385 research outputs found

    An evaluation of processing methods for HumanMethylation450 BeadChip data

    Get PDF
    BackgroundIllumina's HumanMethylation450 arrays provide the most cost-effective means of high-throughput DNA methylation analysis. As with other types of microarray platforms, technical artifacts are a concern, including background fluorescence, dye-bias from the use of two color channels, bias caused by type I/II probe design, and batch effects. Several approaches and pipelines have been developed, either targeting a single issue or designed to address multiple biases through a combination of methods. We evaluate the effect of combining separate approaches to improve signal processing.ResultsIn this study nine processing methods, including both within- and between- array methods, are applied and compared in four datasets. For technical replicates, we found both within- and between-array methods did a comparable job in reducing variance across replicates. For evaluating biological differences, within-array processing always improved differential DNA methylation signal detection over no processing, and always benefitted from performing background correction first. Combinations of within-array procedures were always among the best performing methods, with a slight advantage appearing for the between-array method Funnorm when batch effects explained more variation in the data than the methylation alterations between cases and controls. However, when this occurred, RUVm, a new batch correction method noticeably improved reproducibility of differential methylation results over any of the signal-processing methods alone.ConclusionsThe comparisons in our study provide valuable insights in preprocessing HumanMethylation450 BeadChip data. We found the within-array combination of Noob + BMIQ always improved signal sensitivity, and when combined with the RUVm batch-correction method, outperformed all other approaches in performing differential DNA methylation analysis. The effect of the data processing method, in any given data set, was a function of both the signal and noise

    A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data.

    Get PDF
    The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs

    Association of DNA methylation with age, gender, and smoking in an Arab population

    Get PDF

    Microarray Data Preprocessing: From Experimental Design to Differential Analysis

    Get PDF
    DNA microarray data preprocessing is of utmost importance in the analytical path starting from the experimental design and leading to a reliable biological interpretation. In fact, when all relevant aspects regarding the experimental plan have been considered, the following steps from data quality check to differential analysis will lead to robust, trustworthy results. In this chapter, all the relevant aspects and considerations about microarray preprocessing will be discussed. Preprocessing steps are organized in an orderly manner, from experimental design to quality check and batch effect removal, including the most common visualization methods. Furthermore, we will discuss data representation and differential testing methods with a focus on the most common microarray technologies, such as gene expression and DNA methylation.Peer reviewe

    Sex differences in DNA methylation assessed by 450 K BeadChip in newborns.

    Get PDF
    BackgroundDNA methylation is an important epigenetic mark that can potentially link early life exposures to adverse health outcomes later in life. Host factors like sex and age strongly influence biological variation of DNA methylation, but characterization of these relationships is still limited, particularly in young children.MethodsIn a sample of 111 Mexican-American subjects (58 girls , 53 boys), we interrogated DNA methylation differences by sex at birth using the 450 K BeadChip in umbilical cord blood specimens, adjusting for cell composition.ResultsWe observed that ~3% of CpG sites were differentially methylated between girls and boys at birth (FDR P < 0.05). Of those CpGs, 3031 were located on autosomes, and 82.8% of those were hypermethylated in girls compared to boys. Beyond individual CpGs, we found 3604 sex-associated differentially methylated regions (DMRs) where the majority (75.8%) had higher methylation in girls. Using pathway analysis, we found that sex-associated autosomal CpGs were significantly enriched for gene ontology terms related to nervous system development and behavior. Among hits in our study, 35.9% had been previously reported as sex-associated CpG sites in other published human studies. Further, for replicated hits, the direction of the association with methylation was highly concordant (98.5-100%) with previous studies.ConclusionsTo our knowledge, this is the first reported epigenome-wide analysis by sex at birth that examined DMRs and adjusted for confounding by cell composition. We confirmed previously reported trends that methylation profiles are sex-specific even in autosomal genes, and also identified novel sex-associated CpGs in our methylome-wide analysis immediately after birth, a critical yet relatively unstudied developmental window

    Non-specific filtering of beta-distributed data.

    Get PDF
    BackgroundNon-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias.ResultsWe compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets.ConclusionsWe found two different filter statistics that tended to prioritize features with different characteristics, each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any new data sets, evaluating the overlap of features selected and clusters discovered

    Integration of datasets for individual prediction of DNA methylation-based biomarkers

    Get PDF
    BACKGROUND: Epigenetic scores (EpiScores) can provide biomarkers of lifestyle and disease risk. Projecting new datasets onto a reference panel is challenging due to separation of technical and biological variation with array data. Normalisation can standardise data distributions but may also remove population-level biological variation.RESULTS: We compare two birth cohorts (Lothian Birth Cohorts of 1921 and 1936 - nLBC1921 = 387 and nLBC1936 = 498) with blood-based DNA methylation assessed at the same chronological age (79 years) and processed in the same lab but in different years and experimental batches. We examine the effect of 16 normalisation methods on a novel BMI EpiScore (trained in an external cohort, n = 18,413), and Horvath's pan-tissue DNA methylation age, when the cohorts are normalised separately and together. The BMI EpiScore explains a maximum variance of R2=24.5% in BMI in LBC1936 (SWAN normalisation). Although there are cross-cohort R2 differences, the normalisation method makes a minimal difference to within-cohort estimates. Conversely, a range of absolute differences are seen for individual-level EpiScore estimates for BMI and age when cohorts are normalised separately versus together. While within-array methods result in identical EpiScores whether a cohort is normalised on its own or together with the second dataset, a range of differences is observed for between-array methods.CONCLUSIONS: Normalisation methods returning similar EpiScores, whether cohorts are analysed separately or together, will minimise technical variation when projecting new data onto a reference panel. These methods are important for cases where raw data is unavailable and joint normalisation of cohorts is computationally expensive.</p
    • 

    corecore