
On Design and Implementation of Generic

Fuzzy Logic Controllers

Pallab Maji

Dept. of Electronics & Communication Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, India-769 008

On Design and Implementation of Generic
Fuzzy Logic Controllers

Thesis submitted for partial fulfilment of the

requirements for the degree of

Doctor of Philosophy
in

Electronics and Communication Engineering
by

Pallab Maji
(Roll No.: 511EC604)

Under the Supervision of

Prof. Sarat Kumar Patra
and

Prof. Kamalakanta Mahapatra

Dept. Electronics and Communication Engineering

National Institute of Technology, Rourkela

Orissa-769008, India

June, 2015

Dept. of Electronics & Communication Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, India-769 008

June 24, 2015

Certificate

This is to certify that the work in the thesis entitled “On Design and Imple-

mentation of Generic Fuzzy Logic Controllers” by Pallab Maji is a record

of an original research work carried out under our supervision and guidance in

partial fulfillment of the requirements for the award of the degree of Doctor of

Philosophy in Electronics and Communication Engineering. Neither this thesis

nor any part of it has been submitted for any degree or academic award else-

where.

Dr. Kamalakanta Mahapatra Dr. Sarat Kumar Patra

(Co-Supervisor) (Supervisor)
Professor, Dept. of ECE Professor, Dept. of ECE
NIT Rourkela, Odisha NIT Rourkela, Odisha

Dedicated

to

my family....

Declaration

I certify that

(a) The work contained in this thesis is original and has been done

by me under the guidance of my supervisors.

(b) The work has not been submitted to any other Institute for any

degree or diploma.

(c) I have followed the guidelines provided by the Institute in prepar-

ing the thesis.

(d) I have conformed to the norms and guidelines given in the Eth-

ical Code of Conduct of the Institute.

(e) Whenever I have used materials (data, theoretical analysis,

figures, and text) from other sources, I have given due credit

to them by citing them in the text of the thesis and giving their

details in the references. Further, I have taken permission

from the copyright owners of the sources, whenever necessary.

Pallab Maji

Acknowledgements

This dissertation would not have been possible without the guid-

ance and the help of several individuals who in one way or another

contributed and extended their valuable assistance in course of this

study.

The author would like to thank his supervisor, Dr. Sarat Kumar Pa-

tra, for his guidance and support on this research work. The author

would also like to acknowledge his co-supervisor, Dr. Kamalakanta

Mahapatra for his kind advice and inspiration.

The author would like to thank Board of Research for Fusion Sci-

ence and Technology (BRFST) and Institute of Plasma Research,

Gandhinagar for funding major part of this research. The author

would like to extend his gratitude towards Dr. Govindarajan, Mr.

J. J. Patel, Mrs. Rachana Rajpal and Mr. Hitesh Patel of Institute

of Plasma Research, Gandhinagar, for their contributions to this

project.

The author would also like to thank Prof. B. Subudhi, Prof. D. P.

Acharya, Prof. P. M. Khillar and Prof. S. Meher for their innovative

ideas and review during the entire duration of the project.

The author would also like to acknowledge and appreciate the help

from the faculty members especially Prof. S. Hiremath, Prof. A. K.

Swain, Prof. M. Okhade and Prof. S. Deshmukh of the department

for their continuous encouragement to delve into analytical aspects

of this work. The author would be grateful to the support extended

by the staff members of the department, specially Mr. P. Oram and

Mr. Ishwar during the entire journey.

The author would also like to thank his friends, especially Deepak,

Umakant, Bodhisattwa, Bhaskar, Chithra, Manas, Varun, Goutam,

Sankat, Bibhu, Deepak, Asis and Pramit for their accompaniment.

Their enduring effort in proof reading of the thesis is unforgettable.

The author would also like to extend his gratitude to his seniors

Prashant, Sudheendra, Jagannath, Yogesh, Manab and Dipak. The

author would also like to thank his lab partner Satyendra for his

extensive support and assistance during the entire period of his doc-

toral studies.

And finally the author would like to thank his family and friends,

whose faith and patience had always been the inspiring factor.

Pallab Maji
pallab.vsp@gmail.com

Abstract

Soft computing techniques, unlike traditional deterministic logic

based computing techniques, sometimes also called as hard com-

puting, are tolerant of imprecision, uncertainty, and approximation.

The primary inspiration for soft computing is the human mind and

its ability to address day-to-day problems. The primary constituents

of soft computing techniques are Artificial Neural Network, Fuzzy

Logic Systems, and Evolutionary Computing.

This thesis presents design and implementation of a generic hard-

ware architecture based Type-I Mamdani fuzzy logic controller (FLC)

implemented on a programmable device, which can be remotely con-

figured in real-time over Ethernet. This reconfigurability is added

as a feature to existing FLCs in literature. It enables users to

change parameters (those drive the FLC systems) in real-time and

eliminate repeated hardware programming whenever there is a need.

Realization of these systems in real-time is difficult as the compu-

tational complexity increases exponentially with an increase in the

number of inputs. Hence challenge lies in reducing the Rulebase

significantly such that the inference time and the throughput time

is perceivable for real-time applications.

To achieve these objectives, a modified thresholded fired rules hy-

percube (MT-FRHC) algorithm for Rulebase reduction is proposed

and implemented. MT-FRHC reduces the useful rules without com-

promising system accuracy and improves the cycle time in terms of

fuzzy logic operations per second (FzLOPS). It is imperative to un-

derstand that there are over sixty reconfigurable parameters, and

it becomes an arduous task for a user to manage them. Therefore,

a genetic algorithm based parameter extraction technique is pro-

posed. This will help to develop a course tuning and provide de-

fault parameters that can be later fine tuned by the users remotely

through the Web-based User Interface. A hardware software co-

design architecture for FLC is developed on TI C6748 DSP hard-

ware with Sys/BIOS RTOS and seamlessly integrated with a web-

based user interface (WebUI) for reconfigurability.

Fuzzy systems employ defuzzifier to convert the fuzzy output into

the real world crisp output. Centroid of Area (CoA) method is most

widely used defuzzification method for control applications. How-

ever, the prevalent method of CoA computation is based on the prin-

ciple of Riemann sum which is computationally complex. A vertices

based CoA (VBCoA) defuzzification method is introduced. It has

been observed that the proposed VBCoA method for COA computa-

tion is faster than the Riemann sum based CoA computation.

A code optimization technique, exclusive to TI DSPs, is implemented

to achieve memory and machine cycle optimization. The WebUI is

developed in accordance to a client–server model using ASP.NET.

It acquires fuzzy parameters from users, and a server application

is dedicated to handling data communication between the hard-

ware and the server. Testing and analysis of this hardware G-FLCS

has been carried out by using hardware-in-loop test to control var-

ious system models in Simulink environment which includes water

level control in a two tank system, intelligent cruise control system,

speed control of an armature controlled DC motor and anti-windup

control. The performance of the proposed G-FLCS is compared to

Fuzzy Inference System of Matlab Fuzzy Logic Toolbox and PID

controller in terms of settling time, transient time and steady state

error. This proposed MT-FRHC based G-FLCS with VBCoA defuzzi-

fication implemented on C6748 DSP was finally deployed to control

the radial position of plasma in Aditya Tokamak fusion reactor. The

proposed G-FLCS is observed to deliver a smooth and fast system

response.

Contents

Contents viii

List of Figures xii

List of Tables xv

List of Symbols xvii

List of Acronyms xviii

List of Code Snippets xx

1 Introduction 1

1.1 Introduction to Fuzzy Logic Systems 2

1.2 Fuzzy Sets . 3

1.3 Fuzzy Operators . 4

1.4 Fuzzy Rules . 5

1.5 Fuzzy Logic Control System . 6

1.6 Learning of FCP from Data . 8

1.7 Motivation of This work . 8

1.8 Objective of this work . 9

1.9 Literature Survey on Design and Implementations for FLCS on

various Hardware Platforms . 10

1.9.1 Analog Implementation of FLCS Design 12

1.9.2 Digital Implementation of FLCS Design 13

1.10 Inference from the Literature Survey 18

1.10.1 FLCS Implementation in FPGA and DSP Platforms 18

viii

Contents

1.10.2 Comparison between various Digital Platform for FLCS

Implementation . 18

1.11 Generic Fuzzy Logic Controller . 21

1.12 Problem Statement . 23

1.13 Outline of Thesis . 24

2 Generic Fuzzy Logic Controllers 25

2.1 Introduction to Generic Fuzzy Logic Controller System 26

2.1.1 Rule Reduction using Overlapping Membership Functions 28

2.1.2 Motivation for Modified FRHC (M-FRHC) 29

2.1.3 Analytical Differences between Conventional Overlapping

Membership Function (OMF) method and M-FRHC 31

2.2 Mathematical Modeling of G-FLCS 35

2.2.1 Overlapping Membership based Rule Reduction 37

2.2.2 Modified Fired Rulebase Hyper Cube (M-FRHC) 38

2.2.3 Modified and Thresholded Fired Rulebase Hyper Cube (MT-

FRHC) . 40

2.3 Defuzzification . 42

2.3.1 Defuzzification Algorithms . 42

2.3.2 Vertices based Center of Area (VBCoA) Computation 45

2.4 Performance Analysis . 46

2.5 Proposed MT-FRHC based G-FLCS Implementation and its Vali-

dation . 52

2.6 Summary . 54

3 System Architecture for MT-FRHC based G-FLCS 55

3.1 Introduction . 56

3.2 G-FLCS Parameters . 56

3.3 System Architecture of Proposed G-FLCS 57

3.4 Development of a Client-Server Model User Interface 58

3.4.1 client-server Model . 59

3.4.2 ASP.NET and development of WebUI 60

3.4.3 WebUI for Hardware G-FLCS 62

3.5 Genetic Algorithm based Fuzzy Parameter Extraction 62

3.6 Data flow of the proposed system . 66

3.7 System Integrity Test . 68

ix

Contents

3.8 Summary . 72

4 Implementation of Remotely Tunable MT-FRHC based G-FLCS

with VBCoA on Programmable DSP 73

4.1 Introduction . 74

4.2 Hardware Device: TI LCDK C6748 74

4.3 Generic FLC on DSP (TI LCDK C6748) 75

4.3.1 System Architecture . 75

4.3.2 Code Optimization . 76

4.3.3 Code Implementation . 77

4.4 Interfacing G-FLC with WebUI . 81

4.4.1 Data Communication between Hardware G-FLCS and Server 81

4.4.2 WebUI and its Operation . 81

4.5 System Performance and Analysis 83

4.5.1 System Modeling of Armature Controlled DC Motor 83

4.5.2 Hardware-in-Loop Test . 84

4.5.3 Fuzzy Control Parameter Generation 86

4.5.4 Performance Analysis . 87

4.5.5 Comparison to Existing Works 89

4.6 Summary . 90

5 Implementation of Proposed G-FLCS for Radial Plasma Position

Control in Aditya Tokamak Fusion Test Reactor 92

5.1 Introduction . 93

5.1.1 Controlled Thermonuclear Fusion 93

5.1.2 Tokamak Fusion Reactor . 94

5.1.3 Aditya Tokamak Fusion Reactor 94

5.2 Aditya Tokamak System Modeling 95

5.3 Control Strategy . 98

5.3.1 Using PID Control . 98

5.3.2 Plasma Position Control in Aditya using Traditional Fuzzy

Logic Controller . 99

5.4 Introduction to Multi Objective Genetic Algorithm 101

5.5 GA based FCP Extraction . 103

5.5.1 FLC I/O Identification . 103

5.5.2 FLC Parameter Identification 103

x

Contents

5.5.3 Parameter Constraints . 106

5.5.4 Parameter Extraction . 107

5.6 FLC Design and Implementation . 108

5.6.1 HIL Testing . 109

5.7 Performance Analysis . 110

5.8 Summary . 110

6 Conclusion 112

6.1 Summarized Results . 113

6.2 Contribution of this Thesis . 114

6.3 Limitations of this Work . 115

6.4 Few Scope for Future Work . 116

Appendix A 118

A.1 Fuzzy Parameter Files . 118

Appendix B 119

B.1 GA based Extracted FCP for Radial Position Control 119

Appendix C 122

C.1 Experiment 1: Automatic Cruise Control System for Cars[12] . . . 122

C.1.1 Aim . 122

C.1.2 System Modeling . 122

C.1.3 Controller Design and Tuning 123

C.2 Experiment 2: Two Tank Water Level Control [93] 124

C.2.1 Aim . 124

C.2.2 System Modeling . 124

C.2.3 Controller Design and Tuning 124

C.3 Experiment 3: Armature Controlled DC Motor[170] 125

C.3.1 Aim . 125

C.3.2 System Modeling . 125

C.3.3 Controller Design and Tuning 126

Bibliography 127

Dissemination of Work 151

xi

List of Figures

1.1 Bivalent sets to model room temperature. 3

1.2 Fuzzy sets to model room temperature 4

1.3 Black diagram of a FLCS . 7

1.4 Literature on FPGA implementation of FLCS as reported by sco-

pus as on May 2015 . 19

1.5 Literature on DSP implementation of FLCS as reported by scopus

as on May 2015 . 19

2.1 More than two fuzzy logic antecedent membership functions over-

lapping at once . 29

2.2 Inputs vs No. of Operations with constant overlaps 38

2.3 An Example: Input Membership Function 41

2.4 Various cases for vertices computation for Centroid of Area (COA)

Defuzzification . 43

2.5 Surface Plot to test Fuzzy Inference Parameter for Fuzzy Infer-

ence Structure (FIS) used in Fuzzy PI approximation controller

for ACDC motor control [170] . 47

2.6 Surface Plot to test Fuzzy Inference Parameter for Fuzzy Infer-

ence Structure (FIS) used in Fuzzy PI approximation controller

for Two Tank System [112] . 48

2.7 Surface Plot to test Fuzzy Inference Parameter for Fuzzy Infer-

ence Structure (FIS) used in Fuzzy PI approximation controller

for Truck Backer Control [142] . 49

xii

List of Figures

2.8 Dependency of MSE on threshold introduced in MT-FRHC Rule

reduction technique for FIS structure file employed in FLC to con-

trol various systems. These systems considered are two input one

output systems, no. of operations per inference is 16. 50

3.1 Proposed G-FLCS Design Architecture 59

3.2 Framework behind WebUI for hardware G-FLCS 61

3.3 WebUI for Hardware G-FLCS developed using ASP.NET with C#

and hosted using Microsoft IIS7 . 63

3.4 WebUI for Hardware G-FLCS developed using ASP.NET with C#

and hosted using Microsoft IIS7 . 64

3.5 Fuzzy Control Parameter (FCP) extraction using Genetic Algorithm 65

3.6 Dataflow of the proposed G-FLCS system 67

3.7 Plant output and Controller output of various test models. The

controller output is a comparison between output from Matlab

Fuzzy Logic Toolbox and proposed hardware G-FLCS. Plant out-

put shows performance of the proposed FLC structure with PID

controllers conducted using through HIL testing environment . . 68

3.8 Plant output and Controller output of various test models. The

controller output is a comparison between output from Matlab

Fuzzy Logic Toolbox and proposed hardware G-FLCS. Plant out-

put shows performance of the proposed FLC structure with PID

controllers conducted using through HIL testing environment . . 69

3.9 Plant output and Controller output of various test models. The

controller output is a comparison between output from Matlab

Fuzzy Logic Toolbox and proposed hardware G-FLCS. Plant out-

put shows performance of the proposed G-FLCS structure with

PID controllers conducted through HIL test environment 70

4.1 Functional Block Diagram of TMS320C6748 DSP 75

4.2 Memory Utilization of Proposed System Realized on TI C6748 DSP 78

4.3 Simulink Model for Speed Control of DC Motor 84

4.4 Test Setup for Hardware-in-Loop Testing of G-FLCS 85

4.5 Plant output and Controller output of ACDC Motor simulated us-

ing Matlab Fuzzy Logic Toolbox and HIL test with proposed hard-

ware G-FLCS . 86

xiii

List of Figures

5.1 Schematic of a tokamak . 95

5.2 Plasma Displacement inside Vacuum Chamber 96

5.3 Control Strategy for Aditya TFTR . 98

5.4 Simulink model of radial plasma position control in Aditya TFTR

with PID controller . 99

5.5 Simulink model of radial plasma position control in Aditya TFTR

with FLC . 100

5.6 Flowchart of Genetic Algorithm . 102

5.7 Flowchart of Genetic Algorithm . 104

5.8 MF co-ordinates for Parameter Extraction: Radial Position Error . 105

5.9 MF co-ordinates for Parameter Extraction: Plasma Current 105

5.10 MF co-ordinates for Parameter Extraction: Control Signal 106

5.11 Block Diagram for FCP Extraction for RP Control 107

5.12 HIL Simulation with PID, FLC[180] and G-FLCS 109

5.13 Performance of various controllers in presence of disturbances in

plasma position . 111

C.1 Coupled Tanks System [93] . 124

C.2 Armature Controlled DC Motor . 126

xiv

List of Tables

1.1 Taxonomy for Hardware Implementation of FLCS 11

1.2 Important works on G-FLCS . 22

2.1 Computed Ncells with varying n and O 33

2.2 Computed nop with varying Inputs and Overlaps 39

2.3 Centroid computation on C6748 DSP Hardware 46

2.4 Hardware Implementation: Timing Analysis 53

2.5 Hardware Implementation: Average Time Response 53

3.1 System Parameters . 57

3.2 TCP/IP Communication Layers and their Protocols 61

3.3 Genetic Algorithm Parameters . 62

4.1 Options in Compiler Level Optimization 77

4.2 Memory Map . 82

4.3 Results from hardware G-FLCS experiment with Simulink Model 88

4.4 Comparison between Proposed hardware G-FLCS and Similar

Designs based of Reconfigurable Parameters 90

5.1 Parameters of Aditya Tokamak under different power supplies . . 95

5.2 Characteristics of FLCs used in [180] and G-FLCS 100

5.3 Comparison of performance parameters of PID, FLC[180] and G-

FLCS . 110

6.1 Comparison between Proposed hardware G-FLCS and Similar

Designs based of Reconfigurable Parameters 114

C.1 Proportional and Integral Gains in ACC System 123

xv

List of Tables

C.2 Controller Gains in Speed Control of Armature Controlled DC

Motor . 126

xvi

List of Symbols

∆ Fuzzy operator
∆
−1 Inverse fuzzy operator

Λc Digital to Analog Converter
′ Matrix or vector transpose⋂

T-norm operator. Basic operation includes Minimum,
Product, Lukasiewicz, etc. Operated on a vector⋃
T-conorm operator. Basic operation includes Maximum,
Product, Lukasiewicz, etc

O Big O notation for complexity
−−−→
X (i) implies a vector formed from ith row of matrix X

→ implies in between
µ Membership function
µ (x) Value of Membership function for real value x

B Magnetic flux density
Bφ,Bθ,Bρ Toroidal, poloidal and radial components of the mag-

netic field
E Electric field intensity
J Plasma current density
R Major radial coordinate
a Minor radial coordinate
Γ Shafranov parameter

xvii

List of Acronyms

AC Alternating Current
ACDC Armature Control Direct Current
ADC Analog to Digital Converter
ASIC Application Specific Integrated Circuit
ASIP Application Specific Integrated Processor
ASP Active Server Pages
BOA Bisector of Area
CAN Controller Area Network
CMOS Complementary Metal Oxide Semiconductor
COA Centroid of Area
COG Center of Gravity
DAC Digital to Analog Converter
DC Direct Current
DSP Digital Signal Processor
FIS Fuzzy Inference System
FLC Fuzzy Logic Controller
FCP Fuzzy Control Parameters
FLIPS Fuzzy Logic Inferences Per Second
FPGA Field Programmable Gate Array
FzLOPS Fuzzy Logic Operations Per Second
IIS Internet Information Server
IC Integrated Circuits
LAN Local Area Network
LOM Largest of Maximum
MF Membership Function
MFG Membership Function Generator
MFRPS Mega Fuzzy Rules Per Second
MOM Middle of Maximum
OMP Overlapping Membership Function

xviii

PID Proportional Integral Derivative
SOM Smallest of Maximum
SPI Serial Peripheral Interface
SIMD Single Instruction Multiple Data
TCP Transmission Control Protocol
TI Texas Instruments
UART Universal Asynchronous Receiver and Transmitter
VLIW Very Long Instruction Word

xix

List of Code Snippets

4.1 MUSTITERATE Pragma . 79

4.2 A Loop Code With Unbalanced Resource Partition 79

4.3 Manually Unrolled Loop . 79

5.1 Describing nonlinear equality constraints 106

5.2 Fitness Function . 108

5.3 Fitness Computation . 108

xx

Chapter 1
Introduction

Overview

This chapter presents the fundamental concepts of a fuzzy system. It reviews

few of the existing fuzzy logic controller designs reported in the literature and

analyzes their implementation techniques. This chapter also address the issues

of reconfigurability and generality of the existing fuzzy system designs, thereby

lay the foundation of this research work and its contribution.

1

1.1. Introduction to Fuzzy Logic Systems

“We human beings, live in a very imprecise world. A world where our perception

of reality are far more important than actual reality.”

Daniel Keys Moran

It is well known that a human mind efficiently utilizes the modes of im-

precision and uncertainty to solve everyday problems. It is this tolerance of

imprecision, uncertainty, and approximation that helps human being make in-

formative decisions and enforce reasoning with ease and in a short time. It

is true that precision and certainty has ensured that mankind is able to fire

precision laser over a long distance, build powerful processors with trillions of

transistors, developed terra-pixel imaging devices, focus microscopic beams of

electron to capture minute details in nanometer scale, and accomplish many

more unimaginable achievement in science and technology. However, requir-

ing precision in engineering problems incurs a high cost and long lead time

in development. Prof. Lotfi Askar Zadeh described the power of uncertainty

and approximate reasoning over hard computing by illustrating how a human

mind work while parking a vehicle[206]. T. Ross took the instance of traveling

salesman problem to exemplify similar point [153]. It is, therefore, important

for any scientist or engineer to contemplate the requirement for approximate

reasoning and imprecision while considering fuzzy logic to solve a problem. The

prime desideratum is “how much imprecision can the system tolerate”.

1.1 Introduction to Fuzzy Logic Systems

Lotfi Askar Zadeh in 1965 [205] proposed fuzzy sets and described it as “a class

of objects with a continuum of grades of membership. Such a set is character-

ized by a membership function that assigns to each object a grade of member-

ship ranging from zero to one.” All fuzzy logic systems operate on this princi-

ple to mathematically represent linguistic variables and heuristic knowledge.

Fuzzy logic systems provide an alternative to the predominant conventional bi-

nary and deterministic logic based crisp data processing systems. Fuzzy set

theory provides the mathematical tool to carry out approximate reasoning and

to handle imprecision or vagueness of information. The concept of degrees of

membership is employed to provide a mathematical definition of fuzzy sets.

2

1.2. Fuzzy Sets

This enables various circumstances encountered in human reasoning to objec-

tify into scientific form.

1.2 Fuzzy Sets

Conventional bivalent set theory, often known as conventional set theory, can be

limiting in describing a ’humanistic’ problem mathematically. For example, Fig.

1.1 below illustrates bivalent sets to model room temperature. It is obvious that

the limiting feature of conventional sets is that they are mutually exclusive.

Figure 1.1: Bivalent sets to model room temperature.

It becomes impossible to generate association of a variable to more than

one set. Based on how human achieves perception, it is inaccurate to model

transition from quantity ‘cool’ to ‘warm’ when one degree centigrade of heat

is added to the system. The actual modeling in real life however, occurs with a

smooth transition or drift from ‘cool’ to ‘warm’. This transition can be captured

if the association itself can be modeled using some functions as depicted in

Fig. 1.2. Here, the association is modeled as a triangular function. In fuzzy

logic theory, the function which defines the association is called as membership

function. Thereby, in fuzzy set theory, apart from the value of the variable, the

degree of association of the variable to the set is also captured.

3

1.3. Fuzzy Operators

Figure 1.2: Fuzzy sets to model room temperature

Mathematically, a fuzzy set is a pair
(
ξ,µ

)
, where ξ is a set, also known as

universe of discourse, and µ : ξ→ [0,1]. This implies that µ presents the degree

of association of an element to the set ξ which lies in between [0,1]. Therefore,

∀x ∈ ξ,µ (x)→ [0,1], where µ (x) is called the grade of membership for x, x being

a fuzzy number in fuzzy set ξ.

A set
{
x ∈ ξ|µ (x)> 0

}
is called support and set

{
x ∈ ξ|µ (x)= 1

}
is called core

or kernel [32, 153]. The function µ is called membership function (MF) of fuzzy

set
(
ξ,µ

)
[32, 153].

A fuzzy system operates on various fuzzy sets to provide a suitable output.

It is often required that these fuzzy sets are combined meaningfully. Various

combination operators exist in ordinary set theory, and it is imperative that

there exist a commonality of operators between regular and fuzzy sets. These

operators are termed as aggregators [131].

1.3 Fuzzy Operators

Ordinary sets are combined or negated by using operators like intersection

(AND), union (OR), and complement (NOT) [131]. Similarly in fuzzy sets, mini-

mum, maximum and negation operators approximate AND, OR and NOT oper-

ations. However, on many occasion, AND operations can be achieved by func-

tions other than the minimum operation. These functions are collectively re-

4

1.4. Fuzzy Rules

ferred to as triangular norms or simply as t-norms. Similarly, OR operations

are referred to as triangular co-norms or t-conorms or s-norms[32, 153].

There are four basic t-norms and almost all t-norms used in a fuzzy system

are derived from these basic operations [32]. Consider µx and µy as membership

grade of two fuzzy numbers x and y, in a fuzzy set. Then the following equations

represents the various t-norm operations in a fuzzy system.

1.Zadeh Intersection: T
(
µx,µy

)
=min

(
µx,µy

)

2.Product Intersection: T
(
µx,µy

)
=

(
µx ·µy

)

3.Lukasiewicz Intersection: T
(
µx,µy

)
=max

(
0,

{
µx+µy−1

})

4.Basic Intersection: T
(
µx,µy

)
=





µx, i f µy = 1

µy, i f µx = 1

0, i f µx,µy < 1

Similarly, the t-conorm or s-norm operators can be represented as following

equations in a fuzzy system [32].

1.Zadeh Union: S
(
µx,µy

)
=max

(
µx,µy

)

2.Product Union: S
(
µx,µy

)
=µx +µy−

(
µx ·µy

)

3.Lukasiewicz Union: S
(
µx,µy

)
=min

(
0,

{
µx+µy−1

})

There three major fuzzy complement operators which have been widely used

in the literature [32]. These operators are;

1.Standard Complement: N
(
µx

)
=

(
1−µx

)

2.Sugeno’s Complement: Ns

(
µx

)
=

1−µx

1+sµx

3.Yager’s Complement: N
(
µx

)
=

(
µx ·µy

)

where s is Sugeno’s constant and w is Yager’s constant.

1.4 Fuzzy Rules

Words rather than numbers define linguistic variables. Fuzzy rules use these

linguistic variables instead of numbers to quantify variables. These linguistic

variables are represented as fuzzy sets with a certain function. This provides

the mathematical background of the fuzzy systems. All fuzzy rules are divided

into an antecedent part (starting with “IF . . .”) and a consequent part (ending

with “THEN . . .”). The antecedent parts describe the causes while the conse-

5

1.5. Fuzzy Logic Control System

quent parts describe effects relevant to desired control action. A typical form of

a fuzzy rule with Rulebase index Rb (k) is as shown below.

Rb (k) : If i1 is a1 and i2 is a2 and · · ·and iN is aN , then output is c j

where, i1, i2 · · · iN represents inputs, a1,a2 · · ·aN are called antecedent and c j is

the resultant consequent. All antecedents and consequents are represented by

valid linguistic variables in a fuzzy system.

1.5 Fuzzy Logic Control System

Traditionally, the industrial process control was dominated by binary logic based

reasoning. Heuristic knowledge hardly plays any role in these systems [24,

119]. This forced the systems to be represented by a collection of complex math-

ematical equations. The drive for precise and accurate control was expensive

and often proved to respond sluggishly. However, in recent past, the power

of human reasoning started to get acknowledged with the advent of FLCS in

nonlinear process control [115, 116, 176, 206]. The most appreciable feature of

FLCS is its ability to manage complex control problems through human knowl-

edge and numerical models provided by fuzzy set theory, instead of using com-

plex differential equations to derive mathematical models of a process plant.

The computing framework of a fuzzy logic control system (FLCS) rely on

three conceptual components:

i. Rulebase: This contains a database of rules that represent human knowl-

edge and heuristics. They define I/O relationship of the system in terms

of linguistic variables.

ii. Database: This defines the MFs that are used to define the linguistic vari-

ables in the fuzzy rules.

iii. Inference Mechanism: This performs the reasoning procedure based on

the Rulebase and Database.

These three components together constitute the Fuzzy Control Parameters (FCP).

At this juncture, an operator’s experience and knowledge is appropriately for-

mulated and configured into FCP. This FCP represents the “intelligence” in any

6

1.5. Fuzzy Logic Control System

Figure 1.3: Black diagram of a FLCS

fuzzy control algorithm. Hence, it can be asserted that the information of the

FLCS is dependent on the knowledge of the designer or the operator.

FLCS has four important modules which interact with the input to generate

a meaningful output[115, 119, 195]. The block diagram of the modules in a FLC

is represented in Figure 1.3. These modules are;

i. Fuzzifier: The input variables in a fuzzy control system that are real world

variables and also known as crisp input data, are in general mapped by

sets of membership functions, known as “fuzzy sets”. The fuzzifier gen-

erates a set of output in between 0 to 1, which are dimensionless. This

process of converting a crisp input value to a set of fuzzy values is called

“fuzzification”.

ii. Rulebase: It stores the heuristic rules that govern a typical fuzzy system.

These rules describe the output dependence of the inputs, and they are

mentioned in terms of the MFs representing the inputs and outputs of

the process plant.

iii. Inference Engine It accepts fuzzified inputs and applies reasoning de-

scribed by the Rulebase to work out fuzzy outputs.

iv. Defuzzifier: It translates fuzzy outputs from the Inference Engine into

substantive crisp output applicable to a real system.

7

1.6. Learning of FCP from Data

1.6 Learning of FCP from Data

Learning of FCP from data essentially means designing or extracting parame-

ters that governs the fuzzy controllers from a given sampled data or model of a

system. According to Wang et. al. [196] there are five steps in this process.

Step 1 The input and output spaces are recognized and divided into fuzzy re-

gions.

Step 2 The dataset is observed and fuzzy rules are generated from it.

Step 3 Each generated rule is assigned a degree to resolve any conflict that

arises amongst the generated rules.

Step 4 Based on visualization paradigm and human expert knowledge, some

rules can be directly inferred about the system. These rules are combined

with the generated rules.

Step 5 Once the rulebase is formed, the ouput in fuzzy domain can be obtained.

This output is mapped to real world output using a suitable defuzzifica-

tion procedure.

In the context of learning FCP, Step 1 to 3 can be manual or it can be formu-

lated as a learning problem itself. G. D. Finn proposed ‘Fuzzex’ for generating

fuzzy rules in general from data [54]. In this popular technique, they proposed

a five step method where cell occupancy is used. But this method does not suit

nonlinear system approximation. In 2009, SÃąnchez et. al., presented a genetic

algorithm based learning method which is robust to system noise [159]. Tuning

fuzzy rules using genetic algorithm has been widely investigated and is often

the most popular choice [161, 181, 189]. However, learning the entire FCP is

a difficult task at hand. To counter this issue, a new strategy for sophisticated

learning of FCP with Genetic Algorithm optimization technique is proposed in

Section 3.5.

1.7 Motivation of This work

PID controllers are widely used in industries even though they are inherently

linear and provides a sluggish response. They are generally not suited to con-

trol nonlinear process plants [13, 14, 25]. Their modeling requires a thorough

8

1.8. Objective of this work

knowledge of system dynamics and the tuning process is quite difficult too.

Fuzzy Logic Controllers (FLC) provide an imprecision based control approach

which is fast and reliable. However, they are driven by the human knowledge

which is prone to be erroneous. Some designs provide techniques to derive the

FCP from a dataset or model. However, this eradicates human knowledge com-

pletely. Therefore, it is highly desirable to have a FLCS with two level tuning.

• Coarse Tuning: Achieved by using suitable algorithm and FCP are ex-

tracted,

• Fine Tuning: Using an interface, system is fine tuned by an operator.

1.8 Objective of this work

Fuzzy logic systems have found applications in a variety of fields namely in-

dustrial process control, power systems, robotics, water resources, structural

design, metallurgy and material science, business and finance, and many more.

It is challenging for scientists and engineers to implement an efficient FLCS

design that can be integrated into their system of interest, especially if they

are not well equipped with knowledge of programming and system develop-

ment. Therefore, the primary objective of this research is to design and realize

a generic fuzzy logic controller system (G-FLCS) on a programmable hardware

that can be used for a variety of applications without reprogramming. Some of

the characteristic features of this proposed control device will include

• Plug and play framework: Essentially process plant operators are not

good programmers. It is, therefore, mandatory for a controller device to

possess a plug and play framework for ease of installation and operation.

Users can input the fuzzy parameters through an interactive user inter-

face.

• Runtime tunability: Most control device lacks this feature. The major

advantage of run-time tunability is that it provides an opportunity to in-

clude the concept of two level tuning, one of the prime motivating factor

for this research. This will offer the leverage to fine-tune the FLCS while

it is in operation so that the parameters can be reset to default under

critical conditions.

9

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

• Standalone operation: The prime requirement of any real-time system or

controller is to be able to operate in a standalone mode.

• Flexibility in operation order: A G-FLCS system primarily implies that

it can be implemented on any system with appropriate parameter tun-

ing; be it a single-input-single-output system or multiple-input-multiple-

output system. Thereby, it is implicit that the G-FLCS should have the

provision to accommodate a different number of inputs and outputs.

It becomes a challenging task when run-time tunability, flexibility in system

order and plug and play framework is combined with the standalone mode of

operation. Therefore, the architecture of traditional FLCS is required to be

altered in a way such that, the data integrity and operational methodology

remains consistent even after incorporating the above-mentioned features.

1.9 Literature Survey on Design and Implemen-

tations for FLCS on various Hardware Plat-

forms

In recent times fuzzy logic is addressing complex problems of control, forecast-

ing and prediction with imprecision in fields of robotics [1, 45, 45, 63, 102, 103],

chemical [10, 55, 86, 98, 140, 166] and manufacturing processes [59, 150, 207],

automobiles [16, 21, 31, 99, 194], business and finance[49, 88, 187, 202], power

electronics [3, 28, 104], and many others[35, 49, 79, 89, 90, 178] in a better way

than conventional control techniques. Wide spread application of the FLCS

and its extensively high effectiveness to a larger extend is driven by formaliz-

ing necessary human knowledge and sometimes behavior in the controller as

an imprecise and approximate representation. These factors impel engineers

to design and implement fuzzy based controllers for wide array of applications.

The hardware designs of FLCS can be classified into three broad categories

based on their circuit architecture.

• Analog,

• Digital, and

• Mixed Signal

10

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

Table 1.1: Taxonomy for Hardware Implementation of FLCS

Classification Platform Devices

Types of
Implementation

Analog
Dedicated IC Analog ASIC
Programmable IC FPAA
Commercial Processor –

Digital
Dedicated IC Digital ASIC
Programmable IC FPGA, CPLD
Commercial Processor

Mixed
Dedicated IC Mixed Signal ASIC
Programmable IC –
Commercial Processor –

Each of these can be further classified based on the aspect of system design and

platform for implementation.

Dedicated Integrated Circuits: These FLCS are designed primarily to tar-

get a single control application. These devices are mostly built over ap-

plication specific integrated circuits (ASIC) and implement full custom

analog, digital or mixed-signal designs [43, 60, 72, 100, 109, 114].

Programmable Integrated Circuits: Programmable Integrated Circuit based

FLCS devices are commercially developed in integrated circuits (ICs) that

can be reconfigured by the user. These tools provide attractive options

to designers and engineers. They have the ability to be reprogrammed,

and their high integration density is a fascinating feature. Commer-

cially available field programmable gate arrays (FPGAs) and field pro-

grammable analog arrays (FPAAs1) have been widely used in designing

of these systems [40, 65, 77, 125, 139, 146, 179, 186].

Commercial Processors: A software application defining the system is de-

veloped and deployed on these devices. Microprocessors (µP), Microcon-

trollers (µC) and Digital Signal Processors (DSPs) based systems are de-

fined under this category [81, 91, 138, 160, 164, 203, 204].

Different forms of FLCS implementation is presented in Table 1.1. The

forms of FLCS include;

1This is an integrated device comprising of configurable analog blocks (CAB) and in between
interconnects. Lattice and Anadigm are prime manufacturers of this device.

11

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

1.9.1 Analog Implementation of FLCS Design

A Large number of FLCS in literature have been developed on analog devices.

The major reasons that drive a FLCS design engineer to choose these platforms

are high parallelism, high speed, low area and low power consumption [23, 144,

171, 172]. Different forms of Analog IC based implementation includes;

1.9.1.1 Dedicated IC based FLCS

There are three modes in which these devices are implemented namely,

Current Mode implementation uses fewer transistor and hence they consume

low power. However, these devices can only connect to one output since

they work in current mirror mode [33, 209]. Some of the work those were

developed using these techniques are

• Tokmakci et. al.[185] designed current-mode CMOS FLC. The mem-

bership function circuit (MFC) implemented trapezoidal, triangle, Z-

shape and S-shape MFs. which were tunable by two voltages through

switches. The system developed was a two-inputs-one-output with 9

tunable rules only. The operation speed of this FLCS was reported

to be 6.25 Mega Fuzzy Logic Inferences per second (MFLIPS)[185].

• Gheysari et. al.[58] proposed a Flexible Structured Fuzzy Logic Con-

troller Chip (FS-FLC) on 0.35µm process. They implemented Or-

dered Weighted Averaging operator to aggregate multiple-input sin-

gle-output (MISO) system. However, the FLCS design used singleton

rules at output.

Voltage Mode implementation of FLCS can serve more than one outputs un-

like current-mode. Some of the noted designs include

• Mokarram et. al.[124]: developed a two-input, single-output Takagi-

Sugeno-Kang (TSK) FLC on 0.35µm standard CMOS process. The

system supports triangular and trapezoidal membership functions.

Membership function generator (MFG) provides generation and tun-

ing of the MFs but the design do not permit changing or tuning of

rules.

12

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

• Aminifar et. al.[8]: The designed a FLCS on 0.35µm CMOS process

with inference speed of 14.83 MFLIPS. They designed a 2-input one-

output system with mere 9 rules with support to only singleton MFs

at output. Moreover, the design do not allow any tunability.

1.9.1.2 Programmable IC based FLCS

There has been very limited research reported on FLCS implementationAnalog

Programmable ICs. Some of the most significant works include;

• Amaral et. al[7] designs and developed in PAMA-NG, a FPAA platform,

with I/O board connected to the PCI bus of the PC. The system used Ge-

netic Algorithm (GA) to reconfigure the FPAAs.

• Ionita et al.[73] also used evolutionary algorithm to tune MFs. They de-

veloped a Mamdani type FLCS on FPAAs.

It has been observed that designs implemented on Analog Programmable ICs

are extremely sensitive to problems of fanout and presence of switches on the

signal path [145]. It is also known that analog circuits are more vulnerable to

be affected by noise in comparison to Digital circuits.

1.9.2 Digital Implementation of FLCS Design

Fuzzy systems and control are making fast advancement in past decade and

two. Owing to its pragmatic achievements in consumer electronics and indus-

trial process control, implementation of FLCS has been rigorously researched

and developed. However, increase in process complexity of the industrial plants

is accelerating demand for controllers with high computational speed, low com-

plexity, easy deployment, comfortable handling and less development time in

terms of design. In order to conform to the demand-supply chain of the indus-

try, FLCS have to be designed accordingly. A noteworthy solution to fulfill this

growing market demand is to move to a digital platform. It is well known that

digital systems have high resistance to noise, temperature and voltage varia-

tions. There is a vast array of digital platforms available to an engineer for

design implementation that reduce turnaround time. Although, systems de-

signed in digital hardware platforms are not as fast as analog designs; still

a good system cycle time can be achieved which provide sufficient throughput

13

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

speed for the majority of the control problems. Table 1.1 shows the various

digital implementation platforms for realization of different FLCS designs.

1.9.2.1 Dedicated IC based FLCS

These implementations concentrate on structuring the fuzzy rules in a FLCS

and its functionality is defined by, whether these rules are evaluate sequen-

tially or in parallel. Some of the notable designs include

• Eichfeld et. al.[50] reported a four-input single-output FLCS with 4096

rules with eight MFs for each input. However, the system operated only

on two overlapping MFs and used singleton type MFs for output.

• Jacomet et. al.[78] described an architecture of a VLSI fuzzy processor

fabricated in the 0.7µm digital CMOS process. High performance was

achieved due to its parallel architecture. The FLCS evaluates 64 rules

but this design too uses two overlapping MFs scheme. Moreover, if four

inputs are used, the rules are limited to 64 and thereby, only 3 MFs per

input were allowed.

• Huang et. al.[70] developed a FLCS in 0.35µm CMOS process. However,

this design used trapezoidal MFs only with a fixed rulebase.

• Hamzeh et. al.[67] designed one of the most flexible structure for FLCS

in the literature. This device however do not discuss the speed of perfor-

mance.

• Javadi et. al.[66]’s design provides a new fuzzification method for hard-

ware on 0.13µm but it is only applicable to piece-wise linear MFs.

1.9.2.2 Programmable IC based FLCS

1.9.2.2.1 CPLD based FLCS Design It has been shown in Table 1.1 that

there are two preferred devices which can be categorized in this segment, namely

FPGA and complex programmable logic device (CPLD). There are very few

CPLD based designs reported in literature. Some of the important designs are,

• Hongguo Sun et. al. [177] presented a Fuzzy PID design on CPLD for

PWM trigger pulse generation to a full bridge inverter and a chopper cir-

cuit. It implemented a two-input one-output FLCS with fixed rulebase

and rigid MFs.

14

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

• Jingyan Xue et. al. [199] presented a novel methodology to design a fuzzy

reasoning based expert system on CPLD for fault diagnosis. Similar to

previous design, this too implemented a FLCS with fixed rulebase and

rigid MFs.

There are not many CPLD based FLCS designs that are reported in literature.

The decisive reasons are that CPLDs are cost and power intensive platform.

Moreover, there are platforms which are easy to configure than CPLDs.

1.9.2.2.2 FPGA based FLCS Design

• Adhavan et. al. [2] countered the problem of non-uniform variance of the

torque developed in a vector controlled permanent magnet synchronous

motor by introducing a FIS implemented on an FPGA. Author have re-

ported that the heuristic knowledge based FLCS (Fuzzy Logic Control

System) has reduced the torque ripple to 1.81%.

• Ben, Zekeri et al. [26] reported PD approximated FLCS developed on cy-

clone II FPGA to control a dual axis sum tracking systems. The simple

rules developed with human knowledge have been found to be success-

ful in reducing chip count, cost and development time of the controller

significantly.

• Santo and Ferreira [48] implemented a multi-state FLCS on virtex II

FPGA and NI compact R10−9002 to control servo- pneumatic actuation

systems. They showed significant performance gain in term of steady

state error, overshoot and settling time.

• Messai et. al. [118] reported a FLC to seek maximum power point de-

liverable by a photovoltaic (pr) module using measures of PV voltage and

current.

• Schriber et. al. [163]presented an interval type- II FLCS implemented on

a xiling spartan 6 FPGA utilizing DSP48AI slices for different linear and

non-linear modules.

• Tamukoh et. al. [182] reported a new technique of bit shift based fuzzy

inference method for an efficient digital hardware implemented. They im-

plemented the proposed design on a virtex II FPGA for a self-organization

relationship network.

15

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

These designs depicts that the realization of FLCS on FPGA development plat-

form is fast and efficient. However most of these designs are application spe-

cific. It is important to realize that even the speed achieved by these designs

cannot to achieved by any generic FLCS design as these appears a large amount

of branching in the G-FLCS algorithm.

1.9.2.2.3 Digital ASIC Design based FLCS Design

• Martinez-rodriguez [110] has presented a FLCS on ASIC platform where

the number of input to and output MFs can be varied on run time. How-

ever, in this design, the number of configurable parameters are very few

with a rigid rulebase.

• Evmorfopoulos et. al. [53] reported a G-FLCS structure on digital ASIC

which can had a maximum of five MFs at the input. All input MFs were

Gaussian type and output MFS are singleton type.

• D’Amore [44] reported a bit scalable fuzzy processors with three input

and MF generators. However like the previous design, this system do not

equate with output MFs other than singleton type too.

Digital ASIC design is generally quite time intensive in development and the

process incurs extreme cost. Without large production, these designs are not

cost-effective solution.

1.9.2.3 Commercial Processors based FLCS

1.9.2.3.1 FLCS Implementation with TMS320F Series DSP

• EL Khatib et. al. [51] presented a FLCS based SEPIC converter on

TMS32F28335 DSP device to successfully track the reference signal using

MPPT to transfer power around 4.8% than conventional PI based system.

• Eskandarin et.al [52] proposed a fuzzy instantaneous power theory to im-

prove conventional p-q theory dynamic performance and implemented it

on a TMS320F28335 DSP device.

• Okumus et. al. [135] has reported on FLCS design implementation of

TMS320F2812 DSP device to control a brushless DC motor and compared

the result with HB current controller. The heuristic knowledge based

FLCS is found to perform extensively well.

16

1.9. Literature Survey on Design and Implementations for FLCS on various
Hardware Platforms

1.9.2.3.2 FLCS Implementation with TMS320C Series DSP

• Uddin et. al. [190] showed a cost effective FLCS based controller de-

signs on TMS320C31 DSP to control an interior permanent magnet syn-

chronous motor for high performance industrial applications.

• S. Gai et al. [57] used a TMS320C6713 DSP device to implement a fuzzy

based Haar wavelet feature extraction technique to successfully classify

and detect a counterfeit banknote.

1.9.2.3.3 FLCS Implementation with dSpace DSP

• Butt et. al. [39] implemented FLCS based MTPA speed control of a

IPMSM drive on a DS1102 DSP.

• Like many FLCS designs reported on tracking of maximum power point

using MPPT algorithm Noman et. al. [134] also proposed a FLCS design

for similar application using a DS1104 DSP.

• Rafa et. al. [148] implemented a new FLCS design on DS1104 DSP to

solve coupling problem in vector control of induction motor.

• Rubaai et. al. [155] used DS1104 to implement a FLCS control structure

with adaptive la based Lyapunov synthesis for trajectory tracking control

of a brushless servo drive systems.

There are many more DSP based FLCS designs that have been successfully

implemented in various control applications. It can be readily inferred that

the development of DSP based FLCS is easy compared to FPGA [92, 141, 162].

However, since the parallel architecture can be implemented on FPGA, DSP

likes sequential processors are preferred less while developing application spe-

cific FLCS [6]. Moreover, the number of branching infractions are extensively

reduced in application specific FLCS design as the fuzzy parameters are fixed.

This makes FPGA platform more preferable. However for GFLCS design, the

situation is quite inverse. In next section, it will be explained why DSP is pre-

ferred over FPGA for this particular research work.

17

1.10. Inference from the Literature Survey

1.10 Inference from the Literature Survey

The previous section have laid down the various FLCS designs and some essen-

tial features in their implementation. It would be beneficial to summarize the

prime aspects of these designs. In this section, a brief inference of the literature

survey is portrayed.

1.10.1 FLCS Implementation in FPGA and DSP Platforms

FPGAs and DSPs are most widely used programmable devices for digital im-

plementations of various algorithms [29, 38, 83]. Traditionally, manufacturers

like Texas Instruments(TI) and Analog Devices developed processors for specif-

ically for signal processing applications and called them DSP. These are most

still most preferred platform for signal processing applications [92]. However,

the unsatisfiable need for gadgets that require higher performance and address

complex algorithms is driving growth that is hard to keep up with. FPGAs have

emerged as a solution to the much needed reconfigurable platform and are capa-

ble of addressing the design challenges of large and complex algorithms. How-

ever, algorithms that do not confront very high algorithmic complexities are

still realized in DSPs [92, 97]. TI reported that car manufacturers like BMW,

Audi, and Toyota were using DSPs for driver-less cars. DSPs have also been

reported to manage the real-time processing of visual data for advanced driver

assistance systems (ADAS) applications in the main automotive products [162].

Many researchers have implemented FLCS on FPGA and DSP platforms.

Figure 1.4 and Figure 1.5 clearly shows that these are two of the most preferred

platform for FLCS implementation.

1.10.2 Comparison between various Digital Platform for

FLCS Implementation

It can be seen from Figure 1.4 that FPGA have been most preferred FLCS de-

sign platform in literature [2, 26, 37, 48, 76, 106, 118, 139, 163, 182]. Some

FLCS architectures have also been developed over an application specific inte-

grated circuit (ASIC) [37, 87, 110, 129, 154] attaining a speed of more than 50

MFLIPS [33, 129, 209]. However, the design of these controllers does not make

them truly reconfigurable in nature. The major disadvantage is their unavail-

ability for field or on-line tuning [33, 142]. It has also been observed that many

18

1.10. Inference from the Literature Survey

Figure 1.4: Literature on FPGA implementation of FLCS as reported by scopus
as on May 2015

Figure 1.5: Literature on DSP implementation of FLCS as reported by scopus
as on May 2015

of the ASIC based designs have been developed using membership function

generators (MFGs). MFG circuitry can tune the membership functions (MFs)

by setting some voltages on IC pins [124, 172] but the Rulebase remains static.

To ensure field tunability, it is necessary to impart the FLCS with features that

would enable users to change control parameters in run-time. In some of the

FLCS designs, the fuzzy parameters are stored in digital memory as weights

[33, 84, 209] to impart features of tunability. This technique permits a look-up-

19

1.10. Inference from the Literature Survey

table based approach for fuzzy computations which reduces the computation

time. However, the online reconfigurability of such system becomes difficult.

This technique is well suited for application specific FLCS design where the

rulebase and the parameters remain unchanged during the majority of the op-

eration.

Though most of these designs are based on ASIC or FPGA platform, many

of the designs are developed on DSP platform for its ease of implementation

and reconfigurability [3, 57, 84, 105, 107, 123, 130, 155, 190, 193]. From Figure

1.5 it is evident that DSP have been also been a preferred platform for imple-

mentation of FLCS designs. However, these designs suffer from limitations on

the flexibility of weight update. Recently, few RISC processors have included

dedicated fuzzy instructions and have been seen to deliver a very high perfor-

mance in terms of FLIPS [36, 62, 157, 197]. These designs are summarized

in Table 1.2 where the number of inputs and outputs supported by these sys-

tems and maximum number of rules that can be evaluated by these systems

is listed. However, the common limitation of many of these designs is that the

control parameters can be updated only by removing these controllers from the

system, rendering the plant off-line. Some of the works have reported to update

parameters on-line through complex learning processes [4, 20, 34, 46, 127]. In

the current decade, DSP based FLCS designs have been widely used in control

applications[39, 68, 175, 191]. Over 250 DSP based fuzzy system designs have

been reported in last decade according to www.s
opus.
om. It has been found

that some of the most preferred DSP platforms for this type of design are Texas

Instruments’ TMS320F series DSPs[51, 52, 71, 135, 147, 149], TMS320C series

DSPs[57, 130, 173, 190, 191] and dSpace DSPs[39, 111, 134, 148, 155]. The

DSP platform is also found to be a preferred platform for FLCS design.

Even though FPGA is preferred platform for implementation of FLCs com-

pared to a programmable DSP, in this work implementation is done using a

TI C6748 DSP processor. The primary reasons for selection of the mentioned

hardware include:

• DSP provides efficient implementation of multiplication and accumula-

tion (MAC) and this helps COA implementation.

• File handling and socket programming is an integral part of this design.

These are achieved easily since the development is done using C lan-

guage.

20

www.scopus.com

1.11. Generic Fuzzy Logic Controller

• This design supports high level of branching and decision making.

Collectively, for this architecture, DSPs were judicially selected over conven-

tional FPGAs.

1.11 Generic Fuzzy Logic Controller

Generic fuzzy logic controller systems (G-FLCS) are standalone and remotely

tunable fuzzy logic control devices. These devices are developed on suitable

hardware platforms such that they can be easily interfaced with various process

plants. The major characteristic of these type of devices is that they do not

require reprogramming. These devices accept fuzzy parameters from the users

externally through some user interfaces or programmable pins.

G-FLCS designs are mostly crippled by their operational speed and hence

they are generally forced to operate under reduced functionalities. Some of the

prime G-FLCS designs on various platforms have been surveyed and tabulated

in Table 1.2. The table also lists the fuzzy parameters reported in these designs.

The following observations have been summed up after analyzing these designs.

• It can be observed, that majority of these designs use singleton MFs at

the output to reduce computational complexity. Centroid of area (COA)

method when applied to singleton, which is commonly known as weighted

average defuzzification method yields far low computational complexity.

However, unlike COA, weighted average does not compute the area under

the curve produced from the fuzzy outputs [153]. It can be observed that

COA presented in eq. (1.1)

Y ∗
=

∫
µc(y)yd y∫
µc(y)d y

(1.1)

can reduced to weighted average as depicted in eq. (1.2).

Y ∗
=

∑
µc(y) · y

∑
µc(y)

(1.2)

where Y ∗ represents the crisp output computed from output fuzzy set

µc(y) and output support membership function value y.

• These designs uses a stringent rule reduction technique where only two

overlapping memberships have been considered.

21

1.11. Generic Fuzzy Logic Controller

Table 1.2: Important works on G-FLCS

Year
Speed
(in FLIPS)

Platform Features

1995
[121]

0.63M
BiCMOS
2µm

Output MFs: Singleton (7)
I/O: 5 bit
Input MFs: 11
Overlaps: 2
Rules Evaluated: 4 per IC

1996
[197]

48-122

R3000A
RISC
Fuzzy
Processor

Output MFs: -
I/O: -
Input MFs:
Overlaps: 2
Rules Evaluated: 51

2005
[9]

15.87M
CMOS
0.35 µm

Output MFs: Singleton (7)
I/O: 2-1
Input MFs: 3
Overlaps: 2
Rules Evaluated: 9

2007
[201]

16.6M
CMOS
0.35 µ m

Output MFs: Singleton (7)
I/O: 2-1
Input MFs: 4
Overlaps: -
Rules Evaluated: 16

2007-2008
[61]
[136]

5.5K FPGA

Output MFs: Singleton (5)
I/O: 2-1
Input MFs: 8
Overlaps: -
Rules Evaluated: 64

2010
[56]

11K FPGA

Output MFs: - (5)
I/O: 2-1
Input MFs: 5
Overlaps: 2
Rules Evaluated: 25

2011
[200]

16.6M CMOS

Output MFs: Singleton (7)
I/O: 2-1
Input MFs: 4
Overlaps: 2
Rules Evaluated:16

2014
[172]

15M
CMOS
0.35 µm

Output MFs: Singleton(7)
I/O: 2-1
Input MFs: 5
Overlaps: 2
Rules Evaluated:25

2015
[124]

NA
CMOS
0.35 µm

Output MFs: Singleton
I/O: 2-1
Input MFs: 4
Overlaps: 2
Rules Evaluated:16

22

1.12. Problem Statement

• These systems evaluate very few rules to improve computational speed.

The reduction in the number of rules with only two overlapping member-

ship functions does not provide desired performance in terms of accuracy

of the system for many applications.

• In general, these systems cannot be remotely tuned. Some of these de-

vices have MFGs for tuning MFs but the Rulebase remains static and the

performance is limited to two inputs.

These limitations motivate research in soft-core generic FLC devices on pro-

grammable hardware where multifarious control over the system can be ob-

tained by varying different control parameters with modest computational com-

plexity.

1.12 Problem Statement

The limitations of the existing G-FLCS designs, as defined in Table 1.2, moti-

vated the research in developing a soft-core G-FLCS device on programmable

DSP hardware with two level tuning where multifarious control over the sys-

tem can be obtained with modest computational complexity. However, this de-

sign is extremely challenging owing to following conditions.

• Since the proposed design is expected to command a large number of fuzzy

parameters; it is imperative to develop an interactive interface for guiding

users to input fuzzy parameters.

• It is also a known fact that human beings are prone to make errors while

handling large data. Therefore, an automated system has to be deployed

which will extract coarse fuzzy parameters from a large input-output

dataset.

• The significant challenges in designing such a system lies in managing

an exponentially growing rulebase. Therefore, development of a suitable

rule reduction technique is required which will generate a desired output

consuming minimum cycle time.

• It has been discussed previously that defuzzification module in FLCS us-

ing COA technique is computationally quite expensive. A desirable COA

23

1.13. Outline of Thesis

scheme with low computation time is essential to achieving a dependable

system cycle time that is relevant to the majority of control applications.

1.13 Outline of Thesis

The thesis is presented in 6 chapters. Following this chapter on introduction,

the remaining thesis is organized as under: This thesis is organized as follows:

• Chapter 2 presents a mathematical model of the generic fuzzy logic con-

troller and describes the proposed MT-FRHC rule reduction technique. A

vertices based centroid of area computation algorithm for defuzzification

is also proposed.

• Chapter 3 explains the design architecture and develops the backbone

of the proposed the G-FLCS. The proposed architecture includes a web

based user interface (WebUI) for users to program fuzzy parameters in

the GFLCS, a genetic algorithm based fuzzy parameter extraction scheme

and a fuzzy framework.

• Chapter 4 implements the concepts developed in Chapter 2 and 3 in opti-

mized C code and realizes the proposed G-FLCS on a C6748 DSP proces-

sor. Applicability and performance analysis of the G-FLCS is analyzed.

• In Chapter 5, the proposed G-FLCS is used to control the radial position

of plasma in Aditya Tokamak Fusion Test Reactor (TFTR). The GA based

fuzzy parameter extraction process is used to obtain FCP for the control

problem. This FCP is used to control the plasma position in the Aditya

TFTR Simulink model and the same is compared to some of the previously

developed systems.

• Finally the research work is concluded in chapter 6 and the scope of future

work is explained briefly. The limitations and the scope for future work of

this research are also elaborated in this chapter.

24

Chapter 2
Generic Fuzzy Logic Controllers

Preview

This chapter presents an introduction to mathematical deduction of G-FLCS

architecture. A rule reduction scheme compatible with this architecture is also

incorporated to reduce the complexity of the system and assure it is realizable

in real-time. The proposed scheme is called modified and thresholded fired

rules hyper cube (MT-FRHC), and it is based on rule reduction technique using

overlapping membership functions. In MT-FRHC, control designers can dy-

namically assign the number of overlaps to be considered within the G-FLCS

system. Further, a thresholded fuzzifier optimizes the system with discourse

to computational complexity and throughput accuracy. In the proposed system

architecture, the number of t-norm and t-conorm operations per inferences can

also be dynamically varied between discrete values. This fuzzy model is ana-

lyzed with the context of its output performance and computational complexity.

A formative observation in favour of MT-FRHC has been inferred from this

analysis.

25

2.1. Introduction to Generic Fuzzy Logic Controller System

2.1 Introduction to Generic Fuzzy Logic Controller

System

G-FLCS are essentially hardware based general purpose control devices oper-

ating on fuzzy logic principles. Characteristic features of these control devices

include

• Plug and play framework,

• Runtime tunability, and

• Standalone operation.

In this chapter, a G-FLCS is presented that provides a runtime reconfig-

urable framework. This fuzzy system can be employed to control any system

that is in tandem with the controller I/O specifications. In most G-FLCS de-

signs, fuzzy control parameters (FCP) are updated as weights. FCP defines the

parameters like number of Inputs and Outputs, number of MFs in each Input

and Output, details of each MF like, their function type and their co-ordinates,

the Rulebase of the FLC defined by the index numbers of the inputs and out-

puts. These parameters are put into a FLC framework that drives the operation

of the fuzzy system. However, it can be noted that not all FCPs in a G-FLCS are

updated at run-time. The parameters that can be updated at run-time depends

on the architecture of G-FLCS, and can be termed as flexible parameters of G-

FLCS. Yosefi et. al. [200, 201] implemented G-FLCS on 0.35 µm CMOS technol-

ogy to achieve 16.6 MFLIPS but used singleton type membership functions at

the output with a rigid Rulebase. Moreover, only two overlapping membership

functions are considered in the design. Vasantha Rani et. al. [151] introduced

multicycle architecture for G-FLCS and implemented it on FPGA to achieve an

operational speed of 31K FLIPS. This system used singleton membership func-

tions at the output. It also used reduction in the number of rules that can be ac-

commodated. Most FLC designs in literature, are developed on reconfigurable

hardware namely FPGAs [2, 37, 117]. Some of these have also been developed

on application specific integrated circuit (ASIC) and have attained a speed of

more than 50 MFLIPS [33, 209]. But it can be observed among these G-FLCS

designs that, the majority of FCPs are not recognized as flexible parameters

and programmed directly into FLC core to achieve high speed. This leads to

conclusion that, the computational complexity of a G-FLCS system depends on,

26

2.1. Introduction to Generic Fuzzy Logic Controller System

• Number of FCPs considered as flexible parameters in the G-FLCS design;

• Maximum number of rules that the G-FLCS can accommodate,

• The type of defuzzification method employed for the conversion of the out-

put from fuzzy domain to crisp real value.

Some of the commonly used defuzzification methods include, centroid of

area (COA), bisector of area (BOA), mean of maxima (MOM), largest of max-

ima (LOM) and smallest of maxima [153]. COA is one of the most commonly

used defuzzification method in control applications and implemented as [64].

Y ∗
=

∫
µc(y)yd y∫
µc(y)d y

(2.1)

where Y ∗ represents the crisp output computed from output fuzzy set µc(y) and

output support membership function value y. However, COA is highly resource

intensive when fuzzy set associated with the output consists of fuzzy numbers

of type other than singleton. For singleton type output fuzzy set the continuous

representation in (2.1) is reduced to discrete representation leading to [153]

Y ∗
=

∑
µc(y) · y

∑
µc(y)

This chapter introduces a novel rule reduction technique named as MT-FRHC.

It improves the accuracy of existing overlap based rule reduction technique.

Fast inference time is the most important feature of the overlapping MFs based

rule reduction technique. The proposed MT-FRHC system achieves to increase

the accuracy without increasing the inference time. The FRHC rule reduc-

tion algorithms which is widely accepted and used because, it is the only algo-

rithm which performs effective rule selection without pruning or forking into

the Rulebase provided from the user [4, 127, 152, 161]. Pruning and forking

of rules in original rulebase is an application specific process [133, 165, 196].

These type of rule reduction techniques are not suitable for generic fuzzy sys-

tems. Pruning and forking of rules can be applied as a wrapper on top of the

proposed G-FLCS but these methods cannot be programmed into the core of the

G-FLCS. There are also layer-structured machine learning algorithms (Neural

Network, Genetic Algorithm) to learn the effective rules [74, 75, 167]. However,

these methods for rule extraction are computationally quite expensive. Thus

when an application is known, the fuzzy control parameters (which include

27

2.1. Introduction to Generic Fuzzy Logic Controller System

rulebase) can be extracted using these techniques. These techniques provide

good default parameters and this is described in Chapter 5 elaborately. For im-

plementation of G-FLCS in radial position control of plasma in Aditya TFTR,

a genetic algorithm based rule extraction technique is used which reduces the

rules in rulebase and thereby reducing effective rules. Therefore, it was re-

quired to derive an effective rule reduction scheme that do not fork and prune

the original rulebase like FRHC. Therefore, in this work, the FRHC algorithm

has been mathematically analyzed and suitable assumptions have been intro-

duced in it which can dynamically control the computational complexity of the

G-FLCS based on user requirement.

2.1.1 Rule Reduction using Overlapping Membership Func-

tions

The concept of overlapping membership functions has been widely used in re-

ducing computational time of fuzzy systems, specially in hardware development

of FLC as it eradicates the non-linear dependency between number of inputs

and computational complexity in the G-FLCS. It was originally proposed by

Eichfled et. al. in 1992 [50] and it was improvised in 1999 by I. Kalaykov and

named as Fired-Rules-Hyper-Cube (FRHC) [84]. However, this rule reduction

method is constrained by anticipating fixed number of overlaps that can affect

controller performance. It is characterized by a layered parallel architecture

of the fuzzy inference. Moreover, it reduces the dependency of processing time

on the number of inputs to the fuzzy system while dependency on the number

of rules and fuzzy partitioning of all variables are completely eradicated. This

concept has been adopted in various implementations of FLCS resulting in en-

hancement of speed [4, 127, 152, 161]. However, this stipulation of segregation

of input space with maximum of two overlapping membership functions, causes

major bottleneck in accuracy and tuning of the FLC, specially because the MFs

cannot be unevenly distributed over the input spaces, which is seen to be cir-

cumstantial in majority of non-linear FLC system design. However, if employed

in control of a non-linear system where the MFs are unevenly distributed over

the input space, this technique of rule reduction would fail to provide expected

accuracy.

28

2.1. Introduction to Generic Fuzzy Logic Controller System

2.1.2 Motivation for Modified FRHC (M-FRHC)

FRHC rule selection method constraints the Rulebase design by limiting the

number of MFs operating over any part of the input region to two. But when

this algorithm is applied to higher order non-linear systems with uncertainties,

the system performance gets affected and tuning becomes extremely difficult [4,

5]. Fuzzy controllers are important in situations where large uncertainties or

unknown variations are predominant in parameters and structures of a plant.

By introducing FRHC, this essence of Fuzzy Control is lost to certain extent

because of the assumption that only two overlapping membership operates over

the solution space. It is not sufficient to create a fuzzy hypothesis which can

incorporate large uncertainty and unknown variations. But, at same instance,

FRHC based G-FLCS is computationally cheap and easy to implement.

The most important module in the tuning of G-FLCS is the learning of FCP,

that can be achieved by many algorithms, namely Genetic Algorithm (GA), Uni-

variate Marginal Distribution Algorithm (UMDA) and others. The convergence

of these optimization algorithms depend on the flexibility of the membership

functions and the fuzzy partitioning of the input and the solution space. Since

FRHC is a constraint based rule reduction scheme, the convergence of the op-

timization algorithms are subject to the complexity of the system. This implies

that the convergence may or may not occur for a fairly complex system. There-

fore, it is the modality of the rule reduction scheme that needs to refined in

accordance to the proposed G-FLCS.

Thus to keep the simplicity of the FRHC intact while countering its limi-

tations of flexibility and modality, a modified fired-rules-hyper-cube (M-FRHC)

rule reduction technique is proposed and incorporated.

Figure 2.1: More than two fuzzy logic antecedent membership functions over-
lapping at once

29

2.1. Introduction to Generic Fuzzy Logic Controller System

Advantages of the proposed M-FRHC over its conventional counterpart FRHC,

can be understood considering a case where fuzzy logic antecedent MFs are dis-

tributed in the input space as shown in Figure 2.1. In the input space marked

as X and Y , any crisp input shall be fuzzified to more than two non-zero mem-

bership grade since there are more than two overlapping MFs. It is observed

that the number of non-zero membership grade in a fuzzified input cannot ex-

ceed more than the maximum number of overlaps between the MFs distributed

in the input space. In systems where optimization of FCPs are implemented, it

is more often than not that the MFs in the input, as well as in the output space,

will be distributed unevenly, and their overlaps will be inconsistent. When

FRHC is applied on these set of input MFs, useful data is lost if crisp input lies

within X or Y region of the input space. FRHC algorithm will fire the first two

rules related to the non-zero fuzzy values instead of three rules which is evi-

dent. This process is potentially erroneous where the error in the control output

is proportional to the weights of the membership function(s) discarded and its

associative implication on the Rulebase. Implementation of M-FRHC will allow

the number of overlaps to vary suitable with conjunction to the complexity of

the control system.

M-FRHC operates on a platform of dynamical assertion of overlaps in mem-

bership functions as per the Table 2.1. Based on the number of inputs, M-FRHC

will dynamically controls the number of overlaps to be considered. Introduction

of this feature allows fuzzy model to be flexible enough to accommodate the un-

certainties and modality of the system. However, with increase in input, when

there is an exponential growth in computational complexity, it reduces the over-

laps that are considered to reduce the computational complexity. This enforces

a trade off between accuracy and speed. However, in truly generic systems, the

operating point of this trade off should be defined by user. M-FRHC introduces

a sophisticate approach to achieve this through the concept of NCells which de-

fines the operating point on the accuracy and speed trade off. It is to be noted

that in Table 2.1, the bold and underlined values of NCells are used for all ex-

periments appearing in later part of this thesis. Although, it remains in the

discretion of the user to use any values of NC ells for a given O and n.

30

2.1. Introduction to Generic Fuzzy Logic Controller System

For example, consider the following rules,

I f input I is MF1 then Output O is P1

I f input I is MF2 then Output O is P2

I f input I is MF3 then Output O is P3

and the membership distribution over input space be as in Figure 2.1. For an

input value assuming to be 20, the actual fuzzication output will be approxi-

mately,

MF1 = 0.4, MF2 = 0.5, MF3 = 0.2

FRHC under the assumption of two overlapping membership function will re-

turn,

MF1 = 0.4, MF2 = 0.5

which implies that rule number three does not fire. However, the system ex-

pects rule three to fire since it has a weight of 0.2 associated with member-

ship function P3 in the output or solution space. In retrospective, if NCells is

configured to 5 with with number of inputs being one, M-FRHC will consider

maximum number of five overlaps in the membership function. Hence, it will

generate

MF1 = 0.4, MF2 = 0.5, MF3 = 0.2

ass the system would expect and thus firing rule number three in the Rulebase.

2.1.3 Analytical Differences between Conventional Over-

lapping Membership Function (OMF) method and M-

FRHC

FRHC based rule reduction scheme uses the concept of two overlapping mem-

bership functions to reduce the computation. This method is valid when the

maximum number of overlapping MFs distributed over the input space is lim-

ited to two. However, to counter uncertainty and variations in a nonlinear

plant, adaptive control is imperative. The basic objective of an adaptive con-

trol strategy is to maintain smooth performance of a system in the presence

of these uncertainties. Therefore, introduction of online and offline adaptive

fuzzy control is important feature of a G-FLC which essentially means updat-

ing and tuning FCP at various time intervals. The implementation of adaptive

31

2.1. Introduction to Generic Fuzzy Logic Controller System

fuzzy control strategy in proposed G-FLCS is explained in Chapter 3. So, with

M-FRHC in operation, the uncertainties are modeled better compared to con-

ventional overlapping membership methods of active rule reduction.

In FRHC technique, [50, 84]

y= yaggr.
(
y−1

w

)
(2.2)

where (2.3)

yaggr =

Ncells∑

i=1
wi.yi,yw =

Ncells∑

i=1
wi

where wi represents the non-zero weights of the fuzzified input and yi repre-

sents the Kernel of a output fuzzy set fired by the Rulebase.

Definition 1 (Fuzzy Set) Let X be a nonempty set. A fuzzy set A in X is

characterized by its MFs.

µA : X → [0,1]

and µA(x) is interpreted as the degree of membership of element x in fuzzy set

A for all x ∈ X .

Definition 2 (Kernel or Core) Let A be a fuzzy subset of X ; the support of

A, denoted supp(A), is the crisp subset of X whose elements all have nonzero

membership grades in A.

core (A) = {x ∈ X |A (x) = 1}

Definition 3 (Support) Let A be a fuzzy subset of X ; the support of A, de-

noted supp(A), is the crisp subset of X whose elements all have nonzero mem-

bership grades in A.

supp (A)= {x ∈ X |A (x)> 0}

Most G-FLCS are designed on the principles described in (2.2). For all such

FLCs, it can be observed that the computational complexity depend on Ncells

which is non-linearly related to number of overlapping membership functions

and number of system inputs. The number of system inputs can be presented

as:

Ncells =On (2.4)

where, O represents the number of overlaps considered and n represents the

number of inputs. The values of Ncells for different O and n is computed and

32

2.1. Introduction to Generic Fuzzy Logic Controller System

Table 2.1: Computed Ncells with varying n and O

n = 1 n = 2 n = 3 n = 4

O = 2 2 4 8 16

O = 3 3 9 27 81

O = 4 4 16 64 256

O = 5 5 25 125 625

O = 6 6 36 216 1296

M-FRHC 5 16 27 16

tabulated in Table 2.2. This shows that Ncells increases exponentially with

respect to the n. This dependency of Ncells on O and n can be analyzed for the

Table 2.2. For system implementation FRHC is a popular choice, where O = 2

as [84] states that, “..uncertainty has to be on boundary between two fuzzy

sets". Hereby, FRHC will take values from first column of Table 2.1 depending

on the in the system inputs. Now, if O predefined, the generic FLC system

assumes value of Ncells based on n and this remains static. Additionally, the

computational complexity increases exponentially with increase in n.

Consider a fuzzy logic system with n inputs where each input have x num-

bers of membership functions. This implies that the number of rules that can

result from this combination is xn. Now, for any input value I = [i1, i2, i3...in],

the resultant vectors
{
Ψ(ip),∀p ∈ [1, n]

}
(fuzzified inputs) will have maximum

of O numbers of non-zero values, where O is the maximum number of over-

lapping membership functions distributed over each of the input space. The

number of effective or active rules that can be fired will only depend on number

of non-zero values in the resultant fuzzified input. The number of non-zero val-

ues are directly proportional to the number of overlaps as shown in region X

and Y in Figure 2.1. It can be observed that, On out of a set of xn possible rules

will be effective rules. Ncells represents the number of active rules in FRHC

rule reduction scheme.

In the proposed MT-FRHC system, the maximum number overlapping mem-

bership functions considered at inference can be dynamically varied to provide

computational advantage. To strike a balance between accuracy and compu-

tational complexity, it is important to control the maximum number of over-

lapping membership functions dynamically. In this G-FLCS implementation,

the maximum number of overlaps to be considered has been systematically re-

33

2.1. Introduction to Generic Fuzzy Logic Controller System

duced with increase in the number of inputs. With increase in the number of

inputs, number of rules in an FLC increases exponentially leading to increased

computational complexity. However, this exponential growth in computational

complexity can be curtailed by decreasing the number of overlaps.

It can be noted that, in MT-FRHC the values of Ncells can be assumed from

Table 2.1 randomly. However, the proposed MT-FRHC scheme allow us to dy-

namically choose the maximum number of overlapping membership functions

which are underlined in Table 2.1. It can be observed that the assumed val-

ues appear as diagonal elements of Table 2.1. This is a naive approach to

implement the concept that as the number of inputs increases, the maximum

number of overlaps to be considered decreases. As, Ncells = On implies that

O =
n
√

Ncells. Again, Ncells is directly proportional to computational complexity

as shown in (2.2). To achieve a constant Ncells, O should be varied in accor-

dance to the change in number of input n. Thus in this G-FLCS implementa-

tion, ∀n = {1,2,3,4}, O = 5,4,3,2. Using these values in (2.4), in the proposed

M-FRHC based G-FLCS design, Ncells are assumed as following

Ncells =





5, ∀n = 1

16, ∀n = 2

27, ∀n = 3

16, ∀n = 4

These values of Ncells are assumed such that the number of effective rules for

every inference could be kept low without affecting the accuracy of the system.

This combination is seen to be optimal for this system since, increasing the

number of inputs will have minimum effect on overall computation time and

complexity.

In summary, for any system where MFs are distributed randomly over the

input space (as shown in an example Figure 2.1), FRHC will fail to produce

desired control output. However, configuring NCells effectively, M-FRHC can

tackle the evenness in the distribution of the fuzzy memberships in the input

and the solution space. The flexibility and modality of the M-FRHC algorithm

is completely tunable and hence it provides more inclusive environment for tun-

ing and optimization of FCP using learning algorithms. Due to the flexibility

in the structure, M-FRHC can generate complex hypothesis for FCP to incorpo-

rate large uncertainties and variations. Thus in these applications, FRHC can

34

2.2. Mathematical Modeling of G-FLCS

be replaced by proposed M-FRHC as the rule reduction technique and tuned

accordingly for improved performance and accuracy.

2.2 Mathematical Modeling of G-FLCS

Lemma 1 (Vector Combination) Let A and B be two vector of dimension d.

Λc(A,B) returns a matrix M of dimension d2×2.

mi, j =
(
ai, b j

)
∀i, j → [1, d]

where,

mi, j represents individual row in matrix M and consists of two elements ai and

b j each from set A and B respectively.

A multiple-input single-output (MISO) FLCS with N number of inputs is

considered. Each input space is segregated in z j fuzzy numbers and M rep-

resents the maximum number of membership functions that the system can

accommodate. The set of fuzzy numbers spread over each input space can be

presented as

Z =
{
z j|z j ∈ [1, M],∀ j → [1, N]

}

The FLCS transform the crisp inputs to the fuzzy domain using a fuzzifier

module. If input i is introduced to the fuzzifier with M membership functions,

then fuzzifier module returns a set of values corresponding to degree of each

membership when input i is mapped on them. This can be represented as

∆ (i)=ψi =
{
µ1 (i) ,µ2 (i) , . . .µM (i)

}
(2.5)

where
{
µ j (i) ∈ [0,1] ,∀ j → [1, M]

}

Input vector I = {i1, i2 · · · iN } is a set of scalar inputs, also known as crisp

input, to the FLCS system. When I is introduced to fuzzifier module it is trans-

formed to fuzzy domain as shown in (2.6).

∆ (I)=




ψ1

ψ2
...

ψN



=




µ1 (i1) . . . µM (i1)

µ1 (i2) . . . µM (i2)
...

...
...

µ1 (iN) . . . µM (iN)




(2.6)

35

2.2. Mathematical Modeling of G-FLCS

Λc is vector combination function operated on ∆ (I) to generate CR , a matrix

of size
(
MN ×N

)
.

CR =Λc

(
ψ1,ψ2, · · ·ψN

)′

If a Rulebase matrix Rb with NR rules is sorted based on antecedent, then

each set of antecedents corresponds to the index of consequent. A generalized

structure of a rule in Mamdani FLCS can be represented as,

kth Rule:

Rb (k) : If i1 is a1,k and i2 is a2,k and · · ·and iN is aN,k, then c j (2.7)

where, antecedents a1,a2 · · ·aN can be represent a unique index k, and k is

represented by

k = (aN aN−1 · · ·a0)M =

N∑

j=0
a jM

j (2.8)

where, M represents the maximum number of membership functions and N

repesents the number of inputs with j → [1, N]. Therefore, the kth index in

Rulebase matrix points to corresponding consequent.

Rb (k)= c j (2.9)

where c j ∈ [1, M] ∀ j = {1,2, . . .NR}

The fuzzy output inferred from Rulebase is a fuzzy set θ f which is essen-

tially a vector of M elements.

θ f (c j)=
NR−1⋂

k=0

(
θ f (Rb (k)) ,

(
N−1⋃

l=0

−−−−→
CR (l)

))
(2.10)

where, θ f is fuzzy output vector, index k varying from 0 to number of rules NR ,

Rb is the rule base matrix, CR represents the vector combination of fuzzified

input, l varying from 0 to N −1 and
⋂

and
⋃

representing t-norm and s-norm

operations respectively. The defuzzifier in G-FLCS converts fuzzy output vector

θ f into scalar output commonly known as crisp output.

θ f =
{
µ1 (θ) ,µ2 (θ) , . . .µM (θ)

}

θ =∆
−1 (

θ f

)
(2.11)

where, ∆−1 denotes inverse fuzzy operator operating on fuzzy output vector θ f .

36

2.2. Mathematical Modeling of G-FLCS

2.2.1 Overlapping Membership based Rule Reduction

FRHC can be realized by considering M = 2 in (2.6). To implement this, the

index of corresponding non-zero membership functions needs to be pursued and

used during inference mechanism. It is recorded in a matrix Pi. Thus, for this

condition (2.5) can be represented as

∆ (i)=ψi =

{ {
µ1 (i) ,µ2 (i) , . . .µM (i)

}

{p1 (i) , p2 (i) , . . . pM (i)}

Now, replacing M = 2, (2.6) becomes,

ψI =




µ1 (i1) µ2 (i1)
...

µ1 (iN) µ2 (iN)




PI =




p1 (i1) p2 (i1)
...

p1 (iN) p2 (iN)




(2.12)

where ψI represents fuzzified input matrix with non-zero membership degree

and PI represents the index of these non-zero membership degree.

CRk
=Λc (P1,P2, . . .PN)

CRV
=Λc

(
ψ1,ψ2, . . .ψN

)

Thus, the vector combination operation is to be applied on both matrices, PI and

ψI to obtain resultant matrices CRk
and CRV

. With this the output relationship

(2.10) can be represented as

θ f (c j)=
(N2)−1⋂

kx=0

(
θ f (Rb (kx)) ,

(
N−1⋃

l=0

−−−−−→
CRV (l)

))
(2.13)

where θ f is fuzzy output vector, index kx varying from 0 to number of rules

(NOl −1), Rb is the rule base matrix, CRV
represents the vector combination of

non-zero fuzzified input values, l varying from 0 to N −1 and
⋂

and
⋃

repre-

senting t-norm and s-norm operations respectively.

37

2.2. Mathematical Modeling of G-FLCS

2.2.2 Modified Fired Rulebase Hyper Cube (M-FRHC)

The G-FLCS described earlier in this section, has a complexity of O
(
MN

)
. For

FRHC rule reduction technique M = 2, the computational complexity reduces

to O
(
2N

)
. Table 2.2 presents the relationship between and number of overlaps

considered, with reference to number of Inputs. The complexity O is propor-

tional to number of operations per fuzzy inference nop. Therefore these notions

can be cumulatively formulated as

nop =Ol
N (2.14)

where Ol is the number of overlaps considered.

Figure 2.2: Inputs vs No. of Operations with constant overlaps

In G-FLCS, implementation of M-FRHC will allow the number of overlaps

to vary suitable with conjunction to the complexity of the control system. Here,

nop per fuzzy inference becomes a programmable parameter in this proposed

M-FRHC rule reduction technique. The effect of this complexity reduction is

presented in Figure 2.2. It can be observed that the number of fuzzy infer-

ences or operations varies exponentially against the number of inputs consider-

ing a different number of overlapping membership functions except the plot

38

2.2. Mathematical Modeling of G-FLCS

corresponding to M-FRHC. In this G-FLCS implementation, ∀n = {1,2,3,4},

O = 5,4,3,2. Using these values in (2.4), in the proposed M-FRHC based G-

FLCS design, Ncells = {5,16,27,16} This causes a slight drop in the green line

in Figure 2.2 specially when value of n transits from 3 to 4. It is observed from

Figure 2.2, that the plot corresponding to M-FRHC is considerably parallel to

x-axis on a logarithmic scale where all others are linearly increasing. This im-

plies that, M-FRHC generates a constant number of operations per inference

for all inputs N → [1,4] whereas, the complexity of the G-FLCS increases expo-

nentially with the increase in the number of inputs. It also caters a flexibility

of adjusting the uncertainties on the boundary between the fuzzy sets. Hereby,

(2.12) can translated to (2.15).

Table 2.2: Computed nop with varying Inputs and Overlaps

N

Ol 2 3 4 5 6

1 2 3 4 5 6
2 4 9 16 25 36
3 8 27 64 125 216
4 16 81 256 625 1296

ψI =




µ1 (i1) · · · µol
(i1)

...
. . .

...

µ1 (iN) · · · µol
(iN)




PI =




p1 (i1) · · · pol
(i1)

... · · ·
...

p1 (iN) · · · pol
(iN)




(2.15)

where, there are Ol number of elements in ψI . Ol represents the number of

overlaps considered.

It is required to track the index of membership function and link it to the

Rulebase matrix appropriately. Hereby, in this scheme it is required to imple-

ment the vector combination operation on PI along with ψI to generate CRk

and CRv
respectively. CRk

and CRv
can be represented as

CRk
=Λc (P1,P2, . . .PN)

CRv
=Λc

(
ψ1,ψ2, . . .ψN

)

39

2.2. Mathematical Modeling of G-FLCS

where Λc denotes the vector combination as defined in Lemma 1.

CRk
is required to derive the index of the Rulebase matrix Rb. The index kx

of Rulebase matrix Rb can be derived by

kx =

{
N−1∑

j=0
CRk

(x, j) ,∀x|x→

[
1, NOl

]}
(2.16)

Rb (kx)= c j

c j → [1, M]∀ j = {1,2, . . .NR}
(2.17)

Finally, fuzzy output is derived from the following relationship.

θ f (c j)=
nop−1⋂

kx=0

(
θ f (Rb (kx)) ,

(
N−1⋃

l=0

−−−−→
CRv (l)

))
(2.18)

where, θ f is fuzzy output vector, index kx varying from 0 to number of fuzzy

operations (nop−1), Rb is the rule base matrix, CRV
represents the vector com-

bination of non-zero fuzzified input values, l varying from 0 to N−1 and
⋂

and
⋃

representing t-norm and s-norm operations respectively. It is important to

analyze the data path of the system architecture to take advantage of the device

architecture on which it will be deployed. The target processor is a VLIW based

DSP device. The system architecture can be modified at later stage however,

there should be scope for data and instruction level parallelism.

2.2.3 Modified and Thresholded Fired Rulebase Hyper Cube

(MT-FRHC)

In this section, MT-FRHC is proposed to tackle the challenges of removing un-

wanted firing of rules by insignificantly close to zero fuzzy values. The removal

of these rules significantly increases computational speed without affecting the

output accuracy. This can be achieved by introducing a threshold in (2.15).

Consider an element in ψI that assume a very low value and eventually may

fire one or more rules. Based on T-Norm operators, weights of all these fired

rules are likely to be close to the value of the element. This value will produce a

minuscule λ cut-set at the fuzzy output set if there exist no value greater than

the current weight assigned to the corresponding member of the fuzzy set. The

effect of this λ cut-set is likely to result in a very fine change in output after

40

2.2. Mathematical Modeling of G-FLCS

defuzzification. Thus analytically, it is beneficial to remove these values from

ψI based on a suitable threshold.

Considering all elements of ψI is greater than threshold τ, ψI
T can be com-

puted as

ψI
T
= {d jq|(d jq ∈ψI ,∀ j → [1,Ol], q → [1, N]) (2.19)

and d jq > τ}

This implies,

d jq ∉ψI∀d jq < τ

where, d jq represents individual elements of matrix ψI
T . As the elements in ψI

decreases, the row vectors in CRv
and CRk

decreases. The number row vectors

is equal to nop and thus it can be inferred that τ is inversely proportional to the

computational complexity.

Consider the following example where the rules are

I f input I is MF1 then Output O is P1

I f input I is MF2 then Output O is P2

I f input I is MF3 then Output O is P3

and the input space is fuzzy partitioned as in Figure 2.3.

Figure 2.3: An Example: Input Membership Function

Assuming, NC ells = 5 with one input and the input value being x1, the M-

FRHC output is,

[MF1, MF2, MF3]

41

2.3. Defuzzification

It is obvious from Figure 2.3 that, MF1 > MF2 > MF3. Now if MF3 is very very

small, then its effect on the output is small. However, due to its firing, an ad-

ditional rule is active and it gets evaluated. This evaluated rule is extremely

weak as the weight it carries (from MF3) is very small. Thus, if this rule is ex-

cluded from the computation, the accuracy of the system does not change much,

but the reduction in computation is reduced by one-third(instead of 3 rules, only

2 rules are evaluated) in above example. Thus in MT-FRHC, a threshold τ is

expended to discard rules which carry extremely small weight.

2.3 Defuzzification

As discussed in the earlier section, to generate a quantifiable output using fuzzy

logic that can be implied in a real system, defuzzification process is obliga-

tory. Inference engine in a FLCS will have a number of rules that transform

variables into a fuzzy result described in terms of membership in fuzzy sets.

The defuzzification process converts output expressed in fuzzy sets to crisp out-

put using MFs. It employs certain mathematical operations to interpret the

membership degrees of the fuzzy sets into a particular decision or real value.

There are number of defuzzification algorithms in literature [94, 95, 153, 158].

The varied processes of defuzzification yields different crisp output. The most

widely used defuzzification methods are discussed further.

2.3.1 Defuzzification Algorithms

Leekwijck et. al. [96] classified defuzzification methods broadly in to

1. Maxima methods and its derivatives,

2. Distribution methods and its derivatives,

3. Area methods, and

4. Miscellaneous methods.

Leekwijck et. al. claim that the Maxima methods are suitable candidates for

fuzzy reasoning systems whereas the Area methods display the attribute of

continuity that makes them appropriate for FLCs. Zavala et. al.[210] states

that among numerous different defuzzification methods available in literature,

42

2.3. Defuzzification

most used for hardware purposes are Center of Area (CoA) which is classified

under Area methods and Mean Of Maxima which is classified under Maxima

methods. WA defuzzification method is the also among most frequently used

defuzzification technique which is classified under Area methods. Therefore,

since our target applications are fuzzy control, CoA and weighted average (WA)

is ultimately chosen as the defuzzification method for proposed hardware G-

FLCS.

Figure 2.4: Various cases for vertices computation for Centroid of Area (COA)
Defuzzification

43

2.3. Defuzzification

2.3.1.1 Weighted Average Defuzzification Technique

WA defuzzification method is the most frequently used defuzzification tech-

nique for fuzzy controllers owing to its low computational complexity. It can

even be easily implemented on slow processors like microcontrollers for real-

time applications. But this technique can be applied to symmetrical output

MFs. The WA method is computed by weighting each output MF by its re-

spected maximum MF value and accumulating them. This can be represented

as,

XW A =

∑
µC̃ (x) · x

∑
µC̃ (x)

where x represents centroid of each symmetric output MF C̃. It is generally

not used for G-FLCS with asymmetric output MFs [153]. Although there are

many instances where this method is used for FLCs with asymmetric output

MFs [176].

2.3.1.2 CoA Defuzzification Technique

CoA method is commonly known as center of gravity (CoG) defuzzification. It

was developed by Sugeno in 1985[176]. CoA is most commonly used technique

in fuzzy control and provides good accuracy [143, 153]. Mathematically this

technique is represented as

XCoA =

∫
µc(x)xdx∫
µc(x)dz

where µc(x) represents membership degree of each output MF. Continuity and

computational efficiency are of utmost importance for hardware G-FLCS. In

most realization of CoA, calculating the whole area and determining where its

weighted midpoint is essential. As it uses all elements from input universe,

it requires k = 2n −1 iterations according to number of bits (n) used for input

universe. These techniques aim at reducing resource consumption and compu-

tational time without loss of accuracy. Some hardware implementation for CoA

uses Center of Slice Area Average (COSAA)defuzzification technique proposed

by Zavala et. al. [69, 208, 210]. COSAA uses the summation of midpoints for

all α− levels instead of integrating the area under a curve.

44

2.3. Defuzzification

2.3.2 Vertices based Center of Area (VBCoA) Computation

The existing techniques for defuzzification using CoA have been seen to be com-

putationally time-consuming. One of the most widely used technique is the

Riemann sum based CoA computation. Riemann integral is used for deriving

the centroid of area in actual method [96, 143]. Centroid of a polygon can also

be computed using their vertices and has been widely used in geospatial ap-

plications [174]. This feature is used in the proposed VBCoA defuzzification

method. To reduce the defuzzification time, a new vertices based CoA (VBCoA)

computation method is proposed. The proposed method can be implemented in

following steps.

Step 1 Generate cut set matrix from all cut points with non-zero fuzzy output

values.

Step 2 Use cut set to segregate into any one of cases as presented in Figure

2.4.

Step 3 Generate intersecting matrix. Intersecting matrix includes intersect-

ing points of output MF.

Step 4 Generate individual set of vertices from intersecting matrix and cut set

matrix for various case structures as in Figure 2.4.

Step 5 Centroid on X-axis can be calculated as

COA =
1

6A

n−1∑
i=0

(yi + yi+1) (xi yi+1 − xi+1 yi)

A =
1
2

n−1∑
i=0

(xi yi+1 − xi+1 yi)

where n →number of vertices, xi → x co-ordinate of ith vertex, yi → y

co-ordinate of ith vertex

The steps 1 through 5 can be used to defuzzify fuzzy output θ f using COA

process in a fast and efficient manner1. The proposed VBCoA defuzzification al-

gorithm and the traditional Riemann sum based defuzzification algorithm were

implemented on a C6748 DSP processor with 300 MHz operating frequency.

To analyze the efficacy of the proposed algorithm, computation time using the

1Download Code Here: https://goo.gl/83bVna

45

2.4. Performance Analysis

VBCoA were compared to existing Riemann sum based CoA computation tech-

nique. A random set of fuzzy output was generated and defuzzified using these

two methods. The process was repeated for five times and he observed cycle

time is tabulated in Table 2.3. The randomly generated fuzzy output set ap-

pears in the first row of the table. The next two rows shows the consumed cycles

and the cycle time (in µs) respectively for traditional Riemann sum based CoA

computation. The final two rows shows the consumed cycles and the cycle time

(in µs) respectively for the proposed VBCoA computation. Table 2.3 reflects that

the proposed VBCoA technique provides a slightly better performance in terms

of computational time. VBCoA shows approximately 30% improvement in the

cycle time.

Table 2.3: Centroid computation on C6748 DSP Hardware

Riemann sum VBCoA Method

Cycles Time(µs) Cycles Time(µs)

[0.2,0.5,0.3] 7662 25.54 5316 17.72

[0.4,0.3,0.1] 7681 25.60 5320 17.73

[0.8,0.8,0.6] 7528 25.54 5305 17.68

[0.1,0.7,0.1] 7650 25.50 5316 17.72

[0.3,0.2,0.9] 7677 25.59 5309 17.70

2.4 Performance Analysis

In this section, the proposed MT-FRHC based G-FLCS analyzed. It is important

to analyze the designed methodology on existing FLCS designs. Matlab Fuzzy

Logic Toolbox (FLT) have been widely used to develop many fuzzy control ap-

plications. Every Matlab FLT uses a fuzzy parameter file called as fis file which

stores the FCP. In this analysis, the performance of the proposed MT-FRHC

based G-FLCS is compared to Matlab FLT.

To analyze the performance of the proposed system, it was implemented on a

test problem. Shiva Malla [170] used Matlab FLT to design a Fuzzy PI approx-

imate controller for speed control of an Armature Controlled Direct Current

(ACDC) motor. A web link to a FIS structure file used by Shiva Malla [170] for

Fuzzy PI approximation to control ACDC motor is provided in Appendix-A. The

Fuzzy PI Controller is a two-input one-output system with error and change in

46

2.4. Performance Analysis

(a) Fuzzy PI Approximation FIS: MT-FRHC

(b) Fuzzy PI Approximation FIS: Matlab Fuzzy Toolbox

(c) Fuzzy PI Approximation FIS: Error Plot

Figure 2.5: Surface Plot to test Fuzzy Inference Parameter for Fuzzy Inference
Structure (FIS) used in Fuzzy PI approximation controller for ACDC motor
control [170]

47

2.4. Performance Analysis

(a) Two Tank FIS: MT-FRHC

(b) Two Tank FIS: Matlab Fuzzy Toolbox

(c) Two Tank FIS: Error Plot

Figure 2.6: Surface Plot to test Fuzzy Inference Parameter for Fuzzy Inference
Structure (FIS) used in Fuzzy PI approximation controller for Two Tank System
[112]

48

2.4. Performance Analysis

(a) Truck Backer FIS: MT-FRHC

(b) Truck Backer FIS: Matlab Fuzzy Toolbox

(c) Truck Backer FIS: Error Plot

Figure 2.7: Surface Plot to test Fuzzy Inference Parameter for Fuzzy Inference
Structure (FIS) used in Fuzzy PI approximation controller for Truck Backer
Control [142]

49

2.4. Performance Analysis

(a) Fuzzy PI Approximation to Control ACDC Motor

(b) Water Level Control of Two Tank System

(c) Truck Backer Control System

Figure 2.8: Dependency of MSE on threshold introduced in MT-FRHC Rule
reduction technique for FIS structure file employed in FLC to control various
systems. These systems considered are two input one output systems, no. of
operations per inference is 16.

50

2.4. Performance Analysis

error (δError) as the input and control signal as the output. The range of both

the input space varies from −1 to 1. he output ranges from −30 to 30. All pos-

sible combinations inputs with a step of 0.001 are sequentially introduced into

the MT-FRHC based G-FLCS, and the correspond results are noted for thresh-

old τ = 0.2. A surface plot is generated from these observed results as shown

in Figure 2.5a. The x-axis represents the error ranging from 0 to 1 with a step

size of 0.001, while the y-axis shows the change in error(δError) also ranging

from 0 to 1 with a step size of 0.001. The output of the G-FLCS is plotted in the

z-axis. Similarly, a surface plot is generated using Matlab FLT using the same

FCP. This is presented in Figure 2.5b. The individual error between these two

system output is calculated and plotted in Figure 2.5c. The x and the y- axes,

which represents the inputs remains same as in the other plots. However, the

z-axis represents the absolute error between the system output generated from

the proposed MT-FRHC based G-FLCS system and Matlab FLT. Considering

Matlab MLT as the true value, it can be observed MT-FRHC based G-FLCS

produces a peak error of ±2 over an output range of ±30. At this moment, the

proposed system produces a maximum of 6.67% error.

The generality of a G-FLCS can only be established once it is implemented

on different FLCS designs. The proposed MT-FRHC based G-FLCS controller

is tested similarly with two other benchmark control problems, namely, a water

level control of a two tank system [112] and a truck backer control system[142].

Figure 2.6a shows the surface plot for output (on z-axis) of the MT-FRHC based

G-FLCS system with respect to the water level (in x-axis) and input flow rate

(y-axis). Figure 2.6b represents the surface plot for output (on z-axis) of the

Matlab FLT system with respect to the water level (in x-axis) and input flow

rate (y-axis). The surface plot of the error between these two systems is pre-

sented in Figure 2.6c. It can be seen that for this particular example, MT-FRHC

based G-FLCS produces a peak error of ±3×10−15 over an output range of ±1.

Now, the proposed system produces a negligibly small error that is very close to

0.

In Figure 2.7a, the surface plot for fuzzy output (on the z-axis) of the MT-

FRHC based G-FLCS system is plotted for a truck backer system. Figure 2.7b

represents the surface plot for fuzzy output (on the z-axis) of the Matlab FLT

system for the same system. The surface plot of the error between these two

systems is presented in Figure 2.7c. It can be seen in error surface plot that,

MT-FRHC based G-FLCS produces a peak error of ±5 over an output range of

51

2.5. Proposed MT-FRHC based G-FLCS Implementation and its Validation

±40. At this moment, the proposed system produces an error of 1.25%.

Following the previous analysis, the same benchmark control problems were

employed to draw dependency between the threshold τ and mean square error.

It is analytically evident that MSE is proportional to the threshold τ. However,

the computational complexity of G-FLCS is inversely proportional to τ. In an

ideal scenario, a G-FLCS encounters following optimization problem.

• Lower value of τ to reduce MSE.

• Higher value of τ to reduce computational complexity.

For MT-FRHC based G-FLCS, MSE is calculated with respect to Matlab FLT

against different threshold values. In Figure 2.8, the trend of MSE with in-

crease in τ is presented for Fuzzy PI Control of ACDC motor [170], a water

level control of a two tank system [112] and a truck backer control system[142].

It can be observed that MSE of a system is variedly dependent on different FIS

structure file at the constant threshold. Thereby, it can be safely inferred that

τ has to be dynamically assigned to a G-FLCS depending on the system it is

employed, and this factor cannot be generalized. As a result of this, selection of

τ should be based on

• accuracy demand from the system

• throughput time of the system

2.5 Proposed MT-FRHC based G-FLCS Implemen-

tation and its Validation

At this juncture, it is necessary to implement the proposed algorithm on a pro-

grammable device and validate the results. To achieve this, the proposed sys-

tem is implemented on a TI TMS320C6748 DSP processor operating on 300

MHz with τ = 0.2. For comparative analysis of the MT-FRHC based G-FLCS

technique, the Overlapping Membership Function (OMF) based G-FLCS is also

implemented on the same platform. A 4-input/1-output, 9 rule, COA defuzzi-

fication FLC was used for testing. A download link to this FCP is provided in

Appendix-A. The timing analysis of this experiment conducted is presented at

52

2.5. Proposed MT-FRHC based G-FLCS Implementation and its Validation

Table 2.4: Hardware Implementation: Timing Analysis

Sl. Cycles Time (ms) FLIPS

1. 43370 0.1445 6920.42
2. 38546 0.1285 7782.10
3. 38451 0.1282 7800.31
4. 38182 0.1273 7853.6
5. 37567 0.1282 7800.31
6. 30944 0.1032 9689.5
7. 38995 0.13 7692.3
8. 38513 0.1286 7788.2
9. 38595 0.1287 7770.00
10. 38578 0.1286 7776.05

Table 2.4. Timing analysis of this experiment was executed using Code Com-

poser Studio Timing Profiler. This tool presented the machine cycles consumed

during execution of the method.

From the Table 2.5 it can be observed that the execution time for MT-FRHC

is 0.0259 ms per inferences compared to Overlapping Membership Function

(OMF) with 0.0346 ms per inference. This implies that the number of fuzzy

logic inferences per second (FLIPS) completed by the proposed technique is

quite higher. It has been found that the MT-FRHC based G-FLCS achieved

27 % higher performance in terms of speed compared to the OMF based G-

FLCS. Table 2.5 presents the timing analysis of the individual modules in the

G-FLCS. It can be seen that fuzzifier consumes significant machine cycles in

comparison to other modules. This is mostly because the code has been written

in a sequential manner, and there is a single thread of fuzzifier that fuzzifies

crisp data from all four input channels to fuzzy data sequentially. The cycle

time for fuzzifier can be significantly improved by invoking multiple threads

using TI Sys/Bios1 .

Table 2.5: Hardware Implementation: Average Time Response

Fuzzifier Inference Defuzzifier Total Time FLIPS

(Cycles) (ms) (Kilo)

MT-FRHC 29393 1823 6332 38548 0.1285 7.8
OMF 41843 2198 8565 52606 0.1754 5.7

1TI Sys/Bios is a real-time operating system primarily developed for TI manufactured
DSPs, ARM and other programmable devices.

53

2.6. Summary

2.6 Summary

In this chapter, a theoretical analysis of M-FRHC and MT-FRHC has been elab-

orated which was aimed at countering the significant limitations of predomi-

nant FRHC technique. Simulation results indicate that the proposed scheme

can be implemented on hardware G-FLCS and replace the prevailing FRHC as

rule reduction technique. This algorithm has managed to improve controller ac-

curacy with a significant decrease in the computational complexity. This anal-

ysis portrays promising results in favour of MT-FRHC in both fronts and its

utility in G-FLC design is dominantly inferred. This method also provides a

platform where users can vary the number of overlaps and threshold value for

fuzzifier of a G-FLCS in real-time. It has also been shown that with varying

number of overlapping membership functions, the number of operations in the

inference engine can be controlled. The introduction of threshold in fuzzifier

will eradicate insignificant computations in the system. These programmable

features in MT-FRHC provide added control on the performance of the con-

troller itself and a user can steer the MT-FRHC based G-FLCS to the perfor-

mance with better efficiency.

54

Chapter 3
System Architecture for MT-FRHC

based G-FLCS

Preview

In this chapter we present a G-FLCS architecture and its necessary modules

and submodules. The chapter also provides a detailed explanation of a web

based user interface for the proposed MT-FRHC based G-FLCS for reconfigura-

bility. This hardware based fuzzy framework provides online reconfigurability

of the system from remote location. However, it is important to note that there

are over sixty flexible parameters that needs to be configured and it becomes

an arduous task for an user to manage and configure them. Therefore, in this

chapter we also introduce a genetic algorithm based parameter extraction tech-

nique. This technique helps to develop a course tuning and provide startup

parameters which can be later fine tuned by the users remotely through the

Web based User Interface.

55

3.1. Introduction

3.1 Introduction

In previous chapter, a MT-FRHC based Type-I Mamdani G-FLCS system is pro-

posed and described. As discussed briefly in Chapter 2, to counter uncertainty

and variations in a nonlinear plant, adaptive control is extremely important.

The adaptive control strategy maintains smooth performance of a system in

the presence of these uncertainties by updating and tuning FCP at various time

intervals. This is implemented in the proposed G-FLCS architecture by intro-

duction of online and offline tuning methods. However, a theoretical analysis

of the proposed MT-FRHC rule reduction technique is essential before imple-

mentation of the tuning methods because the tuning parameters are strictly

driven by the active rule reduction mechanism. Subsequently, these modules

and submodules gets integrated with G-FLCS and analyzed after implemen-

tation on a DSP hardware. Earlier in section 1.8 it was discussed that Plug

and Play Framework and Runtime Tunability is the essence of G-FLCS design.

To achieve these key features, it is important to integrate an interactive user

interface with the G-FLCS design. It is also imperative to formulate the sys-

tem parameters in accordance to which the G-FLCS is to be designed. There

are large number of parameters in a Fuzzy Logic Controller. However, a truly

generic fuzzy system is impractical because of the fixed resources for implemen-

tation. Therefore it is necessary to put an upper bound to each flexible parame-

ter in the Fuzzy Control Parameters (FCP). Nevertheless, unlike most existing

G-FLCS designs, in this design the number of flexible parameters are not com-

promised to gain a higher speed. Rather other areas like optimization of code

and algorithm is exploited to attain a desired speed and performance. It is also

important to note that the FCP driving a G-FLCS are generally programmed

by users. There are large number of fuzzy parameters for an user to input in

the G-FLCS. This makes the process quite cumbersome. Hereby, a technique

for automatic fuzzy parameter extraction from input-output relationship of a

process plant will grant the necessary ease of operation for an user. Therefore

to start with the design of G-FLCS, the system parameters are specified first.

3.2 G-FLCS Parameters

To start with the design of G-FLCS, the system parameters are specified first.

The FCP of proposed G-FLCS is segregated into two segments namely config-

56

3.3. System Architecture of Proposed G-FLCS

urable parameters and fixed parameters. Table 3.1 presents the features of

the proposed G-FLCS. This table presents configurable and non-configurable

(fixed) parameters along with order and variable values for a four-input and

one-output system. Characteristics features of this architecture is as follows:

• A 32 bit precision Input and Output is considered.

• A web based user interface (WebUI) to remotely acquire fuzzy parame-

ters.

• Wide range of output MFs tuning consisting of singleton, triangular, trape-

zoidal, Gaussian and GBell type membership functions.

• MIN-MAX Inference with full set rules.

This controller was implemented on a TI C6748 DSP processor. The major

reasons for using DSP are:

• DSP provides an effective implementation of multiplication and accumu-

lation (MAC) and this helps in efficient COA implementation.

• File handling and socket programming is an integral part of this design.

These were achieved easily since the development is in C language.

• This design supports high level of branching and decision making.

3.3 System Architecture of Proposed G-FLCS

The proposed system architecture involves hardware-software co-design to present

a complete reconfigurable G-FLCS as shown in Figure 3.1a and Figure 3.1b. In

Table 3.1: System Parameters

Parameters Values

Configurable

System Input 1 to 4 (32 bits)
number of MFs per I/O 2 to 7

Shape of MFs
Triangular, GBell,

Trapezoidal, Gaussian
Defuzzification Method Centroid of Area
Rulebase 2401 (74)

Fixed

System Output 1
Method MIN-MAX
I/O Signal Range -5 to +5 V

57

3.4. Development of a Client-Server Model User Interface

Figure 3.1a, a graphical abstract of the overall system is represented. It can

be observed that the controller is interfaced on one side in a feedback loop with

the plant and on other side with the users through a client-server based inter-

face. The client-server model allows reconfigurability of the system from remote

locations. Figure 3.1b presents the internal architecture of the G-FLCS design.

The WebUI in client server model represents the software and the driver

layer to interface the hardware G-FLCS through serial port to the server. The

DSP hardware receives FCP data serially and stores them in predefined mem-

ory locations. These parameters are segregated in two categories namely Setup

parameters and Rulebase data. The driver layer in the hardware G-FLCS re-

ceives and acknowledges the data transmission. A WebUI drives the proposed

hardware G-FLCS storing FCP data in a file in specific format. The file is shown

in Appendix-A. It may be noted that the FCP file is generated deliberately in

accordance with Matlab Fuzzy Inference System (FIS) file format to provide

liberty to integrate a parameter data file generated using Matlab Fuzzy Logic

Toolbox as well. Submitting the parameters triggers a desktop application that

is native to the server. Objective of this program is to transmit the FCP from

database to the hardware G-FLCS through serial communication. The FCP

data is stored in the DSP board based according to a predefined memory map.

G-FLCS designed with MT-FRHC rule reduction scheme, operates on the in-

puts with these FCP data to provide desired control action. Fuzzifier, inference

engine and defuzzifier is programmed with information about the data and its

corresponding memory location. With these information, fuzzifier transforms

crisp inputs in fuzzy domain and a Mamdani inference engine, coupled with

the Rulebase in the system memory produces fuzzy output. Defuzzifier trans-

forms the fuzzy output compiled by the inference engine to provide crisp output.

There are various types of defuzzifier but in this work centroid of area (COA) is

used considering its popularity and effectiveness.

3.4 Development of a Client-Server Model User

Interface

A client-server model is widely used for data transfer over large distance. Com-

puter applications like are Email, network printing, and the World Wide Web

use clientâĂŞserver model for data exchange. It is reliable, fast and secured

58

3.4. Development of a Client-Server Model User Interface

(a) System Architecture

(b) Hardware Design

Figure 3.1: Proposed G-FLCS Design Architecture

distributed application structure. In the proposed design, it is cardinal to have

a distribution structure over which users from large distance can operate the

controller.

3.4.1 client-server Model

The client-server model, also known as server-client model, is a computing

model developed on distributed computing structure. This structure segregates

workload between a centrally connected service provider (Server) and the vari-

ous service users (Clients) [169]. Its is a standard model for developing network

59

3.4. Development of a Client-Server Model User Interface

applications. The Server process starts the computing module by initializing it-

self. Once the initialization protocol successfully completes, it goes to sleep and

waits for incoming client requests. Client processes can initiate from any sys-

tem in the network including the host system running the Server process. Once

a service request is attended, this Server application goes back to sleep and

awaits incoming requests. Server applications or processes are of two types.

• Iterative: In these type of applications, a single copy of the server appli-

cation executes to service only a single user at any time. While a user re-

quest is attended, other users have to wait. These applications are devel-

oped when prior knowledge about the time to service individual request

is present.

• Concurrent: These Server applications provides service to multiple users

at any time. When a user requests for a service, the Server application

replicates a copy of itself which dedicatedly serves that user. This process

repeats for every incoming service requests from the Clients. These ap-

plications are developed when prior knowledge about the time to service

individual request is absent.

The client-server model of communication developed for hardware G-FLCS uses

TCP. TCP is an important protocol of TCP/IP networks where it helps to estab-

lish connection and exchange data. Establishment of a connection between two

hosts depends upon five components

• Protocol used

• Source IP address

• Source port number

• Destination IP address

• Destination port number

With proper set of information, a connection between two hosts is established.

3.4.2 ASP.NET and development of WebUI

In this work, ASP.NET has been extensively used to develop the WebUI for

hardware G-FLCS. This web application is designed with an intention to de-

velop an user interface which, once installed on a central server, can be accessed

60

3.4. Development of a Client-Server Model User Interface

Table 3.2: TCP/IP Communication Layers and their Protocols

SL. No. Layer Protocol
1. Data Link Layer Ethernet
2. Network Layer IP
3. Transport Layer TCP
4. Application Layer HTTP

over Internet to provide remote reconfigurability to the proposed hardware G-

FLCS. The framework behind this application is demonstrated pictorially in

Figure 3.2. The figure shows that Microsoft IIS7 hosts and web application and

interfaces it to the internet. Users from different location can access this ap-

plication. Standard IP protocols are used for the WebUI for hardware G-FLCS

as stated in Table 3.2 Here the WEBUI is hosted on a PC with IP address

192.168.50.102. Using HTTP, users can access the WebUI over Internet upon

request and authentication. Since this application is time critical and sensi-

tive to FCP data, it is important to develop it as an iterative server application

which automatically limits user to one. Microsoft IIS7 has been used for web-

server and it can host web applications developed on ASP.NET framework. This

was a major motivation of using ASP.NET for developing this application. A

user request is processed by IIS and it passes the request to the web application

WebUI, which generates response in HTML and returns it to IIS. Thereafter,

IIS returns this HTML response to the user initialing the request.

Figure 3.2: Framework behind WebUI for hardware G-FLCS

61

3.5. Genetic Algorithm based Fuzzy Parameter Extraction

Table 3.3: Genetic Algorithm Parameters

Parameters Value/Function
Population 120
Generation 200

Fitness Scaling Rank
Selection Stochastic

Crossover Probability 0.8
Elite Count 6

Mutation Function Adaptive feasible
Crossover Function Adaptive feasible
Stopping Criteria Fitness Limit

3.4.3 WebUI for Hardware G-FLCS

WebUI is developed in ASP.NET with C# and deployed using Microsoft IIS-7.

The Web Pages that serves to collect various information pertaining to param-

eters related to FLC from users are shown in Figure 3.3 and Figure 3.4. Web

page in Figure 3.3a presents the WebUI where, parameters like name, type, im-

plication, aggregation, and method, or method and defuzzification type are de-

fined. Web page in Figure 3.3b accepts details of inputs and their MFs whereas

Web page in Figure 3.4a accepts details about outputs and their corresponding

MFs. Web page in Figure 3.4b accepts the Rulebase and stores all data in FCP

file as mentioned in Appendix. On submission, these information data are val-

idated and a server application for communication with the board is invoked.

This WebUI can be accessed over Ethernet from a client system situated far

away from the controller and plant (simulated model).

3.5 Genetic Algorithm based Fuzzy Parameter

Extraction

A genetic algorithm (GA) is a search heuristic that mimics the process of nat-

ural selection and has been widely used evolutionary method for optimiza-

tion of FLCs, both type I and II[5, 20, 75, 108, 161, 168]. This technique

has been widely used in the literature for fuzzy optimization. Other popu-

lar methods for fuzzy optimization are Univariate Marginal Distribution Al-

gorithm (UMDA)[24], stochastic Hill Climbing(SHC) [42, 120], Baysian Opti-

mization Algorithm (BOA) [82].

62

3.5. Genetic Algorithm based Fuzzy Parameter Extraction

(a) Basic Parameters

(b) Input Membership

Figure 3.3: WebUI for Hardware G-FLCS developed using ASP.NET with C#
and hosted using Microsoft IIS7

63

3.5. Genetic Algorithm based Fuzzy Parameter Extraction

(a) Output Membership

(b) Rulebase

Figure 3.4: WebUI for Hardware G-FLCS developed using ASP.NET with C#
and hosted using Microsoft IIS7

64

3.5. Genetic Algorithm based Fuzzy Parameter Extraction

Figure 3.5: Fuzzy Control Parameter (FCP) extraction using Genetic Algorithm

Response from a system with maximum of four inputs and one output is

recorded. Once the dataset is derived, it is passed on to the system for FCP

extraction. The proposed method for FCP extraction is based on Genetic Al-

gorithm. Details of the parameters used in Genetic Algorithm is displayed in

Table 3.3. There are 60 system parameters that are optimized using genetic

algorithm to achieve two objectives, namely

• Quick settling, and

• Tracking reference.

65

3.6. Data flow of the proposed system

Figure 3.5 portrays basic blocks of a Genetic Algorithm based FCP extraction

technique. An initial set of random parameters are input to the Genetic Algo-

rithm system. Every optimization technique operates on a cost function. The

cost function can be represented by the process plant simulation model or its

I/O dataset. The FCP parameters are manipulated such that a set of optimized

FCP is obtained which provide quick settling and fast reference tracking. The

Simulink model with initial FCP is used as an objective function which returns

the transient and settling time. The co-ordinates of the membership functions

are treated as the nonlinear inequality constraints. Thus varying these FCP

will provide with an absolute tracking of reference1.

3.6 Data flow of the proposed system

In this implementation process, data synchronization and communication be-

tween user and the hardware G-FLCS is critical. The process is presented in

Figure 3.6. This figure depicts how data communication is achieved with the

help of various control signals between, client-server and server-GFLCS. The

web application provides a systematic user interface which collects data from

authenticated users. The application waits for a new connection request on

startup. On successful login, the user is presented with a web page contain-

ing four different tab-windows, each for basic parameters, information about

inputs, outputs and Rulebase. These windows are preloaded with extracted

parameters as presented in Figure 3.5 and provide a way for fine tuning the

control parameters by an operator. In Figure 3.6, operations like connections,

login, parameter collection and communication with hardware G-FLCS through

a server program are performed by the web application and are shaded in Light

Grey. When a user provides the fuzzy control parameters (FCP) data, the web

application validates the entered data based on following protocols.

• All MFs have properly defined co-ordinates within specified range of op-

eration.

• Number of Input(s) and Outputs are correctly defined.

• Rules are validated according to Mamdani model.

1The codes can be downloaded from https://goo.gl/Zb17fZ

66

https://goo.gl/Zb17fZ

3.6. Data flow of the proposed system

Figure 3.6: Dataflow of the proposed G-FLCS system

After validation of new parameters, the server application connects serially to

the hardware G-FLCS. Serial communication protocol has been used here for

the ease of implementation. This data communication can be easily extended to

industry standard controller area network (CAN) protocol. G-FLCS completes

current execution and generates control signal to the system. Thereafter, it

acknowledges any incoming serial communication request and starts receiving

and storing fuzzy parameters in the data memory. Sys/BIOS is widely used real

time operating system for TI DSPs and has been used in this work to take care

of the multitasking of fuzzy processes.

67

3.7. System Integrity Test

3.7 System Integrity Test

To provide proof of concept for this proposed design, an experiment was carried

out with an Intel Corei5-2400 3.1 GHz PC with 4GB memory operating as a

server with the WebUI. It is available to all the clients in the local network

over same gateway. Authenticated user loads FCP data in a text file located in

the server.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (seconds)

P
la

nt
 O

ut
pu

t

Two Tank Water System

Reference Water Level
Desktop FLC Output
PID Controller Output

(a) Plant Output: Two Tank Water Level System

0 100 200 300 400 500 600 700
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample −−− >

C
on

tr
ol

 O
ut

pu
t −

−
−

>

Control Output of Water Level Control of a Tank

Simulink FLC Control Output

Desktop FLC Control Output

(b) Controller Output: Two Tank Water Level System

Figure 3.7: Plant output and Controller output of various test models. The con-
troller output is a comparison between output from Matlab Fuzzy Logic Toolbox
and proposed hardware G-FLCS. Plant output shows performance of the pro-
posed FLC structure with PID controllers conducted using through HIL testing
environment

The code developed for hardware G-FLCS is compiled using MS Visual Stu-

dio to generate a desktop application which runs on the server and mimics the

hardware G-FLCS. This FCP data is used by desktop FLC to generate con-

trol signal. Plant models are developed in Matlab and communicates with the

68

3.7. System Integrity Test

0 10 20 30 40 50 60
18

20

22

24

26

28

30

32

34

Time (seconds)

C
on

tr
ol

le
r

O
ut

pu
t

Intelligent Cruise Control

Reference Speed
Desktop FLC Output
PI Controller Output

(a) Plant Output: Intelligent Cruise Control System

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

C
on

tr
ol

le
r

O
ut

pu
t

Desktop FLC Output
Matlab FLC output

(b) Controller Output: Intelligent Cruise Control System

Figure 3.8: Plant output and Controller output of various test models. The con-
troller output is a comparison between output from Matlab Fuzzy Logic Toolbox
and proposed hardware G-FLCS. Plant output shows performance of the pro-
posed FLC structure with PID controllers conducted using through HIL testing
environment

desktop FLC using system command. The functionality is executed in following

steps:

Step 1 Generation of I/O dataset from Simulink model using PID controller.

Step 2 Apply GA based FCP extraction algorithm described in section 3.5, to

extracted FCP from the I/O dataset generated in Step 1.

Step 3 Appropriate FCP data is programmed through WebUI and submitted

to the server.

Step 4 The plant model is executed with the stored FCP. For controlling the

69

3.7. System Integrity Test

0 10 20 30 40 50 60 70 80

0

2

4

6

8

10

12

Time (seconds)

P
la

nt
 O

ut
pu

t

Reference
System Output with PID Controller
System Output with Desktop FLC

(a) Plant Output: First-order system with dead time for anti-windup scheme

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

Samples

C
on

tr
ol

le
r

O
ut

pu
t

Desktop FLC Control Output
Matlab FLC Control Output

(b) Controller Output: First-order system with dead time for anti-windup scheme

Figure 3.9: Plant output and Controller output of various test models. The con-
troller output is a comparison between output from Matlab Fuzzy Logic Tool-
box and proposed hardware G-FLCS. Plant output shows performance of the
proposed G-FLCS structure with PID controllers conducted through HIL test
environment

plant, Matlab uses system command to invoke the desktop FLC program

and passes the FCP and input data _IN as arguments. Desktop FLC

computes and returns the output to Matlab. This forms the controller

output.

Step 5 The Simulink plant output is computed with controller output. It is

stored and plotted with respect to plant output using PID controllers for

comparative analysis.

Step 6 The dataset is used to compare the control signal from desktop FLC

to control signal from Matlab Fuzzy Inference System for performance

70

3.7. System Integrity Test

analysis.

Some benchmark control problems were used to test the applicability and

generality of the proposed architecture, namely Two Tank Water Level Con-

troller [93, 112], Intelligent Cruise Control [192], first order system with dead

time for anti-windup scheme [47]. All these system models were implemented

on Simulink and they are available in Mathworks File Exchange repository.

The integrity of the proposed architecture is tested with these models according

to the algorithm described above. In Figure 3.7, Figure 3.8 and Figure 3.9 the

observed results from these simulated tests are displayed. The proposed MT-

FRHC based Web Configurable G-FLCS is implemented on the desktop server

using C code interface by an application program to the WebUI. This provides a

platform for evaluation of the proposed technique before it is realized on actual

hardware platform. In Figure 3.7a, the plant output of this proposed desktop

G-FLCS is compared to a tuned PID controller when applied to control a Two

Tank Water Level Controller [93, 112]. The figure plots the plant response un-

der different controllers with respect to time in seconds. It can be observed that

the proposed G-FLCS provides a smooth and fast control compared to the PID

controller. Similar results are observed when the proposed GFLCS and a tuned

PID controller is employed to control an Intelligent Cruise Control System[192]

and first order system with dead time for anti-windup scheme [47]. These fig-

ures plots the plant response under desktop G-FLCS and PID controller with

respect to time in seconds. Figure 3.8a and 3.9a shows that the G-FLCS per-

forms better than the PID controller. Figure 3.7b, Figure 3.8b and Figure 3.9b

compares the control output from the desktop G-FLCS and Matlab FLT for ev-

ery sample while controlling Two Tank Water Level Controller [93, 112], Intelli-

gent Cruise Control [192] and first order system with dead time for anti-windup

scheme [47] process plants respectively. These tests indicates that the objective

of generality and remote reconfigurability is achieved for proposed MT-FRHC

based G-FLCS design. The results also convincingly reflects that the proposed

system architecture performs satisfactorily and can be implemented on real-

time. However, its real-time nature can be concluded only after conducting the

timing analysis and profile. This is presented in the next chapter along with

the aspects of hardware implementation.

71

3.8. Summary

3.8 Summary

This chapter presents a background framework for MT-FRHC based remotely

tunable G-FLCS. The proposed controller can suitably replace existing con-

trollers in a process plant which confirms the generic nature of the designed

G-FLCS. The algorithm for achieving this is described in section 3.5. In this

work, process control applications based on PID controller were chosen specif-

ically. The major reason is their wide usage and acceptability in industries.

By following protocols mentioned in section 3.5, other variants of industrial

controllers like sliding mode and model predictive controllers can also be suit-

able approximated by the proposed G-FLCS. This chapter elaborates the pro-

posed MT-FRHC based remotely tunable G-FLCS architecture with Genetic Al-

gorithm based FCP extraction technique. The generality and applicability of

the design is also tested by applying it to various benchmark control problems

in a simulation environment. The results portrays a proof-of-concept for the

objectives that were set in chapter 1. However, the major aspect of its imple-

mentation is yet to be evaluated. The next chapter deals with the prospect of

implementation of the proposed G-FLCS and explain various schemes adopted

to make the design feasible on a DSP platform.

72

Chapter 4
Implementation of Remotely Tunable

MT-FRHC based G-FLCS with

VBCoA on Programmable DSP

Preview

This chapter present a MT-FRHC based remotely tunable G-FLC implemented

on a programmable DSP platform. The algorithm is ported on a single core

fixed point DSP, which can be remotely configured in real-time over Ethernet.

This feature of reconfigurability enables a user to change fuzzy parameters in

real-time, eliminating repeated hardware programming. The scheme also elim-

inates the requirement of removing the controller from the process plant for

configuration. A hardware software co-design architecture for the proposed

generic FLC is developed on TI C6748 DSP with Sys/BIOS RTOS and seam-

lessly integrated with a web based user interface (WebUI) for reconfigurability.

The WebUI acquires the fuzzy parameters from users and a server applica-

tion is dedicated to data communication between the hardware and the server.

Analysis of this design is carried out by using hardware-in-loop (HIL) test to

control various plant models in Simulink/Matlab environment. Performance

of the proposed system is compared to Fuzzy Toolbox of Matlab and PID con-

trollers.

73

4.1. Introduction

4.1 Introduction

In previous chapter, the proposed MT-FRHC based remotely tunable G-FLCS

architecture with Genetic Algorithm based FCP extraction technique is de-

scribed. The results convincingly depicted that the objectives set in chapter 1

can be achieved in simulation environment. This chapter extrapolates the con-

cepts introduced in last chapter to implementation it on a DSP platform. This

chapter also introduces implementation and optimization of the code to realize

the proposed MT-FRHC based G-FLCS with VBCoA defuzzification method. It

is important that the code size is reduced to its maximum for reliable operation

of the system. Large code size decreases power efficiency and computational

speed. Smaller code size require less memory fetching since larger part of the

on chip memory will be available for execution. This also increases the stack

size. In this implementation it is imperative that the code size is limited to 60%

of the on-chip SHRAM.

4.2 Hardware Device: TI LCDK C6748

To achieve an efficient implementation, it is important to understand the archi-

tecture of th hardware device before final implementation. With a sequential

processing on a DSP device, the objective of the proposed MT-FRHC based G-

FLCS with VBCoA defuzzification to meet 11K FLIPS achieved by Yi Fu et. al.

[56] for their G-FLCS architecture on an FPGA is unachievable. Hereby, the

implementation of the proposed G-FLCS architecture has to be parallelized.

With this context, the hardware device at hand, TI’s LCDK C6478 needs to be

inspected.

LCDK C6478 incorporates a TMS320C6748 DSP which is a floating point

very long instruction word (VLIW) DSP processor running at 476 MHz clock

frequency. This device supports SIMD (single instruction, multiple data)and

double precision VLIW operations [183]. It is reported that this is one of the

speediest single precision device. This is an important feature of this device

that suits the proposed G-FLCS architecture since all operations are single

precision. SIMD instructions supports data parallelism as opposed to VLIW’s

instruction parallelism. To take leverage of the SIMD or VLIW operations, it is

imperative that the typical architecture of the G-FLCS is reconsidered to match

either of these features of the device considering the functional block diagram

74

4.3. Generic FLC on DSP (TI LCDK C6748)

in 4.1.

Figure 4.1: Functional Block Diagram of TMS320C6748 DSP

4.3 Generic FLC on DSP (TI LCDK C6748)

4.3.1 System Architecture

The system architecture of the proposed MT-FRHC based G-FLCS is repre-

sented as shown in (2.18),

θ f (c j)=
nop−1⋂

kx=0

(
θ f (Rb (kx)) ,

(
N−1⋃

l=0

−−−−→
CRv (l)

))
(4.1)

There are two data loops in this architecture. The inner loop is set to a small

constant by the number of active MFs (in this case completely controlled by the

user); while the outer loops are independent of the data. Therefore it can be

concluded that the dependency of the outer loop is already parallelized in this

architecture.

75

4.3. Generic FLC on DSP (TI LCDK C6748)

4.3.2 Code Optimization

Generally a code that is written in assembly (ASM) is processor-specific, whereas

C code can readily be ported from one platform to another. However, optimized

ASM code runs faster than C and requires less memory space. Before optimiz-

ing a code, it is required to make sure that the code is functional and yields

correct results. After optimizing, the code can be reorganized and resequenced.

The code becomes extremely difficult to follow and debug. It needs to be realized

that if a C-coded algorithm is functional and its execution speed is satisfactory,

there may not be a necessity to optimize it further. All these motivates us to

stretch the optimization so that the best possible efficiency is extracted from

the system [22, 184]. A rigorous code optimization strategy was devised as

follows[41]:

Step 1 G-FLC is programmed in C Language without using any compiler op-

timization levels. With help of CCS Profiler tool, all the submodules are

inspected for performance with respect to execution time and memory

consumed.

Step 2 Intrinsic functions are used along with various compiler optimization

levels. Functions like minimum (min), maximum (max), product (prod),

division (div) are written as intrinsic functions and called as necessary by

the modules and submodules of hardware G-FLCS.

Step 3 Thereafter, the CCS Profiler tool is exploited again to determine and

identify the functions and submodules that may need further optimiza-

tion.

Step 4 The functions that do not meet expected time and memory budget, are

converted to linear ASM. The resultant is again inspected using the CCS

Profiler tool to check for final efficiency.

These process is realized in the system as follows:

1. ‘-o3’ with optimization ‘-mt’

2. ‘-k’ with optimization ‘-mw’ as feedback option for compiler

3. Minimize the loop carried dependency bound.

4. MUST_ITERATE and UNROLL pragmas.

76

4.3. Generic FLC on DSP (TI LCDK C6748)

5. Operate on single precision data type

6. SIMD

7. Intrinsics from TI library.

Table 4.1: Options in Compiler Level Optimization

Options Features

-o3

This activates Compiler optimization level 3.
In this setting, the compiler majorly tries to
perform software pipelining.It also converts

small functions to inline calls.

-mt
It explicitly mentions that the pointer-based
parameters of a function will never point to

the same location.

-k, -mw
These options instruct the compiler to

generate feedback which can be analyzed
for tuning performance.

The compiler can insert calls to special functions in the run-time support

library (RTS) to support operations that are not natively supported by the ISA.

For example, the compiler calls __c6xabi_divi() (_divi() in COFF) function to

perform 32-bit integer divide operation. Such functions are called compiler

helper functions, and result in a function call within the loop body. For exam-

ple in G-FLC, the compiler accomplishes the division operation by calling the

compiler helper function "_divi" in fuzzification and defuzzification modules.

4.3.3 Code Implementation

Code Composer Studio (CCS) is a proprietary integrated development environ-

ment developed by TI for programming DSP and ARM processors. The de-

sign is programmed in C language and optimized as described in section 4.3.2.

Thereafter it is cross compiled using CCS v5.5 compiler and implemented on

TMS320C6748 as target DSP processor. This system represents the hardware

G-FLCS as discussed previously. G-FLCS is connected to a server PC using on-

board UART and provides a platform which is capable of accepting FCP file to

operate as a standalone tunable G-FLCS.

77

4.3. Generic FLC on DSP (TI LCDK C6748)

(a) Without Optimization

(b) Optimization

Figure 4.2: Memory Utilization of Proposed System Realized on TI C6748 DSP

To achieve a high performance in throughput, the following optimization

technique were used inside the developed code [183].

78

4.3. Generic FLC on DSP (TI LCDK C6748)

The MUST_ITERATE Pragma The MUST_ITERATE pragma specifies the

lower bound, upper bound and factors of a loop. The lower bound and

upper bound specifically mentions the minimum and maximum possible

iterations of the loop and the factor defines the step size between them.

#pragma MUST_ITERATE(lower_bound, upper_bound, fa
tor)

Code Snippet 4.1: MUSTITERATE Pragma

Loop Unrolling and the UNROLL Pragma Manual unroll of loops are im-

bibed in code to improve code efficiency. Consider following code snippets.

void Loop(int * restri
t output, int * restri
t input1, int *

restri
t input2, int n)

{

int i;

for (i=0; i<n; i++)

{

output[i℄ = input1[i℄ + input2[i℄;

}

}

//An ex
erpt from its
ompiler feedba
k

;* Partitioned Resour
e Bound(*) : 2

;* Resour
e Partition:

;* A-side B-side

;* .L units 0 0

;* .S units 0 1

;* .D units 2* 1

;* .M units 0 0

Code Snippet 4.2: A Loop Code With Unbalanced Resource Partition

The .D unit on the A side of the device is used twice every iteration, and

the .D unit on the B side is only used once. This indicates that the .D

unit on the B side is left open for 1 cycle in each iteration of the loop. In

this case, the partitioned resource bound is affected by this unbalanced

partition. Ideally, it would be more efficient if both units are used 1.5

cycles per iteration or 3 cycles per 2 iterations

79

4.3. Generic FLC on DSP (TI LCDK C6748)

void Loop(int * restri
t output, int * restri
t input1, int *

restri
t input2, int n)

{

int i;

for (i=0; i<n; i+=2)

{

output[i℄ = input1[i℄ + input2[i℄;

output[i+1℄ = input1[i+1℄ + input2[i+1℄;

}

}

//An ex
erpt from its
ompiler feedba
k

;* Partitioned Resour
e Bound(*) : 3

;* Resour
e Partition:

;* A-side B-side

;* .L units 0 0

;* .S units 1 0

;* .D units 3* 3*

;* .M units 0 0

Code Snippet 4.3: Manually Unrolled Loop

The .D units are used 3 times on each side per iteration, but the number of

iterations is halved. This, in theory, can lead to a 25% reduction in overall

cycle count. Although effective, the manual unroll process can be tedious

for most loops. Generally, it is recommended that the C6000 compiler and

pragmas be used to unroll loops.

Detailed memory utilization of the built code is shown in Figure 4.2. It

can be observed that the code size without optimization acquires 66% of the

SHRAM and has a code size of 88K. After employing the optimization strategy,

the code size is reduced to 61% of the SHRAM with a code size of 80K.

80

4.4. Interfacing G-FLC with WebUI

4.4 Interfacing G-FLC with WebUI

4.4.1 Data Communication between Hardware G-FLCS and

Server

The proposed system architecture involves hardware-software co-design to present

a complete reconfigurable FLC. The WebUI in client server model represents

the software and the driver layer to interface the hardware G-FLCS through se-

rial port as shown in Figure 3.1a. The DSP hardware receives FCP data serially

and stores them in predefined memory locations as shown in Table 4.2. These

parameters which are, segregated in two categories namely Setup and Rulebase

data. The driver layer in the hardware G-FLCS receives and acknowledges the

data transmission serially over UART.

4.4.2 WebUI and its Operation

The WebUI is a web application that drives the proposed hardware G-FLCS

was presented in section 3.4 and displayed in Figure 3.3 and Figure 3.4 stores

FCP data in a file1. It may be noted that the FCP file is generated deliberately

in accordance with Matlab Fuzzy Inference System (FIS) file format to provide

liberty to integrate a parameter data file generated using Matlab Fuzzy Logic

Toolbox as well. Submitting the parameters triggers a desktop application that

is native to the server. Objective of this program is to transmits the FCP from

database to the hardware G-FLCS through serial communication. The FCP

data is stored in the DSP board based according to the memory map provided

in Table 4.2. The first column in Table 4.2 shows the offset address and the sec-

ond column elaborates the number of bit individual fuzzy parameter consumes.

The last two columns describes and provides remarks about the different fuzzy

parameters FLC designed with M-FRHC rule reducing Inference Engine, oper-

ates on the inputs with these FCP data to provide desired control action. FCP

data is segregated in two parts, Setup and Rulebase. Offset address 0000H to

00D6H in Table 4.2 shows the details of Setup parameters. Rulebase param-

eters appear in memory location 00D7H to 1D0CH which is reserved to store

2401 rules. Fuzzifier, inference engine and defuzzifier is programmed with

information about the data and its memory location. With these information,

1File can be downloaded from https://goo.gl/YAVxez

81

https://goo.gl/YAVxez

4.4. Interfacing G-FLC with WebUI

Table 4.2: Memory Map

Offset Addr. Memory bits Description Details

00H [1:0]

00-No Operation To start the FLC operation for the
first time programmed with 0x03h
then if input only changes program
with 0x01H

01-New inputs are enables
10-new Rulebase is enabled
11- new Rulebase and inputs are enabled

00H [7:2] Don’t Care

01H [1:0]

00- Number of inputs = 1

Number of Inputs and Outputs

01- Number of inputs = 2
10- Number of inputs = 3
11- Number of inputs = 4

01H [2]
0- Number of outputs = 1
1- Number of outputs = 2

01H [7:3] Don’t Care

02H [2:0] Number of MFs for Input 1

000- 0 (I/O not used),
001- 111 refers to the number 1-7

02H [4:6] Number of MFs for Input 2

03H [2:0] Number of MFs for Input 3

03H [6:4] Number of MFs for Input 4

04H [2:0] Number of MFs for Output 1

04H [6:4] Number of MFs for Output 2

MFs consists of type of MF and the number of co-ordinates are based on them.

Each input and output can have maximum of 7 MFs.

MFs for Input 1

05H [7:0] 1st Co-ordinate of MF 1 of input 1

MF 1 of Input 106H [7:0] 2nd Co-ordinate of MF 1 of input 1

07H [7:0] 3rd Co-ordinate of MF 1 of input 1

08H [7:0] 4th Co-ordinate of MF 1 of input 1

09H [2:0] Type of MF number 1 of input 1

000- Trapezoidal

001- Gbell

010- Gaussian

011- Curved Triangle

100- 111- Triangle

... MF 2-7, Input 1

MFs for Input 2

28H [7:0] 1st Co-ordinate of MF 1 of input 2

MF 1 Input 23AH [7:0] 2nd Co-ordinate of MF 1 of input 2

3BH [7:0] 3rd Co-ordinate of MF 1 of input 2

3CH [7:0] 4th Co-ordinate of MF 1 of input 2

3DH [2:0] Type of MF number 1 of input 2 000- 111 (Same as above)

...

D6H [2:0] Type of MF number 7 of output 2

Memory is reserved for 4 Inputs and 2 Outputs consequently even if, FLC does not operate with all 4 input and 2 output.

Rule 1

D7H [3:0] Index number of Input 1

000- 0 (I/O not used),
001- 111 refers to the number 1-7

D7H [7:4] Index number of Input 2

D8H [3:0] Index number of Input 3

D8H [7:4] Index number of Input 4

D9H [3:0] Index number of Output 1

D9H [7:4] Index number of Output 2

Rule 2

...

Continues till end of rules. Max rules supported by this system is 2401 (7^4)

82

4.5. System Performance and Analysis

fuzzifier transforms crisp inputs in fuzzy domain and a Mamdani inference en-

gine, coupled with the Rulebase in the system memory produces fuzzy output.

Defuzzifier transforms fuzzy output compiled by the inference engine back to

crisp output.

The Memory Map in Table 4.2 is also segregated into two parts as FCP

data. The first part, incorporates the Setup FCP data, specifies the Fuzzifier

and Defuzzifier parameters and it includes the following information;

• Initialization of the FLC,

• Number of Inputs and Outputs,

• Number of Membership Functions in each Input and Output, and

• Details of each Membership Functions like, type of membership function

and their co-ordinates.

The second part, incorporates Rulebase FCP data, specifies the Rulebase of

the FLC defined by the index numbers of the inputs and outputs. In this work,

the original user specified Fuzzy Control Parameters (FCP) (as specified in the

Table 4.2 Memory Map) is not forked or pruned. Rather, at every inference the

proposed MT-FRHC rule reduction algorithm, operates on this user specified

Memory Map to derive another map with reduced rules.

4.5 System Performance and Analysis

4.5.1 System Modeling of Armature Controlled DC Motor

A Simulink model to simulate Speed Control of a DC Motor with PID and Fuzzy

Logic Controllers is tested in this experiment [112, 170]. The Simulink model

of the process plant is presented in Figure 4.3. The control problem uses a DC

Motor with Armature Resistance (RA) = 1 Ω, Armature Inductance (LA) = 0.5,

Inertia (JM) = 0.01, Damping (BM) = 0.1, Torque Constant (Kτ) 0.01 Nm/A and

Back EMF Constant (KB) = 0.01 Vs/rad. Transfer function of the plant model

is stated as:

θ(s)

VA(s)
=

Kτ

LA JMs3+(RA JM+LABM)s2

x
1

(KτKB+RABM)s
(4.2)

83

4.5. System Performance and Analysis

Figure 4.3: Simulink Model for Speed Control of DC Motor

The ACDC Motor is controlled by FLC and PID controllers in different dat-

apaths. Simulation of this model produces the I/O dataset and is saved in a

file which concludes first phase of this experiment. The data set consists of two

inputs, error in speed and its derivative, and the control signal (voltage to the

DC Motor) as an output.

4.5.2 Hardware-in-Loop Test

The Hardware-in-the-Loop (HIL) testing method is a prevailing testing method

in industries. It has been exploited to test wide array of embedded system ap-

plications over past two decades. It was initially introduced in the Aviation

industry. The major factor which makes this test methodology prevalent in the

industry over the years are time to market and its low complexity. HIL test

method caters an efficient platform to test real-time system designs by adding

the plant complexity to be controlled in the test platform. The plant model

84

4.5. System Performance and Analysis

and all related dynamic systems under control is mathematically presented.

This algebraic representation of the entire plant model is called as the “plant

simulation”. The real-time embedded system is tested by interacting with this

plant simulation which executes in a computer, sometimes referred to as the

Host Computer. Figure 4.4 shows the main concept of the HIL test method-

ology where an embedded system is developed on a real-time processor and is

interacted with the process plant simulation in the host computer.

Figure 4.4: Test Setup for Hardware-in-Loop Testing of G-FLCS

The proposed MT-FRHC based G-FLCS is developed on a TI C6748 DSP

processor. This represents the embedded system under test in the HIL loop.

The dynamic modeling of the ACDC Motor is developed in Simulink. This rep-

resents the “plant simulation”. The HIL test was performed as depicted in

Figure 4.4. From executing the “plant simulation” with controllers developed

in Simulink provides the simulated results. Figure 4.3 represents the “plant

simulation” model. This model is developed based on the transfer function de-

rived in (4.2). The results from simulation and HIL test was compared and

analyzed where an error of 2% was recorded. Details of this test in provided

in section 4.5.4. However, before analyzing the performance, a method for FCP

generation is explained in section 4.5.3. This method was found to decrease the

time consumed by GA based FCP extraction at large.

85

4.5. System Performance and Analysis

0 1 2 3 4 5 6 7 8 9 10
−500

0

500

1000

1500

2000

2500

3000

Time (seconds)

P
la

nt
 O

ut
pu

t

Reference Speed
SystemOutput with FLC
SystemOutput with PID Controller

(a) Simulation output for the Armature Controlled DC Motor

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−10

−5

0

5

10

15

20

25

Samples −−−−>

C
on

tr
ol

le
r

O
ut

pu
t −

−
−

>

Matlab FLC output
Hardware based FLC Output

(b) Control Signal Data plot for Simulated and hardware G-FLCS

Figure 4.5: Plant output and Controller output of ACDC Motor simulated using
Matlab Fuzzy Logic Toolbox and HIL test with proposed hardware G-FLCS

4.5.3 Fuzzy Control Parameter Generation

A genetic algorithm based fuzzy control parameter extraction technique is de-

scribed in section 3.5. However, in many of the test processes, it is found the

genetic algorithm based FCP extraction technique extensively time consum-

ing. One way of reducing this extraction time is by providing initial parame-

ters to the GA. With proper initial parameters the search space for GA can de-

crease drastically. This can reduce the FCP extraction time. One of the widely

86

4.5. System Performance and Analysis

used techniques for FLCS design is a Fuzzy approximation of PID controller

[101, 196]. The FCP generated from this scheme assume a FLCS structure

analogous to classical PID controller [11, 12, 24, 32]. However unlike classical

PI controller, Fuzzy PI controller is non-linear. This method implicitly implies

that the generated FCP will consistsof fuzzyinput fuzzy variable e and ∆e. The

FCP used for this Initial parameters for GA based FCP is finallys [46, 156]. The

FCP used for this G-FLC syst system for verification of the controller1.

In algorithm 1, a plant simulation model with PID controller is developed on

Simulink as described in section 4.5.2. An input-output relationship between

the error signals (consisting of e and ∆e) and control output (u) is generated

and recorded for large number of samples. Introduce input MF corresponding

to maximum and minimum values of inputs e and ∆e. Similarly, for each set of

input membership functions introduced, a corresponding MF is introduced. The

kernel of these MFs are set to the respective minimum and maximum output

value from the dataset. In this algorithm, initial choice of the memberships are

trapezoidal and for every other iteration, triangular membership functions are

added appropriately.

4.5.4 Performance Analysis

A HIL test was conducted for the proposed MT-FRHC based G-FLCS on TI

C6478 as described in section 4.5.2 for the plant model shown in Figure 4.3.

The response of the HIL test was recorded and tabulated in Table 4.3. The

controller performance has been analyzed with respect to inference time and

control output separately and plotted in Figure 4.5. The simulation experiment

was found to work seamlessly. The hardware realization of the proposed G-

FLCS application was necessary to determine if this approach is perceivable in

real-time.

4.5.4.1 Performance Analysis: Control Output

The output from HIL test is conducted for the Simulink model in Figure 4.3 and

the output presented in Figure 4.5a. The inputs and corresponding output was

recorded and saved in file which is intended to be used as data source. The same

FCP file used in this simulation was loaded in the FLC based DSP hardware

through the server application as described in chapter 3. A separate Windows

1File can be downloaded from https://goo.gl/83bVna

87

https://goo.gl/83bVna

4.5. System Performance and Analysis

procedure ERROR AND CONTROL SIGNAL GENERATION

N←Mamimum no. of membership functions allowed
top:
i = i+1
Run Simulink Model with PID Controller
e,∆e ←Error signal at each sample
u ←Control signal generated at each sample

Note u at maximum and minimum value of e and ∆e

loop:
Introduce input MF corresponding to minimum and maximum value of e

and ∆e

Introduce output MF corresponding to minimum and maximum value of
u

Addition of triangular MFs to map rules as introduced above
Evaluate rules at minimum and maximum e to generate û

if i < N then

if u− û 6= 0 then
goto loop.

else
goto top.

end

else
close;
end

Algorithm 1: A technique for Fuzzy PI Approximation

application was created to read the input data stored in the data source file and

send to the G-FLCS externally.

The G-FLCS received the inputs and generated suitable control outputs

which was sent back to the PC and recorded in a loop. The recorded data is then

compared to actual simulated output for data validation. The time elapsed in

Table 4.3: Results from hardware G-FLCS experiment with Simulink Model

Output Parameters Observation

Total data Samples 100021
Total Execution Time 7.248989 s
Average Execution Time 7.247427e-005 s
FLIPS 13.8 K
Percentage Error 2% w.r.t. Matlab FIS
Mean Square Error (MSE) 0.1298

88

4.5. System Performance and Analysis

this entire process has also been recorded. The inferences observed during this

experiment has been tabulated in Table 4.3. There were total of 100021 input

samples in this entire simulation. Control signals generated from the simula-

tion and G-FLCS was recorded for each input samples and plotted in Figure

4.5b. This figure represents a plot of the control output corresponding to the

DSP based proposed G-FLCS and Matlab FLT for all the input samples. It val-

idates that the control data output from the G-FLCS is in synchronization with

the simulated result with a MSE of 2%. There is a slight deviation observed in

control output of the G-FLCS and Simulink simulation. This can be attributed

to the design and implementation of MT-FRHC rule reduction technique with

VBCoA defuzzification method as discussed in chapter 2.

4.5.4.2 Performance Analysis: Inference Time

The system has also been tested for its inference time. Inference time is defined

as the time taken for a set of input to propagate to the output and produce a

control action. Figure 4.5b provides no observation related to the execution

time of the G-FLCS. Thereby, time elapsed in the entire process of testing with

100021 samples was also been recorded. It found to be 7.248949 seconds for

entire process and on average 0.073 ms or 73 µs for single inference. This

data provides an estimate of the inference time that can be achieved with the

proposed G-FLCS. However it is should to be noted that this time does not

include any instance where parameters have tuned in between the process.

4.5.5 Comparison to Existing Works

The G-FLCS design is implemented on a programmable DSP. There are few

works reported in the literature which implements similar designs on FPGA

platform. However, these systems provide fewer flexible FCP features in com-

parison to the proposed design. The performance of the proposed G-FLCS was

compared to the existing FPGA based designs presented in [56, 122]. A sum-

mary of these designs are tabulated in Table 4.4. It can be observed that the

proposed G-FLCS design provides variety of features with adequate speed and

flexibility in comparison to the FLCS designs reported in [56, 122]. This design

provides a speed of approximately 13 KFLIPS for a 2-input 1-output system

with 49 rules with seven MFs for each input and output. The proposed G-FLCS

is designed to support a maximum 4-input 1-output system with seven MFs for

89

4.6. Summary

each input and output space. This adds up to a total of 2401 rule system. The

code size of 61 % reported in Figure 4.2 implements 4-input 1-output system.

Table 4.4: Comparison between Proposed hardware G-FLCS and Similar De-
signs based of Reconfigurable Parameters

Year Reference Speed Platform Features
(in FLIPS)

2008 Millan et. al.[122] 5.5 K FPGA

Output MFs: Singleton (5)
I/O: 2-1
Input MFs: 8
Overlaps: Dynamic
Rules Evaluated : 64

2010 Yi Fu et. al.[56] 11 K FPGA

Output MFs: (5)
I/O: 2-1
Input MFs: 5
Overlaps: 2
Rules Evaluated : 25

Proposed G-FLCS 13 K DSP

Output MFs: (7)
I/O: 4-1 (Configurable)
Input MFs: 7
Overlaps: Dynamic
(4)
Rules Evaluated : 49
(2401)

4.6 Summary

The realization of the remotely tunable MT-FRHC based G-FLCS with VBCoA

defuzzification on programmable DSP hardware is explained in this chapter.

This technology opens line of approach for implementation to several explo-

rations. The motivation behind this research was deployment of a generic fuzzy

framework with complex features in a programmable device such that it can be

remotely tuned by altering its parameters in real-time. In this chapter, a suc-

cessful implementation of these objectives is described. Existing G-FLCS have

been able to produce significant speed by reducing functionalities in their archi-

tecture. This architecture provides large number of functionalities to its users

along with sufficient speed to drive most industrial processes. This system is

standardized with MATLAB Fuzzy Logic Toolbox and has ability to incorpo-

rate FIS files generated by this toolbox. This system presents a framework for

90

4.6. Summary

remotely tunable MT-FRHC based G-FLCS that can suitably replace other con-

trollers by following the design protocols explained in this thesis. The proposed

systems is observed to perform well within the multiple testing paradigms.

Through investigations have been done using multiple applications to ascertain

its generality and applicability. In summary, this chapter successfully presents

a remotely tunable MT-FRHC based G-FLCS with VBCoA module developed on

programmable DSP with interface to a WebUI which can operate as standalone

controller with an operating speed of around 13K FLIPS.

91

Chapter 5
Implementation of Proposed G-FLCS

for Radial Plasma Position Control in

Aditya Tokamak Fusion Test Reactor

Preview

In this chapter, a nonlinear process plant, Aditya Tokamak Fusion Test Reac-

tor (TFTR) is controlled by the proposed G-FLCS. Tokamak is a torus shaped

magnetic field based confinement device for the extremely hot plasma. It is one

of the most widely researched device since it is key to only form of clean energy

that can be industrially generated. To stabilize the plasma across radial posi-

tion is crucial to the success of a tokamak reactor. Plasma is highly sensitive

and nonlinear state of a matter and its position control is extremely time criti-

cal. In this chapter, the proposed hardware based G-FLCS controller is used to

control Radial Plasma Position in Aditya TFTR, installed at Institute of Plasma

Research (IPR), Gandhinagar, India.

92

5.1. Introduction

5.1 Introduction

In last chapter, a remotely tunable MT-FRHC based G-FLCS with VBCoA is

implemented on TI C6748 DSP. A HIL test was also conducted to see the per-

formance of this system. In this chapter, the proposed G-FLCS is used to control

the radial position of a plasma column in Aditya Tokamak Fusion Test Reactor

(TFTR). Aditya TFTR is installed at installed at Institute of Plasma Research

(IPR), Gandhinagar, India. It is a medium size tokamak with major radius of

0.75 m and a minor radius of 0.25 m. There are 20 toroidal field coils in the de-

sign which produces a maximum field strength of 1.2 tesla. Genetic algorithm

based FCP is used to extract FCP which can drive the G-FLCS in controlling

the radial plasma position in the torus. The FCP can also be extracted partly

using conventional optimization methods. Gradient Descent, Back propagation

and other stochastic methods are employed to derive the co-ordinates of the

antecedent membership functions [131–133]. When the rules are defined the

conventional optimization methods may be used provided the cost function is

convex in nature. However, mostly it is not true. Moreover, the output of the

FLC is not a continuous function. So optimizing the antecedents and conse-

quents are not possible at same instance. Thus, evolutionary algorithms are

preferred, specially Genetic Algorithm, owing to its ease of implementation has

been used in this work [20, 80, 181].

5.1.1 Controlled Thermonuclear Fusion

Researchers observed that there was an enormous release of energy that oc-

curred when two light nuclei (with masses lower than iron, Fe, in periodic table)

fuse together. This phenomenon was termed as thermonuclear fission reaction.

Then, World War II ended with an historical uncontrolled thermonuclear fu-

sion, the bombings at Hiroshima and Nagasaki. At this time, many scientist

and engineers realized that if this phenomenon can be confined and controlled,

the possibility of harnessing this energy for development of mankind would be

enormous. A thermonuclear fusion can be confined and controlled by

• Gravitational confinement

• Magnetic confinement

• Inertial confinement

93

5.1. Introduction

• Electrostatic confinement

5.1.2 Tokamak Fusion Reactor

A tokamak is a magnetic field based plasma confining device in the shape of

a torus. A stable plasma equilibrium can be achieved by generating magnetic

field lines which can helically move around the torus. The plasma position

control in a Tokamak reactor is a highly nonlinear control problem. In Tokamak

reactor, magnetic field is used to confine the plasma in desired position. Plasma

is highly sensitive state of matter and can be unstable under slightest trigger

in the surrounding environment. It is therefore very important to design a fast

but highly robust controller. A tokamak can successfully operate if the plasma

is stable and confined to the geometric center of the vacuum vessel. The radial

position of the confined plasma inside the torus vessel inflict on the quality of

the plasma discharge. Unstable plasma when approaches too close to the wall

of the vessel, it may lead to partial or complete disruption of the plasma. Hence

it is of primal importance that the plasma position is controlled throughout the

plasma discharge process.

To achieve a stable plasma equilibrium and to confine it inside, a fusion re-

actor is required to generate magnetic field lines that helically embraces the

torus shaped plasma. These magnetic field lines can be generated using elec-

tromagnets positioned accordingly. Generation of helical field can be achieved

by adding a magnetic field that circularly travels around the torus (toroidal

field) and another field that travels orthogonally across to the toroidal field

(poloidal field). These field are generated by toroidal field coils and inner and

outer poloidal field coils as shown in Figure 5.1. When a current is passed to

a centrally located helical inner poloidal magnetic field coil, it produces an in-

duced current in the plasma. Direction of the coil current and induced plasma

current is shown in red arrows. This plasma current generates a poloidal mag-

netic field. The required toroidal magnetic field is produced by the circularly

surrounded coils across the torus. The position of the plasma can be controlled

by driving the electric current to these coils.

5.1.3 Aditya Tokamak Fusion Reactor

Aditya Tokamak Fusion Reactor (Aditya) is India’s first Tokamak Fusion Test

Reactor (TFTR) [27]. It is a medium sized test reactor designed, developed and

94

5.2. Aditya Tokamak System Modeling

Figure 5.1: Schematic of a tokamak.
Photo credit: Abteilung Öffentlichkeitsarbeit - Max-Planck Institut für Plasmaphysik. Licensed under Creative Commons BY–SA 3.0 via Wikimedia Commons

Table 5.1: Parameters of Aditya Tokamak under different power supplies

Power Supply Parameters Approx. Values

Capacitor Bank

Plasma Current 30 kA
Shot Duration 25 ms
Central Electron Temp. 100 eV
Core Plasma Density 1019m−3

Aditya Pulse Power
Supply (APPS)

Plasma Current 100 kA
Shot Duration 25 ms
Central Electron Temp 100 eV
Core Plasma Density 3x1019m−3

stationed at Institute of Plasma Research, Gandhinagar, India. The plasma

has a major and minor radius of 0.75 m and 0.25 m respectively. There are

twenty toroidal magnetic field coils symmetrically arranged across the torus.

These coils produce a maximum magnetic field strength of 1.2 tesla. Table 5.1

describes the parameters of Aditya Tokamak under different power supplies.

5.2 Aditya Tokamak System Modeling

In this section, the control problem of radial position of plasma in Aditya TFTR

using fast feedback (FF) coil has been analysed using a RZIP model. The ge-

ometric center of vacuum vessel of Aditya TFTR is at 0.75 m and it is critical

that the radial position of the plasma maintained at this point. This model is

95

5.2. Aditya Tokamak System Modeling

Figure 5.2: Cross-sectional view of plasma position and displacement inside the
vacuum chamber

developed with the assumption that small variation in coil currents produces

small change in plasma position and current.

Unlike circular cross-section plasmas, Tokamak operates on highly non-

circular torus shape. Non-circular shapes are more difficult to produce and

to control accurately, since currents through several control coils must be ad-

justed simultaneously[30]. Due to uncertainties in the current and pressure

distributions within the plasma, the desired accuracy for plasma control can

only be achieved by making real-time measurements of the position and shape

of the boundary, and using error feedback to adjust the currents in the control

coils. The modeling of the discharge parameters like plasma current, position

and shape is a challenging task, as they are highly nonlinear and time varying

in nature. Hence, due to inherent complexity of the plasma position control

system and its nonlinear nature, it is difficult to achieve control of plasma po-

sition using traditional controllers [180]. A similar approach was also taken by

Morelli et. al. [126] in plasma position control of STOR-M Tokamak Fusion

Test Reactor.

Considering the above modeling parameters taken from the work by Bandy-

96

5.2. Aditya Tokamak System Modeling

opadhyay et. al. [18, 19],

Ẋ =AX +BU (5.1)

where A=M
−1

·R, B=M
−1

, and

X =




IC

zIP

RIP

IP




,U =




VC

0

−
µ0IP

2 Γ

IP




M and R refers to vector of mutual inductances and resistances of all circuits

with plasma [17, 19, 180].

M =




MC

(
M′

R

)T
MPC

M′
Z

0 0

M′
R

MPC

M22

M22

M22

LP0




and R =




ΩC 0 0

0 0 0

0 0 0

0 Ω
′
P

ΩP




where,

M22 =

(
µ0
2

dΓ
dr

+
2πBz0

I p0
+

2πR0B′
z0

I p0

)

M23 =

(
µ0Γ0 +

2πR0Bz0
I p0

)

M32 =

(
µ0 (1+ f0)+ 2πR0Bz0

I p0

) , MC and ΩC are mutual inductance

and resistance matrices of all the circuits, MPC and MR are the vector of mu-

tual inductances of the circuits with the plasma and their radial derivatives

respectively, and Γ is known as Shafranov parameter. This shows that A and

B are matrices of dependent on the mutual inductances and resistances of all

circuits with plasma which is highly non-linear in nature.

In Aditya TFTR, four magnetic probes are used to measure the radial posi-

tion of the plasma. These probes are places close to the outer periphery of the

vacuum vessel. A Rogowski coil is used to measure the plasma current (IP).

P. Suratia et. al. [180] and I. Bandyopadhyay et. al. [17] explained the

major control operatives as - "ADITYA has been provided with a primary ver-

tical coil field with adjustable gain proportional to plasma current, to compen-

sate the change in vertical displacement of plasma column. The shift in radial

position due to minor disruptions is controlled by a separate pair of Fast Feed-

back coils, this fast feedback coils produces adequate magnetic field to bring the

plasma column back to its geometrical center."

97

5.3. Control Strategy

5.3 Control Strategy

5.3.1 Using PID Control

Traditional PID controllers are used presently in Aditya TFTR to which radial

position signal is fed as input. The controller generates a suitable control sig-

nal to actuate the current in the fast feedback coils and accordingly the plasma

is confined in radial direction [180]. Figure 5.3 shows the control strategy em-

ployed in radial position control of plasma in Aditya TFTR.

∆Bv

Bv

=
∆R

R

The vertical field required to maintain the radial position of plasma in Aditya

TFTR can be obtained from Grad-Shafranov equation [128, 180] presented at

(5.2).

Bv =
µ0IP

4πR

[
ln

(
8R

a

)
+βP +

l i −3

2

]
(5.2)

where, B is Magnetic flux density, Bφ,Bθ,Bρ is Toroidal, poloidal and radial

components of the magnetic field, E is Electric field intensity, J is Plasma cur-

rent density, R is Major radial coordinate and a is Minor radial coordinate.

It can be observed from (5.2) that, the total vertical magnetic field for proper

position control of plasma is proportional to the magnitude of

1. Internal inductance of plasma l i,

2. Plasma current IP , and

Figure 5.3: Control strategy for radial plasma position control in Aditya TFTR

98

5.3. Control Strategy

3. Plasma poloidal beta1.

All these parameters are time varying and highly nonlinear in nature. The

limitations of PID controllers have been already explained and therefore, a con-

troller equipped to handle these parameters to provide a smooth, fast and ro-

bust control action is of utmost importance. However, it is important to exercise

the existing knowledge gathered from the system response with PID controller.

A PID control loop for radial plasma position control of Aditya TFTR is devel-

oped in Simulink as shown in Figure 5.4. It represent the mathematical model

explained in (5.2). The PID controller is tuned using Ziegler-Nichols method.

The Ziegler-Nichols tuning method is a heuristic method of tuning a PID con-

troller [17, 19]. The simulation output data is observed and recorded.

Figure 5.4: Simulink model of radial plasma position control in Aditya TFTR
with PID controller

5.3.2 Plasma Position Control in Aditya using Traditional

Fuzzy Logic Controller

P. Suratia et. al. proposed a fuzzy logic controller for radial plasma position

control in Aditya TFTR [180]. The characteristic features of this controller and

1 It is the ratio of the poloidal plasma pressure to the poloidal magnetic pressure

99

5.3. Control Strategy

Table 5.2: Characteristics of FLCs used in [180] and G-FLCS

Parameters [180] G-FLCS
Inputs 2 2
Output 1 1

Antecedant MFs 7 (triangular) 7 (trapezoidal, triangular)
Consequent MFs 7 (singleton) 7 (trapezoidal, triangular)

Aggregation MIN MIN
Implication MAX MAX

MF Overlapping Degree 2 Dynamic (4)
Defuzzification Method Weighted Average CoA

the proposed G-FLCS used in the control simulation is tabulated in Table 5.2.

The Simulink model with the FLC is shown in Figure 5.5. It can be observed in

this figure that the inner PID loop in the outer position control loop in Figure

5.4 is replaced by a FLC loop in Figure 5.5. The download link to the FCP used

in [180] to control the radial position of plasma in Aditya TFTR is provided in

Appendix-A.

Figure 5.5: Simulink model of radial plasma position control in Aditya TFTR
with FLC

100

5.4. Introduction to Multi Objective Genetic Algorithm

5.4 Introduction to Multi Objective Genetic Al-

gorithm

Majority of real world processes and plants operate at their best when an op-

timum state is achieved by balancing multiple objectives. A multi objective

optimization problem is mathematically represented as [137, 198];

F (x)= (f1(x), . . . , fm(x))T

x ∈Ω

where x is a decision vector in a Ω vector space. F (x) constitutes of m number

of objective functions

f i :Ω→ R,∀i → [1, m]

where Rm represents the objective space. Now in (5.4), the objective function

f i, mostly experiences trade off between each other. Thus to achieve an optimal

solution is important for any engineer. The best trade off solution that can be

achieved using these objective functions is called the Pareto Optimal Solutions.

Definition 4 An optimal feasible solution x∗ ∈Ω in (5.4) is called a pareto op-

timal solution

iff 6 ∃y ∈Ω

such that F (y)< F (x∗). Set of all pareto optimal solutions

SPOS =
{
x ∈Ω| 6 ∃y ∈Ω,F (y)< F

(
x∗

)}

Evolutionary algorithms like GA, PSO and others where population based

heuristic search is conducted, can successfully approximate the whole SPOS

of a multi objective optimization problem. Genetic Algorithm (GA) is arguably

most widely used search heuristic in the field of artificial intelligence and ma-

chine learning. It is inspired by Darwin’s theory of evaluation and natural

selection [198]. Figure 5.6 provides a general block diagram to the basic outline

as follows.

Initial Population To generate P0 set of valid parameters in accordance to

the parameter constraints. This individual set of parameters are called

chromosomes.

101

5.4. Introduction to Multi Objective Genetic Algorithm

Figure 5.6: Flowchart of Genetic Algorithm

Fitness To evaluate fitness F(x) for each chromosome x in the population P0

and Pk = P0.

Stopping Condition Check Check if the stopping conditions for all objec-

tives are met. If yes then exit and return parameter set with best fitness

value.

New Population New population can be selected from existing Pk following

the steps mentioned below.

a. Selection Select n best fitness chromosome from Pk. These repre-

sents the [arent chromosomes. Reject others.]

b. Crossover With the probability for crossover, generate new offspring.

c. Mutation With mutation probability, mutate the new offspring.

d. Acceptance Generate the population Pk using new population.

Loop Go to Fitness.

102

5.5. GA based FCP Extraction

5.5 GA based FCP Extraction

In this section, a GSA based FCP extraction for Aditya TFTR is presented. The

details of the parameters to be tuned using GS are presented in section 5.5.2.

The optimization problem is as follows. Tune sixty-one FCP as mentioned in

5.5.2 such that the response of the TFTR fulfils the objectives of

1. settling time,

2. transient time, and

3. steady state error.

All these corresponds to as minimum optimization problem.

Genetic algorithm based fuzzy parameter extraction scheme, as explained

in section 3.5, is implemented to derive the FCP to control radial position of

plasma in Aditya TFTR model as shown in Figure 5.5. The extracted FCP is

provided in Appendix B.

5.5.1 FLC I/O Identification

The parameters that is considered are

RP Error → Input with 7 MFs (Triangular and Trapezoidal)

IP → Input with 7 MFs (Triangular and Trapezoidal)

Control Signal → Output with 7 MFs (Triangular and Trapezoidal)

5.5.2 FLC Parameter Identification

(i) Radial Position Error RP :

Range → [−0.05,0.05]

Parameters:

[(
RP1A

,RP1B

)
,
(
RP2A

,RP2B
,RP2C

)
,
(
RP3A

,RP3B
,RP3C

)
,
(
RP4A

,RP4B
,RP4C

)
,

(
RP5A

,RP5B
,RP5C

)
,
(
RP6A

,RP6B
,RP6C

)
,
(
RP7A

,RP7B

)
]

Number of parameters nRP
= 19

(ii) Plasma Current IP :

Range → [5e4,8e4]

103

5.5. GA based FCP Extraction

Figure 5.7: Flowchart of Genetic Algorithm

Parameters:

[(
IP1A

, IP1B
, IP1C

)
,
(
IP2A

, IP2B
, IP2C

)
,
(
IP3A

, IP3B
, IP3C

)
,
(
IP4A

, IP4B
, IP4C

)
,

(
IP5A

, IP5B
, IP5C

)
,
(
IP6A

, IP6B
, IP6C

)
,
(
IP7A

, IP7B
, IP7C

)
]

104

5.5. GA based FCP Extraction

Figure 5.8: MF co-ordinates for Parameter Extraction: Radial Position Error

Number of parameters nIP
= 21

Figure 5.9: MF co-ordinates for Parameter Extraction: Plasma Current

(iii) Control Signal u:

Range → [−60,60]

Parameters:

[
(u1A, u1B, u1C) , (u2A, u2B, u2C) , (u3A, u3B, u3C) , (u4A, u4B, u4C) ,

(u5A, u5B, u5C) , (u6A, u6B, u6C) , (u7A, u7B, u7C)

]

Number of parameters nIP
= 21

105

5.5. GA based FCP Extraction

Figure 5.10: MF co-ordinates for Parameter Extraction: Control Signal

5.5.3 Parameter Constraints

There are total of sixty one identified parameters in section 5.5.2. The shape

of the membership functions are dependent of these parameters and therefore

the relationship between these parameters are cardinal. Genetic algorithm

is well equipped to handle these nonlinear equality constraints between the

parameters. Listing 5.1

fun
tion [
,
eq℄ =
onfun_FLC(X)

% Nonlinear equality
onstraints

 = [X(1) + 0.001 - X(2); % Input Rp Starts Here

X(3) + 0.001 - X(4); X(4) + 0.001 - X(5);

X(6) + 0.001 - X(7); X(7) + 0.001 - X(8);

X(9) + 0.001 - X(10); X(10) + 0.001 - X(11);

X(12) + 0.001 - X(13); X(13) + 0.001 - X(14);

X(15) + 0.001 - X(16); X(16) + 0.001 - X(17);

X(18) + 0.001 - X(19); % Input Rp Ends Here

X(20) + 5 - X(21); % Control Output u starts here

X(21) + 5 - X(22); X(23) + 5 - X(24);

X(24) + 5 - X(25); X(26) + 5 - X(27);

X(27) + 5 - X(28); X(29) + 5 - X(30);

X(30) + 5 - X(31); X(32) + 5 - X(33);

X(33) + 5 - X(34); X(35) + 5 - X(36);

X(36) + 5 - X(37); X(38) + 5 - X(39);

106

5.5. GA based FCP Extraction

X(39) + 5 - X(40)℄; % Control Output u Ends Here

% Nonlinear equality
onstraints

eq = [℄;

Code Snippet 5.1: Describing nonlinear equality constraints

5.5.4 Parameter Extraction

Figure 5.11: Block Diagram for FCP Extraction for Radial Position Control in
Aditya TFTR

In Figure 5.11, the parameter extraction mechanism is graphically repre-

sented. Aditya TFTR Radial Plasma Position Control Simulink model is the

fitness function used in GA based FCP extraction. “sim” command in Matlab is

used to execute the Simulink model from the GA Matlab script. The operation

can be seen in the Code Snippet 5.2. The Error Calculation block in Figure 5.11

represents the objectives computed from the cost function. These objectives are

1. settling time,

107

5.6. FLC Design and Implementation

2. transient time, and

3. steady state error.

simOut =

sim('aditya_fast','SimulationMode','normal','AbsTol','1e-5',...

'StopTime', '0.03', ...

'ZeroCross','on', ...

'SaveTime','on','TimeSaveName','tout', ...

'SaveState','on','StateSaveName','xoutNew',...

'SaveOutput','on','OutputSaveName','youtNew',...

'SignalLogging','on','SignalLoggingName','logsout');

results = simOut.get('youtNew');

t = simOut.get('tout');

Code Snippet 5.2: Fitness Function

%Steady State Error Cal
ulation

errOut = ((0.75 - results(end))^2)^0.5;

% Cal
ulation of Settling Time and Rise Time

results = simOut.get('youtNew');

t = simOut.get('tout');

sTime = stepinfo(results,t,0.749721);

Code Snippet 5.3: Fitness Computation

5.6 FLC Design and Implementation

The extracted parameters for the radial position control provides the default

FCP for the proposed G-FLCS as discussed in the earlier chapters. The ex-

tracted FCP is described in Appendix - B. G-FLCS is connected serially through

UART to the server. An optimized code for FLC with MT-FRHC ispreloaded in

the SHRAM of the C6748 DSP development kit. This system is prepared for

a HIL test to control the plasma position. In the Simulink model presented

in Figure 5.12, the plasma position control is achieved using three different

controller mechanisms, namely,

• Tradition PID controller tuned by Ziegler–Nichols method

108

5.6. FLC Design and Implementation

• FLC as described by P. Suratia et. al. to control radial position of plasma

in Aditya TFTR

• G-FLCS with GA based FCP extraction scheme

5.6.1 HIL Testing

The G-FLCS is connected to a PC with Simulink model of radial plasma po-

sition control of Aditya TFTR. Using UART, data can be exchanged between

the two system. The hardware G-FLCS polls for any input at the UART. Once

it receives the input, it completes the FLC with MT-FRHC execution process

to return a suitable control signal to the power supply of the feedback output.

This completes a HIL loop and it is continued for the entire simulation. Simu-

lation for other controllers are carried out sequentially by chnaging the manual

switches as shown in Figure 5.12. These simulation data are recorded for all

control schemes and analyzed for the performance of the controllers.

Figure 5.12: Radial Plasma Position Control of Aditya TFTR: HIL Simulation
with PID, FLC[180] and G-FLCS

109

5.7. Performance Analysis

5.7 Performance Analysis

The recorded data from the simulations explained in previous section is plotted

as depicted in Figure 5.13. This plot clearly displays the difference in the con-

trol action. A significant improvement in rise time and settling time is observed

in accordance to the PID controller and existing FLC. The hardware G-FLCS

is observed to provide a smooth and fast response. It caters a robust control

scheme for the radial position control in Aditya TFTR. A comparative analysis

of the control parameters are drawn and tabulated in Table. 5.3. It can be ob-

served that the G-FLCS 59% faster rise time and 87% speedy settling time in

comparison to existing control schemes.

Table 5.3: Comparison of performance parameters of PID, FLC[180] and G-
FLCS

Parameters PID FLC[180] GFLCS
Rise Time 0.0062 0.0062 0.0025
Settling Time 0.1255 NaN 0.0160
Settling Min 0.7483 0.7474 0.7483
Settling Max 0.7497 0.7486 0.7509
Overshoot 0 0 0.0009
Undershoot 0 0 0
Peak 0.7497 0.7486 0.7509
Peak Time 0.2 0.0235 0.0154

5.8 Summary

This chapter implements the proposed MT-FRHC based G-FLCS with VBCoA

on C6748 DSP in a critical and highly nonlinear control problem. In Aditya

TFTR, the confinement of plasma within the vacuum chamber is crucial. There-

fore, this system requires a fast and robust control algorithm. The GA based

FCP extraction algorithms generates the parameters to drive the hardware G-

FLCS. The proposed controller is then serially interfaced to the Simulink model

through UART and tested with other control applications. The observation ob-

tained from this system was exciting as it provided 59% faster rise time and

87% speedy settling time in comparison to existing control schemes. These re-

sults are extremely positive and encouraging.

110

5.8. Summary

Time (seconds)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

In
pu

t D
is

tu
rb

an
ce

-120

-100

-80

-60

-40

-20

0
Input Disturbance vs Time

Disturbance Data (Input)

(a) Input Disturbance Signal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.732

0.734

0.736

0.738

0.74

0.742

0.744

0.746

0.748

0.75

0.752

 Time (in ms)

 R
ad

ia
l P

os
iti

on
 (

in
 m

)

FLC Designed by P. Suratia et. al.

PID Controller tuned by Ziegler−Nichols Method

Proposed Hardware G−FLCS with GA tuned FCP

(b) System Response

Figure 5.13: Performance of various controllers in presence of disturbances in
plasma position

111

Chapter 6
Conclusion

Preview

This chapter concludes the thesis and summarizes the findings during this re-

search work. It also provides the limitations of this work and points to new

dimensions in which the current work can be enhanced.

112

6.1. Summarized Results

The development of the generic remotely tunable MT-FRHC based FLCS

with VBCoA defuzzification in programmable hardware opens a line of ap-

proach to several explorations. This architecture provides a large number of

functionalities to its users along with sufficient speed to drive most industrial

processes like plasma position control in TFTR, water level control in coupled

tank, etc. This system is standardized with MATLAB Fuzzy Logic Toolbox and

has the ability to incorporate FIS files generated by this toolbox. The proposed

systems are observed to perform well within the multiple testing paradigms

mentioned in this work. Thorough investigations are done using multiple ap-

plications to ascertain generality and applicability of G-FLCS to various control

applications.

6.1 Summarized Results

A brief overview of the various work done in the entire duration of theÂăpro-

ject is necessary to conclude this thesis. In chapter 2, MT-FRHC rule reduction

technique is mathematically established and analyzed in comparison to the pre-

dominant FRHC technique. Both of the technique was implemented on a DSP

hardware for timing analysis. MT-FRHC based G-FLCS achieved 27 % higher

performance in terms of speed compared to the OMF based G-FLCS. Without a

code optimization based on memory and speed, the MT-FRHC based G-FLCS on

DSP achieved a speed of around 10 KFLIPS. This chapter also introduced ver-

tices based CoA computation technique and compared to Riemann sum based

CoA computation. It was observed that on average, the proposed VBCoA con-

sumed 5314 machine cycles in compared to 7640 machine cycles consumed by

Riemann sum based CoA computation.

The system architecture for MT-FRHC based G-FLCS is presented in chap-

ter 3. A WebUI is developed on ASP.NET and hosted using MS IIS7 for remote

reconfigurability and tunability. A Genetic Algorithm based FCP extraction

scheme was also described. The modules and the submodules supporting the

proposed G-FLCS were explained in this chapter. This chapter does not provide

any result ; however, it lays the essential ground work required for the actual

implementation of the proposed G-FLCS.

In chapter 4, the proposed MT-FRHC based G-FLCS with VBCoA defuzzi-

fication was implemented on a DSP hardware. The code was developed in C

language and further optimized using linear ASM and intrinsic functions to

113

6.2. Contribution of this Thesis

achieve a 5 % improvement on the code size. The proposed design was com-

pared to existing designs that closely matches to the objective of this work. It

was observed that proposed DSP based G-FLCS provided a speed of more than

13 KFLIPS in comparison to 5.5 KFLIPS [122] and 11 KFLIPS [56].

Table 6.1: Comparison between Proposed hardware G-FLCS and Similar De-
signs based of Reconfigurable Parameters

Year Reference Speed Platform
(in FLIPS)

2008 Millan et. al.[122] 5.5 K FPGA

2010 Yi Fu et. al.[56] 11 K FPGA

Proposed G-FLCS 13 K DSP

Chapter 5 implements the proposed MT-FRHC based G-FLCS with VB-

CoA on C6748 DSP to control radial plasma position of Aditya TFTR. It was

compared to an existing FLCS designed exclusively for this application [180].

Compared to the presently deployed control techniques, the proposed system

achieved 59% faster rise time and 87% speedy settling time. However, a slight

overshoot of 0.0009 m is reported by the proposed G-FLCS. This overshoot im-

plies a plasma displacement of 9 mm in a vacuum chamber of 750 mm which is

effectively 1.2 % of the radius.

6.2 Contribution of this Thesis

In summary, this research successfully contributes

• A G-FLCS module with WebUI has been proposed that can operate as

standalone remotely tunable controller. All existing G-FLCS, had no user

interactions [56, 122] and hence even though they were developed on field

programmable hardware, the system architecture do not allow field pro-

grammability of the G-FLCS. The proposed MT-FRHC based GFLCS sys-

tem can be programmed through the web interface. The novelty of this

application lies in its system architecture which is elaborated in Chapter

3 and 4.

• A code optimization process is implemented to develop memory consump-

tion and speed optimized G-FLCS controller on C6748 DSP processor. A

114

6.3. Limitations of this Work

5% memory saving was observed after this optimization process. Indus-

try standard code optimization techniques are used in this work and they

are explained in section 4.2.1. However, the standard HIL testing process

involves high end debuggers and emulation devices. They also operate

on various copyright protocols. However, in section 4.2.2, a naive UART

based HIL testing process was described that provided performance and

timing analysis of the proposed G-FLCS.

• MT-FRHC rule reduction technique ensures that the proposed G-FLCS

achieves an operating speed of around 10K FzLOPS.

• A GA based FCP extraction algorithm in conjunction with a Fuzzy PID

approximation based initial FCP generation technique was proposed. Sec-

tion 4.4.3 shows GA based FCP extraction technique to drive the G-FLCS

for various control problems. The proposed method extracts minimal

rules to reduce complexity. However, it does not guarantee a minimal

number of overlaps among the input membership function. But, MT-

FRHC algorithm reduces the complexity by dynamically controlling the

overlaps. Thereby, together MT-FRHC and GA based G-FLCS provides a

balanced performance that can be observed from section 5.7.

• A vertices based centroid computations for polygons were extensive used

in geospatial applications [174]. In section 2.3.2, VBCoA defuzzification

scheme is proposed. A novel algorithm for computation of vertices and its

co-ordinates was proposed. This was observed to speed up the defuzzifica-

tion process significantly compared to the widely used Reimann Integral

Sum based CoA computation.

• Finally the G-FLCS is implemented to control radial plasma position of

Aditya TFTR model. The observation obtained from this system was ex-

citing as it provided 59% faster rise time and 87% speedy settling time in

comparison to existing control schemes.

6.3 Limitations of this Work

The major limitations of the proposed MT-FRHC based G-FLCS with VBCoA

design can be summarized as follows:

115

6.4. Few Scope for Future Work

• G-FLCS is developed on a programmable device. The methodology of G-

FLCS is implemented using a DSP which works with a sequential code.

A parallel architecture developed on FPGA or hybrid computing platform

would unleash the complete power of the proposed method.

• G-FLCS is tested in HIL environment with Simulink models and not with

practical systems. Although the HIL test results are promising, but a

real-time testing is will assure that the system performs as expected.

• G-FLCS is connected to a server PC using standard protocol. In this

implementation the security of the data communication network is not

stressed upon. It is indispensable to evaluate the network security and

analyze the threats.

• The proposed methods of GA based FCP extraction and Fuzzy PID ap-

proximation based initial FCP generation requires knowledge about the

dynamics of a process plant. The actual essence of an FLCS is that it re-

quires no knowledge about the dynamics of the plant. Although the basic

MT-FRHC based G-FLCS with VBCoA operates on the ideology of a typ-

ical fuzzy system, the GA based FCP extraction and Fuzzy PID approx-

imation based initial FCP generation is not applicable to process plants

where the dynamics of the system is unknown.

6.4 Few Scope for Future Work

The work presented in this thesis elaborates the design and implementation of

a MT-FRHC based G-FLCS with VBCoA defuzzification method. This design

has potential for wide explorations. Some of the significant area of future work

includes the following.

• The proposed G-FLCS architecture is implemented on the type-I Mam-

dani fuzzy logic control system. This architecture has been implemented

using modular design methodology. The modules in proposed G-FLCS can

be integrated with neural network to achieve a DSP based generic neuro-

fuzzy system. There are various applications based on neuro-fuzzy sys-

tems [85, 188]. These designs have been implemented on FPGA platform.

As it has been already established that the proposed G-FLCS architecture

116

6.4. Few Scope for Future Work

can perform better than similar designs on FPGA. It will be interesting

to analyse the performance of DSP based generic neuro-fuzzy system.

• An ASIP implementation of MT-FRHC based G-FLCS with VBCoA can

be achieved. The proposed G-FLCS architecture is developed on a gen-

eral purpose DSP processor. The deign of G-FLCS includes many modules

which have been implemented using linear ASM. There are many RISC

based fuzzy processor reported in the literature [33, 164]. The proposed

MT-FRHC based G-FLCS with VBCoA can be introduced in the instruc-

tion set of these RISC based fuzzy processors. To realize this concept, MT-

FRHC rule-reduction process and VBCoA defuzzification method have

been implemented using linear ASM. However, the conversion of these

linear ASM functions into individual instructions and integrating these

instructions into the existing instruction set can be a challenging aspect.

• This concept of G-FLCS can be extended to include Type-II Fuzzy sets.

The Type-II Fuzzy sets have included uncertainty in membership func-

tions that makes it more complex and challenging area of research. There

are various industrial application based on type-II FLCS [102, 163]. These

designs can also be implemented in proposed G-FLCS architecture; by

extrapolating the design reported in this thesis from type-I fuzzy sets to

type-II fuzzy set. The resultant design can achieve a speed better than

reported in these designs [93, 148]. It has already been shown in the the-

sis that the present G-FLCS architecture achieves the speed higher than

similar designs implemented on FPGAs.

117

Appendix A

A.1 Fuzzy Parameter Files

Download Links to FIS Structure File

• Fuzzy PI approximation to control ACDC motor

http://goo.gl/zhanJN

• Water level control in a two tank system

http://goo.gl/9CWP8e

• Truck backer control system

http://goo.gl/HX2Db5

• Test Parameter File (Used in hardware realization)

http://goo.gl/LtqBl4

• FCP File (Used in [180])

https://goo.gl/A2MLP8

118

http://goo.gl/zhanJN
http://goo.gl/9CWP8e
http://goo.gl/HX2Db5
http://goo.gl/LtqBl4
https://goo.gl/A2MLP8

Appendix B

B.1 GA based Extracted FCP for Radial Position

Control

[S ystem]

Name=’GA_Tuned_FCP’

Type=’mamdani’

Version=2.0

NumInputs=2

NumOutputs=1

NumRules=49

AndMethod=’min’

OrMethod=’max’

ImpMethod=’min’

AggMethod=’max’

DefuzzMethod=’centroid’

[Input1]

Name=’R_PError’

Range=[-0.05 0.05]

NumMFs=7

MF1=’fin’:’trapmf’,[-0.065 -0.05167 -0.0420000000000024 -0.0280000000000052]

MF2=’in’:’trimf’,[-0.033 -0.0250000000000001 -0.018]

MF3=’jin’:’trimf’,[-0.0219999999999999 -0.011 0]

MF4=’g’:’trimf’,[-0.002 0 0.002]

MF5=’jout’:’trimf’,[0 0.012 0.022]

119

B.1. GA based Extracted FCP for Radial Position Control

MF6=’out’:’trimf’,[0.018 0.0265482226169141 0.032]

MF7=’fout’:’trapmf’,[0.028 0.039 0.05167 0.06503]

[Input2]

Name=’I_P’

Range=[50000 80000]

NumMFs=7

MF1=’ln’:’trimf’,[50000 55000 60000]

MF2=’sn’:’trimf’,[66920 68920 70920]

MF3=’mn’:’trimf’,[58250 63250 68250]

MF4=’tiny’:’trimf’,[70500 71500 72500]

MF5=’sp’:’trimf’,[72000 73500 75000]

MF6=’mp’:’trimf’,[74500 75000 76000]

MF7=’lp’:’trimf’,[75800 77500 79000]

[Output1]

Name=’CtrlSig’

Range=[-60 60]

NumMFs=7

MF1=’LN’:’trimf’,[-59.7629179528005 -43.2499999974027 -23.2500000025973]

MF2=’MN’:’trimf’,[-59.7880292411719 -32.5 -7]

MF3=’SN’:’trimf’,[-35.3483494741782 -15.4275784230086 -0.052578424943468]

MF4=’Tiny’:’trimf’,[-5 2.69288883575541e-16 5]

MF5=’SP’:’trimf’,[1.93970084438888e-09 16.3124999926697 34.1249999942683]

MF6=’MP’:’trimf’,[0.430775859048123 22.8750000025973 51.8749999974027]

MF7=’LP’:’trimf’,[25.0000000059503 47.0000000036437 59.999999995951]

Rulebase

[Rules]

7 1, 7 (1) : 1

7 3, 7 (1) : 1

7 2, 7 (1) : 1

7 4, 4 (1) : 1

7 5, 7 (1) : 1

7 6, 7 (1) : 1

7 7, 7 (1) : 1

6 1, 6 (1) : 1

6 2, 6 (1) : 1

6 3, 6 (1) : 1

6 4, 4 (1) : 1

6 5, 6 (1) : 1

6 6, 6 (1) : 1

6 7, 6 (1) : 1

5 1, 5 (1) : 1

5 2, 5 (1) : 1

5 3, 5 (1) : 1

120

B.1. GA based Extracted FCP for Radial Position Control

5 4, 4 (1) : 1

5 5, 5 (1) : 1

5 6, 5 (1) : 1

5 7, 5 (1) : 1

4 1, 4 (1) : 1

4 2, 4 (1) : 1

4 3, 4 (1) : 1

4 4, 4 (1) : 1

4 5, 4 (1) : 1

4 6, 4 (1) : 1

4 7, 4 (1) : 1

3 1, 3 (1) : 1

3 2, 3 (1) : 1

3 3, 3 (1) : 1

3 4, 4 (1) : 1

3 5, 3 (1) : 1

3 6, 3 (1) : 1

3 7, 3 (1) : 1

2 1, 2 (1) : 1

2 2, 2 (1) : 1

2 3, 2 (1) : 1

2 4, 4 (1) : 1

2 5, 2 (1) : 1

2 6, 2 (1) : 1

2 7, 2 (1) : 1

1 1, 1 (1) : 1

1 2, 1 (1) : 1

1 3, 1 (1) : 1

1 4, 4 (1) : 1

1 5, 1 (1) : 1

1 6, 1 (1) : 1

1 7, 1 (1) : 1

121

Appendix C

C.1 Experiment 1: Automatic Cruise Control Sys-

tem for Cars[12]

C.1.1 Aim

To design and develop a cruise control system of a car.

C.1.2 System Modeling

Consider a vehicle of mass m moving at a velocity v. A force F is generated

from the engine while a disturbance force Fd is resisting motion of the vehicle

[12, 15]. Therefore, the equation of motion of the vehicle is given by

m
dv

dt
= F −FD (C.1)

The vehicle engine generates force F which is proportional to the rate of injected

fuel in the engine. This phenomenon in turn controls the throttle of the vehicle.

Torque produced T at engine speed ω can be mathematically represented as

T (ω)= Tm

(
1−β

(
ω

ωm

−1
)2)

(C.2)

where Tm is maximum torque generated by the engine at full throttle to attain

ωm, the maximum engine speed with torque coefficient β. For a gear ratio n

and wheel radius r, current velocity can be related to the engine speed by (4.2)

ω=
n

r
v =αnv (C.3)

122

C.1. Experiment 1: Automatic Cruise Control System for Cars[12]

Therefore the driving force can be computed as

F =
nu

r
T (ω)=αnuT (αnv) (C.4)

Basically there are three major disturbance forces working on the vehicle namely,

gravitational force (FG), rolling friction of the road and vehicle tires (FR), and

aerodynamic drag due to the body of the vehicle (FA).

FD = FG +FR +FA (C.5)

The gravitational force acting on the vehicle can be modeled based on the slope

of the roads.

FG = mgsinθ (C.6)

FR = mgCrsgn (v) (C.7)

FA =
1

2
ρCd Av2 (C.8)

Combining (C.5) and (C.6), (C.1) becomes

m
dv

dt
=αnuT (αnv)−mgsinθ− (C.9)

mgCrsgn(v)−
1

2
ρCd Av2

C.1.3 Controller Design and Tuning

A PI controller was used to benchmark the performance of this control problem.

The designed PI controller was tuned using Ziegler-Nichols method with help

of Matlab Control System Toolbox. The controller gains are specified in Table

C.1.

Table C.1: Proportional and Integral Gains in ACC System

Gain Value
KP 0.1
K I 0.5

123

C.2. Experiment 2: Two Tank Water Level Control [93]

Figure C.1: Coupled Tanks System [93]

C.2 Experiment 2: Two Tank Water Level Con-

trol [93]

C.2.1 Aim

To control water level in a coupled tank.

C.2.2 System Modeling

Consider the coupled tank system in Figure C.1. The system comes from two

flow balances and the non-linear equations for flow appear through the valves.

When the valves are assumed to have ideal orifice, the system nonlinearity is

described by square root law. The flow balance equations are,

Q i −Cdbab

√
2g(H1−H2)= A

dH1
dt

Cdbab

√
2g(H1−H2)−Cdbab

√
2gH2 = A

dH2
dt

C.2.3 Controller Design and Tuning

For the controller design, the above equations are linearized. This is done as-

suming small variations in q i in Q i, h1 in H1, h2 in H2. After linearizing of the

124

C.3. Experiment 3: Armature Controlled DC Motor[170]

above equations can be presented as,

[
ẋ1

ẋ2

]
=

[
k11 k12

k21 k22

][
x1

x2

]
+

[
A−1

0

]
q i

[
h1

h2

]
=

[
1 0

0 1

][
x1

x2

]

The transfer function model is as follows

h2(s)

q i(s)
=

G

(T1s+1)(T2s+1)

Implementing a PI controller,

y(s)=
g(k i +kps)r(s)

Ts2 + s(1+ gkp)+ gk i

+
(gs)d(s)

Ts2 + s(1+ gkp)+ gk i

With natural frequency of 0.01 Hz and a damping factor of 1, the control

system parameters were set up to be k i = 0.1 and kp = 2.7

C.3 Experiment 3: Armature Controlled DC Motor[170]

C.3.1 Aim

To control speed of a DC motor.

C.3.2 System Modeling

Consider the Figure C.2, which shows the operation of an Armature controlled

DC motor [113, 170].

The physical constants of the control problem are Armature Resistance (RA)

= 1 Ω, Armature Inductance (LA) = 0.5, Inertia (JM) = 0.01, Damping (BM) =

0.1, Torque Constant (Kτ) 0.01 Nm/A and Back EMF Constant (KB) = 0.01

Vs/rad.

Transfer function of the plant model is stated as,

θ(s)

VA(s)
=

Kτ

LA JMs3+(RA JM+LABM)s2

x
1

(KτKB+RABM)s
(C.10)

125

C.3. Experiment 3: Armature Controlled DC Motor[170]

Figure C.2: Armature Controlled DC Motor

Table C.2: Controller Gains in Speed Control of Armature Controlled DC Motor

Gain Value
KP 17.94
K I 43.45
KD -0.78

C.3.3 Controller Design and Tuning

The above model is loaded with Torque TD . A PID controller is employed to

obtain a smooth control of the Armature Controlled DC motor. The controller is

tuned using Mathworks Systune PID Tuner. The controller gains are tabulated

in Table C.2.

126

Bibliography

[1] J. J. Acevedo, B. n. C. Arrue, J. M. Diaz-Bañez, I. Ventura, I. Maza,

and A. Ollero, “One-to-one coordination algorithm for decentralized area

partition in surveillance missions with a team of aerial robots,” Journal

of Intelligent and Robotic Systems: Theory and Applications, vol. 74, no.

1-2, pp. 269–285, Oct. 2014. 10

[2] B. Adhavan and C. S. Ravichandran, “FPGA implementation to minimize

torque ripples in permanent magnet synchronous motor driven by field

oriented control using fuzzy logic controller,” Journal of Theoretical and

Applied Information Technology, vol. 61, no. 2, pp. 369–377, 2014. 15,

18, 26

[3] A. Al Nabulsi and R. Dhaouadi, “Efficiency optimization of a DSP-based

standalone PV system using fuzzy logic and dual-MPPT control,” IEEE

Transactions on Industrial Informatics, vol. 8, no. 3, pp. 573–584, Aug.

2012. 10, 20

[4] R. Alcalá, J. Alcalá-Fdez, M. J. Gacto, and F. Herrera, “Fuzzy rule

reduction and tuning of fuzzy logic controllers for a HVAC system,” in

Studies in Fuzziness and Soft Computing. Springer Berlin Heidelberg,

2006, vol. 201, pp. 89–117. 20, 27, 28, 29

[5] ——, “Rule base reduction and genetic tuning of fuzzy systems based on

the linguistic 3-tuples representation,” Soft Computing, vol. 11, no. 5,

pp. 401–419, Jun. 2007. 29, 62

[6] Altera Corporation, “White Paper FPGA vs . DSP Design Reliability and

Maintenance,” Altera Corporation, Tech. Rep., 2007. 17

127

Bibliography

[7] J. F. M. Amaral, J. L. M. Amaral, C. C. Santini, M. A. C. Pacheco,

R. Tanscheit, and M. H. Szwarcman, “Intrinsic evolution of analog

circuits on a programmable analog multiplexer array,” Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 3038, pp.

1273–1280, 2004. 13

[8] S. Aminifar and A. B. Marzuki, “Voltage-mode fuzzy logic controller,”

Indian Journal of Science and Technology, vol. 5, no. 11, pp. 3630–3633,

2012. 13

[9] R. Amirkhanzadeh, A. Khoei, and K. Hadidi, “A mixed-signal current-

mode fuzzy logic controller,” AEU - International Journal of Electronics

and Communications, vol. 59, no. 3, pp. 177–184, Jun. 2005. 22

[10] F. Aqlan and E. Mustafa Ali, “Integrating lean principles and fuzzy

bow-tie analysis for risk assessment in chemical industry,” Journal of

Loss Prevention in the Process Industries, vol. 29, no. 1, pp. 39–48, May

2014. 10

[11] N. K. Arun and B. M. Mohan, “Mathematical models and computational

aspects of the simplest fuzzy two-term controllers,” in IFAC Proceedings

Volumes (IFAC-PapersOnline). IFAC Secretariat, 2014, pp. 882–889. 87

[12] K. J. Aström and R. M. Murray, Feedback Systems: An Introduction for

Scientists and Engineers, 2nd ed. Princeton University Press, 2009. xi,

87, 122, 123

[13] D. Atherton, “PID controller tuning,” Computing & Control Engineering

Journal, vol. 10, no. 2, p. 44, 1999. 8

[14] D. Atherton and S. Majhi, “Limitations of PID controllers,” in Proceedings

of the 1999 American Control Conference (Cat. No. 99CH36251), vol. 6.

IEEE, 1999, pp. 3843–3847. 8

[15] J. Awrejcewicz and Z. Koruba, Classical mechanics. Applied mechanics

and mechatronics. Springer New York LLC, 2012. 122

[16] M. D. Baldania, D. A. Sawant, and A. B. Patki, “Fuel saving of an

automobile using fuzzy logic based embedded controller,” in 2014 IEEE

128

Bibliography

International Conference on Advanced Communications, Control and

Computing Technologies. IEEE, May 2014, pp. 136–140. 10

[17] I. Bandyopadhyay, S. M. Ahmed, P. K. Atrey, S. B. Bhatt, R. Bhat-

tacharya, M. B. Chaudhury, S. P. Deshpande, C. N. Gupta, R. Jha, Y. S.

Joisa, V. Kumar, R. Manchanda, D. Raju, C. V. S. Rao, P. Vasu, and

t. A. Team, “Modelling of Ohmic discharges in ADITYA tokamak using

the Tokamak Simulation Code,” Plasma Physics and Controlled Fusion,

vol. 46, no. 9, pp. 1443–1453, 2004. 97, 99

[18] I. Bandyopadhyay, S. P. Deshpande, and S. Chaturvedi, “Design analysis

of plasma position control in SST1,” Fusion Engineering and Design,

vol. 54, no. 2, pp. 151–166, 2001. 97

[19] I. Bandyopadhyay, D. Raju, and S. Deshpande, “Modelling of advanced

plasma configurations in SST-1 tokamak,” Nuclear Fusion, vol. 46, no. 3,

pp. S62–S71, 2006. 97, 99

[20] R. Bandyopadhyay, U. K. Chakraborty, and D. Patranabis, “Autotuning

a PID controller: A fuzzy-genetic approach,” Journal of Systems

Architecture, vol. 47, no. 6, pp. 663–673, 2001. 20, 62, 93

[21] N. C. Basjaruddin, Kuspriyanto, D. Saefudin, E. Rakhman, and

A. M. Ramadlan, “Overtaking assistant system based on fuzzy logic,”

Telkomnika (Telecommunication Computing Electronics and Control),

vol. 13, no. 1, pp. 76–84, 2015. 10

[22] D. Batten, S. Jinturkar, J. Glossner, M. Schulte, and P. D’Arcy, “New

approach to DSP intrinsic functions,” in Proceedings of the Hawaii

International Conference on System Sciences. IEEE, 2000, p. 214. 76

[23] I. Baturone, S. Sanchez-Solano, A. Barriga, and J. L. Huertas, “CMOS

fuzzy controllers implemented as mixed-signal ICs,” in Proceedings -

IEEE International Symposium on Circuits and Systems, vol. 3. IEEE,

1996, pp. 422–425. 12

[24] L. Behera and I. Kar, Intelligent Systems and Control: Principles and

Application, 1st ed. Oxford University Press, 2009. 6, 62, 87

[25] S. Bennett, “A brief history of automatic control,” Control Systems,

IEEE, vol. 16, no. 3, pp. 17–25, Jun. 1996. 8

129

Bibliography

[26] A. Benzekri and A. Azrar, “FPGA-Based Design Process of a Fuzzy Logic

Controller for a Dual-Axis Sun Tracking System,” Arabian Journal for

Science and Engineering, vol. 39, no. 8, pp. 6109–6123, 2014. 15, 18

[27] S. B. Bhatt, D. Bora, and B. N. Buch, “ADITYA: The first Indian toka-

mak,” Indian Journal of Pure and Applied Physics, vol. 7, no. 9, pp. 710–

742, 1989. 94

[28] C. Bhende, S. Mishra, and S. Jain, “TS-Fuzzy-Controlled Active Power

Filter for Load Compensation,” IEEE Transactions on Power Delivery,

vol. 21, no. 3, pp. 1459–1465, Jul. 2006. 10

[29] D. C. M. Bilsby, R. L. Walke, and R. W. M. Smith, “Comparison of a

programmable DSP and a FPGA for real-time multiscale convolution,”

1998. 18

[30] C. M. Bishop, P. S. Haynes, M. E. U. Smith, T. N. Todd, D. L. Trotman,

and C. G. Windsor, “Real-time control of a Tokamak plasma using neural

networks,” in Neural Computation, 1995, vol. 7, no. 1, pp. 1007–1013. 96

[31] S. Bogdan, B. Birgmajer, and Z. Kovačić, “Model predictive and fuzzy

control of a road tunnel ventilation system,” Transportation Research

Part C: Emerging Technologies, vol. 16, no. 5, pp. 574–592, Oct. 2008. 10

[32] S. Bogdan and Z. Kovacic, Fuzzy Controller Design: Theory and Applica-

tions, 1st ed. CRC press, Taylor and Francis, 2006. 4, 5, 87

[33] G. Bosque, I. Del Campo, and J. Echanobe, “Fuzzy systems,

neural networks and neuro-fuzzy systems: A vision on their

hardware implementation and platforms over two decades,” Engineering

Applications of Artificial Intelligence, vol. 32, pp. 283–331, Jun. 2014.

12, 18, 19, 26, 117

[34] H. Boubertakh, M. Tadjine, and P. Y. Glorennec, “A new mobile

robot navigation method using fuzzy logic and a modified Q-learning

algorithm,” Journal of Intelligent and Fuzzy Systems, vol. 21, no. 1-2, pp.

113–119, 2010. 20

[35] H. Boumaaraf, A. Talha, and O. Bouhali, “A three-phase NPC grid-

connected inverter for photovoltaic applications using neural network

130

Bibliography

MPPT,” Renewable and Sustainable Energy Reviews, vol. 49, pp.

1171–1179, Sep. 2015. 10

[36] M. Brox and S. Sanchez-Solano, “Development of IP Modules of Fuzzy

Controllers for the Design of Embedded Systems on FPGAs,” in 2006

International Conference on Field Programmable Logic and Applications.

IEEE, 2006, pp. 1–2. 20

[37] M. Brox, S. Sanchez-Solano, E. Del Toro, P. Brox, and F. J. Moreno-Velo,

“CAD tools for hardware implementation of embedded fuzzy systems on

FPGAs,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp.

1635–1644, Aug. 2013. 18, 26

[38] C. Buccella, C. Cecati, and H. Latafat, “Digital Control of Power

Converters-A Survey,” IEEE Transactions on Industrial Informatics,

vol. 8, no. 3, pp. 437–447, Aug. 2012. 18

[39] C. B. Butt, M. A. Hoque, and M. A. Rahman, “Simplified fuzzy-logic-based

MTPA speed control of IPMSM drive,” IEEE Transactions on Industry

Applications, vol. 40, no. 6, pp. 1529–1535, 2004. 17, 20

[40] C. Cecati, F. Ciancetta, and P. Siano, “A Multilevel Inverter for

Photovoltaic Systems With Fuzzy Logic Control,” IEEE Transactions on

Industrial Electronics, vol. 57, no. 12, pp. 4115–4125, 2010. 11

[41] R. Chassaing, Digital Signal Processing and Applications with the C6713

and C6416 DSK, 1st ed. John Wiley & Sons, Ltd, 2005. 76

[42] B. S. Chen, B. K. Lee, and L. B. Guo, “Optimal Tracking Design for

Stochastic Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 11,

no. 6, pp. 796–813, 2003. 62

[43] A. Costa, A. De Gloria, P. Faraboschi, A. Pagni, and G. Rizzotto,

“Hardware solutions for fuzzy control,” Proceedings of the IEEE, vol. 83,

no. 3, pp. 422–434, Mar. 1995. 11

[44] R. D’Amore, O. Saotome, and K. Kienitz, “A two-input, one-output

bit-scalable architecture for fuzzy processors,” IEEE Design & Test of

Computers, vol. 18, no. 4, pp. 56–64, 2001. 16

131

Bibliography

[45] T. Das and I. Kar, “Design and implementation of an adaptive fuzzy

logic-based controller for wheeled mobile robots,” IEEE Transactions on

Control Systems Technology, vol. 14, no. 3, pp. 501–510, May 2006. 10

[46] O. Demir, I. Keskin, and S. Cetin, “Modeling and control of a nonlinear

half-vehicle suspension system: A hybrid fuzzy logic approach,”

Nonlinear Dynamics, vol. 67, no. 3, pp. 2139–2151, Jul. 2012. 20, 87

[47] M. Description and P. W. U. Anti-windup, “Anti-Windup Control Using a

PID Controller,” pp. 1–9, 2014. 71

[48] M. P. S. Dos Santos and J. a. F. Ferreira, “Novel intelligent real-time

position tracking system using FPGA and fuzzy logic,” ISA Transactions,

vol. 53, no. 2, pp. 402–414, 2014. 15, 18

[49] P. Dostál, Nostradamus 2013: Prediction, Modeling and Analysis of

Complex Systems, ser. Advances in Intelligent Systems and Computing,

I. Zelinka, G. Chen, O. E. Rössler, V. Snasel, and A. Abraham, Eds.

Heidelberg: Springer International Publishing, 2013, vol. 210. 10

[50] H. Eichfeld, M. Lohner, and M. Muller, “Architecture of a CMOS

fuzzy logic controller with optimized memory organisation and operator

design,” in [1992 Proceedings] IEEE International Conference on Fuzzy

Systems. San Diego, CA: Publ by IEEE, 1992, pp. 1317–1323. 14, 28, 32

[51] A. El Khateb, N. A. Rahim, J. Selvaraj, and M. N. Uddin, “Fuzzy-

Logic-Controller-Based SEPIC Converter for Maximum Power Point

Tracking,” IEEE Transactions on Industry Applications, vol. 50, no. 4,

pp. 2349–2358, Jul. 2014. 16, 20

[52] N. Eskandarian, Y. A. Beromi, and S. Farhangi, “Improvement

of Dynamic Behavior of Shunt Active Power Filter Using Fuzzy

Instantaneous Power Theory,” Journal of Power Electronics, vol. 14,

no. 6, pp. 1303–1313, Nov. 2014. 16, 20

[53] N. E. Evmorfopoulos and J. N. Avaritsiotis, “An Adaptive Digital Fuzzy

Architecture for Application-Specific Integrated Circuits,” Active and

Passive Electronic Components, vol. 25, no. 4, pp. 289–306, 2002. 16

[54] G. D. Finn, “Learning fuzzy rules from data,” Neural computing & appli-

cations, vol. 8, no. 1, pp. 9–24, 1999. 8

132

Bibliography

[55] M. Foerster, K. Lam, E. Sorensen, and A. Gavriilidis, “In situ monitoring

of microfluidic distillation,” Chemical Engineering Journal, vol. 227, pp.

13–21, Jul. 2013. 10

[56] Y. Fu, H. Li, and M. E. Kaye, “Hardware/software codesign for a fuzzy

autonomous road-following system,” IEEE Transactions on Systems,

Man and Cybernetics Part C: Applications and Reviews, vol. 40, no. 6,

pp. 690–696, Nov. 2010. 22, 74, 89, 90, 114

[57] S. Gai, P. Liu, J. Liu, and X. Tang, “A method for banknote

feature extraction based on Haar wavelet and fuzzy logic,” Gaojishu

Tongxin/Chinese High Technology Letters, vol. 20, no. 11, pp. 1149–1155,

2010. 17, 20

[58] K. Gheysari and B. Mashoufi, “Implementation of CMOS flexible fuzzy

logic controller chip in current mode,” Fuzzy Sets and Systems, vol. 185,

no. 1, pp. 125–137, Dec. 2011. 12

[59] J. Gokulachandran and K. Mohandas, “Prediction of cutting tool

life based on Taguchi approach with fuzzy logic and support vector

regression techniques,” International Journal of Quality & Reliability

Management, vol. 32, no. 3, pp. 270–290, Mar. 2015. 10

[60] S. Gomariz, E. Alarcon, J. A. Martinez, A. Poveda, J. Madrenas, and

F. Guinjoan, “Minimum time control of a buck converter by means of

fuzzy logic approximation,” pp. 1060–1065, 1998. 11

[61] J. L. González, O. Castillo, and L. T. Aguilar, “FPGA as a tool for

implementing non-fixed structure fuzzy logic controllers,” in Proceedings

of the 2007 IEEE Symposium on Foundations of Computational

Intelligence, FOCI 2007. IEEE, Apr. 2007, pp. 523–530. 22

[62] G. Goos, J. Hartmanis, and J. V. Leeuwen, Real-Time and Embed-

ded Computing Systems and Applications: 9th International Conference,

RTCSA 2003, G. Goos, J. Hartmanis, and J. V. Leeuwen, Eds. Lecture

Notes in Computer Science, Springer, 2003. 20

[63] S. Gopinath, I. Kar, and R. Bhatt, “Experience inclusion in iterative

learning controllers: Fuzzy model based approaches,” Engineering

133

Bibliography

Applications of Artificial Intelligence, vol. 21, no. 4, pp. 578–590, Jun.

2008. 10

[64] T. L. Grigorie, Fuzzy Controllers, Theory and Applications. Intech, 2011.

27

[65] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic

PUFs and their use for IP protection,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 4727 LNCS, 2007, pp. 63–80. 11

[66] M. Haji Seyed Javadi, H. R. Mahdiani, and E. Zeinali Kh, “A hardware

oriented fuzzification algorithm and its VLSI implementation,” Soft

Computing, vol. 17, no. 4, pp. 683–690, Oct. 2012. 14

[67] M. Hamzeh, H. R. Mahdiani, A. Saghafi, S. M. Fakhraie, and C. Lucas,

“Computationally efficient active rule detection method: Algorithm and

architecture,” Fuzzy Sets and Systems, vol. 160, no. 4, pp. 554–568, Feb.

2009. 14

[68] B. Heber and Y. Tang, “Fuzzy logic enhanced speed control of an indirect

field-oriented induction machine drive,” IEEE Transactions on Power

Electronics, vol. 12, no. 5, pp. 772–778, 1997. 20

[69] A. Hernández Zavala, J. A. Huerta Ruelas, and O. Camacho Nieto,

“Centre of slice area average defuzzifier for digital fuzzy systems and its

hardware implementation,” Journal of Multiple-Valued Logic and Soft

Computing, vol. 21, no. 1-2, pp. 25–52, 2013. 44

[70] S. H. Huang and J. Y. Lai, “A high-speed VLSI fuzzy inference processor

for trapezoid-shaped membership functions,” Journal of Information

Science and Engineering, vol. 21, no. 3, pp. 607–626, 2005. 14

[71] Y.-C. Hung, F.-J. Lin, J.-C. Hwang, J.-K. Chang, and K.-C. Ruan,

“Wavelet Fuzzy Neural Network With Asymmetric Membership Function

Controller for Electric Power Steering System via Improved Differential

Evolution,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp.

2350–2362, Apr. 2015. 20

134

Bibliography

[72] M. Idros, S. Ali, and M. S. Islam, “Condition based engine oil degradation

monitoring system, synthesis and realization on ASIC,” in 2014 IEEE

International Conference on Semiconductor Electronics (ICSE2014).

IEEE, Aug. 2014, pp. 84–87. 11

[73] S. Ionita and E. Sofron, “Field-programmable analog filters array with

applications for fuzzy inference systems,” in Proceedings - HIS’04:

4th International Conference on Hybrid Intelligent Systems, 2005, pp.

470–471. 13

[74] H. Ishibuchi, T. Murata, and I. Turksen, “Selecting linguistic

classification rules by two-objective genetic algorithms,” in 1995 IEEE

International Conference on Systems, Man and Cybernetics. Intelligent

Systems for the 21st Century, vol. 2. IEEE, 1995, pp. 1410–1415. 27

[75] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy

if-then rules for classification problems using genetic algorithms,” IEEE

Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 260–270, 1995. 27, 62

[76] M. S. Islam, M. S. Bhuyan, and S. H. M. Ali, “FPGA realization of a fuzzy

based wheelchair controller,” Research Journal of Applied Sciences,

vol. 8, no. 9, pp. 442–448, 2013. 18

[77] A. F. Jabeen and M. Y. Sanavullah, “FPAA Based Bandwidth Recovery in

Satellite Subsystems via Intrinsic Evolution,” in 2008 Fifth International

Conference on Fuzzy Systems and Knowledge Discovery, vol. 3. IEEE,

Oct. 2008, pp. 555–559. 11

[78] M. Jacomet and R. Walti, “VLSI fuzzy processor with parallel rule

execution,” in IEEE International Conference on Fuzzy Systems, vol. 1.

IEEE, 1996, pp. 554–558. 14

[79] V. K. Jadoun, N. Gupta, K. Niazi, and A. Swarnkar, “Modulated particle

swarm optimization for economic emission dispatch,” International

Journal of Electrical Power & Energy Systems, vol. 73, pp. 80–88, Dec.

2015. 10

[80] K. K. Jajulwar, “Genetic Optimization of Fuzzy Logic controllers,”

International Journal of Simulation: Systems, Science and Technology,

vol. 10, no. 4, pp. 19–24, 2009. 93

135

Bibliography

[81] X. Jia and G. Fettweis, “Integration of code optimization and hardware

exploration for a VLIW architecture by using fuzzy control system,” in

2011 IEEE International SOC Conference. IEEE, Sep. 2011, pp. 36–41.

11

[82] H. Jiang and J. R. Eastman, “Application of Fuzzy Measures in Multi-

Criteria Evaluation in GIS,” International Journal of Geographical Infor-

mation Science, vol. 14, no. 2, pp. 173–184, 2000. 62

[83] D. Jinghong, D. Yaling, and L. Kun, “Development of Image Processing

System Based on DSP and FPGA,” in 2007 8th International Conference

on Electronic Measurement and Instruments. IEEE, Aug. 2007, pp.

2–791–2–794. 18

[84] I. Kalaykov, “New speed limits of the fuzzy controller hardware,” in 42nd

Midwest Symposium on Circuits and Systems (Cat. No.99CH36356),

vol. 2. IEEE, 1999, pp. 918–921. 19, 20, 28, 32, 33

[85] P. Karuppusamy, A. M. Natarajan, and K. N. Vijeyakumar, “An

Adaptive Neuro-Fuzzy Model to Multilevel Inverter for Grid Connected

Photovoltaic System,” Journal of Circuits, Systems and Computers,

vol. 24, no. 05, p. 1550066, Jun. 2015. 116

[86] B. Khoshnevisan, M. A. Rajaeifar, S. Clark, S. Shamahirband, N. B.

Anuar, N. L. Mohd Shuib, and A. Gani, “Evaluation of traditional

and consolidated rice farms in Guilan Province, Iran, using life cycle

assessment and fuzzy modeling.” The Science of the total environment,

vol. 481, no. 1, pp. 242–51, May 2014. 10

[87] D. Kim, “An Implementation of fuzzy logic controller on the recon-

figurable fpga system,” IEEE Transactions on Industrial Electronics,

vol. 47, no. 3, pp. 703–715, 2000. 18

[88] T. Korol, “A fuzzy logic model for forecasting exchange rates,”

Knowledge-Based Systems, vol. 67, pp. 49–60, Sep. 2014. 10

[89] A. Kumar, A. Khosla, J. S. Saini, and S. S. Sidhu, “Range-free 3D

node localization in anisotropic wireless sensor networks,” Applied Soft

Computing, vol. 34, pp. 438–448, Sep. 2015. 10

136

Bibliography

[90] K. Kumar, S. Deep, S. Suthar, M. Dastidar, and T. Sreekrishnan,

“Application of fuzzy inference system (FIS) coupled with Mamdani’s

method in modelling and optimization of process parameters for

biotreatment of real textile wastewater,” Desalination and Water

Treatment, pp. 1–8, Jun. 2015. 10

[91] K. A. Kurniawan, D. Utomo, and S. Nugroho, Intelligence in the Era of

Big Data, ser. Communications in Computer and Information Science,

R. Intan, C.-H. Chi, H. N. Palit, and L. W. Santoso, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015, vol. 516. 11

[92] N. Lall, Xilinx, “FPGAs and DSPs - What Makes Sense for Your Design?”

RTC Magazine, p. 1, 2005. 17, 18

[93] E. Laubwald, “Coupled Tank System,” Control Systems Principles, UK,

Tech. Rep., 2006. xi, xiv, 71, 124

[94] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller - Part

I,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 2,

pp. 404–418, 1990. 42

[95] ——, “Fuzzy logic in control systems: Fuzzy logic controller - Part II,”

IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 2, pp.

419–435, 1990. 42

[96] W. V. Leekwijck and E. E. Kerre, “Defuzzification: criteria and

classification,” Fuzzy Sets and Systems, vol. 108, no. 2, pp. 159–178, Dec.

1999. 42, 45

[97] Leon Adams, “Choosing the Right Architecture for Realtime Signal

Processing Designs,” Texas Instruments Incorporated, Tech. Rep., 2002.

18

[98] N. Lerkkasemsan and L. E. Achenie, “Pyrolysis of biomass âĂŞ fuzzy

modeling,” Renewable Energy, vol. 66, pp. 747–758, Jun. 2014. 10

[99] H. Li, X. Jing, H.-K. Lam, and P. Shi, “Fuzzy sampled-data control for

uncertain vehicle suspension systems.” IEEE transactions on cybernetics,

vol. 44, no. 7, pp. 1111–26, Jul. 2014. 10

137

Bibliography

[100] S. Li, “Fuzzy logic control ASIC chip,” Journal of Computer Science and

Technology, vol. 12, no. 3, 1997. 11

[101] Y. Y. Lin and M. Y. Liao, “Image processor and fuzzy PID controller

design for robot-car intercept mission,” Journal of the Chinese Society of

Mechanical Engineers, Transactions of the Chinese Institute of Engineers,

Series C/Chung-Kuo Chi Hsueh Kung Ch’eng Hsuebo Pao, vol. 30, no. 5,

pp. 401–408, 2009. 87

[102] O. Linda and M. Manic, “Uncertainty-robust design of interval type-2

fuzzy logic controller for delta parallel robot,” IEEE Transactions on

Industrial Informatics, vol. 7, no. 4, pp. 661–670, Nov. 2011. 10, 117

[103] K. Lochan and B. K. Roy, Control of two-link 2-DOF robot manipulator

using fuzzy logic techniques: A review, ser. Advances in Intelligent

Systems and Computing, K. N. Das, K. Deep, M. Pant, J. C. Bansal, and

A. Nagar, Eds. New Delhi: Springer India, 2015, vol. 335. 10

[104] C. W. Lou and M. C. Dong, “A novel random fuzzy neural networks for

tackling uncertainties of electric load forecasting,” International Journal

of Electrical Power & Energy Systems, vol. 73, pp. 34–44, Dec. 2015. 10

[105] P. Maji, S. K. Patra, K. K. Mahapatra, J. Govindarajan, and J. J.

Patel, “Realization of reconfigurable FLC on ADSP-BF537 processor,” in

2013 4th International Conference on Computing, Communications and

Networking Technologies, ICCCNT 2013, IEEE. IEEE, Jul. 2013, pp.

1–4. 20

[106] P. Maji, B. R. Jammu, S. K. Patra, and K. Mahapatra, “Design and

implementation of online fuzzy logic controller on FPGA,” in 2014

Annual IEEE India Conference (INDICON). IEEE, Dec. 2014, pp. 1–5.

18

[107] P. Maji, S. K. Patra, and K. K. Mahapatra, “Design of Fuzzy Logic

Controller based on TMS320C6713 DSP,” 12th International Conference

on Intelligent Systems Design and Application, IEEE, Kochi, pp.

635–639, 2012. 20

138

Bibliography

[108] Y. Maldonado, O. Castillo, and P. Melin, “A multi-objective optimization

of type-2 fuzzy control speed in FPGAs,” Applied Soft Computing

Journal, vol. 24, pp. 1164–1174, Nov. 2014. 62

[109] J. Malek, A. Sebri, S. Mabrouk, K. Torki, and R. Tourki, “Automated

Breast Cancer Diagnosis Based on GVF-Snake Segmentation, Wavelet

Features Extraction and Fuzzy Classification,” Journal of Signal

Processing Systems, vol. 55, no. 1-3, pp. 49–66, Jun. 2008. 11

[110] M. C. Martinez-Rodriguez, P. Brox, and I. Baturone, “Digital VLSI

Implementation of Piecewise-Affine Controllers Based on Lattice

Approach,” IEEE Transactions on Control Systems Technology, vol. 23,

no. 3, pp. 842–854, May 2015. 16, 18

[111] S. N. Mat Isa, Z. Ibrahim, J. M. Lazi, M. H. N. Talib, and A. S. Abu

Hasim, “dSPACE DSP based implementation of simplified fuzzy logic

speed controller for vector controlled PMSM drives,” in 2012 IEEE

International Conference on Power and Energy (PECon). IEEE, Dec.

2012, pp. 898–903. 20

[112] Mathworks Inc., “Simulate Fuzzy Inference Systems in Simulink,” 2010.

xii, 48, 51, 52, 71, 83

[113] ——, “DC Motor Control,” 2014. 125

[114] Y. Matsumoto, T. Tanaka, K. Sonoda, K. Kanda, T. Fujita, and

K. Maenaka, “Low Power ECG Processing ASIC,” IEEJ Transactions on

Sensors and Micromachines, vol. 134, no. 5, pp. 108–113, 2014. 11

[115] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,”

Proceedings of the IEEE, vol. 83, no. 3, pp. 345–377, Mar. 1995. 6, 7

[116] ——, “Uncertainty, fuzzy logic, and signal processing,” Signal Processing,

vol. 80, no. 6, pp. 913–933, Jun. 2000. 6

[117] A. Messai, A. Mellit, P. A. Massi, A. Guessoum, and H. Mekki, “FPGA-

based implementation of a fuzzy controller (MPPT) for photovoltaic mod-

ule,” Energy Conversion and Management, vol. 52, no. 7, pp. 2695–2704,

2011. 26

139

Bibliography

[118] A. Messai, A. Mellit, A. Massi Pavan, A. Guessoum, and H. Mekki,

“FPGA-based implementation of a fuzzy controller (MPPT) for photo-

voltaic module,” Energy Conversion and Management, vol. 52, no. 7, pp.

2695–2704, Jul. 2011. 15, 18

[119] K. Michels, F. Klawonn, R. Kruse, and A. Nürnberger, Fuzzy Control:

Fundamentals, Stability and Design of Fuzzy Controllers, J. Kacprzyk,

Ed. Springer, 2006. 6, 7

[120] M. Michta, “On set-valued stochastic integrals and fuzzy stochastic equa-

tions,” Fuzzy Sets and Systems, vol. 177, no. 1, pp. 1–19, 2011. 62

[121] T. Miki and T. Yamakawa, “Fuzzy inference on an analog fuzzy chip,”

IEEE Micro, vol. 15, no. 4, pp. 8–18, 1995. 22

[122] I. Millán, O. Montiel, R. Sepúlveda, and O. Castillo, Soft Computing for

Hybrid Intelligent Systems, ser. Studies in Computational Intelligence,

O. Castillo, P. Melin, J. Kacprzyk, and W. Pedrycz, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, vol. 154. 89, 90, 114

[123] K. Mohanasundaram, N. Rajasekar, J. B. Edward, and G. Sara-

vanailango, “A Fuzzy Logic Approach for Speed Controller Design of A.C.

Voltage Controller Fed Induction Motor Drive,” 2009 Fifth International

Conference on MEMS NANO, and Smart Systems, vol. 49, no. 1, pp.

133–136, 2009. 20

[124] M. Mokarram, A. Khoei, and K. Hadidi, “CMOS fuzzy logic controller

supporting fractional polynomial membership functions,” Fuzzy Sets and

Systems, vol. 263, no. -, pp. 112–126, Mar. 2014. 12, 19, 22

[125] E. Monmasson and M. Cirstea, “FPGA Design Methodology for

Industrial Control Systems A Review,” IEEE Transactions on Industrial

Electronics, vol. 54, no. 4, pp. 1824–1842, Aug. 2007. 11

[126] J. Morelli, A. Hirose, and H. Wood, “Fuzzy-logic-based plasma-

position controller for STOR-M,” IEEE Transactions on Control Systems

Technology, vol. 13, no. 2, pp. 328–337, Mar. 2005. 96

[127] R. Muñoz Salinas, E. Aguirre, O. Cordón, and M. García-Silvente,

“Automatic tuning of a fuzzy visual system using evolutionary

140

Bibliography

algorithms: Single-objective versus multiobjective approaches,” IEEE

Transactions on Fuzzy Systems, vol. 16, no. 2, pp. 485–501, Apr. 2008.

20, 27, 28

[128] V. S. Mukhovatov and V. D. Shafranov, “Plasma equilibrium in a

Tokamak,” Nuclear Fusion, vol. 11, no. 6, p. 605, 1971. 98

[129] A. M. Murshid, S. A. Loan, S. A. Abbasi, and A. R. M. Alamoud, “VLSI

architecture of fuzzy logic hardware implementation: A review,” pp.

74–88, 2011. 18

[130] N. B. A. Mustafa, S. Gandi, Z. A. M. Sharrif, and S. K. Ahmed, “Real-time

implementation of a fuzzy inference system for banana grading using

DSP TMS320C6713 platform,” in Proceeding, 2010 IEEE Student Con-

ference on Research and Development - Engineering: Innovation and Be-

yond, SCOReD 2010, 2010, pp. 324–328. 20

[131] H. Nguyen, N. Prasad, C. Walker, and E. Walker, A First Course in Fuzzy

and Neural Control. Chapman and Hall, CRC press, 2003. 4, 93

[132] H. T. Nguyen, V. Kreinovich, and O. Sirisaengtaksin, “Fuzzy control as a

universal control tool,” Fuzzy Sets and Systems, vol. 80, no. 1, pp. 71–86,

May 1996.

[133] N. N. Nguyen, W. J. Zhou, and C. Quek, “GSETSK: a generic self-evolving

TSK fuzzy neural network with a novel Hebbian-based rule reduction

approach,” Applied Soft Computing, vol. 35, pp. 29–42, Oct. 2015. 27, 93

[134] A. M. Noman, K. E. Addoweesh, and H. M. Mashaly, “DSPACE

Real-Time Implementation of MPPT-Based FLC Method,” International

Journal of Photoenergy, vol. 2013, pp. 1–11, 2013. 17, 20

[135] H. Okumus, H. Kahveci, and M. Ekici, “Improved brushless DC

motor speed controller with digital signal processor,” Electronics Letters,

vol. 50, no. 12, pp. 864–866, Jun. 2014. 16, 20

[136] J. A. Olivas, R. Sepúlveda, O. Montiel, and O. Castillo, Soft

Computing for Hybrid Intelligent Systems, ser. Studies in Computational

Intelligence, O. Castillo, P. Melin, J. Kacprzyk, and W. Pedrycz, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 154. 22

141

Bibliography

[137] U.-M. O’Reilly, “Genetic programming,” in Proceedings of the fourteenth

international conference on Genetic and evolutionary computation

conference companion - GECCO Companion ’12. New York, New York,

USA: ACM Press, 2012, p. 693. 101

[138] D. Oswald, W. Li, L. Niu, J. Zhang, Y. Li, J. Yu, and F. Sun,

“Implementation of fuzzy color extractor on NI myRIO embedded

device,” in 2014 International Conference on Multisensor Fusion and

Information Integration for Intelligent Systems (MFI). IEEE, Sep. 2014,

pp. 1–6. 11

[139] R. Palakeerthi and P. Subbaiah, “High speed charging and discharging

current controller circuit to reduce back EMF by neuro fuzzy logic,”

International Journal of Applied Engineering Research, vol. 9, no. 22,

pp. 12 949–12960, 2014. 11, 18

[140] H. Pan, H. Wong, V. Kapila, and M. S. de Queiroz, “Experimental

validation of a nonlinear backstepping liquid level controller for a state

coupled two tank system,” Control Engineering Practice, vol. 13, no. 1,

pp. 27–40, Jan. 2005. 10

[141] M. Parker, “FPGA versus DSP design reliability and maintenance,” in

Design, no. May, 2010, pp. 1–4. 17

[142] K. Passino, The Control Systems Handbook, Second Edition, 1st ed.

Addison-Wesley Longman, Dec. 2010, vol. 20103237. xii, 18, 49, 51, 52

[143] A. Patel and B. Mohan, “Some numerical aspects of center of area

defuzzification method,” Fuzzy Sets and Systems, vol. 132, no. 3, pp.

401–409, Dec. 2002. 44, 45

[144] H. Peyravi, A. Khoei, and K. Hadidi, “Design of an analog CMOS

fuzzy logic controller chip,” Fuzzy Sets and Systems, vol. 132, no. 2, pp.

245–260, Dec. 2002. 12

[145] E. Pierzchala, G. Gulak, L. Chua, and A. Rodríguez-Vázquez, Field-

Programmable Analog Arrays. Springer Science & Business Media,

2013. 13

142

Bibliography

[146] E. Pierzchala and M. A. Perkowski, “A High-Frequency Field-

Programmable Analog Array (FPAA) Part 2: Applications,” Analog

Integrated Circuits and Signal Processing, vol. 17, no. 1-2, pp. 157–169,

1998. 11

[147] Y. Pu, J. Gu, U. Farooq, and Y. Xu, “Fuzzy logic based control of vibration

energy harvesting device for automotive suspension system,” in 2014

IEEE International Conference on Information and Automation (ICIA).

IEEE, Jul. 2014, pp. 592–597. 20

[148] S. Rafa, A. Larabi, L. Barazane, M. Manceur, N. Essounbouli, and

A. Hamzaoui, “Implementation of a new fuzzy vector control of induction

motor.” ISA transactions, vol. 53, no. 3, pp. 744–54, May 2014. 17, 20

[149] R. Rahmani, M. Seyedmahmoudian, S. Mekhilef, and R. Yusof,

“Implementation of Fuzzy Logic Maximum Power Point Tracking

Controller for Photovoltaic System,” American Journal of Applied

Sciences, vol. 10, no. 3, pp. 209–218, Mar. 2013. 20

[150] S. Rajak and S. Vinodh, “Application of fuzzy logic for social

sustainability performance evaluation: a case study of an Indian

automotive component manufacturing organization,” Journal of Cleaner

Production, Jun. 2015. 10

[151] S. V. Rani, P. Kanagasabapathy, and A. S. Kumar, “Digital Fuzzy

Logic Controller using VHDL,” in 2005 Annual IEEE India Conference -

Indicon, vol. 2005. IEEE, 2005, pp. 463–466. 26

[152] A. Razib, S. Dick, and V. Gaudet, “Log-domain arithmetic for high-speed

fuzzy control on a field-programmable gate array,” Studies in Fuzziness

and Soft Computing, vol. 291, pp. 269–287, 2013. 27, 28

[153] T. J. Ross, Fuzzy logic with engineering applications, 3rd ed. John Wiley

& Sons, Ltd, 2010. 2, 4, 5, 21, 27, 42, 44

[154] S. Roy Chowdhury, A. Roy, and H. Saha, “ASIC design of a digital fuzzy

system on chip for medical diagnostic applications.” Journal of medical

systems, vol. 35, no. 2, pp. 221–35, Apr. 2011. 18

143

Bibliography

[155] A. Rubaai, A. R. Ofoli, and D. Cobbinah, “DSP-based real-time

implementation of a hybrid H-infinity adaptive fuzzy tracking controller

for servo-motor drives,” IEEE Transactions on Industry Applications,

vol. 43, no. 2, pp. 476–484, 2007. 17, 20

[156] B. K. Sahu, S. Pati, P. K. Mohanty, and S. Panda, “Teaching-learning

based optimization algorithm based fuzzy-PID controller for automatic

generation control of multi-area power system,” Applied Soft Computing,

vol. 27, pp. 240–249, Feb. 2015. 87

[157] V. Salapura and M. Gschwind, “Hardware/software co-design of a fuzzy

RISC processor,” in Proceedings -Design, Automation and Test in Europe,

DATE. IEEE Comput. Soc, 1998, pp. 875–882. 20

[158] D. Z. Saletic and U. Popovic, “On Possible Constraints in Applications

of Basic Defuzzification Techniques,” in 2006 8th Seminar on Neural

Network Applications in Electrical Engineering. IEEE, 2006, pp.

225–230. 42

[159] L. Sánchez, I. Couso, and J. Casillas, “Genetic learning of fuzzy rules

based on low quality data,” Fuzzy Sets and Systems, vol. 160, no. 17, pp.

2524–2552, 2009. 8

[160] I. Santoso, T. S. Widodo, A. Susanto, and M. Tjokronagoro, “Application

of fuzzy logic for temperature control in microcontroller based 2.45

GHZ microwave hyperthermia device,” International Journal of Applied

Engineering Research, vol. 9, no. 6, pp. 665–673, 2014. 11

[161] J. Sanz, A. Fernndez, H. Bustince, and F. Herrera, “A genetic tuning to

improve the performance of fuzzy rule-based classification systems with

interval-valued fuzzy sets: Degree of ignorance and lateral position,”

International Journal of Approximate Reasoning, vol. 52, no. 6, pp.

751–766, Sep. 2011. 8, 27, 28, 62

[162] R. Schneiderman, “Automotive Industry Is a Key Component to the

Success of the DSP Sector [Special Reports],” IEEE Signal Processing

Magazine, vol. 31, no. 1, pp. 18–21, Jan. 2014. 17, 18

[163] M. D. Schrieber and M. Biglarbegian, “Hardware implementation and

performance comparison of interval type-2 fuzzy logic controllers for

144

Bibliography

real-time applications,” Applied Soft Computing, vol. 32, pp. 175–188,

Jul. 2015. 15, 18, 117

[164] S. Selvaperumal and C. C. A. Rajan, “Investigation of fuzzy control based

LCL resonant converter in RTOS environment,” Journal of Intelligent

and Fuzzy Systems, vol. 26, no. 2, pp. 913–924, 2014. 11, 117

[165] M. Setnes, R. Babuska, U. Kaymak, and H. R. van Nauta

Lemke, “Similarity measures in fuzzy rule base simplification.” IEEE

transactions on systems, man, and cybernetics. Part B, Cybernetics : a

publication of the IEEE Systems, Man, and Cybernetics Society, vol. 28,

no. 3, pp. 376–386, Jan. 1998. 27

[166] A. Shamiri, S. W. Wong, M. F. Zanil, M. A. Hussain, and N. Mostoufi,

“Modified two-phase model with hybrid control for gas phase propylene

copolymerization in fluidized bed reactors,” Chemical Engineering

Journal, vol. 264, pp. 706–719, Mar. 2015. 10

[167] J. Shann and H. Fu, “A fuzzy neural network for rule acquiring on fuzzy

control systems,” Fuzzy Sets and Systems, vol. 71, no. 3, pp. 345–357,

May 1995. 27

[168] E. G. Shopova and N. G. Vaklieva-Bancheva, “BASIC-A genetic algorithm

for engineering problems solution,” Computers & Chemical Engineering,

vol. 30, no. 8, pp. 1293–1309, Jun. 2006. 62

[169] A. Simon, M. Adjouadi, and M. Ayala, “A .NET solution for distributed

computing applications,” IEEE Potentials, vol. 25, no. 2, pp. 24–28, Mar.

2006. 59

[170] Siva Malla, “Fuzzy controller based Speed Control of DC Motor,” 2012.

xi, xii, 46, 47, 52, 83, 125, 126

[171] M. Soleimani, A. Khoei, and K. Hadidi, “Current-mode analog CMOS

Fuzzy Logic Controller,” in 2010 IEEE Asia Pacific Conference on

Circuits and Systems. IEEE, Dec. 2010, pp. 224–227. 12

[172] ——, “Design of current-mode modular programmable analog CMOS

FLC,” Journal of Intelligent and Fuzzy Systems, vol. 26, no. 1, pp. 63–76,

2014. 12, 19, 22

145

Bibliography

[173] G. Sousa, B. Bose, and J. Cleland, “Fuzzy logic based on-line efficiency

optimization control of an indirect vector-controlled induction motor

drive,” IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp.

192–198, Apr. 1995. 20

[174] S. Stankute and H. Asche, “Geometrical DCC-algorithm for merging

polygonal geospatial data,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 6016 LNCS, no. PART 1, 2010, pp.

515–527. 45, 115

[175] M. Suetake, I. N. da Silva, and A. Goedtel, “Embedded DSP-Based

Compact Fuzzy System and Its Application for Induction-Motor V/f

Speed Control,” IEEE Transactions on Industrial Electronics, vol. 58,

no. 3, pp. 750–760, Mar. 2011. 20

[176] M. Sugeno, “An introductory survey of fuzzy control,” Information

Sciences, vol. 36, no. 1-2, pp. 59–83, Jul. 1985. 6, 44

[177] H. Sun and J. Wu, “Plating pulse switching power based on a CPLD,”

Electrochimica Acta, vol. 105, pp. 342–346, Aug. 2013. 14

[178] X. Sun, S. Chung, and F. T. Chan, “Integrated scheduling of a multi-

product multi-factory manufacturing system with maritime transport

limits,” Transportation Research Part E: Logistics and Transportation

Review, vol. 79, pp. 110–127, Jul. 2015. 10

[179] Y. Sun, S. Tang, Z. Meng, Y. Zhao, and Y. Yang, “A scalable accuracy

fuzzy logic controller on FPGA,” Expert Systems with Applications,

vol. 42, no. 19, pp. 6658–6673, Nov. 2015. 11

[180] P. Suratia, J. Patel, R. Rajpal, S. Kotia, and J. Govindarajan, “FPGA

based Fuzzy Logic Controller for plasma position control in ADITYA

Tokamak,” Fusion Engineering and Design, vol. 87, no. 11, pp.

1866–1871, Nov. 2012. xiv, xv, 96, 97, 98, 99, 100, 109, 110, 114, 118

[181] H. Surmann and M. Maniadakis, “Learning feed-forward and recurrent

fuzzy systems: A genetic approach,” Journal of Systems Architecture,

vol. 47, no. 6, pp. 649–662, 2001. 8, 93

146

Bibliography

[182] H. Tamukoh, K. Horio, and T. Yamakawa, “A bit-shifting-based

fuzzy inference for self-organizing relationship (SOR) network,” IEICE

Electronics Express, vol. 4, no. 2, pp. 60–65, 2007. 15, 18

[183] Texas Instruments, “TMS320C6748 Fixed and Floating Point DSP,”

Tech. Rep., 2013. 74, 78

[184] ——, “TMS320C6000 Optimizing Compiler v7.6,” Texas Instruments,

Tech. Rep., 2014. 76

[185] M. Tokmakci and M. Alci, “A current-mode CMOS fuzzy logic controller,”

International Journal of Automation and Control, vol. 2, no. 4, p. 487,

2008. 12

[186] H. L. Tran, V. N. Pham, and D. T. Nguyen, “A hardware implementation

of intelligent ECG classifier,” COMPEL - The international journal for

computation and mathematics in electrical and electronic engineering,

vol. 34, no. 3, pp. 905–919, May 2015. 11

[187] W. L. Tung, C. Quek, and P. Cheng, “GenSo-EWS: a novel neural-fuzzy

based early warning system for predicting bank failures.” Neural

networks : the official journal of the International Neural Network

Society, vol. 17, no. 4, pp. 567–87, May 2004. 10

[188] M. N. Uddin and A. B. M. S. Hossain, “Development and Implementation

of a Simplified Self-Tuned Neuro-Fuzzy based IM Drive,” IEEE

Transactions on Industry Applications, vol. 50, no. 1, pp. 51–59, Jan.

2014. 116

[189] M. N. Uddin and M. A. Rahman, “High-Speed Control of IPMSM

Drives Using Improved Fuzzy Logic Algorithms,” IEEE Transactions on

Industrial Electronics, vol. 54, no. 1, pp. 190–199, Feb. 2007. 8

[190] ——, “High-speed control of IPMSM drives using improved fuzzy logic

algorithms,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1,

pp. 190–199, 2007. 17, 20

[191] M. Uddin, T. Radwan, and M. Rahman, “Fuzzy-logic-controller-based

cost-effective four-switch three-phase inverter-fed IPM synchronous

motor drive system,” IEEE Transactions on Industry Applications,

vol. 42, no. 1, pp. 21–30, Jan. 2006. 20

147

Bibliography

[192] A. Vahidi and A. Eskandarian, “Research advances in intelligent

collision avoidance and adaptive cruise control,” IEEE Transactions on

Intelligent Transportation Systems, vol. 4, no. 3, pp. 132–153, Sep. 2003.

71

[193] C. H. Wang and D. Y. Huang, “A new intelligent fuzzy controller for non-

linear hysteretic electronic throttle in modern intelligent automobiles,”

IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2332–

2345, 2013. 20

[194] C.-H. Wang and C.-C. Wang, “Finding the Real Surge Boundaries

of Turbo-charged Automobiles Using Intelligent Fuzzy Reasoning

Technique,” International Journal of Fuzzy Systems, vol. 17, no. 2, pp.

224–235, May 2015. 10

[195] L.-X. Wang, A Course in Fuzzy Systems and Control, 1st ed. Prentice

Hall International Inc., 1997. 7

[196] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from

examples,” IEEE Transactions on Systems, Man and Cybernetics, vol. 22,

no. 6, pp. 1414–1427, 1992. 8, 27, 87

[197] H. Watanabe, D. Chen, and S. Konuri, “Evaluation of min/max

instructions for fuzzy information processing,” IEEE Transactions on

Fuzzy Systems, vol. 4, no. 3, pp. 369–374, 1996. 20, 22

[198] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing,

vol. 4, no. 2, pp. 65–85, Jun. 1994. 101

[199] J. Xue, L. Sun, C. Qiao, and H. Qian, “Research on high-speed fuzzy

reasoning with CPLD for fault diagnosis expert system,” in 2009 9th

International Conference on Electronic Measurement & Instruments.

IEEE, Aug. 2009, pp. 564–568. 15

[200] G. Yosefi, S. Aminifar, S. Neda, and M. A. Daneshwar, “Design of a

mixed-signal digital CMOS fuzzy logic controller (FLC) chip using new

current mode circuits,” AEU - International Journal of Electronics and

Communications, vol. 65, no. 3, pp. 173–181, Mar. 2011. 22, 26

148

Bibliography

[201] G. Yosefi, A. Khoei, and K. Hadidi, “Design of a new CMOS controllable

mixed-signal current mode fuzzy logic controller (FLC) chip,” in

Proceedings of the IEEE International Conference on Electronics,

Circuits, and Systems. IEEE, Dec. 2007, pp. 951–954. 22, 26

[202] Y. Yoshida, “The valuation of European options in uncertain environ-

ment,” European Journal of Operational Research, vol. 145, no. 1, pp.

221–229, Feb. 2003. 10

[203] H. Youness, M. Moness, and M. Khaled, “MPSoCs and Multicore

Microcontrollers for Embedded PID Control: A Detailed Study,” IEEE

Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2122–2134,

Nov. 2014. 11

[204] H. A. Yousef, “Fuzzy-logic obstacle avoidance control: Software

simulation and hardware implementation,” in European Control

Conference, ECC 1999 - Conference Proceedings. Institute of Electrical

and Electronics Engineers Inc., 2015, pp. 1458–1463. 11

[205] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–

353, 1965. 2

[206] ——, “Fuzzy logic, neural networks and soft computing,” Communica-

tions of the ACM, vol. 37, no. 3, pp. 77–84, 1994. 2, 6

[207] I. A. Zammar, I. Mantegh, M. S. Huq, A. Yousefpour, and M. Ahmadi,

“Intelligent Thermal Control of Resistance Welding of Fiberglass

Laminates for Automated Manufacturing,” IEEE/ASME Transactions

on Mechatronics, vol. 20, no. 3, pp. 1069–1078, Jun. 2015. 10

[208] A. H. Zavala, O. C. Meto, and I. Batyrshin, “Center of slice area average

defuzzifier for digital implementations of fuzzy systems,” in Proceedings

of the 2010 International Conference on Artificial Intelligence, ICAI 2010,

vol. 1, 2010, pp. 97–102. 44

[209] A. H. Zavala and O. C. Nieto, “Fuzzy hardware: A retrospective and

analysis,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 4, pp.

623–635, Aug. 2012. 12, 18, 19, 26

149

Bibliography

[210] A. H. Zavala, O. C. Nieto, and C. Y. Marquez, “Soft-core implementation

for centre of Slice Area Average defuzzifier,” in 2011 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2011). IEEE, Jun. 2011, pp.

910–916. 42, 44

150

Dissemination of Work

Journals

1. P. Maji, S. K. Patra, K. Mahapatra, “Design of Real-time Reconfigurable

Fuzzy Logic Controller with M-FRHC Rule Reduction Technique”, Jour-

nal of Intelligence and Fuzzy Systems, vol. 30, no. 4, pp. 1973-1986,

2016.

2. P. Maji, S. K. Patra, K. Mahapatra, “Design and Implementation of Fuzzy

Approximation PI Controller with Genetic Algorithm based Fuzzy Param-

eter Extraction” Advances in Artificial Intelligence, vol. 2015, Article ID

624638, 7 pages, 2015. doi:10.1155/2015/624638.

Conference

1. P. Maji, S. K. Patra, and K. Mahapatra, “Implementation of FPGA based

fuzzy PI approximate control for automatic cruise control system,” in In-

ternational Conference on Circuits, Communication, Control and Com-

puting, I4C-2014, IEEE, Bangalore, 2014, pp. 203-206..

2. P. Maji, B. R. Jammu, S. K. Patra, and K. Mahapatra, “Design and imple-

mentation of online fuzzy logic controller on FPGA,” 2014 Annual IEEE

India Conference (INDICON), Pune, 2014, pp. 1-5.

3. P. Maji, S. K. Patra, K. Mahapatra, J. Govindarajan, and J. J. Patel, “Re-

alization of reconfigurable FLC on ADSP-BF537 processor,” 4th Interna-

tional Conference on Computing, Communications and Networking Tech-

nologies, ICCCNT-2013, IEEE, 2013, pp. 1-4.

4. P. Maji, S. K. Patra, and K. Mahapatra, “Design of Fuzzy Logic Controller

151

based on TMS320C6713 DSP,” 12th International Conference on Intelli-

gent System Design and Application, ISDA-2012, IEEE, Kochi, 2012, pp.

635-639.

Journals: Under Review

1. P. Maji, S. K. Patra, K. Mahapatra, “Rule Reduction Technique for Generic

Fuzzy Logic Systems” to the journal of Fuzzy Information and Engineer-

ing (Elsevier).

2. P. Maji, S. K. Patra, K. Mahapatra, “Generic Fuzzy Logic Controller: De-

sign and Implementation with Vertices based Centroid of Area Defuzzi-

fication” to the International Journal of Computational Intelligence Sys-

tems (World Scientific).

152

Author’s Biodata

Name of the Candidate : Pallab Maji

Father’s Name : Keshab Chandra Maji

Date Of Birth : 22−10−1986

Present Address : Adv. Communication Lab.
Dept. of Electronics & Communication Engg.
National Institute of Technology
Rourkela-769 008
Odisha (India)

Permanent Address : Searsole Babupara, P.O.-Rajbari
Ranganj, Dist - Burdwan
PIN - 713358
West Bengal (India)

Academic Qualifications :

(i) B.Tech. in Electronics & Instrumentation Engg., Bengal College of Engi-

neering and Technology, Durgapur, West Bengal

(ii) M.Tech. in Electronics & Communication Engg., National Institute of

Technology, Rourkela, Odisha

Publications :

(i) Communicated 04 papers in International Journals

(ii) Published 04 papers in International Conferences

153

	Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	List of Code Snippets
	1 Introduction
	1.1 Introduction to Fuzzy Logic Systems
	1.2 Fuzzy Sets
	1.3 Fuzzy Operators
	1.4 Fuzzy Rules
	1.5 Fuzzy Logic Control System
	1.6 Learning of FCP from Data
	1.7 Motivation of This work
	1.8 Objective of this work
	1.9 Literature Survey on Design and Implementations for FLCS on various Hardware Platforms
	1.9.1 Analog Implementation of FLCS Design
	1.9.2 Digital Implementation of FLCS Design

	1.10 Inference from the Literature Survey
	1.10.1 FLCS Implementation in FPGA and DSP Platforms
	1.10.2 Comparison between various Digital Platform for FLCS Implementation

	1.11 Generic Fuzzy Logic Controller
	1.12 Problem Statement
	1.13 Outline of Thesis
	2 Generic Fuzzy Logic Controllers
	2.1 Introduction to Generic Fuzzy Logic Controller System
	2.1.1 Rule Reduction using Overlapping Membership Functions
	2.1.2 Motivation for Modified FRHC (M-FRHC)
	2.1.3 Analytical Differences between Conventional Overlapping Membership Function (OMF) method and M-FRHC

	2.2 Mathematical Modeling of G-FLCS
	2.2.1 Overlapping Membership based Rule Reduction
	2.2.2 Modified Fired Rulebase Hyper Cube (M-FRHC)
	2.2.3 Modified and Thresholded Fired Rulebase Hyper Cube (MT-FRHC)

	2.3 Defuzzification
	2.3.1 Defuzzification Algorithms
	2.3.2 Vertices based Center of Area (VBCoA) Computation

	2.4 Performance Analysis
	2.5 Proposed MT-FRHC based G-FLCS Implementation and its Validation
	2.6 Summary
	3 System Architecture for MT-FRHC based G-FLCS
	3.1 Introduction
	3.2 G-FLCS Parameters
	3.3 System Architecture of Proposed G-FLCS
	3.4 Development of a Client-Server Model User Interface
	3.4.1 client-server Model
	3.4.2 ASP.NET and development of WebUI
	3.4.3 WebUI for Hardware G-FLCS

	3.5 Genetic Algorithm based Fuzzy Parameter Extraction
	3.6 Data flow of the proposed system

	3.7 System Integrity Test
	3.8 Summary

	4 Implementation of Remotely Tunable MT-FRHC based G-FLCS with VBCoA on Programmable DSP
	4.1 Introduction
	4.2 Hardware Device: TI LCDK C6748
	4.3 Generic FLC on DSP (TI LCDK C6748)
	4.3.1 System Architecture
	4.3.2 Code Optimization
	4.3.3 Code Implementation

	4.4 Interfacing G-FLC with WebUI
	4.4.1 Data Communication between Hardware G-FLCS and Server
	4.4.2 WebUI and its Operation

	4.5 System Performance and Analysis
	4.5.1 System Modeling of Armature Controlled DC Motor
	4.5.2 Hardware-in-Loop Test
	4.5.3 Fuzzy Control Parameter Generation
	4.5.4 Performance Analysis
	4.5.5 Comparison to Existing Works

	4.6 Summary

	5 Implementation of Proposed G-FLCS for Radial Plasma Position Control in Aditya Tokamak Fusion Test Reactor
	5.1 Introduction
	5.1.1 Controlled Thermonuclear Fusion
	5.1.2 Tokamak Fusion Reactor
	5.1.3 Aditya Tokamak Fusion Reactor

	5.2 Aditya Tokamak System Modeling
	5.3 Control Strategy
	5.3.1 Using PID Control
	5.3.2 Plasma Position Control in Aditya using Traditional Fuzzy Logic Controller

	5.4 Introduction to Multi Objective Genetic Algorithm
	5.5 GA based FCP Extraction
	5.5.1 FLC I/O Identification
	5.5.2 FLC Parameter Identification
	5.5.3 Parameter Constraints
	5.5.4 Parameter Extraction

	5.6 FLC Design and Implementation
	5.6.1 HIL Testing

	5.7 Performance Analysis
	5.8 Summary

	6 Conclusion
	6.1 Summarized Results
	6.2 Contribution of this Thesis
	6.3 Limitations of this Work
	6.4 Few Scope for Future Work

	Appendix A
	A.1 Fuzzy Parameter Files
	Appendix B
	B.1 GA based Extracted FCP for Radial Position Control
	Appendix C
	C.1 Experiment 1: Automatic Cruise Control System for CarsMurray2009
	C.1.1 Aim
	C.1.2 System Modeling
	C.1.3 Controller Design and Tuning

	C.2 Experiment 2: Two Tank Water Level Control Laubwald2006
	C.2.1 Aim
	C.2.2 System Modeling
	C.2.3 Controller Design and Tuning

	C.3 Experiment 3: Armature Controlled DC Motormalla2012
	C.3.1 Aim
	C.3.2 System Modeling
	C.3.3 Controller Design and Tuning

	Bibliography
	Dissemination of Work

