4,250 research outputs found

    Bridging Domain Gaps for Cross-Spectrum and Long-Range Face Recognition Using Domain Adaptive Machine Learning

    Get PDF
    Face recognition technology has witnessed significant advancements in recent decades, enabling its widespread adoption in various applications such as security, surveillance, and biometrics applications. However, one of the primary challenges faced by existing face recognition systems is their limited performance when presented with images from different modalities or domains( such as infrared to visible, long range to close range, nighttime to daytime, profile to f rontal, e tc.) Additionally, advancements in camera sensors, analytics beyond the visible spectrum, and the increasing size of cross-modal datasets have led to a particular interest in cross-modal learning for face recognition in the biometrics and computer vision community. Despite a relatively large gap between source and target domains, existing approaches reduce or bridge such domain gaps by either synthesizing face imagery in the target domain using face imagery from the source domain, or by learning cross-modal image representations that are robust to both the source and the target domain. Therefore, this dissertation presents the design and implementation of a novel domain adaptation framework leveraging robust image representations to achieve state-of-the art performance in cross-spectrum and long-range face recognition. The proposed methods use machine learning and deep learning techniques to (1) efficiently ex tract an d le arn do main-invariant embedding from face imagery, (2) learn a mapping from the source to the target domain, and (3) evaluate the proposed framework on several cross-modal face datasets

    SpeakingFaces: A Large-Scale Multimodal Dataset of Voice Commands with Visual and Thermal Video Streams

    Full text link
    We present SpeakingFaces as a publicly-available large-scale dataset developed to support multimodal machine learning research in contexts that utilize a combination of thermal, visual, and audio data streams; examples include human-computer interaction (HCI), biometric authentication, recognition systems, domain transfer, and speech recognition. SpeakingFaces is comprised of well-aligned high-resolution thermal and visual spectra image streams of fully-framed faces synchronized with audio recordings of each subject speaking approximately 100 imperative phrases. Data were collected from 142 subjects, yielding over 13,000 instances of synchronized data (~3.8 TB). For technical validation, we demonstrate two baseline examples. The first baseline shows classification by gender, utilizing different combinations of the three data streams in both clean and noisy environments. The second example consists of thermal-to-visual facial image translation, as an instance of domain transfer.Comment: 6 pages, 4 figures, 3 table

    Object Detection and Classification in the Visible and Infrared Spectrums

    Get PDF
    The over-arching theme of this dissertation is the development of automated detection and/or classification systems for challenging infrared scenarios. The six works presented herein can be categorized into four problem scenarios. In the first scenario, long-distance detection and classification of vehicles in thermal imagery, a custom convolutional network architecture is proposed for small thermal target detection. For the second scenario, thermal face landmark detection and thermal cross-spectral face verification, a publicly-available visible and thermal face dataset is introduced, along with benchmark results for several landmark detection and face verification algorithms. Furthermore, a novel visible-to-thermal transfer learning algorithm for face landmark detection is presented. The third scenario addresses near-infrared cross-spectral periocular recognition with a coupled conditional generative adversarial network guided by auxiliary synthetic loss functions. Finally, a deep sparse feature selection and fusion is proposed to detect the presence of textured contact lenses prior to near-infrared iris recognition

    Towards a Robust Thermal-Visible Heterogeneous Face Recognition Approach Based on a Cycle Generative Adversarial Network

    Get PDF
    Security is a sensitive area that concerns all authorities around the world due to the emerging terrorism phenomenon. Contactless biometric technologies such as face recognition have grown in interest for their capacity to identify probe subjects without any human interaction. Since traditional face recognition systems use visible spectrum sensors, their performances decrease rapidly when some visible imaging phenomena occur, mainly illumination changes. Unlike the visible spectrum, Infrared spectra are invariant to light changes, which makes them an alternative solution for face recognition. However, in infrared, the textural information is lost. We aim, in this paper, to benefit from visible and thermal spectra by proposing a new heterogeneous face recognition approach. This approach includes four scientific contributions. The first one is the annotation of a thermal face database, which has been shared via Github with all the scientific community. The second is the proposition of a multi-sensors face detector model based on the last YOLO v3 architecture, able to detect simultaneously faces captured in visible and thermal images. The third contribution takes up the challenge of modality gap reduction between visible and thermal spectra, by applying a new structure of CycleGAN, called TV-CycleGAN, which aims to synthesize visible-like face images from thermal face images. This new thermal-visible synthesis method includes all extreme poses and facial expressions in color space. To show the efficacy and the robustness of the proposed TV-CycleGAN, experiments have been applied on three challenging benchmark databases, including different real-world scenarios: TUFTS and its aligned version, NVIE and PUJ. The qualitative evaluation shows that our method generates more realistic faces. The quantitative one demonstrates that the proposed TV -CycleGAN gives the best improvement on face recognition rates. Therefore, instead of applying a direct matching from thermal to visible images which allows a recognition rate of 47,06% for TUFTS Database, a proposed TV-CycleGAN ensures accuracy of 57,56% for the same database. It contributes to a rate enhancement of 29,16%, and 15,71% for NVIE and PUJ databases, respectively. It reaches an accuracy enhancement of 18,5% for the aligned TUFTS database. It also outperforms some recent state of the art methods in terms of F1-Score, AUC/EER and other evaluation metrics. Furthermore, it should be mentioned that the obtained visible synthesized face images using TV-CycleGAN method are very promising for thermal facial landmark detection as a fourth contribution of this paper
    corecore