amount of data.

Section 6.1 describes the implementation of the decision level concept using CLAP

extended methods. This technique focuses the approach to design in what can

be considered a depth first evaluation of the process.

A lower level approach is required for evaluating alternatives which should

reflect the ability of designers to determine the effect of a structural enhancement

in the context of a more abstract process. For example, if a distillation column is

being designed, the specification of feed location can be categorised as a source

of structural alternatives. The natural approach is to create different models of

the distillation column incorporating the structural differences. The models are

initially evaluated separately, whereupon it is possible to eliminate some choices

without going any further. The nodes containing the distillation column need

contain no more than is necessary, e.g. only the column, or the column plus its

auxiliary equipment; condensers and reboilers. It may then be desirable to model

the alternatives as part of the flowsheet. This is achieved by replacing the high

level distillation operation with the low level model. See Figure 4.13.

The method involves creating a design node for each structural alternative,

but only to contain the items relevant to the evaluation. Eliminating some nodes

by evaluating them separately, reduces the number of possible combinations. By

allowing the modelling of a detailed node within the fiowsheeting context of a

more abstract node, combinations can be evaluated and perhaps rejected without

having to store them all. The mathematical models should be retained, however,

as a record of the evaluation of the relationship between the detailed and abstract

parts.

Only combinations which cannot be distinguished by the desired criteria, or

the designer decides have promise, need to be maintained as complete design

nodes. For example, Figure 4.13 shows a high level node with two distillation

columns. The structural alternatives to be evaluated are:

• whether the first column is a packed or plate column,

• there is also a choice of sidestream location in the second column with a

corresponding choice of side stream stripper or rectifier.

The more detailed alternatives are represented in the sub-nodes. The diagram

shows the relationships between the detailed and abstract levels, the two columns

being maintained separately. The models which can be constructed, shown as

boxes in the figure, display the full range of combinations and their association

with the abstract node.

On the basis that the column with the sidestream stripper has been rejected

after individual calculation, only two models of the combinations have been cre-

ated. If one combination can be rejected, only one node need be maintained as

a full fiowsheet as shown in Figure 4.14. The shaded parts denote nodes which

have been eliminated. If, however, neither is rejected, two nodes are required to

be expanded fully.

In conclusion, two approaches have been used to reduce the amount of data

requiring to be stored. An implementation of Douglas's hierarchy of decision

levels focuses the evaluation of process alternatives by using heuristics with the

[!11

I" U

/ FPH 6

'N

I
Figure 4.13: Illustration of the Interaction of Models in Abstract and Detailed
Flowsheets

aim of providing a good base case design. Many alternatives can be eliminated

without requiring mathematical modelling.

The second proposed approach limits the number of complete designs required

to be held in computer memory by allowing modelling of alternative structures,

initially separate from other items, and subsequently in the context of a higher

level flowsheet, i.e. at the sub-node level in the Figure 4.13.

The relationship between the items in the abstract node and the detailed nodes

is the has-parts relation discussed above. The implementation of the modelling

aspects of the approach is discussed in Section 5.5.3.

4.4 Summary of Object Representation for
Flowsheeting

A range of unit operations has been represented using objects related by an

inheritance hierarchy. Since mathematical models are constructed based on the

specifications and context of a flowsheet unit, attributes of objects are defined

with sufficient flexibility to represent a range of applications. Objects are also

M.

NM El
Figure 4.14: Possible Elimination of Process Alternatives by Modelling

defined for streams and chemical species.

Flowsheets representing refinements and alternatives generated during design

are described by nodes in a graph. Each node is a CLAP object containing

information describing the associated flowsheet and its position in the graph.

Hierarchical development of a process is denoted by edges, i.e. an edge linking

two fiowsheets indicates that one fiowsheet is a refinement of the other. This

relationship is stored in the node objects.

Units in one fiowsheet may represent parts of a more abstract unit in a less

refined fiowsheet. For example, a distillation column may be a part of a separation

section. This relationship is also stored in the design node objects.

These two relationships have been used to provide a range of facilities for

supporting the graph, for example, adding new nodes, adding fiowsheet items,

traversing the graph, etc. They also provide the basis for ensuring consistency

and complexity in the graph. Consistency is maintained by checking the structure

and function of objects related by "part of", thus ensuring new design nodes are

compatible with specifications made at their parent nodes. Complexity is reduced

by using the Douglas hierarchy of decision levels to eliminate some alternatives

without creating a flowsheet. The "part of" and "refinement" relations are also

used to allow modelling of alternative structures without having to store their

full fiowsheets.

100

Chapter 5

A Representation for Modelling
Flowsheets

Development of a representation for mathematical models of fiowsheets must

consider the requirements of model developers and model users. A symbolic,

...equation based description provides a well known syntax enabling developers

and users to understand models developed on this basis.

Automatic generation of models of unit operations is possible based on the

information specified in the unit objects by the designer. This provides the

designer with a model which is complete and consistent without having to be an

expert on modelling. Using "model based" techniques, each term in each equation

is accessible either by reasoning modules or by the designer which provides a

means of modifying models for specific applications.

5.1 . Equations as Constraint Relations

It is possible to associate high level models with generic unit operation objects,

but the result is equivalent to a unit model library which is supposed to be

replaced, as discussed in Section 3.2. The structure of the model is dependent not

only on the function of the object, but the context it is in and the specifications

made on the unit operation. For this reason, a full set of equations representing

the object should not be defined within its generic description. The internal

structure of the high level model should be determined only when a request is

made to model the object. A choice can then be made between the modelling

options available, or some combination of models may be selected.

Small sets of equations are defined separately and combined to represent a

101

particular unit operation. This also avoids needless repetition of commonly used

mathematical descriptions, such as heat balance equations.

It is possible to describe equations as objects with slots for the form of the

equation, the variables involved and, potentially, linearised and integrated forms.

However, equations are more appropriately defined as relationships between the

properties of objects.

The definition of individual process items involves specification of their func-

tion and assignment of values to their structural attributes. .Function determines

the type of operations which are likely to be performed by the process, and the

values of structural attributes indicate the potential range of parameters which

will be incorporated. For example, the specification of a flash unit with one

inlet, two outlets and three components, indicates the use of vapour-liquid equi-

librium relationships and mass balance equations applied to a particular number

- 	of streams and components.

Equations must, therefore, be defined in a general form in order to produce

a set of equations for a process where the number and composition of inlet and

outlet streams is unknown. This applies to any situation where a variable number

of equations may be generated or there is a summation of a variable number of

terms.

A high level description of the equations is possible using predicate calculus.

For example, the mass balance for a mixer can be written as:

in E Inlets, out E Outlets, Beqn € Eqns,

eqn A L in.mass_flowrate = L out.raass_flowrate 	(5.1)
Inlets 	 Outlets

where : A E B 	means "A is a member of set B",

B 	 means "there exists...",

AA B 	means "A is denoted by B",

EA 	means "summation over the set A".

This description explicitly specifies the existence of an equation. In the context

of algebraic model generation this is implicitly understood, so the definition can

be reduced to:

in E Inlets, out € Outlets,

102

E in.mass_flowrate = E out .rnass_f lowrate 	(5.2)
Inlets 	 . 	 Outlets

Initially, a modelling system was developed incorporating this general descrip-

tion of equations using macros to describe the predicate calculus operations of V

("for all"), E B and E. The interpretation of general models applied to specific

objects provided a set of equations applicable to the description of the object.

This work was later combined with the structured user defined relation hierarchy

implemented in CLAP (Section 2.4.1).

An equation of the form shown above is a constraint relating the properties

of objects, here, the component mass fiowrates in the inlets and outlets of a

unit. This form can be applied generally to all units, providing mass balances for

specific applications. Equations are represented in this form by CLAP "constraint

relations". Written as a constraint relation, the description is represented as in

Figure 5.1.

relation(overall_mass_balance, Unit - Range)
domain - -,
variables- [Unit, Form, Bindings],
bindings - [I = inlets Sot Unit,

o = outlets Sot Unit],
active-code - [],
return-form - (sum_of((mass_flowrate Sot I), $over I)

- sum_of((mass_flowrate Sot 0), $over 0)
= 0),

return-type = equation,
slots - [is_a - constraint]

Figure 5.1: CLAP representation of an overall mass balance relation

The slot return-type in Figure 5.1 indicates that the relation is represent-

ing an equation. The slot can also have values of expression and list Sot

equations. The difference between an equation and an expression is that an

equation contains an equality and an expression does not. The practical impli-

cations of this are that the equation form is used to represent the highest level

modelling constraints, e.g. conservation of mass and conservation of energy, while

the expression form is used to represent the parts of these relations correspond-

ing to properties of an object, e.g. vapour pressure or heat content can either

be ascribed values as properties or be represented by mathematical expressions

103

for their evaluation from more fundamental properties. The relationship between

these two forms is further discussed in Section 5.2.

The remaining form, list Sof equations is self-explanatory. It allows the

description of more than one equation in a single relation.

The return..±orm is the direct CLAP equivalent of generic equation (5.2).

The form can include summation terms, as in Figure 5.1, and specification of a

set of equations (normally indicated by V), which both include the concept of set

membership.

The bindings slot in Figure 5.1 allows reference to a list of properties or a list

of other units, in this case a list of inlets and a list of outlets. When the relation

is interpreted, the variables representing these properties (here, I and 0) will be

instantiated and, therefore, unified throughout the relation. The corresponding

variables in the return-form will then contain the set of properties over which

mathematical operations are to act, e.g. summation and "for all".

It should also be noted that the bindings slot provides a mechanism for

accessing the slots of objects directly associated with the unit of interest. In this

case, the description uses the fiowrates of streams which are connected to the

unit of interest. The simple example of a relation representing an overall mass

balance requires only a simple mode of reference, i.e. the only accessible slots

belong to the unit itself or to objects associated to the unit directly by static

relations.

A more complex mode of reference is required if it is necessary to access slots

which are related to one another within an object or are in different objects. For

example, if a component balance is required, it is necessary to be able to write:

Ycomp € Components, in € Inlets, out € Outlets,

E in.eomp.molarsate - out.comp.molar..rate = 0 (5.3)
Inlets 	 Outlets

or:

Vcomp € Components, in € Inlets, out € Outlets,

E (in.raolar_flowrate x in.eornp.mole..fraction)
Inlets

- L (out.molar_flowrate x out. comp. mole-f raction) = 0 	(5.4)
Outlets

104

In both cases it is necessary to refer to a property in a stream corresponding

to a component. The properties, component molar flowrate and component mole

fraction, are not considered generic attributes of a component (see Section 4.2),

but as properties of the stream to which they belong, i.e. composition is a stream

property despite the temptation to associate properties such as fiowrate, mole

fraction and temperature with component objects.

The access of such properties, therefore, requires a different mechanism to

the simple reference shown in Figure 5.1. Stream objects have slots defined

for components, mole fraction, component molar fiowrates, etc. which is the

logical place for such slots. The slots contain lists of corresponding values, e.g. if

the components slot is set to contain [benzene, toluene] and mole-fraction

contains [0 .4,0 .6], the implication is that the mole fraction of benzene is 0.4

and toluene 0.6.

The properties corresponding in this way are accessed in a constraint relation

by writing:

mole-fraction $correspondingso components-C $of Stream

where C is instantiated to a component in the list of components in object

Stream. The bindings and return form of a component balance are as follows:

bindings - [C = components $of Unit,

inlets $of Unit,

0 = outlets $of Unit],

return-form - (

set-of(sum-of(component-molar-rate

$corresponding_to components-C $of I, $over I)

- sum-of(component_molar_rate

$corresponding_to components-C Sof 0, $over 0)

= 0,

$over C)).

which is the direct translation of Equation (5.3).

A further mode of reference has been implemented for conceptually similar

representational situations, but concerning relations rather than slots. For ex-

ample, in the study of a stream it might be desirable to evaluate the vapour

pressures of the components of the stream. Using the Antoine equation:

105

lnP*=A_ B 	 (5.5)
T+C

where: P* = vapour pressure

A, B, C = Antoine coefficients

T = temperature

A, B and C are all properties of a component, but vapour pressure and

temperature are properties of the stream, as previously discussed. One solution to

the representational problem is to make A, B and C stream properties in separate

lists as with mole fraction, and then access them using Scorresponding_to.

However, it is equally important to maintain A, B and C as component properties

as it is to maintain vapour pressure and temperature as stream properties.

A better solution is the introduction of a reference unit or object. This object

contains the information not immediately obtainable with direct reference to the

subject of the relation. In the vapour pressure example, vapour pressure would

be defined as a property of a component (which is not particularly desirable, as

discussed previously) at certain reference conditions. The reference unit concept

provides a degree of flexibility which justifies its use, in that it can be either an

existing object (in this case the stream of interest) or a separate entity containing

only the test conditions. This can be used for evaluating a property separately

from the flowsheet being studied, e.g. if it was required to know the vapour

pressure of a component at a temperature different from the stream it was in. This

second application is useful for independent calculations to provide information

for decision making e.g. the calculation of relative volatilities to indicate the ease

of separation of components by distillation. An example of a vapour pressure

relation written using a reference unit is shown in Figure 5.2.

A more acceptable solution to the problem, and the one implemented, has

been to adapt the relation mechanism to produce a list in the manner of the

corresponding slots situation. The mode of reference is subtly altered. Using a

reference unit, the vapour pressure would be described by:

vapour-pressure $of Component,

In the corresponding slot definition, the expression is written:

106

relation(vapour_pressure, Component - Range) :-
domain - component,
variables - C Component, Form, Bindings],
bindings - C],
active-code - [ref erence_unit(Unit)],
return-form - (

exp(antoine_a $of Component
(antoine_b $of Component

/(temperature $of Unit + antoine_c $of Component))
)) I

return-type = expression,
slots 	[is_a constraint].

Figure 5.2: A relation describing vapour pressure using a reference unit

vapour-pressure $corresponding_to component-Component $of Strew

The second case has defined vapour pressure as a property of a stream as

opposed to a component, and, therefore, the relation has direct access to the

stream slots including temperature. This description has been used to represent

vapour pressures, K-values and relative volatilities. The bindings and return form

of a vapour pressure relation with a stream as the subject, are:

bindings - [C = components $of Stream],

return-form - (set-of(

exp(antoine_a $of C antoine_b $of C

/(temperature Sof Stream + antoine_c $of C)),

$over C)),

5.2 Expansion of Generic Equation Descrip-
tions

The expansion of generic constraint relations to specific relations modelling par-

ticular objects is achieved using a specialise relation, which associates a relation

with an object.

The default expansion provided in CLAP expands the description of the math-

ematical relationship into equations (or expressions, see 5.1) containing Prolog

variables. It is important to note that at this stage no evaluation has taken place.

107

This provides the opportunity to perform some reasoning about the form of the

equations generated for a particular unit, e.g. to check the degrees of freedom

of the model and its specifications, or the creation of the linearised form of the

equations. Individual specialise relations can be defined for individual constraint

relations, but it has not been found necessary to do so.

The association of a relation to an object is achieved with a normal

$set relation call. The name of the specialised form of the relation adds the

prefix has_ to the constraint relation name. For instance, to associate an overall

mass balance, as in Figure 5.1, with a mixer, mlOO, the call is:

$set relation-mlOO-has -overall -mass ..balance-Name.

The name of the stored relation is returned in the argument Name for subsequent

recovery and analysis.

In this way a single unit can be described by as many equations as desired. In a

mathematical modelling sense, this gives rise to the possibility of the combination

of what would normally be considered redundant equations describing a single

unit. However, any relation applied to a unit is a separate entity unless explicitly

combined in another constraint relation, e.g. the combination of heat and mass

balances in Figure 5.3.

relation(heat_and_mass_balance, Unit - Range)
domain - -,
variables- [Unit, Form, Bindings],
bindings
active-code
return-form - [overall-mass-balance $of Unit,

overall-heat-balance $of Unit]
return_type = (list $of equations),
slots - [is_a - constraint].

Figure 5.3: Combination of heat and mass balance relations

Being able to associate a range of equations with a single unit means many

different modelling options are possible. For example, for modelling a distillation

column, two different mass balances can be used. It is possible to provide a split

fraction model for simple fiowsheeting calculations, or detailed plate models for

rigorous simulation of the performance of the column. In both cases it is possible

IM

to perform mass balances only or to add a heat balance as required. Further

equations can be supplied for the determination of the number of plates and

minimum reflux ratio as design calculations.

The two different mass balances which can be applied to the column are

mutually exclusive, i.e. they cannot be combined into a single model without

including redundant equations, since the modelling of the individual plates will

inherently contain an overall mass balance which is stated explicitly in the split

fraction model. The inclusion of a heat balance is a different matter. A heat

balance can be defined for the whole column, and the same generic heat balance

can be associated with each of the plates, i.e. one heat balance constraint is

written which can be applied to a whole column as well as each of its plates. It

is possible, therefore, to have three modelling combinations:

• split fraction balance and overall heat balance,

- 	• plate mass balances and overall heat balance,

• plate mass balances and plate heat balances.

In the simplest case, one generic mass balance and one generic heat balance can

be used to create the specific forms for the column and each of its plates.

The flexibility this provides is an important asset for a design tool. During

design, calculations take many different forms, even in the design of a single

item, such as the distillation column discussed here. The proposed modelling

representation provides the ability to characterise the design data for a process

item in a single structure and then model that data as required.

The specialise relation expands the constraint to a specific form and bindings

corresponding to the object being modelled (see Section 2.4.1), the form being the

specific equation, or equations, and the bindings being a list of terms identifying

the variables in the equation with the location of the stored values. For example,

if the overall mass balance relation in Figure 5.1 is associated with a mixer with

two inlets, the form and bindings are as follows:

Form: 	In1 + In2 = Out

Bindings: [In1 = mass..flowrate $of stream1 — > Vail,

In2 = mass..flowrate Sof stream2 — > Va 12,

Out = mass..fiowrate $of stream 3— > Vai3].

109

The values of the variables in the bindings are obtained by the "operator"

relation. The slots and relations indicated by the middle term of each binding

are checked, the values being unified with the Val part of the expression.

In the case of slots, this will either be a value, if the slot contains one, or

the variable will remain uninstantiated, presumably to have its value calculated.

It is also possible to access other user defined relations which have been defined

in the return-type slot as "expressions". The return form of the user defined

relation will be unified with the Val part of the binding and any bindings gen-

erated from its expansion will be appended to the overall list of bindings. It is,

therefore, possible to construct complex expressions from high level descriptions.

For example, an overall heat balance could be described by:

11 E in.heat.content = 	out .heat .content 	(5.6)
inElnlets 	 outeOutlets

In CLAP, this is written:

relation(overall_heat_balance, Unit - Val)

bindings - [In = inlets Sot Unit,

Out = outlets Sot Unit],

return-form - (sum-of(heat-content Sot In, $over In)

sum-of(heat-content $of Out, $over Out)

= 0),

When the relation is expanded to its specific form, the bindings will contain

references to the heat-content of all the unit's streams. When the bindings are

checked, the heat-content may have a specified value, in which case the variable

will be replaced by a numerical value. Otherwise, the constraint relation for

heat-content is expanded and the expansion placed in the specialised forth of

the heat balance equation. The expression is defined by:

strearn.flowrate x 	E 	(cornp.enthalpy x stream. comp. mole_fractiort)
compE Components

(5.7)

110

Similarly, the component enthalpies may have values, in which case no further

expansion is necessary, or enthalpy could be expanded to the more fundamental

expression for a component:

PT

ref
AII 6j + J CpdT 	 (5.8)

T

Again, it is possible for a value of Cp to be known, otherwise it is expanded

to:

A+BT+CT 2 +DT3 	 (5.9)

As with numerical values, the expressions ultimately replace the variables in

the higher level equations and expressions by Prolog unification. Thus, part of

the overall heat balance relation above may eventually be described as:

.strearn.flowrate x ((comp.iHrei + cornp.Cp(stream.T - comp.Trej)

x .stream.cornpsnole_fraction) +...)

It is possible for such expansion to take the model to a level of complexity

that is inappropriate for a particular evaluation.

There are two mechanisms for controlling the depth of expansion:

• providing a value for a relation, e.g. here, specification of a component

enthalpy would remove the requirement for its expansion.

• explicitly requesting the truncation of an expansion.

Truncating the expansion of a relation by specifying a value raises an inter-

esting point. If, for example, the component enthalpy had been assigned a value

and its expansion, therefore, was not performed, there would be no expression

containing temperature as a variable. If one of the purposes of the calculation

was to determine a temperature, it would now be impossible. For this reason, a

mechanism has been provided to allow completion of the expansion even though

a value has been specified for the relation. For example, a heat balance may be

defined for a unit with one component, where the inlet enthalpy is 500 and the

outlet enthalpy is 600. The resulting set of equations may then look like:

inlet.flowrate x (500 x 1) - outlet.flowrate x (600 x 1) = 0

1111

600 = zS.H7i + Cp(Tj - T76f)

With known values of tsH1 , Cp and Trej , the temperature of the outlet

stream can be determined.

An example application of this type of expansion and truncation of the ex-

pansion, is in the representation of a flash. The vapour product may contain

identified light components, but the composition of the liquid may not be fully

known. In this case, the vapour heat capacities would be expanded to the com-

ponent level. Since the components of the liquid are not known, this expansion

would not be desirable, but a value for the heat capacity of the whole liquid

stream may be available. The value would be provided at the level of Equation

5.8, thus truncating the expansion.

Explicitly requesting the truncation of an expansion allows the definition of

models of a known structure. This can be achieved either as part of a high level

• modelling algorithm, where the form of the equations is defined for a particular

application, or by reasoning about the high level, relation in the context of the

design, i.e. the level of synthesis and the relationships with other plant items

may define a level of modelling complexity.

The truncation is specified with the use of a "meta-slot". The specialise form

can then be written:

$set relataQn-mlOO-has..overal -heat _balanceQQlevel2.

This example will, therefore, only expand as far as component enthalpies and not

as far as the polynomial Cp expression.

The expansion of user defined relations may result in the formation of pro-

gramming loops. For example, the definition of mole fraction in a stream relates

the quantities of the individual components present and the total quantity. A

subsequent expansion of component quantities may involve mole fractions and

the total flowrate, in which case a loop has been created. CLAP overcomes this

by preventing a single expression being expanded more than once in a series of

expansions.

5.3 Alternative Modelling Representations

The description of equations as relations is a powerful tool for the development

of mathematical models. Once equations have been defined it is a simple task

112

to combine them to create larger models ranging from individual component

properties to models of whole plants.

The construction of models in this manner is similar to the approach adopted

by ASCEND[32], where low level routines are written to model plant operations

and subsequently combined to form larger models. Similar flexibility is obtained

by being able to construct models from any parts appropriate or desired. Strict

type matching prevents obvious errors, e.g. a liquid stream cannot be modelled

as a vapour stream.

The representation of equations in the two approaches differs, with ASCEND

using a procedural language in which equations fill the role of subroutines, com-

pared with the symbolic predicate calculus description used here. It is possible

to do more reasoning about equations written in a symbolic mathematical form.

For example, if a sequential modular package is to be used to solve the model,

it is possible to generate the sequential modular code by reasoning about the

equations describing the problem (see Section 3.3). If an equation based solver is

to be used, the same equations can be used to generate the linearised equations

required by the solver. Since ASCEND has been written for an equation based

solver only, this has not been considered as part of its development.

The differences between the representations stem from subtly different aims.

ASCEND was developed as a modelling environment to allow a designer to de-

velop models rapidly, whereas this project has been to create a flexible flow-

sheeting tool. The two aims appear to be very similar, since fiowsheeting is the

modelling of whole plants. The similarity is further compounded with the inclu-

sion here of the aim of allowing modelling of individual units. Both modelling

representations could be used to write unit models which form part of a flowsheet-

ing tool. The subtle difference between the two approaches lies in the interaction

with the designer. A designer using a flowsheeting program is not necessarily

interested in creating the model of the plant item or, in some instances, even in

all the equations constituting the model. In ASCEND, the intention is for the

user to construct the models of process items and use them to construct higher

level models of plants.

This is a significant disadvantage in its wider applicability, since it requires

the user to be familiar with the concepts of modelling in such an environment, i.e.

abstracting the unit operation into a complete modelling description. Engineers

113

are familiar with many aspects of modelling, but few engineers are required to

construct complete (and hence necessarily consistent) models of items of process

equipment. Facets of the operation of a unit may be modelled separately. For

instance, modelling a distillation column, an engineer may do a split fraction

balance followed by a Fenske-Underwood-Gilliland calculation for the number of

plates. This may be followed by plate to plate calculations. It is not immediately

obvious how these different models interact and it is, therefore, unfortunately

simple to construct an over or under-constrained model inadvertently. In this

example, the combination of a plate to plate model and an overall component

balance will almost certainly contain some redundant equations. For this reason,

ASCEND is likely to be of more use to experienced modellers than engineers and

designers.

The aspect of flowsheeting making it more widely accepted is the property of

such programs of allowing the designer to specify the problem and leaving the

fiowsheeting program to provide the model.

MODEL.LA [28,29] has taken the position of the designer rather than the

modeller. Allowing the designer to specify the phenomena in a chemical system

provides a more natural means for a designer to define a model. However, the

phenomena-based reasoning is, necessarily, domain specific. The resulting system

cannot fully define the domain of chemical engineering modelling, so some inter-

action with the designer is required in order to provide mathematical expressions

for circumstances not covered by the reasoning. For example, the distillation

column definition in Figure 1.6 requires the additional expressions relating feed

compositions, recoveries and product compositions. This option is assumed to be

available to the designer, but no information is provided about the specification

of such relationships.

Phenomena-based reasoning provides a different problem for the designer. If

a model is being written in the script format of MODEL.LA described in [28],

no guidance is given as to what phenomena are involved. For example, if it is

not stated that the model is to be lumped, it is not clear what conclusion would

be reached about the type of mass and energy balances to be included. For this

reason, a comprehensive model editor has been created which identifies the par-

ticular areas that should be considered with a range of alternative specifications.

It is, therefore, important for the designer to be able to create and modify

114

models in two ways. Automatic generation of a model based on system phe-

nomena is valuable to provide the structure of the model without requiring the

designer to have expert knowledge of modelling principles. Access to the math-

ematical description is also vital, enabling visual evaluation of the model and

the possibility of modifying the symbolic expressions for cases outwith the scope

of automatic generation. ASCEND provides the latter functionality, but only

very limited "reasoning" by which detailed models of high level operations can

be constructed from low level models. MODEL.LA places the emphasis on the

first aspect, but provides limited access to the symbolic expressions. ModAss

[33] attempts to cover both facets by providing some automatic generation and

access to the fundamental modelling aspects. The automatic generation appears

to be restricted, however, to mass and energy balances.

A concept implemented in both MODEL.LA and ModAss is a model of the

state of the design. MODEL.LA supports the development of a design graph,

as discussed in Section 4.3, which is similar to the CLAP implementation with

only slight differences. ModAss, however, supports hierarchical decomposition

but does not accommodate structural alternatives. The discussion in Section 4.3

indicates the importance of alternatives in process development and documenta-

tion. The discussion also indicates a restructuring of the data is required for the

incorporation of alternatives. ASCEND does not contain the concept of a model

of the design except, to a limited extent, in the decomposition of models, but

it is discussed as being part of a design environment [1] which would, presum-

ably, incorporate such a model. In that context it is possible that some degree of

reasoning about models be implemented.

The modelling representations discussed here cope differently with the notions

of generic models and model instantiation. The CLAP representation contains

generic objects describing process operations, separate generic model descriptions

and the ability to create multiple instances of the models. The multiple instances

allow the designer to create different formulations interactively and store the

different results for subsequent review and evaluation.

ASCEND approaches the concept by defining a novel interpretation of generic

objects and instances. A generic model can have refinements which, in turn, can

be further refined. This is conceptually the combination of inheritance and the

creation of model instances. For example, a model of a generic flash can be RE-

115

FINED-TO a model of a distillation feed tray, an operation which incorporates

the notion of inheritance. The feed tray, however, can still be treated as a generic

model allowing a further refinement to be made. This refined model may have a

specified feed flowrate which would, in object oriented terms, normally be con-

sidered an instance of the model. An instance of a model in ASCEND is created

when it is being compiled for solving. This approach has not been required in

CLAP with the separation of the concepts of unit operation objects and mod-

elling relationships. If ASCEND is to be incorporated in a larger environment, as

has been suggested, the separation of these two individual concepts may require

some modification of the language in order to provide a relationship between, for

example, a flash model and a flash object, which could be described as entirely

separate entities.

In MODEL.LA , the approach has been to define generic modelling properties

associated with generic process objects. The implication of this is that instances

of process objects have the same modelling equations. It is not clear whether

or not the generic description can be altered dynamically for new instances of

the operation, or for modifications of an existing one. It would seem unlikely

because, if so, there is no correspondence between an instance of a model and its

generic description in a case where this description has been altered.

It is valuable to be able to represent different instances of a conceptual process

object by a range of modelling formulations, e.g. model one instance by a shortcut

method, and another by a more rigorous method. It is equally important to

be able to model a single instance by different formulations, e.g. to model a

distillation column by a Fenske-Underwood-Gilliland model and subsequently

model the same column with a plate-to-plate model. The MODEL.LA description

seems to imply that these require different generic descriptions. In cases where

the only difference between models is a single phenomenon, it would necessitate

the creation of two generic models for what is, conceptually, a single process.

During the course of modelling it is quite likely for such a set of models to be

required, which, initially, provide a level of approximation but on modification,

provide a more complete realisation of the process.

In CLAP, defining the models separately from the process operations allows

model instances to be created reflecting the state of the process object. In effect

this is equivalent to creating an instance of a model and then further refining it

116

to an instance of a solution.

The approach adopted in ModAss incorporates models in a manner similar

to CLAP. The models are separate from fiowsheet items until specified as be-

ing included. Every model created is treated as an instance in that it applies

specifically to an instance of a unit. It would appear that the modeller is able to

alter the model and then recompile and solve it. It is not clear, however, if these

different solutions are maintained along with the description of the model at the

time of compilation as is done in CLAP.

The facets of modelling desirable within the context of design and which have

been identified in the above discussion, are:

. The ability to provide some automatic model generation, but also to allow

access to models for modification and specification.

• That provision must be made for dynamic modification of models rather

than accepting a generic model for a generic process, which would be equiv-

alent to accepting a library model albeit a custom made one,

• Instances of models should be retained with their associated solution to

provide a record of the modelling formulations evaluated.

• A model of the design is required to provide full scope for evaluation of

different structural options generated in a design. The model also provides

a record of the decisions taken.

The implementation of a design graph in CLAP for maintaining process de-

composition and structural alternatives has been discussed in Chapter 4. The

definition of the modelling relations allows for instances of relations for different

formulations of process items. It also allows for multiple instances of solutions

which maintains the record of evaluations, as described above. The restrictions

of simply providing a library model have been discussed in Chapter 3, indicating

a requirement for some compromise. That compromise is as follows.

1. A model is generated automatically from the specifications made on in-

dividual process items, thus removing the requirement of the engineer to

have knowledge about available models. The equation representation also

removes the restriction of a library of fixed models, since models in this

system are individually constructed from selected equations.

117

The model can be edited at a high level to provide extra modelling flexibility.

Since the model has been constructed by reasoning about the specifications,

the alternatives to the chosen model are known and can be presented to

the user for selection, e.g. a general flash model can be replaced by a split

fraction model.

The model can be edited at a low level to provide extra detail, e.g. a K-value

calculation using vapour pressure can be adapted to use fugacities.

Entire unit descriptions identified as being functionally equivalent can be

interchanged to provide a different level of structural detail. For instance,

an object representing a distillation column may be modelled using Fenske-

Underwood-Gilliland equations. A greater level of detail could be obtained

by creating objects for the plates of the distillation column and modelling

each plate as a separate flash operation. The model of the column as plates

can be included into the model at the level where it is represented as a

column, thus achieving the greater level of model detail at the higher level

of abstraction.

In conclusion, the three systems discussed here in comparison with CLAP

modelling capabilities demonstrate most of the key issues which must be consid-

ered in the development of a tool for flowsheet modelling within the context of

a design environment. The three systems, ASCEND, MODEL.LA and ModAss,

do not individually provide the full required functionality, but many of the points

considered in the development of the tool in CLAP can be found in one or other

of the systems.

From a model developer's viewpoint, ASCEND and CLAP user-defined re-

lations both allow flexible modelling of unit operations. Both representations

support the expansion of high level descriptions to low level descriptions, and

both allow the selection of alternative models for a single application, e.g. short-

cut or rigorous calculations.

The differences stem from the reasoning to be provided for the intended ap-

plication. As part of a flowsheeting tool intended to be used within a design

environment, the representation in CLAP has taken into account more general

aspects of the description of design. Objects have been created in CLAP to rep-

resent process items which can be reasoned about, here, for modelling purposes,

118

in Chapter 6 for synthesis and hypothetically for control, layout and safety (see

Section 2.2). ASCEND uses object-like structures which are purely for modelling

purposes, which are, therefore, limited to reasoning about equations. As men-

tioned previously, the representation of equations in predicate calculus may allow

more reasoning about the equations themselves.

It should be noted, however, that the definition of modelling equations in

CLAP is independent of the objects describing unit operations. This suggests the

possibility of accommodating the ASCEND approach into a wider environment

in a similar fashion.

For widespread use, both ASCEND and CLAP descriptions rely ostensibly on

experienced modellers to create a suite of consistent models which could then be

used by engineers who are not expert modellers. Mechanisms have been provided

in CLAP to allow non-expert modellers to take advantage of the flexibility of

the modelling description. A consistent model is generated automatically, thus

performing the "expert" tasks, leaving the engineer free to customise the model

within the limits imposed by the need for consistency.

The important facet of the MODEL.LA language is the phenomena-based rea-

soning which provides a structure for the model without requiring expert knowl-

edge of modelling principles. The representation of generic models of specific

phenomena differs from the CLAP implementation since, in CLAP, an instance

of an object can have several different formulations depending on the specifica-

tions made. The MODEL.LA representation seems to require separate instances

of generic models which must be defined for the full range of applications.

MODEL.LA is built round a graph describing the development of the design.

This representation can be used as a basis for broader considerations of other

design tasks.

The ModAss modelling tool provides two major facilities for the develop-

ment and use of models. The models are partly generated automatically, al-

though with consideration of principles other than mass and energy balances, as

in MODEL.LA and CLAP (see Section 5.4), the scope of these models could be

widened. The user also has general access to the models and the parts of the mod-

els, but again could provide some reasoning about their formulation (as in CLAP

in Section 5.4.4). The existing reasoning is limited to inheritance and reasoning

about the mathematical properties of the models, e.g. degrees of freedom.

119

5.4 Selection of Unit Models

Traditional flowsheeting programs model plant items at a predefined level of

detail. If a unit model is incorporated in a flowsheet then the mathematical

description contained in the library associated with the specified unit is added

to the overall plant description. This assumes a level of mathematical detail

associated with a level of functional detail, e.g. the specification of a heater

indicates the use of a mass balance, heat balance and pressure balance at a level

of detail appropriate to its operation despite the requirements of the flowsheet.

Ideally, there should be unit models to represent every operation required at

every stage of a hierarchical design procedure. The models provided should also

be flexible enough to allow a variety of input specifications.

In order to provide a feasible number of unit models at a level of practical

use, flowsheeting program writers have necessarily restricted the models provided

to ones corresponding to the process flow diagram stage of process development.

Such a restriction makes the modelling of a hierarchical design awkward using

conventional flowsheeting software. Attempts have been made, however, with

limited success, to apply an industrial flowsheeting package to such a procedure,

e.g. FLOWPACK, the ICI flowsheeting program [18].

Expert knowledge of the package is necessary for the correct selection of the

models to represent the high level processes of a block flow diagram. The prob-

lem of model selection extends beyond the block flow diagram stage e.g. the

condenser-flash-mixer problem in Chapter 3. Further knowledge is required to

specify the process models involved correctly, so as much of the available infor-

mation is utilised ensuring the degrees of freedom are satisfied. Since the library

of models is defined at the process flow diagram level, the degrees of freedom are

likely to be higher than is required for the modelling purpose in question. Certain

input parameters, therefore, must be estimated to satisfy them. It should not

be necessary to provide estimates which, apart from annoying the user, may be

forgotten and subsequently mistakenly used as real data.

The designer should not have to formulate a design problem to suit a unit

model library, thus compromising the functional knowledge contained in the

process description with the limited set of models available. For this reason,

modelling equations are maintained separately from generic process descriptions.

120

Once a process object has been created and included in a flowsheet, the mod-

elling equations can be selected from a bank of equation models. This allows the

designer to specify the unit operations required without having to consider which

models contain which equations. The specification of process structure and func-

tion is sufficient to allow the selection of a set of equations (or fundamental unit

operation models in the sequential modular case) describing a unit operation.

The selection of equations appropriate to the level of functional detail can be

divided into two stages:

• selection of high level descriptions, e.g. identification of a requirement for

mass balances, heat balances, phase equilibria, chemical equilibria, etc.,

• identification of the low level form of the high level descriptions applicable

to the unit being modelled, e.g. if a K-value is required, the expression may

or may not include a Poynting Correction factor depending on the pressure

maintained in the unit.

It is possible to classify both stages under the second heading. The selection

of high level descriptions can be thought of as being the identification of the

form of the highest level balance description. The two have been separated,

however, to allow the use of generic modelling information to ensure that the

high level descriptions being constructed are consistent across a flowsheet and

their constituent relations are compatible with ,each other. The selection of the

appropriate form of the equations is, therefore, a separate problem, describing

the specified function of the unit in a consistent framework of high level relations.

The two stages differ in implementation in that the high level description of a

process unit is a single relation constructed from several lower level relations in the

manner of the heat and mass balance relation in Figure 5.3. The selection of the

form of the equation, however, involves identifying the terms of the expressions

taking different forms depending on the unit and its specifications.

While it is valuable to have the automatic generation of a mathematical model

of a unit operation, it is possible for the generated model not to be what was

intended by the designer. It can also be argued that automatic model generation

is almost as inflexible as the system it is supposed to replace. The designer is still

required to provide certain input parameters which are unavailable, or the model

may not provide the detail required. For this reason, it is also important that,

121

while a model may be generated automatically thus performing the "expert" task

of creating a consistent and complete model, the designer still has the freedom

to modify it to suit a particular application.

The following subsections discuss the implementation of an automatic model

generation tool and the interactive manipulation facilities available to the de-

signer. This is illustrated with some examples.

5.4.1 Selection of High Level Model Descriptions

The automatic selection of high level descriptions of fiowsheet units is intended to

perform the "expert" tasks of creating complete and consistent models of process

items.

The function of the object can be used to identify all possible types of equation

that can be used by an object, i.e. mass balances, component balances, phase

equilibria, heat balances, etc. However, once the equation set has been identified,

the set which best describes the operation of the object at its state of specification

must be ascertained.

It is possible to associate all user defined relations with a domain class of

objects using their "domain" slot, see Figure 5.1. The relation can then only

be applied to objects which are instances of the specified class. The default

interpretation mechanism for relations does not check all "is-a" relations and so

equations could not be inherited. A mechanism could be provided to perform

this operation, but in its application several problems would arise:

• the search space of applicable relations is large and not ordered, making

any search techniques time consuming,

• all relations which could be applied to a particular unit would be located,

but would not necessarily constitute a consistent model,

• alternative models for a unit would not be recognised as being separate

entities.

Several approaches have been investigated with the aim of generating a model

based on the function of the units contained in the fiowsheet and tailored to suit

the specifications made.

Initially, the slots of the streams connected to a plant item object were inves-

tigated in an attempt to identify the operations occurring within the object. For

122

example, if there were components in the output streams of an object which were

not in the inputs, then one operation of the object is reaction. In this manner,

various fundamental operations could be identified: reaction, separation, mixing,

temperature change, pressure change and stream division. However, each indi-

vidual unit in the fiowsheet would have to be completely specified in order to

provide a complete functional description. This would over-specify the mathe-

matical model and so is not a feasible approach.

Instead of analysing the streams into and out of objects, the same information

can be derived from the functional description of the objects, i.e. its purpose and

internal structure. For instance, as described above, specifying the use of a heater

implies the modelling requirement for a mass balance, heat balance and pressure

balance. The important consideration is to establish which are applicable for a

given level of detail.

An engineer creates models based on assumptions made at the higher levels

of a design. As the design progresses, the assumptions either become supported

and can be accepted as facts, or the evidence accrued contradicts the assumptions

made, thus forcing the designer to alter earlier decisions. In an attempt to em-

ulate this approach, the selection of appropriate modelling equations was based

on the assessment of assumptions. Classes of equations were associated with as-

sumptions fundamental to the use of the equations, e.g. Fenske's equation was

based on constant relative volatility.

At the start of a design, a set of high level assumptions can be asserted

with the intention of assessing the evidence supportive or contradictory to them

which is amassed as the design proceeds. For example, very simple high level

assumptions could include: constant composition (no reaction), constant enthalpy

(no specified change of heat) and constant pressure (no specified pressure change).

As objects are created and slots set, the assumptions are altered in the light of

the new information. Since the equations are associated with assumptions, a set

applicable to the level of assumption can be constructed.

An implementation of the proposed scheme was attempted, whereby assump-

tions were asserted at the beginning of a design and evidence to support or

contradict these assumptions was accrued as the design developed. The work did

not provide a satisfactory method for automatic model selection, but provided a

valuable insight into the associated problems.

123

1 Evidence in support of, or against, assumptions could be regarded as con-

clusive or inconclusive but significant. This appeared to correspond with

functional and structural aspects respectively. The creation of a new object

alters the purpose of the flowsheet functionally and, therefore, irrefutably

alters the assumptions, e.g. the creation of a reactor object implies a change

of composition and species, hence removing the assumption of constant

composition. The setting of slots provides structural information which

tends only to support or contradict assumptions without being conclusive.

For example, specifying the temperature of a stream does not imply non-

constant enthalpy thereby signifying the requirement for a heat balance,

but merely indicates that it may be the case. Further specifications of

temperatures make the evidence more conclusive.

2 Most assumptions apply locally rather than globally, e.g. the creation of

• a reactor does not signify the use of a reaction model for every item in

the ilowsheet but only for reactors. In another case, a flash unit may be

modelled using an equation of state, while another flash unit may not have

sufficient data for that level of modelling.

3 The identification of every slot and object and their interactions with each

assumption is combinatorially too large to represent.

4 In many cases it is difficult to assess precisely what affects an assumption.

Consequently, it may be more advantageous to allow the designer to state

when assumptions should be added or removed. For example, in the early

stages of design, initial estimates of design variables can be achieved by

making assumptions which are known not to be true, e.g. the assumption

of ideal gas behaviour. However, their use is justifiable as long as models

developed on this basis provide an acceptable approximation of the process

being designed. In the case of an ideal gas model, it would almost certainly

have to be the designer who specifies when this assumption is no longer

valid.

5 Although basing the selection of equations on explicitly represented as-

sumptions proved infeasible, the approach did, however, identify some of

the requirements of sets of equations for their inclusion in a model.

124

In summary, the selection of modelling equations based on the level of as-

sumption incorporated in the fiowsheet description is a valid approach. The

combinatorial nature of such an approach makes it infeasible to maintain all as-

sumptions and their interactions with slots and objects automatically (3 above).

The determination and evaluation of some interactions is exceptionally difficult,

implying that the user will have to define the use of a large number of assump-

tions (4 above). This, however, will present the user with an unwanted barrage of

questions as to the applicability of assumptions for the modelling of each item in

the flowsheet. The approach adopted for model selection is intended to provide

the user with a complete and consistent model of the fiowsheet without requiring

any further information over and above the design information already available.

The model created may not necessarily be exactly what the designer was intend-

ing, but it will be consistent and will allow the alteration of the model within the

- constraint of consistency. The alteration of the model is discussed in 5.5.

5.4.2 Representation of a Model Library

The method eventually proposed for model selection corresponds to the unit

model library of traditional fiowsheeting programs (see Chapter 3) with the ad-

dition of heuristics to select the model which best fits the specification of the

flowsheet. The recognition of the existence of local and global assumptions (2

above) suggests a representational mapping close to the unit object hierarchy

discussed in Section 4.1. This, consequently, implies the use of an inheritance

mechanism relating the assumptions implicit in the functional description of a

unit operation to the applicable models.

An object has been defined to describe a "model" which contains descriptions

of all high level fiowsheeting models applicable to the level of functional descrip-

tion associated with the object. The information contained in the object includes

the conditions for the use of the equations and allowable assumptions which can

be made when a model is invoked.

Model objects have been associated with generic unit operation objects with

a relational mechanism, thus allowing inheritance of models from higher levels

of functional description. This mechanism is used for instances where the model

suggested by the function of the unit is not applicable because insufficient struc-

tural information is available. For example, the creation of an object representing

125

a flash suggests the use of a vapour-liquid equilibrium model. However, if the

temperature, pressure or heat load have not been specified, then a model con-

taining only composition balances need be provided.

Figure 5.4 shows the correspondence between the unit model hierarchy and

the model objects. The diagram shows the expected model enhancements be-

tween the specification of a plant object and, for instance, a separation object.

It also shows the further property that a model object need not be associated

with every generic unit operation object. In the example shown, the mixer unit

has no model associated with it. Consequently, it will inherit the modelling in-

formation of the flow change object and ultimately the plant object, in this case,

an overall component balance. The divider object, however, has an associated

model incorporating divider ratio expressions. If no divider ratio has been speci-

fied, an overall component balance is required. See Section 5.5 for a discussion of

the editing of the model to allow the use of a ratio model without having ratios

specified.

Pi

EndWpy enN R% 	seParauo%$ç

Divider 	Mixer

Figure 5.4: Correspondence Between Hierarchy of Process Items and Models

To prevent the inclusion of contradictory equations, e.g. a reaction mass

balance and an overall compopent balance, "guards" have been associated with

each model, thus allowing the selection of a single model from a list of potential

models. The guard expressions must be completely satisfied for the inclusion of

a model. The expressions normally include the checking of slots and relations of

the unit being modelled, but may also include checks of the context of the model,

such as the level of detail of all separators in the fiowsheet. This is, effectively,

the checking of local and global assumptions respectively. In the example here, if

any separator is only at a conceptual stage, i.e. not defined as a unit operation,

then a general heat balance cannot be implemented since the heat requirements

of a "separator" are unknown.

126

An inheritance mechanism for model refinement implies that more conceptual

functional descriptions should be continually updated by lower level modelling

equations as the level of functional detail increases. However, not all modelling

equations are refined with every increase in functional detail. For instance, a

flash separator may have sufficient detail to allow an overall heat balance which

is only available at the functional level of vapour-liquid separation when the type

of heating is known. However, its composition may only be modelled by an

overall component balance which is inherited from the "plant" model. For this

reason, modelling equations have been split into areas of application, each one

individually inheritable. The areas are:

• reaction

• composition

• energy

• flow

• pressure

Thus the flash object would inherit the energy model - overall heat balance - from

the vapour-liquid separation model object, and the composition model - overall

component balance - from the plant model object.

The structure of a "model" object is shown in Figure 5.5.

object(model)
self-..,
variables - [ReacEqs,CompEqs,EnEqs,Feqs,Peqs,Assum,Unit,Info],
slots - [reaction_eqns - ReacEqs,

composition_eqns - CompEqs,
energy_eqns - EnEqs,
flow_eqns - Feqs,
pressure_eqns - ?eqs,
assumption-level - Assum],

relations - [unit-model - Unit,
required-info - Info].

Figure 5.5: Generic Model Object

127

The two relations contained in the description of the model object are used in

the interpretation of the object. When the unit -model relation is instantiated to

the name of the object being modelled, Prolog unifies the name throughout the

model object and, thus, into the guard expressions. The required-info relation

is provided for convenience. Several guards within one object may check the

same slots in the same unit operation object. If the guard fails, backtracking

uninstantiates the variables requiring the slots to be checked again in subsequent

guards, The required-info relation is for the checking of slots which would

otherwise be repeated, thus saving computing effort.

A example of a model object corresponding to a "plant" object is shown in

Figure 5.6.

model - plant-model :-
variables - [

/*reactjon*/ 	reaction-model
- (not (var (Reacs)))
- (conversion Sot reactions Sot Unit = 1),

/*composition*/ overall-component-balance
- (var(Reacs)

Sand expand_components(Unit))
- inlet-zero-rates,

/*energy*/ 	$null - $null - $null,
/*tlow*/ 	$null - $null - $null,
/*pressure*/ 	Snull - Snull - Snull,

$null,
Unit,
[($check relation-Unit-(reactions-Reacs))]]

Figure 5.6: Example Instance of a Model Object

Note that the variable Unit appears throughout the object, so on its instan-

tiation it is unified throughout the model. The required-into is obtained by

checking the reactions relation of Unit. The value Reacs subsequently appears

in two guards which would otherwise have had to be checked for each equation

model.

The expressions corresponding to each equation slot have been divided into

three parts:

• a dotted list of equation models (see Section 2.4.3)

128

• a corresponding dotted list of guards

• a corresponding dotted list of local assumptions

The example in Figure 5.6 has only one member in each dotted list, but the

interpretation mechanism takes each term as a dotted list and processes the

terms in the corresponding positions in the three lists. -

There are two levels of assumptions which can be incorporated in the model

object: those only applicable to the functional description associated with the

model object; and those applicable to any object invoking the model. For

example, in Figure 5.6, the local assumption corresponding to the equation

react ion-model is that the conversion of reactions of the unit of interest is equal

to 1. This only applies to the modelling of "plant" objects and not to any other

objects inheriting the model. The assumption-level slot in Figure 5.5 is for

inheritable assumptions.

• 	The model in Figure 5.6 potentially allows the inheritance of a reaction model

and an overall component balance, which as has been previously mentioned, are

mutually incompatible. The corresponding guards, however, ensure they remain

so. The reaction model is included in cases where a reaction has been specified

for the unit, and a component balance in cases where a reaction has not been

specified. This has implications for the inheritance mechanism. It is possible

for any object which has had a reaction specified to inherit a reaction model

instead of a component balance. For example, a heater or a flash model could

incorporate a reaction mass balance, if so specified. This provides great flexibility

for the mathematical description of the processes involved in a flowsheet.

The proposed mechanism for selecting equations is similar to that employed

by MODEL.LA [28]. MODEL.LA uses the specification of physical and chemical

phenomena to provide the modelling definition of a generic object. Here, however,

the concern is with modelling specific instances of objects. The implication of

the MODEL.LA work is that when a process is defined, the model is created

by selecting the generic types of the items of process equipment. The modeller,

therefore, must know to what degree of detail the resulting model must be taken

a priori. Further, to provide a range of models of differing detail for a single

process requires the specification of a .generic object for each one.

The method outlined here is intended to provide the designer with a means of

defining a mathematical description by specifying the function and structure of

129

process objects. The function is provided by the generic class of the object, but,

unlike MODEL.LA, a single instance can be described by a range of different

models. The structure is detailed by the provision of values for certain key

properties (in slots). The advantage of allowing models to be defined in this

way is that the user is performing a natural task - specifying functional detail

and providing values for design constraints.

Part of the hierarchy of models is shown in Figure 5.7. Nodes in the graph in

parentheses have no associated model and thus inherit models from higher levels.

5.4.3 Example of Model Selection

The selection of modelling equations based on specifications is best illustrated by

an example. Consider the description of a flash vessel. In the first instance, an

object will be created with its connections detailed. If these are the only features

attributed. the object,, then the model which will be invoked is an overall

component balance relating the components in the inlet and outlet streams.

This decision is based on the local specification of the object. However, there

is another part of the model which could be included which is dependent on

the context of the object. As part of the flowsheet, the degree of detail of other

objects determines some aspects of the mathematical description of the individual

items. In this case, for example, a heat balance will not be proposed unless all

separation processes have been characterised to the level of a unit operation. Since

the energy requirements of a "separation" cannot be determined until the type

of operation is realised, a heat balance would serve no purpose to the complete

flowsheet. If however, the scope of the model includes no such indeterminate

processes, an energy balance can be included.

Depending on the further detailing of the constraints on the flash, the model

will be constructed accordingly. If split fractions are provided, the object adopts

the level of a simple separator with its associated mathematical description. If,

however, a temperature or pressure is supplied, the intention is to model the

vapour-liquid equilibrium of the vessel. Two equilibrium models have been de-

fined. One has simple convergence properties but is limited to processes with

single inputs. The other more general description is not as robust. For this rea-

son, the more specific model has been retained, but is only used for processes

with a single inlet.

19111

C,

0;

H
a

—1

I
2,
C-
a

0
a

a
C
Cl-

a

a
H

'I

-a

—a

REACTOR

reaction - fldnetic_model]

energy - [Icinetic_heat_modell

flow- I ABSORPTION

macton-El

composition - Ikmnser_model] (GAS_ABSORBER)

'energy - Il

SEPARATION flow-11

rcaction-(J -Il

composition 	Isplit_fraction_modell

energy - El
flow - [] VLE SEPARATION

pressure -Il reaction-Il

PLANT composition - [general_flash_model] (PLATE)

reaction - [reactionjnodel] (VESSEL) energy - [overall_heat_balance]

composition - loverall_mass_balancel flow - II
s-Il

DISTILLATION
mow -

mat-I]
flow - I I \ 	- Iplate_model]
pmssme - I] (PRESSURE_CHANGE) energy - [I

(MIXER) flow - [faaske_gl]llIand_model]
piessum - El FLOW_CHANGE_DEVICE

maclion - II < DIVIDER

nat-Il
energy - [overall_heat_balance] composition - [dividermode1]
flow-11 cnergy - []
pressure - [] flow - Imoleiraction_equalities]

piessiut - Il

I 	i

=M--[] 	 (HEATER)
composition - []
energy - [temperature_sd,

overall-heat-balance]

flow -(1 	
(COOLER) pmssuit-[]

Once the flash has reached this level of detail, no further choices of model are

available. The form of the selected equation can be altered, however, to widen

the scope of their use in order to generate applications for specific processes (see

Section 5.4.4). This level of model generation concerns the selection of the terms

of the equations which are relevant to the specifications made on the process.

5.4.4 Selection of Equation Form

Section 5,4.2 described reasoning about models at a high level. This reasoning

ensures model completeness in terms of the calculations achievable in a particular

context, and consistency by ensuring the interactions between the different parts

of the model do not result in redundancy or contradiction.

Within the framework of completeness and consistency, there are certain as-

pects of the model which can be reasoned about. In situations where alternative

models exist for a single property, it must be possible to select the appropriate

definition for the current context. For example, the Nusselt number correlations

for the evaluation of heat transfer coefficient differ for laminar and turbulent flow.

If it is possible to determine the flow regime at the time of model generation, it

should be possible to select the appropriate definition. There are occasions, how-

ever, where several, seemingly equivalent, definitions are available with no means

of distinguishing between them. For example, there are several alternative em-

pirical correlations of Nusselt, Prandtl and Reynolds numbers for the same flow

regime. In such cases, a choice should be made, but revision of this choice should

be allowable when more information becomes available.

A similar case can be made for approximate models. As mentioned in Section

5.4.1 the assumptions supporting the use of approximations are very difficult to

justify, so inferring their applicability is equally difficult to implement. If it is

not possible to define a set of conditions for the use of an approximate model, it

could be used in the first instance allowing revision of the model at a later stage.

The inference mechanism for selecting the form of equations is discussed in this

section. The interactive revision of models with illustrative examples is presented

in Section 5.5.

The mechanism for inferring alternative forms of equations involves defining

an extra call in the active code of the parent relation. The call corresponds to

a single undetermined term of the return form expression, therefore requiring

132

a call for each such term. The calls are Prolog clauses establishing the form

of the unknown term, generally by checking slots and relations. The clause,

select_eqn_type, has four arguments:

1 the Prôlog variable in the return form which is to be unified to the inferred

form,

2 a reference to the term being sought, e.g. fugacity_coefficient,

3 the object that is the domain of the relation, which, in general, is being

checked for appropriate slot values,

4 the reference unit, if applicable.

The reference term (2) is used to locate the correct Prolog goal and is also

used for reporting the generic form of the equation.

When the relation is invoked as part of a model, the active code is run before

the generation of the return form. The select_eqn_type calls are made, instan-

tiating the undetermined variables in the return form expression which is then

expanded as normal.

For example, consider the definition of the vapour-liquid distribution coeffi-

cient:
K._'7f>< Ob i <Pi* 	 10 (5 .)

Oi XPT

where: -yi = vapour activity coefficient,

fi = fugacity coefficient,

= Poynting correction factor,

= vapour pressure,

Oi = partial fugacity coefficient,

14 = pressure.

If ideality is assumed, values of 'y, f, 'I'j and 4j can all be approximated to 1.

If this assumption is invalid, the specification of an appropriate equation of state

can provide values for 'y, fi and 4j. In this example, it will be assumed that if no

equation of state is specified, the system can be approximated to ideality. The

Poynting correction factor is approximated to 1 except where a high pressure is

used. Provided some heuristic notion of the definition of "high" can be made,

133

the use of the factor can easily be inferred from the pressure of the unit being

modelled.

relation(k_value, Unit-Val)
domain-..,
variables - [Unit, Form, Bindings].

• 	bindings - [C = components $f Unit].
active-code - C

select_eqn...type(Gamma, vapour-activity-coefficient, Unit, C),
• 	 select_eqn_type(Phi, fugacity_coefficient, Unit, C),

select_eqn_type(Poynting, poynting_correction, Unit, _),
select_eqn.type(PartPhi, partiaLfugacity_coefficient, Unit, C)),

return_form - (set_of(
(Gamma * Phi * Poynting *
(vapour-pressure $corresponding_to components-C $of Unit))!
(PartPhi * (pressure $f Unit)),$over C)),

return-type - expression,
slots - [is_a - constraint].

Figure 5,8: Definition of K-value Relation

The definition of the relation for K1 is shown in Figure 5.8. The terms in the

return form which are undefined and are thus left as Prolog variables are each

represented in the active code by a selectsqn_type call. When the specific local

form of the relation is expanded, the inferred form is generated. In the case where

no equation of state has been specified, the select _eqn_type calls return a value

of 1 for the undefined terms as shown in equation 5.11. The non-ideal (but low

pressure) situation is shown in equation 5.12 where the undetermined terms have

been replaced by the non-ideal variables. These can simply be referring to slots,

or, as in this case, to further relations. An example showing the full expansion

of the expression is given in Appendix C.

lxix lx

1 x 14 (5.11)

'y1xf1xlxF7 	
2

,x PT
In this manner, a single relation can be defined to represent an equation in its

most general and necessarily rigorous form. The approximations of the general

form which can be made can be incorporated into the relation along with the

134

required assumptions, where such definition is possible. In the above example,

the definition of the single relation for the distribution coefficient, K1, removes

the requirement for separate definitions for ideal, non-ideal and high pressure

situations,

5.5 Interactive Model Modification

Section 5.4.2 discussed the representation of the equivalent of a unit model library.

High level models have been defined which are selected to describe flowsheet items

based on the context of the item and its specifications. The particular form of

the selected equations is also inferred locally at the time of generation.

Combining the two aspects of model selection provides a tool which supplies

the designer with a model reflecting the level of detail in the design and the

specifications placed upon it. It can be argued that this amount of reasoning

- constitutes little improvement over conventional fiowsheeting software where the

designer selects the high level model to be used. The selection of such models

is a reasonably expert task, since several models can be available for one unit

operation. It may be, for example, that several distillation routines exist, each

with a particular specialisation. Automatic selection of the high level model

ensures its consistent and correct use.

Low level reasoning about the form of individual equations provides a signifi-

cant advance over conventional representations. In the approach described here,

complex models (e.g. non-ideal) are only used when appropriate data is avail-

able. In existing flowsheeting packages, this requires either a range of high level

models of different degrees of complexity, or one model requiring a large number

of parameters which may not always be available or significant.

It is recognised, however, that while the two facets of automatic model selec-

tion provide an important benefit to the designer, it is highly unlikely for such a

system to be able to provide exactly the model required for every application. As

discussed in 5.4.4, it is not always possible to define rules for the automatic selec-

tion of the low level form of the equations. It is also common for a designer to be

trying to calculate a value for a particular property. This would require knowl-

edge of the models available and the specifications to make to invoke the correct

model involving the desired property. DESIGN-KIT [14] provides a mechanism

for such situations. The user can specify a property to be calculated, in their

135

example, effluent composition. The inference method identifies the equation in

the data model of the object under consideration containing the desired property.

If the equation is fully specified, the value of the property can be calculated. If

not, further equations are added containing the required unspecified variables of

the original equation. This analysis and expansion, however, must be terminated

by the user if a fully specified model cannot be inferred. Specifying the boundary

of the problem is, effectively, defining the high level model, e.g. if the boundary

is the limits of a reactor, then the high level specification of a reactor model

will suffice. The advantage is that the model developed will contain the required

property.

This example illustrates the desirability of being able to specify what is re-

quired of a model. It is also desirable for the designer to be able to modify models

to provide the required mathematical description. This encompasses the ability

to specify the particular property required of a calculation.

The following sections describe the methods whereby the designer can interact

with the model generator. This extra functionality is a more significant increase in

flowsheeting and modelling ability than automatic model selection. The designer

can now define the model required for a particular task. The two aspects of model

selection provide separate foci for interaction. A third is provided by considering

the relationships existing between nodes in the design graph.

5.5.1 Modification of High Level Models

Increases in functional detail imply an increase in detail of the model, as discussed

in Section 5.4.1. The mechanism for inferring the appropriate parts of the model

divides the model into several sections, reasoning about each one separately. The

model corresponding to the level of functional detail closest to the process unit in

question is incorporated if its conditions are met. If the conditions are not met,

levels of increasingly less functional detail are considered until an acceptable

model is located.

Since each aspect of the model is considered individually, i.e. mass balances,

energy balance, pressure balance, etc., any combination of the parts is valid. For

interaction with the user, therefore, each part of the whole model can be modified

by selecting any of the available models under a particular heading. For example,

the available mass balance models for a distillation column, in descending order

136

of complexity, are: a plate to plate model, a Fenske-Gilliland-Underwood model,

a split fraction model and a simple overall component balance. If a different mass

balance model was required, any of the above would be acceptable.

The symbolic description of model usage includes the conditions required for a

model to be considered valid. This means that the modification procedure can be

presented to the user in an understandable format by reasoning about the model

objects. When the user selects which of the five parts is to be modified (reaction,

composition, energy, flow or pressure) the inference mechanism locates all models

under the selected heading appearing in the model objects of corresponding (and

less) functional detail. For example, if a distillation column is being modelled,

model objects corresponding to distillation, vapour-liquid equilibrium separation,

separation and plant are considered (see Figure 5.7). These models are then

presented to the user for selection.

The selected model may not have the requisite information for its use, so

it cannot be accepted without checking its corresponding guard conditions and

assumptions. If all conditions are met, the model replaces its equivalent in the

list of equations contained in the model being modelled.

When the conditions are not met, the reason for not including the chosen

model must be presented to the user. This is achieved by interpreting each

call in the guard and displaying the result. Figure 5.9 shows an example of an

application to distillation. The user has requested a split fraction model which

cannot be used because no split fractions have been specified. The unacceptability

has been displayed in the window as a breakdown of the information in the model

(which correspond to an interpretation of the required-info slot in the model

object) and the individual interpretations of each guard.

The user is then able to return to the process description and provide the

information necessary in order to implement the desired model.

The selection of a valid model results in a report of its acceptance.

The selection of the new model has been achieved within the framework cre-

ated for automatic model selection. This implies that any model which is mod-

ified is still consistent and complete, because the checks required for automatic

selection must also be satisfied by the modified model.

137

Fenske-Gillhlandmcxjel

plate_tq.plate_modet

The requirements of that model have not been fully satisfied.

The model contains the following informatiorn

The split fractions slot of separatorl contains the variable C_472694)

The following conditions must all be true:

_472694 is not supposed to be a variable, which is false,

AND expand—fractions of separatorl should succeed, which is true.

Figure 5.9: Example of High Level Model Modification for Distillation

5.5.2 Modification of Models at a Low Level

The interactive modification of the low level form of models is based on the low

level reasoning about the form of equations. The aspects of the equations which

can be modified are the terms which have been reasoned about. As discussed in

Section 5.4.4, it is sometimes difficult to reason about the application of certain

equations or terms in equations, particularly approximations. In such situations,

it is safer to apply assumptions thereby instituting the associated approximation,

than to expand the general expression in full. The approximated model will

provide solutions, in most cases, which are close to the more rigorous solution,

but involving significantly less computing effort.

In many situations only an approximate solution is required. For example,

there is little point in applying the full, general K-value expression (in equation

5.10) as part of an evaluation of Fenske's equation, which is itself an approxima-

tion, in that it assumes constant relative volatility.

The selected equations, whether they be approximations or alternative em

pirical correlations, may not be adequate for the description of some problems.

For example, K-values based on ideality may be insufficient for the modelling of

a flash vessel, requiring modification of the model to incorporate non-ideality. It

is of value, therefore, to be able to interact with the reasoning mechanism which

138

selects the form of an equation.

The symbolic representation of equations as relations allows reasoning about

their structure, in this case, the selectsqn_type calls. The calls are stored in the

active code of the relation and contain a reference to the property they represent,

e.g. tugacity..coetficient. The reference is also used to locate the appropriate

Prolog goals which are used to establish the form of the term in the equation.

By calling the Prolog clause, the current value can be established. Interpreting

the remaining goals corresponding to the same term reveals the different values

that the form of the term can take and also the conditions required (if any) to

invoke them.

Conditions may have to be met if the alternative form is to replace an ap-

proximation. In cases where an equivalent choice exists, however, there may be

none. For example, the non-ideal terms of the K-value expression can only be

evaluated if a suitable equation of state has been specified, which constitutes a

condition on the selection of this form. In the case of alternative equations of

state, there may be no sound basis for selection and thus no conditions to satisfy.

The conditions involve the checking of slots and relations. This provides a

simple syntax for reasoning about the conditions and for supplying any missing

values. If unsatisfied conditions involve properties of objects, it is a straightfor-

ward task then to edit the object appropriately. If a Prolog goal fails, however,

it is more difficult to inform the user of the correct action to take.

To illustrate the modification procedure, consider the alteration of a vapour

liquid equilibrium calculation described by the equation:

lii =
	

(5.13)

When the decision has been taken to modify the model at a low level, the relation

describing the model is reasoned about. The evaluated instance of the model is

not used. It represents one modelling option which has been explored and remains

unaltered as a record of the model development. The generic relation describing

the high level model is used to convey two points to the user: the facets of the

equations which can be expanded, e.g. the equilibrium relation contains a K-value

expression which can be expanded as in equation 5.10, and the facets which can

be modified, i.e. ones corresponding to select..eqn_type calls.

In this example, the option is taken to expand the K-value relation. The same

options are again presented. The relation can be further expanded to vapour

IRA

pressures, or the non-ideal terms in equation 5.10. Selection of the inclusion of

fugacity coefficient in the K-value expression instigates the reasoning described

above. The current value of the approximation, 1, is displayed along with the

fact that an equation of state is required. If an equation of state is supplied, the

form of the subsequently generated model includes the non-ideal terms in the

K-value expression. The terms are expanded according to the specified equation

of state.

5.5.3 Refining Model Detail in a Simulation

Section 4.3.4 described an approach for reducing the number of structural alter-

natives required to be stored and therefore maintained. During design, models

are constructed at different levels and combined across several levels, so it is im-

portant to be able to use related models in this manner. Rather than imposing a

modelling philosophy. on .the.designer, this option aims. to provide a facility which

accommodates normal practices.

Figure 4.13 shows an example where two distillation units have been described

at one level and then expanded to two different distillation alternatives each

at a level of greater detail. The hypothesis is that, instead of creating four

complete fiowsheets representing the four alternative combinations, the designer

would evaluate each individual process separately before considering interactions.

The effect of the proposed alternatives on the complete fiowsheet would then be

assessed by including the new, more detailed model in the higher level fiowsheet.

The figure is not a particularly good example of this, but the distillation units

are intended to represent a subsection of a large process.

The design graph relationships which have been discussed so far are the no-

tions of refinement and parts. Refinement links fiowsheets at different levels of

detail. The detailed nodes containing the distillation column alternatives are,

therefore, refinements of the fiowsheet at the top level. The refinements are,

however, incomplete in that they do not contain a description of the whole flow-

sheet. The concept of parts is used to identify the evolution of individual items

in a flowsheet, thus the more detailed operations within the low level nodes are

each considered to be parts of the high level distillation operations.

The concept of parts has been used to implement a facility allowing the in-

clusion of a low level model in a higher level fiowsheet. The low level model must

140

completely incorporate the structure and function of the high level operation (see

Section 4.3.3 for details of how this is established). The streams which correspond

between the two levels are used as a guide, since any stream entirely within the

more detailed description are irrelevant to the more abstract flowsheet.

A model is constructed by temporarily associating the streams from the spec-

ified operations at the abstract level with the detailed operations replacing them.

The model is generated as described in Section 5.4.2, but now the equations rep-

resenting the detailed operations have been incorporated into the model of the

flowsheet at the level of greater abstraction.

To instigate this facility, the designer selects an option from the modelling

menu which then presents a choice of the lower level nodes which include the

detailed enhancement of the operation being modelled. Any flowsheet models

subsequently created will include the description of the refined operation until

the selection is reversed. -

To illustrate this capability, consider the simulation of a simple distillation

column. This can be modelled individually, by, for example, a Fenske-Underwood-

Gilliland model or a plate-to-plate model. However, it may be that the model

does not correspond to known data about the column. A new node can be added

to the design graph describing the column as a series of plates, a condenser and

a reboiler, each a separate object. The generation of the model may use the

general flash model for each plate. The combination is effectively the same as

the general plate-to-plate model already implemented, so no advantage has yet

been achieved. By modelling the plates separately, the model of each plate can

be edited, as described in Sections 5.5.1 and 5.5.2, by altering, either the type

of flash model used, or a low level facet, such as the equation of state. Once

this model is functioning satisfactorily with respect to the known data, it can be

included in the high level fiowsheet.

In the current implementation, the designer selects the menu option indicating

a change in the model of the distillation column. A further selection instigates

the modelling of the column by its parts. The current node object is accessed to

locate its refined nodes. An investigation of these nodes reveals those that have

parts corresponding to the distillation column. The choice is then presented to

the user. In this case only one option is available, that of the plate, reboiler and

condenser objects. The single feed to the distillation column is then linked with

141

the stream connecting to the feed plate object (this is merely an instance of a

plate object with an extra input stream). The column feed stream object is then

temporarily changed to indicate that its sink is the plate object. The output

streams are similarly altered, but by changing their sources.

A model of the flowsheet can then be generated which now includes the plates

in place of the distillation column.

The example above illustrates the power of this modelling facility. Not only

does it reduce the amount of data to be stored (see Section 4.3.4), but it also al-

lows a further degree of model manipulation. The generic model was insufficient

to describe the operation, so it can be broken down into lower level operations

which can be altered individually to provide the required mathematical descrip-

tion. Being able to model operations separately before inclusion in a flowsheet

reflects a natural design practice and is, therefore, a valuable tool for modelling.

5.6 Model Results

The presentation and interpretation of model solutions is important for determin-

ing what, if any, modifications are required of the model. It is useful to be able

to compare results from previous simulations and also to view the mathematical

representation of the model. These options have been incorporated in extended

methods.

Results are presented in three tables. The first displays the high level relations

which define the model. This is useful for comparing models where the basis for

the solution must also be evaluated.

The second table is a stream table which is an accepted method for present-

ing stream data for a flowsheet, so the table and the flowsheet should be viewed

together. A graphical display of flowsheets has not been incorporated, but in

principle, should be available. In the stream table, the rows correspond to chem-

ical components, and columns to streams. The entries can be flowrates or mole

fractions. Total flowrates, temperatures and pressures can also be included if

data is available.

Stream tables do not include other stream properties .or attributes of process

units, such as dimensions. These values are displayed in the third table. In

principle, these attributes can be divided into groups corresponding to process

units and the groups displayed individually.

142

Presentation of information to the user is an important consideration in the

development of an acceptable product and constitutes a research topic on its

own. For example, stream tables are an accepted means of displaying fiowsheet

information. However, grouping all data for a stream, including flows, vapour

pressures, etc., may be more suitable in a different situation. The conclusion

of this discussion is that data can be presented to the user in a range of styles,

textual and graphical, so the user should not only be able to define problems in

different ways, but should also be able to examine the solutions from different

viewpoints.

It is important to be able to review the mathematical model being used. This

provides a means of determining which terms and equations in the model should

be modified. Westerberg and Benjamin [74] suggest useful properties of such a

tool. For example, the documented model could be structured as a user's manual

with chapters and sections. This enables access to individual parts of the model

through a table of contents.

A tool has been implemented to display models in this manner. The "spe-

cialise" form of a user-defined relation contains the expanded equations and a

list of the bindings to object attributes. This relation is interpreted symbolically

in order to write a formatted input file for I4LTEX, a document preparation sys-

tem[75]. The hierarchical decomposition of equations described in Section 5.2 is

used to structure the document, the different levels corresponding to chapters,

sections, subsections, etc. A table of contents is generated automatically.

Specifications are displayed as part of the model, but not calculated values.

Three example documents are shown in Appendix D.

5.7 Summary of Modelling Functionality

A symbolic representation for modelling equations has been developed in which

equations are defined as relationships between attributes of process unit objects.

Equations can also be related to each other in a hierarchical structure where

individual terms in an equation can be defined by further expressions. For exam-

ple, a heat balance equation contains enthalpy terms, where enthalpy is defined

in a separate expression. This structure, and the ability to express equations

symbolically, are useful properties in model development.

A mechanism has been developed for automatically generating flowsheet mod-

143

els from high level definitions such as "component balance" and "heat balance".

The details of model definition should be determined by an expert modeller along

with the rules for their selection for flowsheeting applications.

A designer, however, uses models rather than creates them. The symbolic

representation allows reasoning about equations to provide a flexible way of us-

ing models without necessarily having to create new ones. Models are created

automatically which the designer can modify for specific applications. Access to

the high level selection method enables the designer to select alternative defini-

tions for individual parts of a model. This alteration of the model is constrained

by the structure developed by the modeller. At a low level, the designer can

select different definitions for equations or individual terms.

Models are associated with the object representing the subject of the model,

e.g. a node for a flowsheet or an individual distillation column. A symbolic

description of any model is available to the user for display or documentation.

Solutions of any previous model can also be reviewed.

Chapter 4 described the development of tools for supporting generation of

process flowsheets in a. hierarchical manner and maintenance of the synthesised

hierarchy. Chapter 5 addressed the automatic generation of flowsheeting models

and their modification. The tools developed have been integrated in an network

of extended methods which are shown schematically in Figure 5.10. The group-

ings represent parallel calls within the indicated extended methods. The analyse

flowsheet method can be accessed from both analyse and topology.

Most of the options for topology management including movement in the

design graph have been described in Section 4.3.2. The options under the analyse

ftowsheet heading of up level, down level, list level, list section, switch section and

copy equivalent section are also described there.

The analysis option of analyse components displays a selected component as

a table of parameters obtained from a database. The analyse stream call displays

stream attributes, enables editing of their specifications and allows calculation of

some properties. The operations under analyse unit include:

• edit object which displays the unit and allows editing of specifications. The

associated call display object displays the unit but does not allow editing.

• model object which evaluates the current model of the unit. If no model is

specified, one is generated. Models provided by other design modules will

144

up level
down level

create object
model flowsheet
review flowsheet solutions

create stream display flowsheet model

topology 	delete object A list level

create new node list section
switch section

analyse flowsheet copy equivalent section
analyse components

analysis

::

object
display object
model object

seamI

display model
review solutions 	 model at child level
select alternative mode l..< model at current level
modify current model 	select high level model

Figure 5.10: Schematic Representation of Modelling Extended Methods

be evaluated without modification (see Section 6.2). The equivalent call

of model flowsheet in the options of analyse flowsheet performs the same

task for a whole design node, but does not allow evaluation of separately

generated models which may be inconsistent with those generated locally.

• .display model generates a formatted IT&(document [75] describing the

model in its expanded form and its general equation form. Dependent

equations are related by sections and subsections in the text. Variables and

values are identified by their associated slots and relations. Three examples

are shown in Appendix D. The flowsheet command, display flowsheet model

does the same for a flowsheet model.

• review solutions allows browsing of the solutions of all evaluated models of

a unit, or in the case of flowsheets, review fiowsheet solutions does the same.

The solutions are divided into the high level relations used in its definition,

a stream table and a table of other values calculated by the model (see

Section 6.3.4).

• select alternative model has three lesser choices. Modelling the unit at a

level of greater detail as described in Section 5.5.3 is achieved by model at

child level. Reverting to the current level is performed by model at current

145

level. The high level modification of models discussed in Section 5.5.1 is

accessed through select high level model.

• modify current model performs the low level model modification described

in Section 5.5.2.

These options provide access to a range of modelling facilities which allow

modelling of flowsheets and individual units. Automatically generated models

are available for high and low level modification to represent specific situations.

Solutions of models can be reviewed and the modelling equations can be docu-

mented. Appendix F shows an example of the different options in use.

146

Chapter 6

Modelling of Design Strategies

This chapter discusses strategies used in the course of design. Many of these

strategies are not well defined. An integrated design environment requires the

support of different techniques to evaluate the state of a process design. Evalu-

ation may concern the physical ability of a design to meet given specifications,

its economic feasibility, control and operability, safety and layout. Many of these

evaluations are procedural, involving detailed algorithms. In other cases only a

statement of high level goals is possible with little detail to indicate how the goals

should be achieved.

The emphasis of this work has been on numerical flowsheet evaluation, in-

corporating algorithms for solution of equations as well as strategies for model

formulation. There are few aspects of this which can be considered as proce-

durally ill-defined. However, the inclusion of such a modelling tool in a large

environment requires consideration of how and when it is to be accessed during

design, which is not well defined.

The example which have been considered here are as follows:

Overall flowsheet synthesis. This can be represented as a hierarchy of high

level tasks with great flexibility required to achieve them.

Design of individual unit operations. This can also be described by a hier-

archy of tasks.

Formulation of problems for solution by different solvers, a task which is

well defined and mostly algorithmic.

These three examples display a range of representational issues. Their implemen-

tation must consider how much can be productively achieved automatically and

147

how much interaction with the user is required. The following sections describe

the implementation of these examples with respect to the efficient representation

of the procedures while providing the required interaction with the user.

6.1 Modelling Process Synthesis

Section 1.2.2 described overall process synthesis as a routine operation in that it

can be characterised by a procedure or algorithm. Algorithms and heuristic pro-

cedures have both been used in other work to create synthesis tools, as discussed

in Section 1.2.2. These tools have only limited criteria for evaluating generated

processes. An economic assessment is the normally only basis for selection of

the optimal flowsheet in such tools. Other analyses for e.g. control and hazards,

follow once a base case design has been accepted. The hierarchical decomposi-

tion of decision levels proposed by Douglas [7] provides a high level framework

for synthesis. By implementing this approach in a flexible manner, analysis by

a range of evaluation modules, such as control and hazard analyses, becomes

possible. The work presented here demonstrates this principle by accommodat-

ing the modelling facilities described in Chapters 3, 4 and 5 within a synthesis

framework.

The implementation of Douglas's decision level approach requires considera-

tion of the user interface to determine the level and type of interaction required

with a designer. The hierarchical decomposition of synthesis suggests a number

of goals which must be attained at each level. The goals are achieved by perform-

ing the tasks in an order depending on the design and the designer. Within each

level the designer may also want to evaluate the process by means of different

models. This implies wide integration of tools. Therefore, the synthesis tool can-

not be a single self-contained procedure but must be available throughout process

development. This is true for all other evaluation tools.

Section 4.3 identified the requirement for the designer to be able to move

up and down in the graph of flowsheets. This reinforces the proposed model,

whereby the synthesis framework is applied to a flexible central representation of

the design. The fact that synthesis is concerned with enhancing the detail of the

models does not mean that movement within the hierarchy is not required. On

the contrary, many decisions require the assessment of the design at more than

one level. The decision levels, therefore, do not correspond directly to levels in

148

the design graph.

From the designer's viewpoint, the implementation must allow selection from

the range of available tools within the constraints applied by the synthesis hi-

erarchy. For example, it is desirable to restrict the type of process item that

can be selected at the early stages of synthesis. Some structure to the synthesis

procedure must be visible for the designer to determine the steps which are ap-

propriate, and help should be available if this is insufficient. In situations where

a particular piece of information is required the user can be informed what the

missing information is and instructed how to provide it.

The recognition that synthesis is a procedure with intermediate aims but no

strict path through the network of decisions led to the work on extended methods

described in Section 2.4.3. The existing methods in CLAP were intended for

strict, well defined procedures and were, therefore, of limited use. Extended

methods allow the specification of general goals and, where applicable, the order

of execution. The implementation of the synthesis procedure in extended methods

is constrained by placing guards on the calls, allowing progress only when certain

conditions have been met. Loopback points provide a method of specifying where

missing information can be obtained if a guard fails.

An example extended method is shown in Figure 6.1 which represents the de-

composition of synthesis into the decision levels of Douglas. In principle, different

extended methods can be defined for batch operation and solids processing, but

have not been implemented. Douglas suggests procedures for such processes. The

extended method in Figure 6.1 refers to continuous fluid processes.

Each call in the calling sequence is to a further extended method incorporating

the decisions required at the associated level. As described in Section 2.4.3, each

member of the dotted list representing the calling sequence has corresponding

entries in the dotted lists of "guards", "assertions" and "loopback points". In

this example, the guard corresponding to the input output structure decision level

prevents its execution if the design does not have a specified process-chemistry

object, which is stored as a relation to the "design" object. The process-chemistry

object must also have a value for reaction path. If these conditions are not met,

the corresponding loopback point indicates that the information can be obtained,

or specified in the extended method collect-input-information.

On successful completion of a call, the corresponding "assertion" can be made.

149

extended_method - continuous_fluid

variables - [input_output_structure..
recycle_structure..
reactor.-system.. 	 Calling Sequence
separation_system..

($check relation-Design-(process_chemistry-Chem)
$and $check slot-Chem-(pathway-Path)..

check_boiling_point_data..

	

($guard - full_reaction_spec).. 	 Guards
($guard - separation—spec)..
$null..
($guard - utilities—established)),

	

[full_reaztiofl_spec - 	
Guard Macros separation—spec -

utilities—established -

$set slot.design-synthesis_level-(recycle_structure-start).. 	\
$set slot-design-synthesis_level-(reactor_system-start)..) 	Assertions
$set slot-design-synthesis_Ievel-(separation_system-start).. 	/

synthesis-collect_input_inlormation..
continuous_fluid-input_output_structure.. 	 Loopback Points
continuous_fluid-recycle_structure..
continuous_fluid-reactor_system..

Design, 	 Object of Interest
$null,Status,Surface,Jnfo,Display]. 	 Other Sloth

Figure 6.1: Extended Method Representing the Synthesis Procedure of Douglas
for Continuous Fluid Processes

The assertions here simply inform the design object illustrated in Figure 4.7, of

the position within the synthesis procedure.

In order that the synthesis procedure may interact with other tools, a general

extended method has been defined which contains calls to modelling and evalua-

tion facilities as well as synthesis decisions. These general tools are then available

whatever stage of synthesis has been reached. Methods for allowing the creation

of flowsheets i.e. unit specification, connections, and fiowsheet editing, have also

been provided along with analysis facilities e.g. numerical evaluation and editing

and reviewing of specifications. These options are all straightforward operations

and, therefore, can be written as standard CLAP methods or Prolog clauses.

The decisions associated with each level in Douglas's hierarchy can be divided

into two classes:

those requiring action

those corresponding to advice.

For example, before the recycle structure can be judged complete, a reaction

section and a separation seétion must be defined. This corresponds to a decision

requiring essential action which must be carried out before proceeding to the next

decision level.

Decisions involving non-essential action are heuristic evaluations of alternative

courses of action which can then. be presented as advice. For example, in the early

stages of synthesis, the designer should consider whether or not the feeds to the

reactor require purification. The heuristic evaluation may suggest purification

of the feeds, but the designer should still be able to evaluate alternatives. The

designer may decide that this decision is not applicable for a particular design

and not even consider it. Specific action is, therefore, not essential for this case.

The designer can accept the heuristic decision or implement an alternative.

Such choices can be evaluated interactively by presenting them to the designer

as a menu of choices at the appropriate point in the synthesis hierarchy. The

designer is then aware of the decisions which can be made even if none of them

are selected. Those which are selected provide advice indicating heuristically a

potentially optimal process. The designer can accept this or evaluate any desired

alternatives.

The extended method for general process evaluation accommodates different

evaluation tools as well as non-essential decisions in a framework of high level

goals. Part of the extended method is shown in Figure 6.2. The user obtains

access to the non-essential decisions along with other tools in a "parallel" call,

as described in Section 2.4.3. The essential actions are checked once the parallel

call is exited, i.e. the designer determines that all that can be achieved at the

current level has been completed.

The implementation utilises Prolog unification to invoke the decisions of the

appropriate synthesis level while providing access to all other tools.

151

extended-method - synthesis
variables — [current-call..

call_inforination(Syn, CallName, CailDecisions,
CaliChecks).,

pcall(CallName,
topology..
analysis..
help..
collect-input -information..
store-to-file..
CallDecisjons)..

Caflchecks..
final-check,

/** GUARDS **/
• 	($check slot-design-(synthesislevel-(Syn-_))

$and calls_and_guards(Tech, Seq. Guards)
$and corresponding_term(Syn, Seq. Guard, Guards))..

• 	vhere(Node)..
(Syn \ batch_v_cont). .*
(Syn \ batch_v_cont)..
$null. .$null..$null. .$null)..

Guard..
($check slot-design-(synthesis_level-(synthesis-complete))),

/n MACROS **/

/** ASSERTIONS **/
(bet slot-design-synthesis_level- (Syn-start))..
(bet slot-Node-synthesis_level-Syn)..

*\== is the Frolog inequality test.

Figure 6.2: Part of an Extended Method for General Process Evaluation

The first call in the calling sequence in Figure 6.2 informs the designer of the

current level in the synthesis hierarchy by checking the pertinent slot in the design

object. The three parts of the corresponding guard locate this information and,

using the generic synthesis method in Figure 6.1, identify the guards appropriate

to the current level. The guards are instantiated in the variable Guard which

appears further down the list of guards, corresponding to the checks for essential

action. The unification of the term provides the correct guards for the synthesis

level.

The second call, call-information, identifies three labels associated with

152

the synthesis level. CaliName is used to provide a tag for the parallel call which

follows. CaliDecisions refers to an extended method containing the decisions

involving non-essential action. This variable is unified to a term in the parallel

call. Calichecks corresponds to an extended method providing verification of

the essential actions. This is unified with the call following the parallel call. The

guard on call-information finds the name of the current node in the design

graph. The "assertion" invoked on completion of the call sets a slot in the design

node detailing the synthesis level which was applied there. This is updated if a

new synthesis level is subsequently applied.

When moving between levels of the design graph, it is important to have ac-

cess to the decisions relevant to the node currently being investigated, otherwise

inconsistencies could occur. For example, if the synthesis procedure has reached

the separation system structure level, a review of design nodes evaluated at pre-

vious synthesis levels cannot be allowed access to the unit operations available

at the separation system level. This would invalidate any assumptions used in

their modelling. Associating the design nodes with a decision level also provides

a means of reviewing the decisions which were available at earlier stages in a

design.

The third term in the calling sequence is a "pcall"; a list of operations which

can be performed in "parallel". The name of the "pcall" is unified with the

variable CailName which is used as a label for the menu of options and as a

loopback point if the call corresponding to the essential actions is not completed

successfully. This menu provides access to the main evaluation tools. The menu

contains the following options:

• topology. This is an extended method providing options for adding and

deleting process items and streams from fiowsheets. The method also in-

cludes procedures for adding nodes to the design graph and moving between

them. This call has a guard which prevents its use when a decision is being

made between batch and continuous operation.

• analysis. This is an extended method allowing analysis of flowsheets, i.e.

movement in the design graph, displaying and modelling of all or part of

fiowsheets. This option provides access to some of the same operations avail-

able under topology because they are appropriate to both tasks. Individual

units- can be analysed separately, for editing specifications, modelling and

153

reviewing models. This option also allows reviewing of streams, with ac-

cess to their specifications, and displaying chemical component properties.

As with topology, this call is blocked during the batch versus continuous

decision.

• help. This is a Prolog call to aid in the completion of a synthesis level.

- The checks on essential action are invisible to the user, so the help option

attempts to describe the information that is required. The call accesses the

extended method containing the checks and displays a menu containing the

calls in the calling sequence. Each call corresponds to an individual goal for

a particular decision level and has been given a name which describes this

aim. On selection of a goal, its associated guards in the extended method

are interpreted and presented to the user as a list of conditions to be met.

• collect-input-information. This is anextended method providing access

to fundamental objects describing the overall design, e.g. products, purity,

process licenser, etc., the process chemistry and the site.

• store-to-file. This is a Prolog call which stores all objects used in the con-

struction of the design graph including nodes, unit operations and streams.

All user-defined relations are also stored. This allows interruption and

recommencement of the design procedure.

• non-essential decisions - an extended method which corresponds to the cur-

rent level of synthesis. The method typically includes a parallel call of

decisions and heuristic evaluation options for the current level.

The fourth call in Figure 6.2, corresponds to an extended method detailing the

essential action which should be taken for this synthesis level to be deemed com-

plete. The name of the method is supplied by unification with the Calichecks

variable in the call-information call. Its guard is also obtained by unification.

The last call, final_check, is a Prolog goal which always succeeds. Its guard,

however, checks the synthesis-level slot of the design object for a value in-

dicating that the synthesis procedure is complete. If this is true, the extended

method exits, which has the effect of advancing one level in the synthesis hierar-

chy. If not, the corresponding loopback point returns the procedure to the first

call in the method, i.e. current-call.

154

As a whole, the extended method in Figure 6.2 provides access to evaluation

tools and information modules, which, in this case, include steady-state modelling

and synthesis decisions respectively. The synthesis procedure of Douglas provides

a framework for developing the design. At any particular level in the synthesis

hierarchy, a constraint is imposed on what can be achieved, primarily by restrict-

ing the description of a flowsheet to process items relevant at that level. For

example, at the input-output structure level, only objects describing plants and

storage are available. At the recycle structure level, additional objects describing

reaction sections, separations, stream division, mixing, etc. are provided.

This constraint encourages the designer to complete decision levels. Only a

limited amount can be achieved with a restricted number of process items, thus

requiring the designer to exit the "pcall" in order to advance. The subsequent

verification determines whether the level is complete or not, indicating the ability

to proceed or a requirement for more information.

Decisions which do not require action are implemented within the "pcall"

along with other evaluation tools. This allows the designer to adopt an op-

portunistic approach to process development, i.e. moving between the tasks as

necessary. As an example, part of the extended method describing the decisions

at the input-output structure level of the synthesis hierarchy is shown in Figure

6.3.

extended-method input-output-decisions :-
variables 	[decision_level_intro(input_output_structure)..

pcall(input_output_options,
no-of-product-streams..
purification-of-feeds..
by-product-treatment..
purge-requirement),

/** GUARDS **/
$null..
(($guard 	...)..

($check ...)..
($check relation-Tech-(process-chemistry-Chem)

$and $check slpt-Tech-(feeds-Feeds)
$and $check slot-Chem-(by_products-Bys))..

Figure 6.3: Part of an Extended Method Representing Non-Essential Decisions

155

The first call provides a short piece of text describing the current synthe-

sis level. The following "pcall" contains four options which, if selected, invoke

pieces of code which can be methods, extended methods or Prolog clauses pro-

viding heuristic evaluation of synthesis problems. For example, in the figure,

no -of -product -streams tabulates all chemical components which are present

into products, by-products, reactants, intermediates, etc. and uses their boiling

points to suggest a number of potential output streams from the process. The

call purificat ion-of ieeds requires additional qualitative information from the

designer, which is obtained by a series of questions. Heuristics are then used to

determine whether or not the feeds should be purified and where they should be

fed to.

In general, the guards on the decision calls are not inhibitive and protective

as for essential actions, but are helpful for allowing presentation of appropriate

information. For example, the decision about by-product -treatment is only

relevant if there are by-products identified. This is normally the case, but if a

problem had no by-products the user should not see that option. The guard,

therefore, removes it from view. A better example of this is given in Appendix

F, where options for evaluating design of a distillation column are presented as

the relevant data becomes available.

When the designer can achieve no more at a particular level, the termination

of the parallel call, i.e. selecting "finish" on the menu, instigates the checks for

essential action. This is performed by a separate extended method associated

with the decision level. Figure 6.4 shows an example of an extended method for

verifying the completion of the input-output structure level.

The calling sequence consists of a list of Prolog goals, all of which always

succeed. They provide a high level statement of the checks being performed,

which can then be used by the help facility described above.

The tests are performed by the guards associated with the high level goals

in the calling sequence, i.e. here, the guards inhibit progress. For example, in

Figure 6.4 the third goal, output ..atreams..cl ass if led has a guard consisting of

five tests:

1. streajus..classif led which ensures that the chemical species in the plant

have been classified into products, by-products, etc. and a number of prod-

uct streams has been identified.

156

extended-method - input-output-checks
variables - [unit s_for_purpose..

input-for-all-feeds..
output-streams-classified,

/** GUARDS n/
(current_level(Objects, Streams)

Sand plant_exists(Objects))..
(($check relation-Tech-(feeds-Feeds))

Sand current_system_inputs(Streams, Inputs)
Sand dotlength(Feeds, FL)
Sand inpuLlength_chk(Inputs, FL)
Sand streams_match_materials(Inputs, Feeds, feed))..

(streams-classified
Sand current_product_streains(Streams, Outputs)
Sand correct_number_of_outputs (Outputs)
Sand Scheck relation-Tech-(products-Products)
Sand streams_match_materials(Outputs, Products, product)),

Figure 6.4: An Example Extended Method For Verification of Synthesis Level
Completeness

current -product -streams which locates the streams in the plant which

constitute outputs.

correctnumber..of..outputs which checks that the specified number of

output streams matches the calculated number. If fewer outputs are spec-

ified than are required, additional streams must be provided. If there are

more than the required number, a warning of excess is given.

A CLAP call which checks the products relation of the "technology" object

Tech. The object represents the original design remit and the relation

contains a statement of the products the plant aims to produce.

streams-match-materials which ensures that the materials that have been

specified as products are present in the output streams.

In general, the associated loopback points return execution to the "pcall"

where the missing information can be provided.

In summary, the tools required for synthesis must be available throughout

design along with other evaluation modules. This has been accomplished by

157

creating a general extended method providing access to evaluation tools and syn-

thesis decisions in the opportunistic manner required by designers. The "pcall"

construct in extended methods supports this control mechanism.

The decisions in the synthesis method of Douglas have been divided into those

requiring action and those providing a heuristic reduction of the search space for

a base case design. The decisions involving essential action are used to ensure

that a level in the synthesis hierarchy has been completed. This is achieved

with a decomposition of the goals which are then written as guards in extended

methods. The decisions providing advice are represented in a "pcall" in another

extended method which displays the choices to the user as a menu.

The use of extended methods supports the opportunistic control mechanism

used by designers in process synthesis and evaluation. Since the structure is

based on Prolog, variable instantiation and unification can be utilised to provide

the internal details of the general extended method appropriate to the synthesis

level.

This facility is particularly useful when moving between design nodes, which

have a synthesis level associated with them corresponding to the level most re-

cently applied there. The general extended method can then adopt the synthesis

level appropriate to particular nodes in different branches of the design graph. If

for example, one branch is developed to the level of separation system structure,

and alternative branches are only at the recycle structure level, when the designer

moves between them, the decisions pertinent to the node can be made available.

An example application of the synthesis tool is shown in Appendix E.

6.2 Design of Unit Operations

Design activities can be categorised as either "routine" or "non-routine". Routine

design encompasses problems which have a well defined design procedure which

is ostensibly the same for any application. Design of distillation columns, heat

exchange equipment and certain types of reactor fall into this category. The

different tools which may be used to complete the various stages of the routine

design are coordinated by the aims, and methods to achieve the aims, which are

known in advance. Myers et al [5] discuss this approach in the design of distillation

columns. Their method involves defining all possible courses of action and the

points where choices are made in the procedure. In this way, the possible range of

158

starting conditions and the different design considerations can all be represented

and included as a path through the decision tree.

This type of approach aims to provide automatic design of unit operations,

the example considered being distillation. In order to achieve this, the design of

the item must be at a stage where the designer has confidence in the basis of

the automatic design. For instance, in the case of distillation, once the number

of plates has been decided, the design of the individual trays can be performed

automatically with reasonable confidence. The crucial point is the confidence

that the designer has in the calculated number of plates. Myers et al state that

the starting point for automatic column design is once the type of column, type

of tray, reboiler, condenser, performance requirements, etc. have been specified.

However, at this stage, much of the design of a distillation column has been

completed.

There is, therefore, a requirement for a strategy linking the overall synthesis

procedure to the point where automatic design becomes acceptable. This section

addresses an approach which extends the overall synthesis method to consider

the design of individual unit operations. Specialists in design are required to for-

mulate pertinent strategies for particular unit operations, so the work presented

here only demonstrates the general principle.

The design of individual unit operations can be considered as an extension of

the overall synthesis method because an opportunistic approach using different

modelling methods including the evaluation tools of general synthesis is required.

Extended methods, therefore, are the most appropriate representational tech-

nique. The example unit operation considered here is distillation.

The problem can be decomposed into two subproblems:

Identifying the most suitable point in the synthesis procedure at which the

unit operation design procedure should be made available.

Formulating a strategy for developing a loosely defined unit operation into

a detailed specification. This can then be used to complete the design

automatically, e.g. by an approach such as Myers et al, or at this point the

completion of the design becomes the concern of another design function.

In the case of distillation design, the starting point of the strategy is at the

liquid separation level of Douglas's decision hierarchy which is detailed in Section

159

1.1.2. At this point, individual separations are identified and possible distillations

are evaluated. The procedure begins with the calculation of relative volatilities

which can be used to decide heuristically whether or not distillation is feasible.

One of the heuristics described by Douglas is if the relative volatility of the

components in the desired split is less than 1,1 then it is unlikely that distillation

will be economical.

Assuming that distillation is economical, the next decision suggested by Dou-

glas is to determine column conditions. For example, if possible the column

should be operated at, or slightly above, atmospheric pressure. This depends on

the ability to condense the tops and reboil the bottoms. It is preferable to have

the tops condensed by cooling water and the bottoms reboiled by low pressure

steam. To determine suitable column conditions, the bubble point of the tops

and bottoms are calculated. These indicate whether or not the streams can be

respectively condensed by cooling water and reboiled by low pressure steam at

the chosen pressure. If they cannot, a pressure where this is possible can be

calculated.

The calculations can all be performed procedurally, requiring no interaction.

The decision about the selection of column conditions still lies with the designer,

since some trade-off may be required between pressure and heat exchange media.

Once column conditions are fixed, the number of plates can be calculated.

There are several different models with different levels of assumption which can

be used. Initially, an approximate number of plates and reflux ratio can be

determined by a Fenske-Underwood-Gilliland method. In the case of a binary

mixture, McCabe-Thiele and Ponchon-Savarit procedures could also be used.

When a number of plates has been calculated, a plate-to-plate model can be used

for more accurate simulation.

This particular strategy can only be used if the specifications are on the

product composition. If the number of plates has been defined, the order of the

tasks is different.

The example described above identifies the important points of what can be

considered an extension of a general synthesis procedure:

1. There are high level procedural goals, e.g. ensuring that distillation is going

to be feasible, determination of column conditions and calculation of the

number of plates and refiux ratio.

MIX

Evaluation of the design remains opportunistic, particularly since different

specifications can result in revision of the order of the tasks. The designer

can still instigate different models and modify them as required. Interac-

tion with other tools may also be required to move between nodes in the

hierarchy, for example, to create a plate model of the column.

Models specific to the design of the unit operation are required, e.g. Fenske-

Underwood-Gilliland, McCabe-Thiele, etc., but interaction with general

modelling facilities is still required. For instance, the Fenske model may

be evaluated at a range of temperatures. Other modifications of the model

may also be necessary.

Some models have a specific range of application, e.g. those applying to

binary separation, and should only be presented to the user in relevant

- situations.

These points are similar to those identified in the development of overall

process synthesis, implying that the same representation of extended methods

can be used here.

The extended method for distillation design is accessed as a decision which

does not require action. This allows the opportunistic use of other tools available

in the extended method for general process evaluation. The models created in

the evaluation of distillation can then be modified and reviewed like any other

models.

The models created for distillation evaluation, particularly for calculating the

number of plates, may not correspond to the decomposition of models described in

Section 5.5.1. Such a situation could arise if the tools are developed independently

by domain experts, as suggested here. The models will then have been tailored for

a particular purpose. For example, in distillation, Fenske's equation can be used

to calculate the minimum number of plates, Underwood's equation determines

minimum refiux ratio and the Gilliland correlation estimates an actual number

of plates.

In a fiowsheeting context the same equations may be used, but in conjunction

with mass and heat balance equations. The approach for automatic model selec-

tion in Section 5.4.1 was developed specifically for fiowsheeting, and, while this

facility is available throughout the synthesis procedure, it is not directed towards

161

a particular design task such as estimating the number of plates in a distillation

column. When models are used for such tasks, it is unlikely for them to conform

to the decomposition into five subjects used for fiowsheeting . The models do

not have to be complete in a flowsheeting sense, i.e. they do not necessarily

incorporate mass and heat balances around a unit.

For this reason, models developed for design tasks are considered as separate

from fiowsheeting models even though they may both contain some of the same

CLAP relations. Therefore the mechanism for automatic model selection has

been extended to identify groups of relations that do not conform to the five

topic decomposition. When such situations are identified, the context of the

model and its application are assessed to ensure the model's acceptability. For

instance, if a unit is being evaluated individually, then no alteration of the model

is required. If, however, it is part of a flowsheet then a model based on the

decomposition replaces the non-standard one.

This is also the case if the designer attempts to modify the high level model

description as discussed in Section 5.5.1. It cannot be assumed that a non-

standard description conforms to any prt of five point decomposition, so the

whole model is replaced to ensure the consistency of modifications. When the

user decides to modify a model, the current description and a recommendation are

displayed. If a modification of a non-standard model is attempted, it is replaced

by the recommended one, the change then being made.

Appendix F shows a worked example of the interaction of a distillation design

procedure with the general evaluation method. Different models of a distillation

column are created for the calculation of particular properties. Subsequent modi-

fication of the model requires a standard fiowsheeting description to be generated.

Certain classes of model have a particular range of application and it is im-

portant for the designer only to have access to them in relevant situations. For

example, the example implemented for distillation design includes two models for

calculating the number of plates. One provides a shortcut estimate for the spe-

cific case of a binary separation. The other - the Fenske model - is more widely

applicable. For multicomponent separations, therefore, the binary model should

not be displayed to the user. For binary separations, both can be displayed,

unless some criteria for selection can be determined.

The modelling tasks are represented as a network of extended methods, one

162

of which is for the calculation of the number of plates. A parallel call is used

to present the modelling options to the designer as a menu. The display of the

options is, therefore, controlled by guards, in this case to restrict the shortcut

method to binary separation only. The construction of the parallel call and its

accompanying guards is shown in Figure 6.5.

pcall(calculate_number..of_trays,
fensice_underwood_gifliland..
shortcut-binary),

($null..
$check slot-Sep- (components-C-, _]))

Figure 6.5: Guard for Selection of a Binary Separation Model

The guard on the shortcut binary method checks the components slot of the

• object, Sep. On calling the method, Sep will be instantiated to the name of the

distillation column. If the value of the slot is a list with only two members (L, .J)

the separation is binary and the model usable.

In conclusion, strategies for the design of individual unit operations can be

developed as extensions of a general synthesis procedure. A similar structure of

extended methods can be used for representation., providing high level goals and

a mechanism for their opportunistic realisation. A domain expert should develop

the hierarchy of tasks required for a particular unit operation. Mathematical

models may be developed for specific tasks in the design of a unit operation,

e.g. the number of plates in a distillation column. These models should be

considered incompatible with those developed elsewhere, such as fiowsheeting.

They can, however, be evaluated using the set of tools available, e.g. low level

modification and re-evaluation with different specifications. When interaction

with other models is required, for instance, in a ilowsheeting context, the model

should be replaced.

6.3 Interface Between Design Data and Flow-
sheet Solvers

In comparison with the applications of design synthesis discussed in the previous

sections, model formulation requires little interaction with the designer. The

163

interface between a specified problem and fiowsheet solvers should be invisible to

the user. The approach to solution is algorithmic as opposed to opportunistic.

The specification of the problem and the modification of models requires a greater

degree of flexibility than in model formulation. In all, the numerical evaluation

procedure can be divided into four tasks:

Identification of the scope of the problem to be solved.

Generation of a mathematical model appropriate to the problem.

Solution of the generated model.

Presentation of results.

This procedure is normally iterative. Stage 4 allows a review of the model and its

basis, which provides an opportunity to return to step 2 and modify the model.

To accommodate this flexible approach, the high level formulation tools have been

written as extended methods. The constituent parts have been written variously

as Prolog goals, CLAP methods, extended methods and C routines, whichever

was most appropriate.

6.3.1 Problem Scope

The scope of the problem ranges between the calculation of a single property and

the simulation of whole flowsheets. A mechanism has been developed to allow

the specification of the size of the problem, which depends on the application.

It is important, therefore, to identify the types of calculations that are required

and in what situations.

Individual units may require independent calculations of particular properties,

e.g. calculation of the number of plates in a distillation column. This type of

evaluation can be associated with design methods for particular unit operations

as described in Section 6.2 above. Such calculations can then be presented to the

designer at the appropriate stage of the process development.

In an opportunistic development of a design, however, individual properties

of streams are often calculated. Streams retain a single level of functional and

structural detail throughout process synthesis, and so can have a range of calcu-

lable properties associated with them. For example, valuable attributes include:

bubble and dew points, K-values and vapour pressures. This information is made

164

available to the designer in a parallel call in an extended method, allowing anal-

ysis of streams (see Section 5.7). The use of the models can be restricted to the

later stages of synthesis by the use of guards. The parallel call and associated

guards from the extended method for stream analysis is shown in Figure 6.6. In

the example, the synthesis level must be either at the reactor system level or the

separation system level.

pcall(stream_options,
edit-stream..
calculate-stream-properties)..

($null..
(temp_and_pressure_known(Streaiu)

$and member(Syn, [reactor_system, separation-system])))..

Figure 6.6: Part of Extended Method for Stream Calculations

In the wider context of steady state flowsheet modelling, calculations can be

performed for whole flowsheets, sections and individual units, all of which are

represented in the design graph. This decomposition of fiowsheets can also be

used as the subject of other evaluation modules, such as control system design

or hazard assessment.

Figure 5.10 shows the division of analysis tasks into four groups, including

those of flowsheets and units. Selecting analysis of an individual unit defines

that as the scope of the problem. Any modelling performed under this option

incorporates only the specified unit. Selection of the fiowsheet analysis tool,

provides procedures for moving through the design graph, i.e. selecting a whole

flowsheet, modelling a node i.e. again, a fiowsheet, or identifying a section, as

described in Section 4.3.2.

Throughout design, access to mathematical models of fiowsheets and their

constituent parts is required, but not in a predefinable order. Therefore, gen-

eral steady state modelling tools have been implemented in extended methods.

Different modelling situations have been identified:

. Steady state fiowsheet modelling, described in Chapters 3, 4 and 5

• Calculation tasks as steps in a design procedure, particularly for individual

165

unit operations discussed in Section 6.2

• Calculation of stream properties.

Appendix F describes an example of the interaction of the different modelling

facilities.

6.3.2 Model Generation

Model generation constitutes an "expert" task and should, therefore, be auto-

mated as fax as possible, as discussed in Chapter 5. The user should be able

to describe the design in familiar terms, that is, functional .descriptions of the

processes involved and specifications for their operation. The automatic model

generator then determines a mathematically consistent equation based descrip-

tion from the process definition.

Process definition, in terms of process units and specifications, is achieved

flexibly by using extended methods, as described in Section 5,7. Translating this

definition into a mathematical model is achieved in two stages:

Inferring the high level model description, as discussed in Section 5.4.1.

Generating the equation set from this description.

This second step corresponds to the creation of the "specialise" form of the rela-

tion from the "constraint" form. The operation involves creating equations con-

taining Prolog variables corresponding to the terms indicated in the constraint

relation, including the expansion of summations and "for all" statements, e.g.

E in.massflowrate —* In 1 + In2 + ... + In
in€ Inlets

A corresponding list of bindings is generated to associate each Prolog variable

with a slot or relation, e.g. In1 may correspond to the mass_f lowrate slot of

stream si.

The manipulation required in this process uses pattern matching to identify

terms such as summations. The procedure is also recursive in that a descrip-

tion of an equation can be decomposed by identification of operators used in its

construction. For example, the expression:

x - 	= o

166

is first decomposed into:

and

ri:

using the equality operator as the location for the split. The first expression can

further decomposed by the same coded instructions into:

and

Y
This process continues until a single term is isolated which can then be interpreted

to provide the appropriate Prolog variable form and associated bindings.

Since the procedure is recursive and relies on pattern matching, and later

on unification to match the variables in the equations with their bindings, an

implementation in Prolog is most appropriate.

Once a model has been created, and evaluated, options are provided for cus-

tomising it. Specifications can be altered for comparison with other results. The

high level structure of the model can be modified within guidelines which ensure

consistency. Individual terms in equations that take different values, or approx-

imating expressions, can be changed to create specific models. These options

provide flexibility in model definition, but the "expert" knowledge required to

maintain consistency provides a rigid framework for development. As described

in Section 5.7, these tools are implemented in a network of extended methods to

allow flexible access.

A extended method has been written to provide flexible high level access to

the modification procedures which are themselves algorithmic, conforming to the

model decomposition discussed in Chapter 5. These therefore, are written as

CLAP methods or Prolog goals. Their use is demonstrated in Appendix F

6.3.3 Model Solution

The solution of formulated mathematical models is a well defined procedure

with proven algorithms. The realisation of such techniques is most appropri-

ately achieved in a procedural language. For example, Newton's method has

167

been written in C and different versions of the sequential modular program, Es-

spros, are written in FORTRAN ,Fortran8x and C. There is little to be gained

by rewriting these solvers, but better access to their constituent parts can be

provided for more interactive development of models. For example, the equation

based solver has been divided into, among others, tools for degrees of freedom

checking, equation linearisation and variable initialisation. These tools can be

accessed individually by other solution techniques at suitable points in a solution

strategy.

The implemented strategy is defined procedurally in CLAP methods as de-

scribed in Section 3.4. Constructs such as if - then - else were used for the

limited decision making required, e.g. if non-simultaneous solution is possible

then solve by symbolic manipulation else use Newton's method.

6.3.4 Interpretation of Results

As discussed in Section 5.6, designers may wish to view modelling results in

different ways. For example, a stream table for displaying fiowsheet data, or

tables to collate data for individual streams or units. As with modelling tools,

these options • should be available through menus, which could be achieved with

an extended method. This has not been implemented in the work described here.

6.4 Summary of Strategy Representation

This chapter discussed the use of a range of representational techniques for the

different aspects of design, as described in Section 2,1. Some problems are well

defined with proven algorithms, such as solution of sets of non-linear equations or

sequential modular fiowsheet simulation. The algorithms need not be changed,

but need to provide wider access to their models and, in some cases, other nor-

mally internal functions, e.g. degrees of freedom checking. The representation of

these techniques should be procedural. In this work, for example, an equation

based solver has been written in' C.

Access to a wide range of tools which have no predefined order of execution

can be achieved by using extended methods, a representational device developed

for such situations. Extended methods have also been used for creating a process

synthesis tool where high level goals can be defined, but, again, there is no strict

procedure for attaining them.

Some aspects of process synthesis require reasoning to achieve a solution, e.g.

whether or not to purify process feed streams. This can be represented by rules.

Other techniques utilised include an object oriented description of a hierarchy

of fiowsheets, the consistency of which can be maintained using object oriented

methods and demons. Logic programming, in the form of Prolog, has been used

in the translation of "constraint" relations into "specialise" relations.

In conclusion, reasoning for different situations is performed by the appropri-

ate techniques. In the case of overall design, an opportunistic approach within

a high level framework can be defined using extended methods. Individual in-

ferences can be made using suitable techniques, e.g. rules for decisions, objects

to maintain consistency and Prolog for symbolic manipulation. Strategies can

also be represented procedurally using CLAP methods, e.g. for formulation and

solution of equation based problems. At the lowest level, algorithms, such as for

matrix solution, are most suitably implemented in a procedural language such as

C or FORTRAN.

169

Chapter 7

Conclusions

A prototype system has been developed to provide support for fiowsheet mod-

elling throughout design. Issues considered in this work are as follows:

• Existing fiowsheeting programs are restricted to the range of problems

which can be created from their unit model libraries.

• Detailed modelling of individual unit operations is usually performed by

separate programs.

• To maintain data consistency between the different models, it is desirable

to have a central representation of a design from which models can be

developed. This also allows the development of a single modelling tool

which can be used for different applications.

Design has no definite procedure for developing an economically acceptable

plant from an initial specification. For this reason, a steady state modelling

tool for use throughout design cannot be considered separately from other design

tasks. Since no procedure is defined, there is no specific point where a mod-

elling tool is used without reference to other tools. Thus the development of the

prototype system had to consider providing access to different design evaluation

modules in the opportunistic manner of designers.

7.1 Representation

The prototype system uses model based techniques [43] to represent unit opera-

tions, streams, chemical species, modelling equations and generated designs in the

170

object oriented language, CLAP [36]. A central model of the design can be con-

structed by the user from generic objects and then manipulated with reasoning

modules.

An inheritance hierarchy of objects representing process units has been con-

structed to provide relationships between specialisations. Individual objects have

been described in a general manner to cover a range of applications.

Modelling equations have been defined as relationships between attributes of

process unit objects. Symbolic representation allows access to the equations and

their terms by a designer. Equations have also been related to each other in

a hierarchical structure where terms in an equation can be defined by further

expressions. This structure, and the ability to express equations symbolically,

are useful properties in model development.

Process units and streams are related to each other topographically. A struc-

ture of objects has been developed to maintain connected process units and

streams as flowsheets. The structure permits hierarchical process development

through "refinement" and "part of" relationships.

The hierarchy constitutes the central model described above. The definition

of attributes for process unit objects are concerned with steady state calculations

and process synthesis. Further attributes will be necessary for implementing

additional reasoning modules.

A model based approach has also been used for the representation of high

level procedures. Extended methods have an explicit structure and function

allowing reasoning about the individual calls in the procedure. The structure of

extended methods permits definitions of high level aims which do not necessarily

have a fixed procedure for their fulfillment. This has been demonstrated with

applications in overall process synthesis and distillation column modelling.

Different tasks in design involve different types of reasoning. Chemical engi-

neering has many algorithms which do not require to be altered. A design system

should be able to accommodate algorithms as well as symbolic inference. This

has been demonstrated by implementing mathematical solvers in the procedural

languages C and FORTRAN which can be accessed by the system. Extended

methods have been used for procedures with high level aims but no low level

methods for achieving the aims. Prolog has provided symbolic inference using

logical rules for decision making applications in process synthesis.

171

7.2 Modelling

A distinction has been made between the requirements of the modeller who de-

velops models and the designer, who uses them. The equation representation

technique provides a useful structure for developing models. The designer, how-

ever, requires a flexible way of using these models without having to create new

ones.

A mechanism has been developed for generating flowsheet models from high

level definitions such as "component balance" and "heat balance". The details

of model definition should be determined by an expert modeller along with the

rules for their selection for flowsheeting applications.

In this manner, a model is created which the designer can modify for specific

applications. Access to the high level selection method enables the designer to

select alternative definitions for individual parts of a model rather than forcing

acceptance of an automatically generated model. This alteration of the model

is constrained by the structure developed by the modeller. At a low level, the

designer can select different definitions for equations or individual terms.

Different flowsheet alternatives can be evaluated without having to create an

entire flowsheet. This is done by associating different models with a single unit.

This reduces the amount of information to be stored and, consequently, to be

reviewed by the designer.

Models are associated with the object representing the subject of the model,

e.g. a node for a flowsheet or an individual distillation column. A symbolic

description of any model is available to the user for display or documentation.

Solutions of any previous model can also be reviewed. These modelling facilities

should be available throughout design. For this reason, they have been imple-

mented in an extended method.

Since access to equations is required for modification, an equation based so-

lution method has been implemented. A sequential modular technique can be

used, but does not provide the required flexibility in model representation and

equation access.

172

7.3 Summary

In conclusion, the representation of equations used in the developed system pro-

vides a flexible method for model development. Models have been defined for

analysis of systems ranging from block flow diagrams to unit operations. By

allowing reasoning about equations, the format also supports interactive model

modification as part of a design modelling tool. Thus, the symbolic representation

enhances the modelling capabilities of modellers and designers.

The use of a central model provides support for different design tasks while

maintaining data consistency. Thus, the modelling tool which has been developed

can be used for a range of applications ranging between modelling block flow

diagrams in a flowsheeting context, and detailed unit operations in individual

design procedures.

Support for different design tasks has been demonstrated with the implemen-

tation of steady state modelling and process synthesis tools. The opportunistic

manner in which designers access individual tools within a framework of high

level aims is achieved with extended methods.

173

7.4 Future Work

This work has described development of a flexible steady state modelling system.

Its position as a design tool has been discussed with respect to other design tasks.

To demonstrate the principle of a central model accessing different tools, the

modelling system has been supplemented by an implementation of the Douglas

synthesis procedure [6]. This work could be extended to include more of the

functions illustrated in Figure 1.1, e.g. control and hazard analysis.

Future work couldiddress the implementation of different types of model for

these different design tasks, e.g. dynamic and qualitative models. The current

library of steady state models could also be extended.

More design strategies are required, for instance, to aid in heat exchange

network design, reactor design and separation sequencing. Some tasks can be

automated, such as separation sequencing, but reactor design, for example, may

require a high level strategy such as that used for overall synthesis. Experts in

the specific functions are required to develop these methods.

The graphics package used in this work was quite restrictive. However, in

many cases, more efficient communication of information can be achieved with

a considered graphical presentation than with text. Further work should be di-

rected to developing an interactive system where relevant information is presented

as required. It should also be possible to compare results by displaying solutions

simultaneously. The data is structured and accessible, so different options for

presentation should be available to the user.

Development of a practical tool from the prototype presented here, requires

interfaces to a physical properties package, a robust linearised equation solver

and a database. The database should maintain the data generated during each

design including models developed and process refinements and alternatives.

174

Appendix A

The Prolog Programming
Language

In order to use CLAP a knowledge of Prolog is not deemed necessary by the

author. However, it is necessary to introduce the terminology and principles of

the language in order to understand the explanation of the tools developed in

this work.

A.1 Facts and Rules

Prolog is a declarative language based on a subset of predicate logic, which

means that programs are constructed from "Facts" and "Rules", collectively

called "Clauses". The family tree shown in Figure A.1 is represented by the

example Prolog program shown in Figure A.2. This example program is used

throughout this appendix.

George 	 Steven
NNI

Peter-Mary 	Neil

John

Ian

Figure A.1: Family Tree

Each Clause is constructed from a "Predicate", an optional list of arguments,

a set of "Goals", and is completed by a full stop. Generally, a Clause with Goals

is a Rule, other Clauses being Facts. Figure A.2 will be used throughout this

appendix as an example Prolog program. In the figure, the Clauses called parent

and grandfather are Rules containing their requisite conditions, while father

175

father(steven,neil).
father(joIm,ian).
father(peter.john).
father(george ,peter).
father(steven,mary).

mother(mary,john).

grandfather(A,B) -
father(A,X),
parent(X,B).

parent(A,X)
father(A,X).

parent(A,X)
rnother(A,X).

Figure A.2: Example Prolog Program

and mother are stated Facts. A further property of Rules is that the argument

list contains some Prolog variables, which are identified by the fact that they

begin with an upper case letter. For instance, A is a Prolog variable, steven,

however, is a Prolog atom or value. -

The labels of the Clauses , e.g. father, mother, etc. are the Predicates and

provide the relationship between the following list of arguments. For instance, in

the figure, the statement:

fa.ther(steven, neil)

can be read, "Steven is the father of Neil". The Rule:

grandfather(A,B)
father(A,X),
parent(X,B).

can be read "A person, whom we shall call A, is the grandfather of person, B, if

A is the father of another person, X, and X is a parent of B". The definition of

the Rule uses the additional symbols:

• ":-" the "if" operator, separating the Rule from its Goals,

• "," the "and" operator, separating the Goals.

176

A third symbol, the "or" operator ";" is not included in the example.

Figure A.2 shows two types of Rules. The grandfather Clause has a single

conditional definition. However, parent has two alternatives. In general, logical

Rules with multiple definitions are ordered with exceptions first and general cases

last, which reflects the order of execution of Prolog programs. In the case of

parent, however, neither represents a special case, so the order is unimportant.

The two statements could equally well have been written as one using the "or"

operator, as follows:

parent(A.X)
father(A,X);
rnother(A,X).

In summary:

. Prolog programs consist of definitions of Facts and Rules,

• Clauses consist of a Predicate, a list of arguments and a list of Goals,

• Facts are Clauses which are unconditionally true and are without Goals,

• Rules are conditional upon the satisfaction of Goals, and can have several

definitions for special and general cases,

• Goals are separated by commas Or semi-colons which can be read as the

conjunctions "and" and "or" respectively.

A.2 Data Types

There are six basic data structures supported in Prolog. These are:

• variables - uninstantiated terms, e.g. A, Father, etc.

• numbers - real numbers, e.g. 1.3.

• integers, e.g. 1, 10, etc.

• atoms - certain sequences of alphanumeric and special characters, e.g.

john, a, I I (special case of an empty list, see below).

• compound terms - structured data items related by operators, e.g. P-Q,

np(john)

tii

• lists

Lists are compound terms which are particularly important data structures for

combining related information. They are written as a sequence of items separated

by commas enclosed in square brackets, e.g. [1,2,3], [a, [A, B, [I]].

A.3 Program Execution

The example program in Figure A.2 has no apparent beginning or end. This is

a property of declarative programs. The method of execution is to question the

interpreted program for true statements. For instance, the question:

grandfather (george ,john).

receives the response:

yes

i.e. the statement is provable with the stated facts. Equally, if the question

is:

grandfather(george ,jock).

the response is:

no.

By replacing the arguments by variables, solutions can be generated, apart

from affirmative or negative answers. For instance, the question could be asked:

grandfather(george,A).

the response is:

A = john.

When a variable takes a value, in this case A takes the value john, it has been

"instantiated".

Questions can be resatisfied where more than one solution exists. Prolog will

present the first solution generated. The user then types a semi-colon which

indicates that the goal should be resatisfied. For example, the question:

itt'

grandfather(A,jolin).

is satisfied by:

A = george

A = steven

A further semi-colon receives the no response.

A.4 Recursion

Prolog allows the specification of recursive Clauses, i.e. Clauses which refer to

themselves. For example, the following Clauses can be added to the program in

Figure A.2:

ancestor(A,X)
parent(A,X).

ancestor(A,X)
parent(A,B),
ancestor(B,X).

Here, the second definition of ancestor also calls itself. The first definition

is a terminating condition, otherwise the recursion would never find a solution.

This particular Clause can be used to find all ancestors of a particular person in

the database, or to check whether or not one person is an ancestor of another.

For instance, the call:

ancestor(george, john).

first checks the terminating condition that george is the parent of john. This

fails and the second definition is called. In this example, george is the parent of

peter and now the recursive call of ancestor is made with the arguments peter

and john. The terminating condition is checked and succeeds, i.e. peter is the

parent of john. Thus the overall Goal is true, that george is an ancestor of john.

A.5 Variable Unification

When a Prolog variable in a Clause or other Prolog structure is instantiated, all

other instances of that variable in the structure are "unified" to the same value.

179
0

All variables are local to individual Clauses. For example, the argument list of

the grandfather Clause contains variables A and B which also appear in the

constituent Goals of the Clause, i.e. father and parent. If A is instantiated to

george and B to john, the corresponding variables in the Goals also take these

values..

Another example of unification in a complex structure is a representation

of equations as compound terms of Prolog variables. For instance, the list of

equations may be:

[A + B = C, 3*C - D = A, B + D = E]

Instantiating A to 20 and C to 30 produces the revised structure:

(20 + B = 30, 3*30 - D = 20, B + D = El

Solution of the first two equations, provides values for B and D. The structure

is now:

[20 + 10 = 30, 3*30 - 70 = 20, 10 + 70 = El

A.6 Pattern Matching

Prolog incorporates a mechanism for automatic pattern matching. This allows

processing of complex data structures without having to write complex string

processing algorithms.

Equation manipulation has been an important part of this work and includes

recognisable patterns of symbols. The patterns have been used to locate variables,

linearise equations, analytically manipulate and solve equations and generate

models form generic patterns.

For example, consider the equation:

20 + B = 30

The program in Figure A.3 locates the numbers in the expression by decom-

posing the equation using its operators.

The equation fails against the conditions of the first two Clauses since it is

neither a variable or a number. The third Clause matches the equation where A

[Eli]

find-number(V)
var(V).

find-number(T) :-
number(T),
vrite(T).

find-number(AB) :-
find_nurnber(A),
find_nuniber(B).

find_nuinber(A+B) : -
find_nuinber(A),
find_number(B).

Figure A.3: Prolog Program Illustrating Pattern Matching

is instantiated to 20 + B and B to 30. The find..number operation is performed

recursively on the two terms. 20 + B next matches the fourth Clause where it is

divided into 20 and B. 20 is a number so is printed, B is not, so it matches the

first Clause which does nothing further. Similarly 30 matches the second Clause

and is printed.

A.7 Backtracking

When Goals fail or resatisfaction is attempted, Prolog "back tracks" through any

choice points which have been identified during the solution. For example, if the

question is asked:

ancestor(steven,A).

the first solution generated is that steven is an ancestor of neil which is a

result of the first definition of ancestor, i.e. steven is a parent of neil.

In the successful completion of the Goal there were three choice points. The

first was to investigate the first definition of ancestor, the second was to inves-

tigate the first definition of parent and the third, the first definition of father.

If the Clause is required to be resatisfied, then the program returns to its most

recent choice point, i.e. the selection of the Clause for father. The remaining

Choices at that point are tested and here one more is successful, i.e. steven is

also father to mary.

181

If further resatisfaction is attempted, no more father Clauses remain

unchecked. Execution now returns to the parent choice point. The second defi-

nition requires steven to be a mother and consequently fails. The last remaining

choice point is then evaluated by calling the second definition of ancestor. A new

choice point is added by the call to parent. The first solution generated here, is

again that steven is the father of neil. However, for the Clause to succeed com-

pletely, neil must be an ancestor of someone. This fails because the database

contains no reference to neil as a father.

Since this fails, execution returns to the new parent choice point where mary

is generated as a solution. Subsequent checking of mary as an ancestor identifies

her as the mother of john, i.e. steven is an ancestor of john.

For completeness, the only other solution is ian.

182

Appendix B

Evaluation of Design Variable
Specifications

The evaluation of the design variable specifications is based on an incidence ma-

trix which contains rows representing equations and columns representing vari-

ables. The algorithm bears a close resemblance to equation ordering algorithms

such as P4 [68], in that a forward elimination pass is made, followed by a back-

ward elimination and the evaluation of any irreducible blocks by a variation of a

Lee, Christensen and Rudd algorithm [50].

As an example, consider the incidence matrix below containing equations

describing a heat exchanger. Sample specifications include U, w1, w3, T and 7'2.

Q U A AT w1 to2 to3 to4 1'1 2'2 1'3 T4
 x x x x
 x x
 x x
 x x x x
 x x x x
 x x x x x

A forward elimination searches the matrix for equations containing only one

unsolved variable. For example, since w 1 and to2 are specified, and hence elim-

inated from the matrix, equations 2 and 3 fit this description. When such an

equation is located it is removed from the matrix along with the single variable.

The search then resumes. Now equation 4 contains only one variable, Q, so can

also be eliminated. This procedure continues until no more equations can be

eliminated. The order of elimination corresponds to the precedence order for

solution, i.e. the order in which the equations are to be solved.

183

The backward elimination is similar, only it searches for variables appearing

in only one equation, for example, variable A, above, i.e. A will be calculated by

the equation. The variable and the equation are eliminated form the matrix and

the search continues until no more can be removed. If all equations have been

eliminated and variables remain, then these variables are valid design specifica-

tions (structurally, not necessarily so in practice). The precedence order is the

reverse of the order of elimination.

Any equations remaining are irreducible blocks which require the selection

of "spikes" or "tears" for elimination to continue. A variation of the algorithm

presented by Lee, Christensen and Rudd [50] is used to select the spikes.

A list of the occurrences of each variable in the remaining equations is

compiled.. The entry for each variable is of the form: [Frequency, [List of

Equations]]. The list of variables is ordered, those with the lowest Frequency

being selected first.

The variable with the lowest frequency is selected from the list of variables.

A number of equations, one fewer than the frequency, and including all

members of the associated list of occurrences, is deleted from the irreducible

block.

Backward elimination is repeated. If elimination is possible, the variable

is a spike. The elimination continues until the procedure terminates, or

another irreducible block is found, in which case return to 1.

If elimination fails, the procedure is restarted by deleting a different set of

equations in 3. If this fails, the next variable with its list of occurrences is

selected from the list of variables in 2.

These procedures will find a precedence order for solution, any spikes and any

unspecified design variables. However, they need to be able to identify badly

specified variables. At any point during the algorithm, if an equation is located

which has not been eliminated but contains no undeleted variables, then the

specifications have been contradictory.

When such situations are encountered, the elimination terminates and an

attempt is made to find the offending specification. This is achieved with a

depth first search algorithm shown below.

184

A variable is chosen from the set of specifications.

The equations in which it occurs are located.

One equation is selected from the set and any specifications are deleted

from its list of variables.

If no variables remain then this equation has been over specified and one

specification must be released.

If variables do remain, then the derivation of a solution path for each one

is attempted by going to 1. Similarly, if each branch terminates in a speci-

fication, or a variable which has already been derived, the equation is over-

specified and the original specification is a candidate for being deleted.

This is best illustrated by an example. Consider the equations describing the

heat exchanger above. The list of specifications may include U and A. Selecting

A, all equations containing that variable are located, the only one being:

Q = U.AST 	 (13.1)

U and A are specifications so they are already "derived" and only Q and AT

need be investigated. Q appears in two more equations:

Q = Cp.wi.(Ti - T2) 	 (13.2)

Q = Cp.ws .(Ta - T) 	 (B.3)

If Cp is defined, and from the previous example, w 1 , T1 and 2'2 are, this implies

that Q can be derived from these specifications. Similarly, AT appears in one

equation involving 11 , T2 , T3 and T4 . The current specifications do not include

T3 and T4 and there are no remaining equations containing them. In this case,

the specification of A can be considered valid. However, if TI'3 and 1'4 had been

specified, A could be calculated from the other design variables, so is one of a

contradictory set of equations.

If all specifications are feasible, the algorithm checks if any spikes have been

identified. In which case, the full Newton's method will be suggested for solution.

Otherwise, the simple analytical solver will be used. Additions to the procedure

determine whether or not the analytical solver could have been used had the

pIzI1

specifications been different. In such situations, a feasible set of design variables

is presented which will achieve this.

The full algorithm is as follows:

Determine the number of degrees of freedom from the equation:

ND=NV — NC 	 (B.4)

where ND = the number of degrees of freedom, N. = the number of variables

in the system, and N = the number of equations in the model.

If the number of specified design variables is greater than ND, this indicates

that the problem is over-specified. Use backward elimination to suggest a

feasible set.

Construct an incidence matrix and removed specified design variables.

Check that no equations have had all variables specified. If so, go to 11.

Forward eliminate.

Check that no equations have had all variables specified. If so, go to 11.

Backward eliminate.

Check that no equations have had all variables specified. If so, go to 11.

Evaluate irreducible blocks.

If all equations and variables are eliminated (or are spikes) then specifica-

tions are feasible. Finish by selecting the solver. If variables remain, these

are suitable design variables.

Locate contradictory specifications by determining which of them can also

be calculated.

110,

Appendix C

Expansion of K Value
Expressions

This example is intended to show how the general description of an equation may

be expanded. Using the expression for multicomponent vapour-liquid distribution

coefficient, K1, two examples will be described: the ideal Raoult's Law expression

and the expansion of the fugacity coefficient term. These illustrate the range of

possible expressions derivable for particular situations.

The most general form of the K value expression is given by the equation:

K
= 7j)< f X 'b x

(C.i)
$ 	 c6IXPT

where: 	= vapour activity coefficient,

fi = fugacity coefficient,

qPi = Poynting correction factor,

P. = vapour pressure,

= partial fugacity coefficient,

PT = pressure.

This general form has been implemented as a single CLAP relation which can

be adapted to apply under a range of conditions. The above definition has three

different types of term:

• A direct reference to a slot in an object. For instance, PT , is a slot in a

stream object.

• A reference to a further expression. P above can be further expanded to

the Antoine correlation, shown below in equation C.3. If, however, the term

187

can be defined by more than one expression, it can be represented by the

third category, below.

• A Prolog variable corresponding to a selection of expressions and values

for cases where a single term can take different definitions according to the

assumptions made. Terms such as j', Oj and 0j, can be approximated

to 1 or can be expanded to large expressions according to the equation of

state implemented.

In order to infer the correct , model formulation, the types of term are evaluated

in strict order,

A choice is made for terms with alternative expansions. In the above exam-

ple, 7j, f, 4j and Oi are determined first to allow any further expansions to

be carried out in the later stages. This step unifies the Prolog variable in

the equation with a numerical value or a reference to a further expression.

The term is then checked to establish whether or not it is a relation. If it is,

it may be a static relation or a user-defined relation. Static relations may

have specified values, similar to slots, or require some inference to determine

their values. The value is established by performing a "$check relation".

User-defined relations may be expanded to further expressions or may con-

tain specified values. They are evaluated by first checking for specified

values for the local instance of the relation, e.g. heat load of stream 4.

If no value is found, the generic definition of the corresponding relation

is substituted in the place of the term. Rather than repeating the work

of expanding the relation, the work space is searched to locate one of the

same type, previously evaluated in this way. If this fails, the relation must

be expanded as normal.

If the term is identified as referring to a slot, it is simply checked to retrieve

any value there.

The mechanism for selecting between alternative values and expressions is

currently implemented as a set of Prolog clauses which must be provided by

the model developer. Future work should address the nature of the interaction

required with the end user, since the present version requires some knowledge of

Prolog to be able to provide the correct choices.

A "selecteqn_type" call is placed in the "active-code" slot of the generic rela-

tion for each term with alternative representations. The call has four parameters,

the first being a Prolog variable which is unified with the corresponding term in

the equation definition. When a decision is returned, this variable will be instan-

tiated to either a number or an expression which is then unified throughout the

relation. The second parameter identifies the term being reasoned about, e.g.

"fugacity_coefficient". The remaining two parameters are for providing extra ar-

guments for the inference, intended to correspond to the subject of the relation

and, where required, a reference object.

The "select_eqn_type" call is evaluated as it normal Prolog goal. An example

of such a clause is given below, which determines whether or not the "fugac-

ity..coefficient" term should be replaced by the value, 1, or an expression depend-

ing on an equation of state. The clause has three possible ways of succeeding.

The first case returns a reference to an expression for fugacity coefficient if an

"eqn..of..state" has been recorded. The second sub-goal of the clause determines

whether or not a reduced property correlation is appropriate. The expression

returned in variable Phi is the reference to either a reduced or non-reduced prop-

erty expression. If either sub-goal fails, the value of the fugacity coefficient is

taken to be 1, from the second major goal.

select_eqn_type(Phi $corresponding_to components-C $of Unit,
fugacity_coefficient, Unit, C) :-

recorded(eqn_of_state, Unit-_,j,
reduced_props(Unit, Phi).

select_eqn_type(1,fugacity_coefficient, Unit, C).

If ideality is assumed, which is the default case shown above, values of 'y, f,
4j and Oi can all be approximated to 1. The identification of ideal conditions is

based on the specifications which have been made in the context to which the

expression is applied. For instance, in this case the provision of an equation of

state implies non-ideality, i.e. the validity of the assumption of ideality depends

on information not being provided. The specification of ideal conditions results

in the following expression:

1 x 1 x 1 x
(C.2)

1 x PT

it:'!]

Any term in equation C.2 instantiated to 1 has been through the selection

process detailed above.

The vapour pressure term is expanded to the Antoine expression which is

represented in a separate relation.

lnPt=zA_ B
T+C 	

(C.3)

where: T = temperature,

A l B and C = Antoine coefficients.

lithe ideality assumption is invalid, the identification of an appropriate equa-

tion of state can provide values for 7j, fi and Oi . The same CLAP relation can

be used to generate both ideal and non-ideal cases with optional high pressure

deviations. The second example is concerned with the expansion of the fugacity

coefficient, f, only, since the expansion of the other terms is performed similarly.

The non-ideal, but low pressure, K value expression has become:

#yjxfjxlxPj* 	
C

lix PT

The fugacity coefficient relation is in a general format which can be tailored

to accommodate different equations of state. The ones implemented axe Van

der Waals, Redlich-Kwong, Soave and Peng-Robinson. The general expression

implemented was obtained from Smith and Van Ness [76], although several other

expressions are reported (see Reid et al [771). The expression is given by:

fj = exp(z - 1 - log(zj x (1 -- b,
	

x log(1 +)) 	(C.5)
 Vi

where: z i = compressibility,

vi = molar volume,

R = universal gas constant,

T = temperature.

The terms a i and bi depend on the equation of state chosen. The correct

forms are established from the definition of the specified equation. If, as in this

example, the Soave correlation is used, the terms are given by:

•190

0.42748 x 	x T
= 	 x (1 + fw(i - T 5)) 2

PC 	
(C.6)

bi = 0.8664 x R x T, 	
(C.7)

PC

where: fw = temperature dependence factor,

= critical temperature,

P0 = critical pressure,

Tr = reduced temperature.

The temperature dependence factor is only incorporated in Soave and Peng-

Robinson of the implemented models. The Soave expression being:

fw 1 = 0.48 + 1.574w1 - 0.176w,? 	 (C.8)

where: wi = acentric factor.

The initial statement of the general form of the equation has, therefore, been

through several levels of reasoning to reach the final model. The first decision was

to implement a non-ideal model and then to ignore high pressure deviations. The

terms of the non-ideal expressions were further altered according to the equation

of state which had been selected to model the system.

It is worth noting here that the implemented cubic equation of state has been

described in a general form which can be adapted to one of four correlations,

namely Van der Waals, Redlich-Kwong Soave and Peng-Robinson. Four terms

are expressed as variables in order to accommodate the appropriate parts of the

equations of state, which is shown below with the relevant terms. The selection

of a particular equation determines the set of terms implemented. The general

correlation and the definitions of the terms was obtained from Reid et al [77].

191

FIT
V—b V 2 +ubV+wb2

(0.9)

Equation a b ulw

Van der Waals 27R2 0 0 841'., 81'.,

Redlich-Kwong 0.42748R2T3 0.08864RL 10
Pc P.,

Soave
0.42748R2V

(1 + fw(1 - T,95))2
O.08664RT., 1 0 PC PC

Peng-Robinson 0.0.457242T (1 + fw(1 - T5fl2
O.07780RT., 2 -1 PC PC

The value of fw for the Soave and Peng-Robinson correlations differs. The

Soave expression is given above in equation 0.8. The Peng-Robinson expression

is:

fw1 = 0.37464 + 1.54226w1 - 0.26992w
	

(0.10)

This appendix has demonstrated the expansion of a single expression which

may be part of a larger model. The use of the K-value expression as part of a

distillation column model is shown in Appendix D. Two forms of the expression

are demonstrated, one using the ideal Racult's Law expression, the other an

expansion of the fugacity coefficient term.

192

Appendix D

Example Output of Generated
Models

It is important for a designer or modeller to be able to evaluate models visually as

well as numerically. This provides information allowing modification of models as

described in Section 5.5. Presentation of models can be achieved by interpreting

their symbolic definitions.

Displaying the mathematical representation of models requires a structured

output allowing the designer to locate and study particular sections of a model.

The CLAP representation of equations as relations provides such a structure. In-

dividual equations can have terms which can be expanded to further expressions.

For example, the Fenske equation is an expression relating K-values of compo-

nents in the feed, distillate and bottoms streams of a distillation column. The

K-value definition can be expanded to an expression relating vapour pressure to

total pressure. This decomposition can be continued for vapour pressure.

The decomposition of equations and expressions into the definitions of their

terms corresponds to the division of aAocument into sections, subsections, para-

graphs, etc. Thus a model can be displayed, showing this decomposition, which

allows the user to assess what modifications are required. Using a document

preparation system, such as JELTEX, a table of contents can be generated auto-

matically once the structure of sections and subsections is complete. Not only

does this provide the necessary means of locating parts of a model, but it can

also be used to document models used throughout a design.

Two types of model can be displayed: generic descriptions and particular

instances. Instances are restricted to the current model of a particular unit,

while any other models of the unit which have been generated can be displayed

193

in their generic form. When a model is displayed it can be stored in a file, so a

library of documented models can be created. The following examples have all

been generated by the program from the symbolic definition of the models.

The Fenske equation Example 1 is a generic model, i.e. the definitions of the

terms in the equation are not presented. This example contains most of the points

discussed above. Only one equation is shown so the decomposition into sections

and subsections is not demonstrated. Examples of this type of decomposition are

in Example 2 and Example 3. The name of the equation is, however, used as

a section heading which is numbered. Numbering follows normal patterns, but

sections here are labelled "Example" for clarity. A table of contents is generated

for the sections and subsections. This is shown in Example 2 and Example 3.

Equations are presented in two ways. The first is the specialise form of the

relation, i.e. all summations and "for all" statements are expanded. The terms of

the equation can be constants, specifications or Prolog variables. Prolog variables

are replaced by labels constructed of "x" and a unique number. For example, the

variable corresponding to the minimum number of plates is replaced by xS.

The second form of equations displayed is the generic definition contained in

the constraint form of the relation. Thus summations and "for all" statements

can be identified. Each term in the return form of the constraint relation is

translated into a LTX format. For example the two terms in Example 1:

min_number_of_plates co,umni

are generated from the CLAP representation:

inin..nuinberof..plates Sof Unit

k_value $corresponding_to components-LK $of Feed.

The variables LK and Feed are ihstantiated to terms in the list of bindings

and Unit is instantiated to the subject of the relation by unification.

In addition to the generic description, a reference for the equation is given

where one is available. This allows the designer to investigate the models which

have been implemented, and maintains a record of their sources for the model

developer.

194

Definitions for the terms of an equation are presented below its general de-

scription. Terms with values and those replaced by labels are displayed with the

name of the slot or relation to which they are bound. In Example 1, for instance,

zS is defined as the min-number-of-plates slot in object columni. Since this is the

generic description of the model, all terms are presented in this manner, including

ones that are defined by other relations, e.g. k..value.

Where the current model instance is being displayed, as in D and Example

3, terms defined by further user-defined relations are presented as lesser sec-

tions to the original equation. For instance in Example 2 the definition of the

Fenske equation is the same as in Example 1. However, only the definition of

min-number-of-plates is listed as in the previous example. The definition of the

IC-value is displayed in a format similar to the Fenske equation. Where the Fenske

equation is a "subsection", the K-value is a dependent "subsubsection".

Example 2 represents the default fenske_gilliland_model which contains a com-

ponent balance and the Fenske equation. Example 3 is a modified version of the

same model. In this example, the definition of k_value has been changed from

the ideal vapour pressure model to one incorporating a fugacity coefficient. This

was achieved using the model modification tool described in Section 5.5.

The revised model has one of the constants in the original expression replaced

by variable xli which correspohds to the definition of fugacity coefficient.

195

Example 1 fenske_equation of column 1

The expression is represented by:

A = log(x2)1log(x11xO)

which is a specific form of the general equation:

minsumber..ofplates, umn i =
log (separation_factor)/log(k_valuezjghf_Jcey ,jn zets /k_valueheav y _jcey ,jn:eta)

(see literature [1])
A = minsurnberofplates of column 1
x2 = mi_separation_factor of column].
xl = k_value corresponding to components benzene in object s4
xO = k_value corresponding to components toluene in object s4

References
[1] Douglas J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New

York, 1988.

196

Contents of Example 2

2 balance of columni 	 198
2.1 	fenske_gillilanLrnodel of colurnnl (xO)198

• 2.1.1 	fenske_equation of columnl (xi)198
References200

197

Example 2 balance of column 1
The expression is represented by:

xO

which is a specific form of the general equation:

• 	 equations

Example 2.1 fenske_gilliland_model of columnl
(xO)
The expression is represented by:

X1

which is a specific form of the general equation:

I enske_equationj tmni
Vu g ht_component s , molar_f lowratejn,et s * 7nole_fractionhjght_,,mponents ,jnz eta =
molar_f lowratedjstj:late_afream *

Vheav y .componenis, molar_f lowratei1 3 * mole_f ractionheavy _componen ts,jnlcts =
rnolar_flowratebotjoms _ajream * mole_f ractionh eavy _,Omponen gs ,bou oma_stream

Example 2.1.1 feuske_equation of colurnnl (xl)
The expression is represented by:

x7 = log(x6)1log(x41x2)

which is a specific form of the general equation:

minsumben.ofplates ct,jumn j =
log (separation-factor) / log(k-valUeligh Jcey ,in:ets/k_valueheav y _jccij ,inl eta)

(see literature 1 11)
x7 = minsumben.ofplates of columnl

Example 2.1.1.1 mf_separation_factor of columnl (x6)
The expression is represented by:

0.995/0.005 * (0.99/0.01)

which is a specific form of the general equation:

*

IM

(see literature 111)
0.995 = mole-fraction corresponding to components benzene in object s5
0.005 = mole-fraction corresponding to components toluene in object s5
0.99 = mole-fraction corresponding to components toluene in object s6
0.01 = mole-fraction corresponding to components benzene in object s6

Example 2.1.1.2 k_value corresponding to components benzene in
object s4 (x4)
The expression is represented by:

1 * 1 * 1 * x5/(1 * 760)

which is a specific form of the general equation:

Vcomponents, vapour..activityxoefficient * fugacity_coefficient *
poynting_correction *

vapour_pressurecomponenj,,4/partial_fugacity_coefficient * pressure34

(see literature [21)

vapour-pressure corresponding to components bénzene in object s4 (x5)
The expression is represented by:

exp(15.9008 - 2788.51/(366 + (-52.36)))

which is a specific form of the general equation:

Vcomponenta, exp(ant oine_A components - antoine_Bcomponenj, /temperature, 4 +

(see literature [31)
15.9008 = antoine_A of benzene
2788.51 = antoine_B of benzene
—52.36 = antoine_C of benzene
366 = temperature of s4
760 = pressure of s4

Example 2.1.1.3 k_value corresponding to components toluene in
object s4 (x2)
The expression is represented by:

1 + 1 * 1 *x3/(1 * 760)

which is a specific form of the general equation:

Vcomponen ts , vapoursctivitysoefficient * fugacity_coefficient *
poynting_correction *

vapour_pressure,,,mponent,,,4 /partial_fugacity-coefficient * pressure34

(see literature [2])

IN."

vapour-pressure corresponding to components toluene in object .s4 (x3)
The expression is represented by:

exp(16.0137 - 3096.52/(366 + (-53.67)))

which is a specific form of the general equation:

Vcomponents, exp(antoineAcomponents - antoine_Bcomponents /temperature84 +
ant oine_Ccomponents)

(see literature [3])
16.0137 = antoine_A of toluene
3096.52 = antoine_B of toluene
—53.67 = antoine_C of toluene
366 = temperature of s4

References
Douglas J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New
York, 1988.
Reid R.C., Prausnitz J.M. & Poling B.E., The Properties of Gases and Liquids,
4th Edition, McGraw-Hill, New York, 1987.

McCabe W.L. & Smith J.C., Unit Operations of Chemical Engineering, 3rd
Ed., McGraw-Hill, 1976.

200

Contents of Example 3

3 balance of column 1
	

202

	

3.1 fenske_gillilandinodel of colurnnl (xO)
	

202

	

3.1.1 fenske_equation of columnl (xl)
	

202

References 	 205

201

Example 3 balance of column 1
The expression is represented by:

xO

which is a specific form of the general equation:

equations

Example 3.1 fenske_gilliland_model of columml
(xO)
The expression is represented by:

xl

which is a specific form of the general equation:

fenske_equation a,,tmni

VIi ght..components, rno1ar_f1owrate1,j 3 * rnole_fractionhighf_components,inlets =
rnolar_flo'wratedjstjjjajetream * rrLole_fraction:jght_, mponents,dj,tjlzate_stream

Vheav v _compoments, rnolar_flowrate,t3 * rnole_fractio'nheavy _componen ts ,inlcta =

rnolar_flowratebouoma_3gream * rnole_fractzonhcavy _.,,,mpongnts,bottoms_nream

Example 3.1.1 fertske_equation of column]. (xl)
The expression is represented by:

X19 = log(x18)1log(xlO1x2)

which is a specific form of the general equation:

mzvtnumberofplates wjumni =
log (separation_f act 	 /k_valueh eavy jcey ,im lets)

(see literature 111)
x19 = min-number-of -plates of columnl

Example 3.1.1.1 mf_separatiori_factor of columnl (xiS)
The expression is represented by:

0.995/0.005 * (0.99/0.01)

which is a specific form of the general equation:

rnole_fractionught_key ,aistizzate_stream / mole_f ractionh eavy _k cy ,distie:ate _sfream *

mole_fr act ion heavy_kcvoottoma_.tream/rnole_fractionught..key,bottoms_stream

(see literature 111)
0.995 = mote-fraction corresponding to components benzene in object s5
0.005 = mole-fraction corresponding to components toluene in object aS
0.99 = mole-fraction corresponding to components toluene in object 86
0.01 = mole-fraction corresponding to components benzene in object s6

Example 3.1.1.2 k_value corresponding to components benzene in
object s4 (xlO)
The expression is represented by:

1 * xli * 1 * x17/(1 * 760)

which is a specific form of the general equation:

Vcomponents, vapour—activity—coefficient * fugacity_coefficient *
poyntingcorrection *

vapour_pressure1,,mponej5 , 54 /partial_fugacity.coefficient * pressure34

(see literature [2])

vapour-pressure corresponding to components benzene in object s4
(x17) The expression is represented by:

exp(15.9008 - 2788.51/(366 + (-52.36)))

which is a specific form of the general equation:

Vcomponents, exp(antoine_Acomponengs - ant oine..B components /temperatures4 +
ant oine_Ccomponents)

(see literature [3])
15.9008 = antoine_A of benzene
2788.51 = antoine_B of benzene
—52.36 = antoine_C of benzene
366 = temperature of s4

fugacity_coefficient corresponding to components benzene in object s4
(xli) The expression is represented by:

exp(x12 - 1 - log(x12 * (1 - z13/x14)) - xiS * xi6/(x13 * 8.314 * 366) * log(i +
x13/x14))

which is a specific form of the general equation:

Vcomponents, exp(compressibility components - 1 - log(comyressibility 0pc,nenjs * 1 -
state _eq_b_coeffwmponents /molar_volumecomponents) - state_eqs_coeff componentg *

r_k_.soaveslpha/state_cq_b_coeff components * universal-gas-constant *
temperature84 * 109(1 + state_cq_b_coeffcompongnjs /molar_volume component4)

(see literature [4])
x12 = compressibility of benzene

203

state_eq_b_coeff of benzene (x13) The expression is represented by:

0.08664 * 8.314 * 562.1/48.9

which is a specific form of the general equation:

state..eqeoefficient_b * universal-gas -constant *
crzticaliemperaturebenzene /crztzcal4iressureoenzene

(see literature [4])
48.9 = critical-pressure of benzene
562.1 = critical-temperature of benzene
x14 = molar-volume of benzene

state_eq_a_coeff of benzene (xis) The expression is represented by:

0.42748 * 1 * 8.3142 * 562.1 2 /48.9

which is a specific form of the general equation:

state_eq_coefficient_a * state..eq..T_dependence * (universal 4a5_constant) 2 *
(criticaliemperaturebenzen42 /critical_pressurebenzene

(see literature [41)
x16 = redlich_kwong_alpha of benzene
760 = pressure of s4

Example 3.1.1.3 k_value corresponding to components toluene in
object s4 (x2)
The expression is represented by:

1 *x3* 1 *x9/(1 *760)

which is a specific form of the general equation:

Vcomponents, vapour-activity-coefficient * fugacity_eoefficient *
poyntingco'rrection *

vapour_pressurecomponent ,,,4 /partial_ftigacity_eoefficient * pressure,4

(see literature [2])

vapour-pressure corresponding to components toluene in object s4 (x9)
The expression is represented by:

exp(16.0137 - 3096.52/(366 + (-53.67)))

which is a specific form of the general equation:

Vcomponen ts , exp(ant oine_A components - antoine_.B componen t,/temperature,4 +
ant oine_Ccomponents)

(see literature [31)
16.0137 = antoine_A of toluene
3096.52 = antoine_B of toluene
—53.67 = antoine_C of toluene
366 = temperature of s4

204

fugacity_coefficient corresponding to components toluene in object s4
(x3) The expression is represented by:

exp(x4 - 1— log(x4 * (1 - x5/x6)) - x7 * x8/(x5 * 8.314 * 366) * log(i + x5/x6))

which is a specific form of the general equation:

Ycomponenta, exp(compressibility comp ,.entj - 1 - log(compressibility componenta * 1 -
state_eq_b_coeffcomponents /molar_volumecomponenta) - state_eqs_coeffcopoent8 *

r_k_soaveslpha/stat&eq_b..coeffcomponcnt . * universal -gas -constant *
temperature84 * I09(1 + state_eq..b..coeffcomponcnjs /molar_volume component4)

(see literature [4])
A = compressibility of toluene

state_eq_b_coeff of toluene (x5) The expression is represented by:

0.08664 * 8.314 * 591.7/41.1

which is a specific form of the general equation:

stata.eq.coefficienti * universal-gas -constant *
criticaliemperaturesojtene/criticalpressUreuguene

(see literature [41)
41.1 = critical pressure of toluene
591.7 = critical-temperature of toluene

= molar-volume of toluene

statc_cq_a_coeff of toluene (x7) . The expression is represented by:

0.42748 * 1 * 8.3142 * 591.72/41.1

which is a specific form of the general equation:

state_eq_coefficient_a * state_c q_T_dependence * (universaLgas_constant)2 *
(criticalicmperatureto,uen42 /criticaLpressurcto:tenc

(see literature [4])
A = redlichicwong_alpha of toluene

References
Douglas J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New
York, 1988.
Reid R.C., Prausnitz J.M. & Poling B.E., The Properties of Gases and Liquids,
4th Edition, McGraw-Hill, New York, 1987.
McCabe W.L. & Smith J.C., Unit Operations of Chemical Engineering, 3rd
Ed., McGraw-Hill, 1976.
Smith J.M. & Van Ness H.C., Introduction to Chemical Engineering Thermo-
dynamics, 3rd Edition, McGraw-Hill, Tokyo, 1975.

Vlilil

Appendix E

Application of Overall Process
Synthesis Procedure

This appendix illustrates the application of extended methods to process synthe-

sis. For this example, design of an ammonia synthesis loop is considered. The

Douglas hierarchy of decision levels [7] has been implemented as described in

Chapter 6. The figures were produced by the system as screendumps.

Is_a

licenser

prod uction—rate IOO

prod uct_state

prod uct_purity 55400

raw —material _costs

raw_rn ate rial _pu rity

supply—temperature

supply—pressure

supply—phase

site romfWd

parent —slots
Is_a
licenser
production—rate
prod uct—state
prod uct_purity
raw —mate rial _costs
raw —mate rial—purity
supply —tam perature
supply—pressure
supply—phase
site

Figure E.1: Object Describing Initial Process Specification

Four objects were defined which provide a high level description of the design

available for review throughout the synthesis procedure. These objects are in-

206

tended to provide common data structures for design and other functions, such

as preliminary economic analysis as discussed in Section 1.1.1.

The technology object corresponds to the initial statement of the require-

ments of the design. Figure E.1 shows the technology object defined for the

ammonia synthesis loop. The slots which have values represent high level deci-

sions from which the design is developed. Production rate, state and purity, and

the choice of site are business decisions not necessarily made by design engineers.

These slot values may be changed as the design develops. Economic assess-

ment of a design may indicate that these constraints cannot be met profitably

unless the specifications are revised. Furthermore, the initial statement is often

incomplete. Preliminary design may reveal that a particular process cannot be

profitable without having to waste time and effort on an extensive information

gathering exercise. However, if the process has potential, the information will be

required at the point of development which has been reached. It is undesirable

to have to restart the synthesis procedure for individual pieces of information, so

access to this object is required throughout synthesis.

A+B.
foods N2 I

112 I
Pathway N2431,122I11H3t.p 	 1000

pc...r 	600 	 I
oib.t 	03970 	I

serial —re actione 1000

600

03570 parent _slots
'feeds

products P643 Ipathway

side_products
I serial 	reactions
I products

catalysts .13670 Iside—products
I catalysts

conversions 0260 I conversions

selectivity I selectivity
I equ III brium_constants

equilibrlu rn_constants I heats —of —reaction

he arts _of_reaction -2706
I rates
$Tinish

rates I

Figure E.2: Object Describing Process Chemistry

The second new object represents the process chemistry. The instance for

207

ammonia synthesis is shown in Figure E.2.

This object is distinct from objects representing individual reactions which

can be associated with individual reactors. As with the technology object,

the process-chemistry object is intended to provide a link to other functions.

The process-chemistry object should be prepared by chemists investigating the

reaction path and its associated properties, or as a result of a database search.

The object contains a list of reactions occurring in parallel or series. The

list of reactions is stored in the pathway slot and the conditions are repeated in

the serial reactions slot. In this example, only one reaction is investigated.

Reactions which are carried out separately, i.e. have different conditions, are

described in individual reaction objects which are associated with specific reac-

tors. A process-chemistry object is associated with a particular technology.

For example, the Haber ammonia synthesis process has an associated process

chemistry, while a particular company may have a different process with its own

reaction scheme. In this way, different process chemistries can be evaluated as

discussed in Section 1.1.1.

present —steam _co pa city 	 IlgPLp 	 1000

.W-p 	 1600

Iøp

present _cw_capacity 	 GOW

p rase nt_flIuent_ea pa city 	 parent _910t9

present— tea rn —cap acity
pre sent— cw —capacity
pre aant_etrluent —cap a city

required —ate om —ca poclty requIred_steam—capacity

requ Ire d_cooling_w ate r
if in ish

required —cooling —water

Figure E.3: Object Describing Potential Site

The third class of object represents the site under consideration for the plant,

as shown in Figure E.3. This choice has a direct bearing on the economics of

a particular design because all plant utilities, such as cooling water, steam and

electricity need to be provided. A new site, therefore, requires extra plant at

greater expense. It is important to have a model of the utilities available so that

any extra requirements are considered in an economic evaluation of the design.

The fourth object is used to represent bulk materials. A material object, as

shown in Figure E.4, does not describe a stream in the plant, but a commodity

which is bought or sold. In this example, material objects are used to represent

the feed which is either bought and transported to the plant, or is imported

from another plant on the same site, the product crude ammonia, and the waste

produced.

M00
con tituent_com ponents

mole—Traction 	 mow

melting —point

boiling—point

toxicity

flammability

storage -prop erti as

tran spa rtotion_p tops rtiea

post—pricing

current—pricing

projected - pricing

conetitus nt_CO m pone nta
male—traction
matting—point
boiling—point

flamma bility
etoroge —props rtlea
trans portoti on —pro peril as
post _pricing
current—pricing
projected —pricing

Figure E.4: Object Describing Product Material

As with the previous three objects, the material object is intended to provide

consistent access to the design by different design functions. The object shown

in Figure E.4 includes slots for pricing, transportation and storage properties.

These are not necessarily for use by a design engineer except for reference,

209

E.1 The Implemented Hierarchy of Decision
Levels

The extended methods used to implement the hierarchy of decision levels are de-

tailed in Section 6.1. A design is initiated with the specification of a technology,

a process-chemistry, a site and the feed and product materials. A design

object is created which refers only to a single design of a specific technology,

thus individual designs can, in principle, be documented and stored in a database.

The system developed uses a window which is divided into a text section and

a graphics section. The user is presented with a menu of design options in the

graphics section as described in Section 6.1. The menu is labelled with the name

of the current synthesis level and a message is displayed in the text window to

highlight this.

The first decision is to determine whether the process should be continuous

or operated in batches. The first menu, shown in Figure E.5 is a reduced form

of the general menu, in that the analysis and topology options are not made

available.

help
collect_Input _InormatIan
batch _' _c ant_d eel s
$inish

Figure E.5: Menu Presented at the Batch vs Continuous Decision Level

The help option, discussed in Section 6. 1, details the requirements for comple-

tion of a decision level. The collect J.nputJnformation entry provides access

to the four classes of high level object described above, which represent the cur-

rent design.

If $finish is selected, a message appears in the text window explaining that

a decision is required before being able to continue. Thus, in order to proceed

with the design, bat ch_v_cont-decisions must be selected. This choice invokes

a heuristic decision, coded as Prolog rules, assessing the choice of a batch or

continuous process. Figure E.6 shows the output from this evaluation. In this

example, a continuous process is advised, but the menu allows the selection of

either, to allow both alternatives to be assessed should this be required. The

210

entry in the menu refers to a continuous fluid process since the product and feeds

are both fluids. If solids are specified in the technology object, this choice would

be for a continuous solid process.

After assessing the products, the required production rate,
product lifetime etc. a continuous process seems most
suitable. However, you can choose Whichever you prefer.

(IIIflhIflhtlII

batch—operation
continuous—fluid

in I sh

Figure E.6: Result of Batch vs Continuous Heuristic Decision

Once the decision has been made, in this case to design a continuous process,

the "batch versus continuous" decision level is complete. The next level is the

input-output structure level which is indicated by a message in the text window

and a new label for the main menu. The choices in the menu shown in Figure

E.5 now include analysis and topology which were inappropriate before where

no flowsheet items were present. The new menu is shown in Figure E.11.

Any option in the main menu can be selected, but without any flowsheet

items, only messages are displayed indicating that a flowsheet should be specified

first. Selection of topology provides access to the flowsheet specification options

which have been detailed in Appendix F. The initial step is to create units for the

flowsheet. Figure E.7 shows the limited choice of units restricted by the synthesis

level.

plant
storage
*finlsh

Figure E.7: Menu of Flowsheet Items Available at the Input Output Structure
Level

In this example, a plant object called ammonia-plant is created with one

inlet stream and one outlet. The streams are named automatically. Returning to

211

the main menu, the input-output level decisions may be accessed to evaluate the

fiowsheet. Three decisions are available at this level: calculation of the number

of product streams, a decision about whether or not to purify the feed stream,

and the assessment of the requirement of a purge. The choices are displayed as a

menu as shown in Figure E.8. The diagram also shows the output generated by

the no-of -product -streams option.

The components have been classified as follows
stream oiouifioatlion
prod iete NH3
by_ prod uctb
reaotonte 142

N2
r.ction_ I rt.rm.dIot.i
f..d_impurltl.. Ar

2 output streams have been identified, compared with the 1 specified.
There are also 1 recycle streams identified.
The streams have been classified according to the component, Its
intended destination and its boiling paint.
These streams are

no—of—product—streams
purification —of —feed s

Stream 	 pt eetInation pure_requirement
-186,000 r.'cia..and_purge 	k 1$f In I sh
-is.eoo rec_and_purg. 	N2 i
—252 recycle_and_purge 	H2
—3.5OO primary—product 	NH3 I

Figure E.8: Classification of Output Streams and Input Output Level Decisions

This operation classifies the components present in the process, i.e. N 2 , 112 ,

Ar and NH3 , as products, by-products, reactants, reaction intermediates or feed

impurities. These are then ordered by boiling point. Neighbouring components

in the same class are lumped together in a single stream and associated with a

destination.

Figure E.8 shows two output streams compared with only one so far specified.

It also indicates that the reactants should be recycled, and since an impurity, Ar,

is present, the recycle should also have a purge.

A purge may not be required if the impurity can be removed before the

reactor. In this case, it is likely to be impractical, but it may be considered

using the purification-of -feeds option shown in the menu in Figure E.8. A

short question and answer session provides the qualitative information required

for a decision to be made. This is shown in Figure E.9. The recommendation

212

here is that the raw materials should not be purified.

The feed impurities are [Ar]
Are all components considered inert? y.
Are any catalyst poisons? n.
At this stage It Is probably best not to purify the raw materials.

Figure E.9: Heuristic Judgement of Requirement for Feed Purification

Since the impurity is not to be removed, a gas recycle and purge must be

considered. To investigate this, the remaining decision in the menu in Figure E.8

is selected. The output is shown in Figure E.10, confirming that the reactants to

be recycled are incondensible and the presence of an impurity implies the use of

a purge.

A gas recycle Is required because some reactants which, presumably,
are to be recycled, boil at sufficiently low temperatures that condensing
them is not possible with cooling water even at high pressure.
A purge may be required as some impurities are also incondensible.

Figure E.10: Heuristic Judgement of Requirement for Purge

The decisions which have been considered using the menu have not required

any action. The aim is to provide advice and make the designer aware of the

decisions that can be made at a particular level of detail. As a result action may

be taken but it is not essential.

Certain actions are essential for the completion of a decision level. For exam-

ple, at the input-output structure level, a plant object must be present in the

flowsheet with sufficient inlet and outlet streams to transport the specified bulk

materials. These essential actions are checked when $finish is selected on the

main menu.

12 output streams have been Identified, compared with the 1 specified..

topology
analysis
help
collect—input—information
In put—output—decisions
$fini sh

Figure E.11: Message Indicating Incomplete Output Stream Specification

In the case of the ammonia synthesis process so far defined, selection of

$finish at the input-output level invokes a list of checks which identify that

213

only one output stream has been specified where two are required. The message

is shown in Figure E.11.

In addition to the statement of the required action, notice is given of the point

in the synthesis procedure where the information can be provided. Execution is

returned to that point. In this example, progress to the recycle structure level is

blocked and the input-output structure level is recalled. The input-output level

menu is also shown in Figure E.11.

This message prompts the creation of a new output stream followed by Se-

lection of $finish once more. The checks this time discover that the inlet and

outlet streams do not contain any of the specified materials. Figure E.12 shows

the message displayed in the text window.

Stream sO is not associated with a feed material (syriloop_feed. .$null).
More Information is required at the input—output—level.

Figure E.12: Input Output Structure Message Indicating Required Action

This message prompts the user to edit stream sO using the analysis menu,

associating the stream with a material, in this case syn.loop..±eed. Figure E.13

shows the result of setting the material slot to synJoop.Ieed. The composi-

tion properties of the syni.00p.ieed object are copied to the components and

mole..±raction slots of the stream object.

The output streams, si and s2, are similarly associated with material objects,

corresponding to crude ammonia and purge respectively.

The conditions for completion of the input-output structure level have now

been met. Selection of $finish in the menu shown in Figure E.11 advances syn-

thesis to the recycle structure level. The structure of the main menu is unaltered.

However, its label is changed to indicate the new synthesis level and a new set of

decisions is available.

The synthesis level has advanced, but the flowsheet has only the detail pro-

vided by the input-output structure level, as shown by the plant object in Figure

E.14. The first choice at the new level may be to develop the fiowsheet. Alter-

natively, the help option can provide a high level statement of the goals to be

achieved at this level. Another option is to assess the non-essential decisions.

214

source

sink

temperature

pressure

malar_flowrate

specific—heat

components

H2
ate

temperature
Ar pressure

mole—traction 0.324 molar_tlowrate
specific_hact

0.501 components
00e mole—fraction

camp —mass —rate
comp—mass—rate
comp—mole—rate

comp—mole—rate material

material
ref erence_component

hi in en
ref erence_corn ponent

Figure E.13: Object Describing Stream SO

Figure E.14: High Level Object Describing an Ammonia Plant

215

In this case, if help is selected, a requirement for objects representing reaction

and separation is identified. If decisions is chosen, a message is displayed again

indicating that at least one reactor is necessary to perform the reactions specified

in the process-chemistry object. Figure E.15 shows the message generated for

the ammonia process.

There Is no reactor performing reaction:
[(N2+3*H22*NH3) -[temp- 1000,pressure-500, catal yst-c13B7O]J

Figure E.15: Recycle Structure Message Indicating Required Action

The first action, therefore, is to develop the flowsheet. Using the topology

option, a new design node is added as a refinement of the initial description.

Objects representing reaction, separation and a divider are created, and the

connecting streams are defined.

As a result of the heuristic evaluations made at the input-output structure

level, attention is focused on a single process. However, if the designer is not

satisfied with a particular judgement, an alternative can be investigated. For

example, at this point, an alternative design node can be created to investigate

the possibility of removing the feed impurity before the reactor, thus avoiding a

purge. In this example, this is impractical, but for a different process there is a

range of alternatives which could be assessed at this level.

In this example, there is only one reaction, so only one reactor is required.

However, where there are multiple reactions, they must be ordered and the re-

actants and recycles fed appropriately. One of the heuristic assessments at the

recycle structure level provides a judgement on the required number of reactors

and the different feed arrangements. The output for the current design is shown

in Figure E.16.

The other options available for evaluation are also shown in the menu in Figure

E.16. One option which has not been shown in this example, is for the assessment

of the number of recycle streams. Here, the requirement for a single recycle was

identified at the input-output structure level. This was provided when the refined

flowsheet was described. Since the single recycle required has been specified, the

option is not required, and so is not displayed.

The excess-reactants option is to make the designer aware of the possibility

of shifting the product distribution in the reactor by feeding an excess of one

reactant. This has an effect on the quantity and cost of recycling the excess, so

216

There is 1 separate reaction I.e. serial reaction
steps with different reaction conditions

S.parct R.t1ona
I 	1000

600
,:1 3070

IIJ,IIIu

I a am pressor _req Ireem e
number_of_reactors T I excess —reactants

I $finish

Figure E.16: Recycle Structure Options Menu and Assessment of Reactions

an optimum should be found. This requires an economic analysis of the different

arrangements so the menu option is only to bring the possibilities to the designer's

attention.

The other heuristic evaluation available at the recycle structure level is of

the need for a compressor on the recycle stream. If a gas recycle is to be used,

a major process cost will be incurred by the need for a gas compressor. This

decision is introduced at this level because of the effect on the total process cost.

It is possible that this process alternative can be eliminated with minimum time

being expended.

Figure E.17 shows the response to the selection of compressor-requirement

with the current data. The recycle is correctly identified, but the compressor

requirement cannot be evaluated until there is information about the components

in s6, one of the streams in the recycle.

1 recycle stream has been specified.
sB does not have any components specified, so no conclusion about the
necessity of a gas compressor- can be made.

Figure E.17: Message Indicating Incomplete Process Specification

When the components slot of s6 has been set to the list of components being

recycled, reselection of this option results in the judgement shown in Figure

E.18. In this example, the recycle will be a gas stream, i.e. it has a boiling point

less than that of propane, which, heuristically, is the limit for condensing under

pressure by cooling water.

It is important to model the fiowsheet to give values to the fiowrates into and

out of the process which can then be used in an economic analysis. It is necessary,

therefore, to ensure that the fiowsheet is complete at this level. This can be done

217

1 recycle stream has been specified.
The chances are that s6 will be a gas recycle stream, because it cannot
be completely condensed by cooling water even at high pressure.

Figure E.18: Heuristic Judgement of Compressor Requirement

either by selecting help on the main menu, or $finish and reacting to any error

messages. If the synthesis procedure advances to the next level, the flowsheet is

structurally complete.

Here, if $finish is selected, the recycle structure checks ensure that a reaction

section and separation section have been defined, all components leave the system

and purity specifications are maintained. For example, Figure E.19 shows a

message indicating that 112 is not leaving the system.

Component H2 is not in any of the output streams.
More Information Is required at the recycle—structure—level.

Figure E.19: Message Indicating Components Not Leaving the System

This is rectified by adding H 2 to the components slot of the appropriate outlet

stream, in this case, the purge. On reselection of $finish, a change in product

specification is highlighted, as shown in Figure E.20. The technology object has

a specification for 99.5% pure ammonia while the product stream has a value

of 99%. The inconsistency is resolved by changing the product specification to

99.5%.

The product NH3 Is not in any of the outlet streams ([sB,s7]) as pure
as 99.5%, as was specified.
More information is required at the recycle—structure—level.

Figure E.20: Message Indicating that the Original Purity Specification is Con-
tradicted

The conditions for progress have now been met, so a model of the fiowsheet can

be constructed using the modeLflowsheet option in the flowsheet analysis

menu. This instigates the model generation methods which select equations for

each unit in the flowsheet and each stream. In this example, a reaction balance

is used for the reaction object, a component balance for the separation and a

component balance incorporating divider ratios for the divider. The equations

for the streams relate mole fractions of constituent components, component molar

flowrates and the overall molar fiowrate.

218

The specifications placed on the process are 100000tonnes/yr of ammonia to

be produced from a given feed and the mole fraction of Ar in the system must

not exceed 0.01. The Ar constraint is placed on the reaction section output. The

product is assumed to be pure since the separation is not sufficiently detailed to

determine which other components would be in that stream.

The model is then evaluated by the degrees of freedom algorithm described in

Appendix B. Here, the specifications are acceptable and the equations are solved

simultaneously. The results are shown in Figure E.21.

03 e4 e6 so v7 Be

NH3 700.0 0 0 0.0 700.0 0.0
N2 37500 1100 3750.0 300010 0 750.0
H2 3150.0 100.0 3150.0 2520.0 0 030.0
Ar 75 15 75,0 60.0 0 1510
TotI 7675.0 2705.0 675.0 550.0 700 1.35.0

Figure E.21: Solution of Flowsheet at Recycle Structure Level

The display used here is different from that discussed in Appendix F. The

form of the display was determined by the presence of the graphical description

which was provided manually. The stream table was generated automatically.

The synthesis procedure has now advanced to consideration of the reactor

system. Again, the main menu retains the same structure, only altering the label

and the available decisions. As discussed above, the first action could be to refine

the fiowsheet, or select help, or heuristically evaluate the flowsheet with the

decision option.

219

If help is selected, the extended method containing the checks for essential

action is interpreted to describe the requirements of the current synthesis level.

The calling sequence of the extended method is a set of high level statements of

the aims of the level. The associated guards are the criteria for meeting these

aims. The high level aims are presented as a menu.

In this case the only goal is that the reactors must be "fully specified". Se-

lection of an aim from the menu produces a list of criteria as a rough translation

of the code in the guard associated with the chosen aim. Here, the only choice

produces the list of statements shown in Figure E.22.

reactors-suitable must be satisfied.
knctu_adiabatic_delta_t must be satisfied.
process-chemistry must be specified
reactions-associated-with-reactors must be satisfied.

Figure E.22: Output from Help Option at Reactor System Level

Those ending with "must be satisfied" refer to Prolog goals, the predicate

of which is displayed as the condition. The predicates were named to pro-

vide as much information as possible, e.g. know-adiabatic-delta-t. State-

ments ending in "must be specified" refer to slots which must have values, e.g.

process-chemistry.

The first statement in Figure E.22 suggests that the specified reactor may not

be of sufficient detail for further evaluation. This is confirmed by the heuristic

design decisions at this level. The first of these options is to evaluate the reactor

heating characteristics, which, on initial selection, displays a message stating the

requirement of a more detailed reactor for this operation. This is shown in Figure

E.23.

The reactors specified 80 far are not of sufficient detail
to allow an investigation of their heating properties.
More information is required at the reactor_system_level.

Figure E.23: Message Indicating Detail of Reactor System is Insufficient

The decisions menu includes an option to propose a reactor configuration

based on reaction kinetics. This is detailed by Douglas [7], but has not been fully

implemented.

To advance the design, a new node is added to the graph as a refinement

of the developed recycle structure. A plug flow reactor, vlOO, is placed in this

220

new flowsheet, providing the increase in detail required for the evaluation of the

reactor heating properties. Further requirements for this judgement are values

for reactor heat load and adiabatic temperature rise as indicated in Figure E.22.

These values are calculated as part of the design method for the reactor.

The decisions menu is shown in Figure E.24 with the output from the

reactor-heating evaluation. The results indicate adiabatic operation.

The heat load and adiabatic temperature rise indicate
adiabatic operation,

reactor-heating
shift_eq rn_conversion
reactor—configuration
$t in ish

Figure E.24: Heuristic Assessment of Reaction Heating Requirements

Consideration of the reactor system is now complete, but as Figure E.25

shows, the information describing the plug flow reactor is not. This requires the

development of a plug flow reactor design procedure similar to that described for

a distillation column in Appendix F. The use of models specific to such reactors

can then be made available.

Figure E.25 shows the slots which distinguish a plug flow reactor from the

prototype reaction object. The slots defined for a reaction object are inherited

by the plug flow reactor and are accessed by selecting parent-slots in the slot

editor menu. Figure E.26 shows these slots with their values many of which

have been automatically copied from the more abstract reactor defined in the

previous level of the graph. Other values are provided manually after heuristic

evaluation using the decisions option on the main synthesis menu.

The synthesis procedure now advances to the separation structure level which

is divided into liquid separation and vapour recovery. In this example, the reactor

output is a gas, and even with cooling water cannot condense to afford liquid and

vapour phases requiring separate treatment. The options for vapour recovery are

presented as a table ordered by increasing cost. Normally, the least expensive

recovery is condensation, which in this example requires refrigeration. It is a

feasible approach since, as Figure E.8 shows, the boiling point of ammonia is

significantly higher than the other components. An alternative which could be

221

Figure E.25: Object Representing Plug Flow Reactor V100

considered is absorption into water. The two proposals can be distinguished

on the basis of which is most expensive, separating ammonia from water or a

refrigerated condenser.

As with the reactor described above, consideration of these separation alter-

natives is complete. Design procedures are required to continue the design of the

unit operations.

In summary, this example has illustrated the flexible access to synthesis de-

cisions as well as tools for describing flowsheets and modelling them. The main

menu is presented in a consistent format throughout, altering only the label,

which informs the designer of the level of synthesis, and the decisions which can

be accessed. Action which is essential form the completion of a decision level is

ensured by preventing advance to the next level until the information is provided.

Options which the designer should be aware of at each level are presented in a

separate menu. Heuristic advice is available where appropriate.

The Douglas synthesis procedure is intended to guide the designer to a good

base case design. It is used here to aid the reduction of stored information by

focusing design effort on the process alternatives which, on the basis of heuris-

222

Figure E.26: Slots of V100 Showing Access to Less Detailed Definition

tics, show most potential. However, to complete a design, strategies should be

available to support design of individual unit operations.

223

Appendix F

Worked Example of
Opportunistic Modelling in
Distillation Column Design

The example in this appendix demonstrates the opportunistic approach to de-

sign of a unit operation, in this case, a distillation column. The diagrams were

produced as screendumps from the prototype system discussed in the main body

of this thesis. The procedure adopted is detailed in Chapter 6. A structure of

extended methods provides a framework for high level aims, which, in this ex-

ample, first allow assessment of the feasibility of distillation, then determination

of column conditions and finally calculation of the number of trays. Within that

structure, parallel calls use menus to allow the opportunistic selection of tasks.

Thus, appropriate options are provided as the need arises, and flexible use of the

tools is achieved.

The initial menu shown in Figure F.1, is the general design options menu

discussed in Section 6.1. In this example, the menu corresponds to the liquid

separation system structure level of the Douglas decision hierarchy.

oflolysI
topology
colIct_ln put _ln?ormotlon 	4

help
store—to—file
Stinish

Figure F.1: Menu of Design Options

The options of help, store-to-f ile and collect -input -information are

discussed in Section 6.1. The other choices are demonstrated in this appendix.

224

The separationdecisions method, which is highlighted in Figure F.1 ap-

plies to a single separation object. For this reason, when it is selected, the user

is required to indicate the separation to which the method is referring. In this

example only one separation is defined, that of benzene and toluene shown in

Figure F.2. The composition of the inlet stream is known and specifications have

been placed on the purities of the outlet streams. The remaining mole fractions

have been determined by demons on the mole fraction slot of each stream.

t1iji 	0.006

o4u.r. 	06400

i1u.e 	0.900

b..r. SOlO

distillation feasibility 	 I
I othr_IIquId_paration

I $flnlsh 	 I

Figure F.2: Separation Design Alternatives

The information that is available at this point allows the choice of evaluating

the feasibility of distillation or assessing other liquid separations. These options

are supplemented later when more is known.

If distillation-f easibility is selected, the relative volatilities of the com-

ponents in the feed stream are calculated. If more than one stream is fed to

the separation, all components are collected and evaluated. Douglas [7] suggests

a heuristic method for determining whether or not distillation will be feasible

without designing a column. If the relative volatilities of the key split is less than

1.1 then distillation will probably not be economical.

A summary of the results of the relative volatility calculations is shown in

Figure F.3. The individual results are presented as they are calculated. The

figure shows the split window used for this design tool. The top section is for

textual presentation and input. The bottom part is for graphical presentation

and menu input. Here, the text window reports that calculations have been

performed and the result is that distillation is feasible. The graphical window

summarises the calculations with a table of relative volatilities. Here, benzene has

a relative volatility of 3.3 compared to toluene

225

run,

?- cpcpil.(store_initial).

?- run.

rfortning r.lative_o1stility calculation, for .L...
a relative volatilities of the components involved indicate that separation
distillation I. possible.

tde 	ua
h.e.. 	Oaa td.ar 	U4

bes.. O

b.ee... 0.010

I o 	 ha 	 I

7.;1h.1

I
lquId_uparotI
	 I

Figure F.3: Result of Relative Volatility Calculations

The menu still presents the option of evaluating other liquid separations.

In this example, selection of this option results in a table of liquid separations

ordered by increasing cost. This is shown in Figure F.4. A full implementation

should provide similar help in the design of these alternatives as with the design

of distillation.

The lollowing IIuid separation options are
ordered downwards by increasing cost.

UJId Skaa
,ek.ai_.dreat!on

ale,.d.tIIetIon

Figure F.4: Selection of Alternative Separations

No further information can be generated from these decision options, so the

designer must return to the main menu by selecting $finish.

Other evaluation options are available at this stage, so the designer is able to

226

analyse the fiowsheet as in Figure F.5. The figure shows the "Analysis" menu

which is described in Section 5.7.

analyse—unit
analy._atreom
analyse—components
$rinleh

Figure F.5: Analysis Menu Options

The options to analyse a fiowsheet include calls to move within the design

graph, i.e. select a fiowsheet for analysis, and model the selected plant. In this

example, the separation section has been modelled, the results being displayed

in Figure F.6. The solution has been displayed in two parts:

. A stream table of mole fractions for each component in each stream, and

total stream fiowrates.

. A table of other values produced during calculation. In this case, this

corresponds to the individual component flowrates in each stream.

of balan

si 	92 	93
benzene G6O0 	0.995 	0.010
toluene 0.400 	0.005 	0.990

Total 100 	59.898 40,099

of ModW
ompmI._rt. 	b.1.A. 60.000

I..., .1 40
.2 0.209

b.s.... .2 Go AN
ftmp- 30.09

b.,a.,. .3 5401

Figure F.6: Solution of Flowsheet Model

The model generated for this separation has been an overall component bal-

ance. The greatest amount of detail that can be provided in a model of a separator

is a mass balance including split fractions. Here, no fractions have been specified,

so the next best model is either a reaction balance or a component balance. Since

no reaction is associated with this unit the component balance is chosen.

So far, a mass balance has been performed around the separation section, and

it has been determined that distillation is a feasible method for the separation

indicated. To further investigate distillation an additional design node is required.

This is achieved via the topology option on the main menu. The full range of

operations is shown in Figure F.7.

Pisase provide a name for the unit: colLonni.
SPeCIfY the two unite to be connected (by name).
Stream source : source.
Stream sink 	columnS.
Specify the two unite to be connected (by name).
treem source : colunni.

Stream sink 	s,nk.
Does the now stream correspond to any of these from the level above?
Specify the two units to be connected (by name).
Stream source 	colLilini.
Stream elr,k : sink.

Inlets 	 .4

outlets 	 .5

.4

120

components
light_key
heavy_kay
m In _nam bar_of_plates
number_of_plates
minlmum_reflue_ratlo 	 or 	—object
reflus_rotlo 	 creote_utreom
distillate—stream 	 delete—stream
bottoms—stream 	 enhanoe_ltem_datalt

more —volatile —component 	 0na1yee_t1oeeht

lght_o am pan ante
heavy _camp unanta
key —re ntlae_volotluity

Figure F.7: Addition of a Design Node Containing a Distillation Column

Selection of enhance -it em_detail creates a new design node as a child of the

current one and moves the current focus there. Figure F.7 shows the result of

creating a new design node. The create-object option has been used to create

an object representing a distillation column. The text window shows the textual

input of the column's name "columni".

Streams are associated with the column using create-stream. A message

is printed in the text window asking for the specification of the units to be

connected. In this example, the first stream is the feed to the column. This is

228

specified as a connection between a source and coluinni. The new stream is

named automatically as "s4" and is associated with the equivalent stream at the

level above, i.e. si. The specification of the outlet streams is achieved similarly,

except that there are two outlets from the separation section at both levels. In

this case, the program asks for the association between equivalent streams to be

performed by the user. A message appears in the text window indicating that

the association is required, as in Figure F.7, and a menu of the relevant streams

is displayed in the graphics window. This menu is not shown in the figure.

Figure F.7 shows the resulting column object. The only values specified at

this point are the names of the inlet and outlets streams and the generic type of

which distillation is a specialisation, i.e. Vie-separation

Returning to the main menu shown in Figure F.1, selection of

separation_decisions reveals an additional operation at this level. Since a

distillation column is now present in the current design node the option of

distillation_evaluation is made available, as shown in Figure F.8. The graph-

ical representation of the separation is unaltered.

bwknm 0.010

101W~ 	 M400 	 toli..n. 	0.00

0. 800 b4n,. 0.006

0.005

dstiIIatIon f000lbllty 	 I
other _Ilqtild_oeparotlans 	I
'dtIIIotIon_eoluotIon 	 I
I $InIoh 	 I

Figure F.8: Additional Call for Separation Evaluation

It is possible for the designer to have changed the inlet specifications of the

column so the options for reassessing distillation feasibility and other liquid sep-

arations are available.

Selection of distillation-evaluation invokes a method which determines

details of the distillation operation from the separation at the level above. The

components are located and the corresponding slot in coluinni is set. The relative

volatility information is used along with the specifications on the product streams

to determine the light and heavy keys. The distillate and bottoms streams are

deduced by locating which of the output streams has most of the light key. This

stream is taken to be the distillate, implying that the other is the bottoms. In

the example here, benzene and toluene are the only two components present, so

the mixture is binary. Thus the slots for more and less volatile components can

be set. The resulting specifications are shown in Figure F.9.

Inlets .4

outlets .4

.6

is_a vW_"WaNan

components bwzom

light—key bele..

heavy—key tolu.r.

m In _num bar_aT_plates
flu m ber_of_piates
min Imum—rallux—ratio
ref lux —ratio

distillate —stream 16

bottoms—stream 06

more—volatile—component

less_volatI Is—corn ponant te1u.l

light—components

heavy—components
key _relative_volatility

distillation_epa citiCot I
column _condftions
di still ation_design
distillation_e con omice

Figure F.9: Distillation Evaluation Choices

The evaluation options open to the designer at this stage are shown in the

menu in Figure F.9. distillation-specification allows editing of the slots

shown in the figure.

If a strict procedure is adhered to, the specification of column conditions

should be performed now using the column-conditions option. However, they

may have been specified before this point, in which case, column-conditions can

be used to check the specifications against the criteria that it is desirable to have

a column pressure near atmospheric and temperatures such that the distillate can

be condensed by cooling water and the bottoms boiled by low pressure steam.

The column-conditions method calculates the bubble point of the tops and

bottoms streams at the specified pressure or 760mmHg if no value is given. These

are checked against the temperatures of cooling water and low pressure steam

respectively. If the values are acceptable, the specified pressure is accepted, oth-

230

erwise the pressure required to meet the temperature constraints is calculated.

The designer is able to accept the calculated values or select different ones.

Figure F.10 shows the result of the bubble point evaluation for the ben-

zene/toluene example. The text window provides a history of the method.

treon nource 	001

Stniaje sink 	sink.

°erfontiiing bubble-point calculations for s5.
Since no strum prunure was provided, a value of 760mm Hg was taken to be
esirabls,

the reoulting distillate bubble point 1. 363.352K which in totally condensible
33 cooling dater.

forming bubble-point calculations for aS....
column temperature is between 363.352K and 383.306K.

sot s suitable feud temperature 9

Solution of bubble—pointi

SolutIon of Model
bubble_poInt to 303.306
k_value benzan. se 2.320
vapour _preeeur, berizen, e6 1763.255
temperature .6 363,300
k_value tolueroe .8 0,007
vapaur_preeeur, toluene 86 749.608

Figure F.10: Verification of Column Feed Temperature

Initially, the bubble point of distillate stream s5 was calculated. Since no

pressure was specified, a value of 760mmHg was used. The solution was presented

in the graphics window with a summary in the text window. In this case, the

bubble point is 353K which, as has been reported, is condensible using cooling

water. The same evaluation was performed for bottoms stream s6. The solution

of the calculation is shown in the graphics window. The column temperature

range is thus identified and a request is made for a suitable feed temperature.

Once column conditions are set, the menu of distillation evaluation choices

as shown in Figure F.9, is presented again. Selection of distillation-design

should invoke a procedure for calculating column dimensions, such as number of

trays, tray sizes, column diameter, etc. For this example, only calculation of the

231

number of trays has been implemented. It is sufficient, however, to demonstrate

the principles discussed in Section 6.2, i.e. design of unit operations has a proce-

dural structure which depends on the specifications, and full access to modelling

facilities is required.

Selection of distillation-design invokes the design method which, in this

example, only contains a procedure for calculating the number of plates in the

column. For the current distillation column, two applicable models are presented:

the Fenske equation and a shortcut binary model. If the separation had not been

binary, the shortcut binary model would not have been presented.

It is possible to use both models separately. They involve different assump-

tions so the designer must determine which is most suitable. Here, both models

have been evaluated. The results of the Fenske model are shown in Figure F.11.

The available stream data is printed in a stream table, and other values in a

second table. The missing totals in the stream table indicate the incompleteness

of the model for fiowsheeting purposes. The aim of the calculation was to de-

termine the number of plates in the column, but other useful information has

been generated by the model. This data, including minimum refiux ratio and the

minimum number of plates, is displayed in the second table.

Solution of boiancdI

94 	95 	aS
benzene 0.600 	0.995 	0.010
toluene 0.400 	0.005 	0.990

Total

SOILft 	Of Modal
rallox_rallo oo*nyxl 1,014

oo*rn*1 I,cse
n,nb.r_of_ploi.. WW" 267*
rth,_nxnbar_&4ot.. oohnrol I040

loh,.n. ,4 0.645
V',OLWpf.l.ur. 	bILWO *4 446(
6_volu. 	 b.an. *4 1,497
VQw_pfu..41r. 	baan 14 1101,454

uolxrxl t 670 JWO

Figure F.11: Solution of Fenske Model for Column

The models used to evaluate the distillation column can be modified to assess

different specifications and levels of assumption. By returning to the main menu,

the analysis options are made available. In order to try different specifications, the

feed stream must be edited. Selection of the analysis option on the main menu

232

followed by analyse-stream (see Figure F.5) provides access to the slots of a

particular stream. Here, the feed stream s4 is edited in Figure F.12. Temperature

is selected from the edit menu and the value, 380, entered in the text window.

ecify a feed pressure (tnt hg); 760.
able estimate of the operating reflux ratio Is
icceptebla for the current problem? y.

7

thi

suitable feed temperature 	366.

r,g balinc. calculations for coli.tonl....
able estimate of the operating reflux ratio is
acceptable for the current probls? yes.

ng balance calculations for colunni..,.
ur. - Places provide a value ; 380.

1.2 * Rain.

1,2 ' 11n,

milli
source

sink

temperature sea

pressure 740

niohar_flowrats 100

ap.otfha_h.at

components
parent—slots

mote_fractIon 0,400 pressure

0400 mOlar_tlowrcts
specific—heat

comp—moss—rate components

comp_mols_rate male—traction
comp—moss—rats

material comp—mole—rate

reference—component material
reference_cOrn potent
tfln lab

Figure F.12: Altering the Feed Temperature Specification

Once the specification has been changed, the models of the distillation column

can be re-evaluated. The analyse-unit option in the analysis menu provides

access to the choices shown in Figure F.13, including modelling facilities. The

choices are detailed in Section 5.7.

The model with revised specifications is evaluated by selecting model_obj ect.

When the results are presented as in Figure F.11, the designer may recognise

that they are different from those calculated previously. To review all solutions

generated for models of this unit, review-solutions is selected. The chosen

model is displayed as shown in Figure F.14. This is the Fenske model with

revised specifications. When compared with Figure F.11 it can be seen that the

number of plates and the refiux ratio is different in the two solutions.

233

Inlets .4

outlets of

.6

is_a w6_N5.6ofl

Components bemone

4.400f.

light—key
heavy—key toltss

min—number—of—plates
number—of—plates
minimum_reflux_ratlo display_object

retlux_ratl o model —object

distil late —stream .6
display—model
review_solutions

bottoms—stream select _ate mative 	Gd at _m
more_volatIle_component b.&ss modify _current_model
less—volatile—corn parent tolvo.. IfInIsh
light—components

heavy—components
key —re lative_volatility

Figure F.13: Options for Process Unit Analysis

Solution of balance 8l

Th# rysdi hoe been oor.6.d from the holoIrç I

oolsnnl
fsa.len 	 oelsnnl
uod_mFI..,m_rIIs_rol10 	.rntl
01I11.d_oon'.4ot10 	 ooIwin1

.4 	.6 	.5

bsmoo. 0.500 01556 0.010

tel...'. 0.400 0,006 0000

ToI

SoliSon o(Model
,elhtoc.rello 1.421

1,164
b.q_of_ptoI.. ookt,..t 25.525

.4 	vs 	..el_plotM o.tjr,ml 11,430
.4 0.007

vow..i,. 	toltso. .4 051,525
k_volts 	 b..st. 14 7.131
vow_pr.ee.,. 	be." 94 tei e,540

ooljtstl 15701000

Figure F.14: Reviewed Fenske Model

234

The solution in Figure F.14 is supplemented by an additional table detailing

the models used. This is useful for comparing results from two different models.

For instance, the solution of the shortcut binary model can be reviewed as in

Figure F.15, This extra table details the difference in the basis of the models.

Solution of balonce4

lTh. —del hos boon oon*u.d from the oH.wIrç
Ih.4_r4lio._rb 	 col,,nnl

I 	 oebo.nnl

.4 	.6 	.6

bo.w.ro. 0.6 	01666 	0.0*0

ioluo.o. 0,4* 	0.h 	0660

101.1

WOO of
r01wrIo oob..mI 1.3*4
L..Iu. 	 tolovo. 04 0666

toluene 04 446,
.4 1,467

v0w..pr..o..r. 	boozo.. 04 1107.664
01ptknboo4 oekuro.1 *6701000
no..*oo_o*.ploI.. ..U.,..,1 *0.734

1.006

Figure F.15: Reviewed Binary Distillation Model

Other facilities would be useful for displaying models. In particular, simulta-

neous displaying of different models would allow direct comparison. The graph-

ics system used in the development of CLAP, however, cannot support multiple

windows and graphical input together. Another useful feature would be a ta-

ble displaying the specifications on the model, thus highlighting the differences

between models such as the two Fenske models here.

The analyse-unit method supports the models used for fiowsheet modelling.

These are now available to the designer to replace those generated by the distil-

lation design method.

The option select ..alt ernative..model informs the user of the current model

and the one suggested as most appropriate for the current unit. Figure F.16 shows

the model currently used for describing the distillation column and the suggested

fenske.gi11ilanduodel. The two models here may be very similar, but the old

model is not decomposed into the five modelling areas shown in the menu, so if

the model is being altered according to this decomposition, one that is known to

conform to it must be in place.

It may be decided here to model the distillation column with a simple mass

235

Modelling Information currently
available for columni is:

Cuffed Roe
"41"o

 lothi

I Su lod 	I reaction eqna
corn posftlon_eqna
energy_eqna

Illow_eqns

I Stinish

Figure F.16: Selection of an Alternative Distillation Model

balance. The current Fenske model does not incorporate a full mass balance

as is shown in Figure F.14, so composition_eqns is selected from the menu

in Figure F.16. The alternative composition models include the recommended

Fenske- Gillilandmodel, a split fraction model and an overall component balance.

Selection of the overall component balance requires the replacement of the old

model which does not conform to the five point decomposition. This is reported

to the designer in the text window as shown in Figure F.17. The subsequent

selection of model-object in the analyse-unit produces the stream table also

in Figure F.17.

The existing model is not standard - replacing with standard.
The (overall—component—balance of columni] has been implemented.

Performing balance calculations for colunni....

Solution of balancel

94 	23 	s6
benzene 0.600 	0.99 	0.010
toluene 0.400 	0.005 	0.990

Total 100 	59.898 40.099

Figure F.17: Solution of Overall Component Balance

Once the component balance is completed it can be reviewed with other mod-

els. The designer is able to change the model again, this time using the recom-

mended fenske..gillilan&iuodel of Figure F.16.

Models can be evaluated visually as opposed to numerically by using the

236

display-model option of the analyse-unit menu. Up to this point many models

have been created to describe the distillation column. These are presented to the

user as shown in Figure F.18.

balance
anti mate _of _th earetica I —trays _b Ina ry
tanaka_equation
fan eke _g 11111 and -model

11111 and _corral ati on
heu net Ic_rellux —ratio
mf_aeporatlon _factor
ova roil_corn pan ant— balance
underwood _mlnlmu m._rellux_ratlo

Figure F.18: Selection of Models for Display

Two types of model are represented in the menu in Figure F.18. The first

choice, balance is the expanded version of the current model of the item. The

other choices are the generic descriptions of the individual models which have

been used so far, in their unexpanded forms. For example, the Fenske equation

model does not include the definition of K-value which is one of its constituent

parts. The current model which includes the Fenske equation does, however,

incorporate the expansion of the K-value.

Examples of both types of model are presented in Appendix D. The visual

presentation is achieved using Jà.TEX [75]. The symbolic description of the model

is translated into a formatted ITEX file. Once processed, the document is dis-

played using a MTEX previewer program.

As a result of viewing the expanded version of the current model the designer

might decide that the model could be modified to provide more accuracy. In

particular the definition of the distribution coefficient, K, could be revised. This

requires selection of modifycurrentmodel from the analyse-unit menu.

The method presents the model to the user, separating terms which can be

expanded from those which can be edited. For instance, Figure F.19 shows the

terms of the Fenske equation which can be expanded to be the definition of K and

the separation factor. The separation factor is also a term which can be edited.

This implementation of the Fenske equation is valid for three definitions of the

separation factor: one based on mole fractions, which is used in this instance,

one based on molar flowrates and one on fractional recoveries.

Here, the model is further expanded by selecting expansion of the K-value

237

Ime options to expand are:l 	 Ima options to edit are:I

L&u. 	 4 	 I mf k._.oioro.1wr.i

ad it
expend
$tinixh 1

Figure F.19: Options for Investigating Fenske Model Modifications

expression. Similarly to the decomposition of the Fenske equation, K can be

further expanded to investigate the vapour pressure expression. However, as

shown in Figure F.20 the terms which can be edited include fugacity coefficient.

IThe options to expand ore:I 	 IThe options to edit are,

Your_..r. .4 	 kQMV__M1W0d 	04
plj.a..4a.4.M 04
pmtfag_aorNat!or, 	04

.ayoo.ff$.4.ni .4

.pnn
vapour-activity-coefficient
lug ac lty _coeltici ant
pynting _correction
partial_tugocity_coeflicient
$tln xi,

Figure F.20: Selection of Fugacity Coefficient as the Term to Modify

Choosing to edit this term instigates the inference discussed in Section 5.5.

The conditions required for the inclusion of an alternative definition are presented

to the user. Here, the current value of the fugacity coefficient, 1, is displayed

along with the suggestion that selection of an equation of state will allow the

replacement of the approximation with a full definition.

There are four equations of state available: Van der Waals, Redlich-Kwong,

Soave and Peng-Robinson. Here, Redlich-Kwong was chosen. Once the model is

completed, either by selection of an equation of state, or acknowledging accep-

tance of the original model, it is then evaluated.

Figure F.21 shows part of the solution of the new model. The table includes

values which could not be solved which are marked "unsolved". The blank terms

in the table correspond to the unspecified variables which are required before the

model can be solved completely.

In summary, this example has demonstrated the opportunistic approach to

238

Solution of Model
Ic_volue tolu.n s4 unsolved

fugoolty_oceiflolent toluen. .4 un.olved
oompre.lbtIlty tølun.
state _.q_b_ooeff tolu.n. 10.370
molar_vol urn. tolu.r.
.iat,_.q__oo.if tolu.n. 261708.080
r.dllch_wong_olph tolu.n*
vapour-pressure tolu.n. .4 881.828
k_value benzene , .4 unoIved
fugoclty_ocoiflcl,nt ber.ri. .4 unsolved
oompr.,,lblifty benzene

.iat._._b_ooeff beriz.n. 8.280
n,olor_ vol urn. benz.ne
state _.q_o_oo.if b.,.ni 100021.100
red loh_kwong_olphe b.i.n.
vapour _pr...ur. ben.n. .4 1610.550

mf.....patlon_footor column 1 10701.000
rnln_numb.r_of-plates column 1

Figure F.21: Solution of Modified Fenske Model

design of a unit operation. Strategies can be developed to guide the decision

making procedure. However, these strategies change according to the informa-

tion available at particular choice points. It has been shown that a structure of

extended methods can be used to implement such strategies and make available

the tools appropriate to the specifications.

Full access to modelling facilities was required throughout the example, show-

ing the interaction required between strategies and other tools. The use of a range

of modelling tools has also been demonstrated.

239

References
Westerberg A.W., Piela P.C., Subrabmanian E. & Elm W., "A Future Com-

puter Environment for Preliminary Design," Conference Proceedings: Founda-

tions of Computer-Aided Process Design - Snowm ass Village, Colorado, July

1989, Austin, Texas.

Subrahmanian E., Podnar G.W., Elm W. & Westerberg A.W., "Towards a

Shared Computational Support Environment for Engineering Design," EDRC

report 05-41-89, Pittsburgh (1989).

Preston M.L., "Integrated Process Plant Design," Conference Proceedings:

Foundations of Computer-Aided Process Design - Snowmass Village, Colorado,

July 1989, Austin, Texas.

Beltramini L. & Motard R.L., "KNOD - A Knowledge Based Approach for

Process Design," Comp. & Chem. Eng. 12 (1988), 939-958.

Myers D.R., Davis J.F. & Herman D.J., "A Task-Oriented approach to

Knowledge-Based Systems for Process Engineering Design," Comp. & Chem.

Eng. 12(1988), 959-971.

Douglas J.M., "A Hierarchical Decision Procedure for Process Synthesis,"

A.LCh.E. Journal 3l (1985), 353-362.

Douglas J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New

York, 1988.

Talukdar S. & Westerberg A.W., "A View of Next Generation Tools for De-

sign," Conference Proceedings: AIChE Spring National Meeting 1988,, Pitts-

burgh (1988).

Lien K., Suzuki G. & Westerberg A.W., "The Role of Expert Systems Tech-

nology in Design," EDRC report 06-13-86, Pittsburgh (1986).

Cherry D.H., Grogan J.C., Knapp G.L. & Perris F.A., "Use of Data Bases in

Engineering Design," Chem. Engng. Prog. 78 (1982), 59.

Benayoune M. & Preece P.E., "Review of Information Management in

Computer-Aided Engineering," Comp. & Chem. Eng. 11(1987), 1-6.

Branch J., "Towards Integrated Process Design," Processing (March 1985).

240

Britt 11.1., Smith J.A. & Wareck J.S., "A Computer-Aided Synthesis and Anal-

ysis Environment," Conference Proceedings: Foundations of Computer-Aided

Process Design - Snowmass Village, Colorado, July 1989, Austin, Texas.

Stephanopoulos G., Johnston J., Kriticos T., Lakshmanan ft., Mavrovouniotis

M. & Siletti C., "DESIGN-KIT: An Object-Oriented Environment for Process

Engineering," Comp. St Chem. Eng. 11(1987), 655-674.

Nishida N., Stephanopoulos G. & Westerberg A.W., "A Review of Process

Synthesis," A.L CILE. Journal 27(1981), 321-351.

Johns W.R. & Romero D., "The Automated Generation and Evaluation of

Process Flowsheets," Comp. St Chem. Eng. 3(1979), 251.

Kirkwood R.L., Locke M.H. & Douglas J.M., "A Prototype Expert System for

Synthesising Chemical Process Flowsheets," Comp. St Chem. Eng. 12(1988),

Lott D.H., "Simulation Software as an Aid to Process Synthesis," IChemE

Symposium Series 109, 1-22.

Stephanopoulos G., "Artificial Intelligence and Symbolic Computing in Pro-

cess Engineering Design," Conference Proceedings: Foundations of Computer-

Aided Process Design - Snowmass Village, Colorado, July 1989, Austin, Texas.

Siirola J.J. & Rudd D.F., "Computer-Aided Synthesis of Chemical Process

Designs," Ind. Eng. Chem. Fundamentals 10(1971), 353-362.

Siirola J.J., Powers G.J. &--Rudd D.F., "Synthesis of System Designs, III:

Towards a Process Concept Generator," AIChE J. 17(1971), 677.

Mahalec V. & Motard R.L., "Procedures for the Initial Design of Chemical

Processing Systems," Comp. St Chem. Eng. 1(1977), 57.

Mahalec V. & Motard R.L., "Evolutionary Search for an Optimal Limiting

Process Flowsheet," Comp. St Chem. Eng. 1(1977).

Lu M.D. & Motard R.L., "Computer-Aided Total Flowsheet Synthesis,"

Comp. St Chem. Eng. 9(1985), 431-445.

Davis J.F., "A Task-Oriented Framework for Diagnostic and Design Expert

Systems," Conference Proceedings: Foundations of Computer-Aided Process

Design (1987).

241

Preece P.E., PROCEDE - The Process Engineering Design Environment, Pa-

per presented at CHISA '90 conference, Prague, August 26-31, 1990.

Daniel! J. & Director S.W., An Object Oriented Approach to CAD Tool Con-

trol Within a Design Framework, SRC-CMU Research Centre for Computer-

Aided Design, Carnegie Mellon University, Pittsburgh, March 1989.

Henning G., Leone H. & Stephanopoulos G., MODEL.LA . A Modelling Lan-

guage for Process Engineering Part I: The Formal Framework, Laboratory

for Intelligent Systems in Process Engineering, Dept. of Chem. Eng., MIT,

Cambridge, MA, 1989.

Henning 0., Leone H. & Stephanopoulos 0., MODEL.LA . A Modelling Lan-

guage for Process Engineering Part II: Multifaceted Modelling of Processing

Systems, Laboratory for Intelligent Systems in Process Engineering, Dept. of

Chem. Eng., MIT, Cambridge, MA, 1989.

Smithers T., Conkie A., Doheny J., Logan B., Millington K. & Ming Xi Tang,

"Design as Intelligent Behaviour: An Al in Design Research Programme," DAI

Research Paper No. 426, Edinburgh (1989).

Bafiares-Alcántara R., "Proposed Working Areas for the Development of a

Design Environment System II," Internal Report (1990).

Piela P.C., "ASCEND: An Object-Oriented Computer Environment for Mod-

eling and Analysis," Carnegie-Mellon University, Ph.D. Thesis, Pittsburgh,

Pennsylvania, April 1989.

Lien K.M., Wahl P.E., Sorlie C. & Hertzberg T., Integration of Expert Sys-

tems and Quantitative Computation in Chemical Engineering Design, Paper

presented at CHISA '90 Conference, Prague, August 26-31, 1990.

Jackson P., Introduction to Expert Systems, Addison-Wesley, Wokingham,

England, 1986.

Rich E., Artificial Intelligence, McGraw-Hill, Singapore, 1983.

Struthers A., "A Knowledge Based Approach to Process Engineering Design,"

University of Edinburgh, Ph.D. Thesis, Scotland, 1990.

Bañares-Alcántara R. & Westerberg A.W., "Development of an Expert System

for Physical Property Predictions," Comp. & Chem. Eng. 9(1985), 127.

242

Sriram D., Banares-Alcántara ft., Venkatasubramanian V., Westerberg A.W.

& Rychener M., "Knowledge-Based Expert Systems: An Emerging Technology

for CAD in Chemical Engineering," EDRC report 06-22-86, Pittsburgh (1986).

Baiiares-Alcántara ft., Westerberg A.W., Ko E.I. & Rychener M.D., "Decade

- A Hybrid Expert System for Catalyst Selection - 1. Expert System Consid-

erations," Comp. & Chem, Eng. 11(1987), 265.

Lien K.M., "A Framework for Opportunistic Problem Solving," Comp. &

Chem. Eng. 13(1989), 331-342.

Levesque H.J. & Brachman R.J., "A Fundamental Tradeoff in Knowledge

Representation and Reasoning," in Readings in Knowledge Representation,

Levesque H.J. & Brachman R.J., eds., Morgan Kaufmann, Los Altos, Calif.,

1985.

Clocksin W.F. & Mellish C.S., Programming in Prolog, Springer-Verlag,

Berlin, 1981.

Kunz J.C., "Model Based Reasoning in CIM," Intelligent Manufacturing: Ex-

pert Systems and the Leading Edge in Production Planning and Control

(1988).

Carnegie Group, Inc., Knowledge Craft Reference Manual, Pittsburgh, PA,

1988.

Struthers A., "CLAP Reference Manual," Internal Report (1988).

McCabe W.L. & Smith J.C., Unit Operations of Chemical Engineering, 3rd

Ed., McGraw-Hill, 1976.

Westerberg A.W., Hutchison H.P., Motard R.L. & Winter P., Process Flow-

sheeting, Cambridge University Press, Cambridge, 1979.

Flower J.R. & Whitehead B.D., "Computer-Aided Design: A Survey of Flow-

sheeting Programs - Part I," Chem. Engng. 272 (1973), 208.

Flower J.R. & Whitehead B.D., "Computer-Aided Design: A Survey of Flow-

sheeting Programs - Part II," Chem. Engng. 273 (1973), 271.

Lee W., Christensen J.H. & Rudd D.F., "Design Selection to Simplify Process

Calculations," AIChE J. 12(1966), 1104.

Berger F. &Perris F.A., "FLOWPACK II - A New Generation of System for

Steady State Process Flowsheeting," Comp. & Chem. Eng. 3 (1979), 309.

243

Brannock N.F., Verneuil V.S. & Wag Y.L., "PROCESS Simulation Program -

A Comprehensive Flowsheeting Tool for Chemical Engineers," Camp. & Chem.

Eng. 3(1979), 329.

Rosen E.M. & Pauls A.C., "Computer Aided Chemical Process Design: The

FLOWTRAN System," Camp. & Chem. Eng. 1(1977).

Evans L.B., Boston IF., Britt 11.1., Gallier P.W., Gupta P.K., Joseph B.,

Mahalec V., Ng E., Seider W.D. & Yagi H., "ASPEN: An Advanced System

for Process Engineering," Camp. & Chem. Eng. 3(1979), 319.

Rosen E.M., "A Machine Computation Method for Performing Material Bal-

ances," Chem. Engng Progr. 58 (1962), 69.

Sargent R.W.H. & Westerberg A.W., "SPEED-UP in Chemical Engineering

Design," Trans. Inst. Chem. Engng. 42 (1964), 190.

Locke M.H. & Westerberg A.W., "The ASCEND II System - A Flowsheeting

Application of Successive Quadratic Programming Methodology," Camp. &

Chem. Eng. 7(1983), 615.

Hutchison H.P., Jackson D.J. & Morton W., "The Development of an

Equation-Oriented Flowsheet Simulation and Optimization Package-I. The

Quasilin Program," Camp. & Chem. Eng. 10(1986), 19-29.

Gorczynski E.W., Hutchison H.P. & Wajih A.R.M., "Development of a Mod-

ularly Organised Equation-Oriented Process Simulator," Camp & Chem Eng.

3(1979), 353-356.

Shacham M., Macchietto S., Stutzman L.F. & Babcock P., "Equation Oriented

Approach to Process Flowsheeting," Camp & Chem Ping. 6(1982), 79-93, Re-

view paper.

Perkins J.D., "Efficient Solution of Design Problems Using a Sequential-

Modular Flowsheeting Programme," Camp. & Chem. Eng. 3(1979), 375.

Mahalec V., Kluzik H. & Evans L.B., "Simultaneous Modular Algorithm

for Steady-State Flowsheet Simulation and Design," Camp. & Chem. Eng.

3(1979), 373.

Johns W.R. & Vadhwana V., "A Dual Level Flowsheeting System," PSE '85:

The Use of Computers in Chemical Engineering (1985).

244

Johns W.R. & Vadhwana V., "Convergence Studies in Dual-Level Flowsheet-

ing," Chem. Eng. Res. Des. 64(1986), 332.

Department of Chemical Engineering, University of Edinburgh, Esspros User

Manual, 1985-1989.

Norman R,L., "A Matrix Method for Location of Cycles of a Directed Graph,"

A.LCh.E,J, 11 (May 1965), 450-452.

Rudd D.F. & Watson C.C., Strategy of Process Engineering, John Wiley &

Sons, 1968.

Stadtherr M.A. & Wood E.S., "Sparse Matrix Methods for Equation-Based

Chemical Process Flowsheeting-I: Reordering Phase," Comp. Sc Chem. Eng. 8

(1984), 9-18.

Stadtherr M.A. & Wood E.S., "Sparse Matrix Methods for Equation-Based

Chemical Process Flowsheeting - H - Numerical Phase," Comp Sc Chem Eng.

8(1984), 19-33.

National Engineering Laboratory, Physical Property Data Service: Program-

mers Manual, East Kilbride.

Kunz J.C., "Concurrent Engineering in Building Knowledge Systems," Model

Based Reasoning in Engineering Summer School, Edinburgh (1989).

Ponton J.W., Hutton D., Jones C. & Skilling N., "A Demonstration "Intelli-

gent" Physical Properties Data System," Proceedings of Chempor 89, Lisbon

(1989).

Bafiares-Alcántara IL, "Proposed Working Areas for the Development of a

Design Environment System," Internal Report (1990).

Westerberg A.W. & BenjaminD.R., "Thoughts on a Future Equation-Oriented

Flówsheeting System," Comp & Chem Eng. 9 (1985), 517-526.

Lamport L., JIT&C- A Document Preparation System, Addison-Wesley, Read-

ing, MA, 1985.

Smith J.M. & Van Ness H.C., Introduction to Chemical Engineering Thermo-

dynamics, 3rd Edition, McGraw-Hill, Tokyo, 1975.

Reid R.C., Prausnitz J.M. & Poling B.E., The Properties of Gases and Liquids,

4th Edition, McGraw-Hill, New York, 1987.

245

