657 research outputs found

    North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2

    Get PDF
    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    On Design and Implementation of Generic Fuzzy Logic Controllers

    Get PDF
    Soft computing techniques, unlike traditional deterministic logic based computing techniques, sometimes also called as hard computing, are tolerant of imprecision, uncertainty, and approximation. The primary inspiration for soft computing is the human mind and its ability to address day-to-day problems. The primary constituents of soft computing techniques are Artificial Neural Network, Fuzzy Logic Systems, and Evolutionary Computing. This thesis presents design and implementation of a generic hardware architecture based Type-IMamdani fuzzy logic controller (FLC) implemented on a programmable device, which can be remotely configured in real-time over Ethernet. This reconfigurability is added as a feature to existing FLCs in literature. It enables users to change parameters (those drive the FLC systems) in real-time and eliminate repeated hardware programming whenever there is a need. Realization of these systems in real-time is difficult as the computational complexity increases exponentially with an increase in the number of inputs. Hence challenge lies in reducing the Rulebase significantly such that the inference time and the throughput time is perceivable for real-time applications. To achieve these objectives, a modified thresholded fired rules hypercube (MT-FRHC) algorithm for Rulebase reduction is proposed and implemented. MT-FRHC reduces the useful rules without compromising system accuracy and improves the cycle time in terms of fuzzy logic operations per second (FzLOPS). It is imperative to understand that there are over sixty reconfigurable parameters, and it becomes an arduous task for a user to manage them. Therefore, a genetic algorithm based parameter extraction technique is proposed. This will help to develop a course tuning and provide default parameters that can be later fine-tuned by the users remotely through the Web-based User Interface. A hardware software codesign architecture for FLC is developed on TI C6748 DSP hardware with Sys/BIOS RTOS and seamlessly integrated with a webbased user interface (WebUI) for reconfigurability. Fuzzy systems employ defuzzifier to convert the fuzzy output into the real world crisp output. Centroid of Area (CoA) method is most widely used defuzzification method for control applications. However, the prevalent method of CoA computation is based on the principle of Riemann sum which is computationally complex. A vertices based CoA (VBCoA) defuzzification method is introduced. It has been observed that the proposed VBCoA method for COA computation is faster than the Riemann sum based CoA computation. A code optimization technique, exclusive to TI DSPs, is implemented to achieve memory and machine cycle optimization. The WebUI is developed in accordance to a client–server model using ASP.NET. It acquires fuzzy parameters from users, and a server application is dedicated to handling data communication between the hardware and the server. Testing and analysis of this hardware G-FLCS has been carried out by using hardware-in-loop test to control various system models in Simulink environment which includes water level control in a two tank system, intelligent cruise control system, speed control of an armature controlled DC motor and anti-windup control. The performance of the proposed G-FLCS is compared to Fuzzy Inference System of Matlab Fuzzy Logic Toolbox and PID controller in terms of settling time, transient time and steady state error. This proposed MT-FRHC based G-FLCS with VBCoA defuzzification implemented on C6748 DSP was finally deployed to control the radial position of plasma in Aditya Tokamak fusion reactor. The proposed G-FLCS is observed to deliver a smooth and fast system response

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Transformation of graphical models to support knowledge transfer

    Get PDF
    Menschliche Experten verfügen über die Fähigkeit, ihr Entscheidungsverhalten flexibel auf die jeweilige Situation abzustimmen. Diese Fähigkeit zahlt sich insbesondere dann aus, wenn Entscheidungen unter beschränkten Ressourcen wie Zeitrestriktionen getroffen werden müssen. In solchen Situationen ist es besonders vorteilhaft, die Repräsentation des zugrunde liegenden Wissens anpassen und Entscheidungsmodelle auf unterschiedlichen Abstraktionsebenen verwenden zu können. Weiterhin zeichnen sich menschliche Experten durch die Fähigkeit aus, neben unsicheren Informationen auch unscharfe Wahrnehmungen in die Entscheidungsfindung einzubeziehen. Klassische entscheidungstheoretische Modelle basieren auf dem Konzept der Rationalität, wobei in jeder Situation die nutzenmaximale Entscheidung einer Entscheidungsfunktion zugeordnet wird. Neuere graphbasierte Modelle wie Bayes\u27sche Netze oder Entscheidungsnetze machen entscheidungstheoretische Methoden unter dem Aspekt der Modellbildung interessant. Als Hauptnachteil lässt sich die Komplexität nennen, wobei Inferenz in Entscheidungsnetzen NP-hart ist. Zielsetzung dieser Dissertation ist die Transformation entscheidungstheoretischer Modelle in Fuzzy-Regelbasen als Zielsprache. Fuzzy-Regelbasen lassen sich effizient auswerten, eignen sich zur Approximation nichtlinearer funktionaler Beziehungen und garantieren die Interpretierbarkeit des resultierenden Handlungsmodells. Die Übersetzung eines Entscheidungsmodells in eine Fuzzy-Regelbasis wird durch einen neuen Transformationsprozess unterstützt. Ein Agent kann zunächst ein Bayes\u27sches Netz durch Anwendung eines in dieser Arbeit neu vorgestellten parametrisierten Strukturlernalgorithmus generieren lassen. Anschließend lässt sich durch Anwendung von Präferenzlernverfahren und durch Präzisierung der Wahrscheinlichkeitsinformation ein entscheidungstheoretisches Modell erstellen. Ein Transformationsalgorithmus kompiliert daraus eine Regelbasis, wobei ein Approximationsmaß den erwarteten Nutzenverlust als Gütekriterium berechnet. Anhand eines Beispiels zur Zustandsüberwachung einer Rotationsspindel wird die Praxistauglichkeit des Konzeptes gezeigt.Human experts are able to flexible adjust their decision behaviour with regard to the respective situation. This capability pays in situations under limited resources like time restrictions. It is particularly advantageous to adapt the underlying knowledge representation and to make use of decision models at different levels of abstraction. Furthermore human experts have the ability to include uncertain information and vague perceptions in decision making. Classical decision-theoretic models are based directly on the concept of rationality, whereby the decision behaviour prescribed by the principle of maximum expected utility. For each observation some optimal decision function prescribes an action that maximizes expected utility. Modern graph-based methods like Bayesian networks or influence diagrams make use of modelling. One disadvantage of decision-theoretic methods concerns the issue of complexity. Finding an optimal decision might become very expensive. Inference in decision networks is known to be NP-hard. This dissertation aimed at combining the advantages of decision-theoretic models with rule-based systems by transforming a decision-theoretic model into a fuzzy rule-based system. Fuzzy rule bases are an efficient implementation from a computational point of view, they can approximate non-linear functional dependencies and they are also intelligible. There was a need for establishing a new transformation process to generate rule-based representations from decision models, which provide an efficient implementation architecture and represent knowledge in an explicit, intelligible way. At first, an agent can apply the new parameterized structure learning algorithm to identify the structure of the Bayesian network. The use of learning approaches to determine preferences and the specification of probability information subsequently enables to model decision and utility nodes and to generate a consolidated decision-theoretic model. Hence, a transformation process compiled a rule base by measuring the utility loss as approximation measure. The transformation process concept has been successfully applied to the problem of representing condition monitoring results for a rotation spindle

    Preprints / 2nd IFAC Workshop on Computer Software Structures Integrating AI/KBS Systems in Process Control, August 10-12, 1994, Lund, Sweden

    Get PDF

    The Translocal Event and the Polyrhythmic Diagram

    Get PDF
    This thesis identifies and analyses the key creative protocols in translocal performance practice, and ends with suggestions for new forms of transversal live and mediated performance practice, informed by theory. It argues that ontologies of emergence in dynamic systems nourish contemporary practice in the digital arts. Feedback in self-organised, recursive systems and organisms elicit change, and change transforms. The arguments trace concepts from chaos and complexity theory to virtual multiplicity, relationality, intuition and individuation (in the work of Bergson, Deleuze, Guattari, Simondon, Massumi, and other process theorists). It then examines the intersection of methodologies in philosophy, science and art and the radical contingencies implicit in the technicity of real-time, collaborative composition. Simultaneous forces or tendencies such as perception/memory, content/ expression and instinct/intellect produce composites (experience, meaning, and intuition- respectively) that affect the sensation of interplay. The translocal event is itself a diagram - an interstice between the forces of the local and the global, between the tendencies of the individual and the collective. The translocal is a point of reference for exploring the distribution of affect, parameters of control and emergent aesthetics. Translocal interplay, enabled by digital technologies and network protocols, is ontogenetic and autopoietic; diagrammatic and synaesthetic; intuitive and transductive. KeyWorx is a software application developed for realtime, distributed, multimodal media processing. As a technological tool created by artists, KeyWorx supports this intuitive type of creative experience: a real-time, translocal “jamming” that transduces the lived experience of a “biogram,” a synaesthetic hinge-dimension. The emerging aesthetics are processual – intuitive, diagrammatic and transversal
    corecore