212 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Improved LEACH Protocol based on Moth Flame Optimization Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless sensor nodes are made up of small electronic devices designed for detecting, determining, and sending data under severe physical conditions. These sensor nodes rely heavily on batteries for energy, which drain at a quicker pace due to the extensive communication and processing tasks they must carry out. Managing this battery resource is the major challenge in wireless sensor networks (WSNs). This work aims at developing an improved performance and energy-efficient low-energy adaptive clustering hierarchy (IPE-LEACH) that can extend the lifespan of networks. This paper proposes a novel LEACH protocol that uses the moth flame optimization (MFO) algorithm for clustering and routing to increase the longevity of the sensor network. IPE-LEACH proved to have a better cluster-head (CH) selection technique by eliminating redundant data, thereby extending the network lifetime. IPE-LEACH was compared with four other existing algorithms, and it performed better than: original LEACH by 60%, EiP-LEACH by 45%, LEACH-GA by 58%, and LEACH-PSO by 13.8%. It can therefore be concluded that IPE-LEACH is a promising clustering algorithm that has the potential to realize high flexibility in WSNs in case the CH fails.     

    Efficient approach for maximizing lifespan in wireless sensor networks by using mobile sinks

    Full text link
    Recently, sink mobility has been shown to be highly beneficial in improving network lifetime in wireless sensor networks (WSNs). Numerous studies have exploited mobile sinks (MSs) to collect sensed data in order to improve energy efficiency and reduce WSN operational costs. However, there have been few studies on the effectiveness of MS operation on WSN closed operating cycles. Therefore, it is important to investigate how data is collected and how to plan the trajectory of the MS in order to gather data in time, reduce energy consumption, and improve WSN network lifetime. In this study, we combine two methods, the cluster-head election algorithm and the MS trajectory optimization algorithm, to propose the optimal MS movement strategy. This study aims to provide a closed operating cycle for WSNs, by which the energy consumption and running time of a WSN is minimized during the cluster election and data gathering periods. Furthermore, our flexible MS movement scenarios achieve both a long network lifetime and an optimal MS schedule. The simulation results demonstrate that our proposed algorithm achieves better performance than other well-known algorithms

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Trust Score based Optimized Cluster Routing (TSOCR) approach for Enhancing the Lifetime of Wireless Sensor Networks

    Get PDF
    Energy efficiency is the most significant obstacle that Wireless Sensor Networks (WSN) must overcome, and the desire for solutions that maximize energy efficiency will never go away. There are a variety of methods that can be utilized to improve energy efficiency, with data transmission as the primary driver of maximum energy consumption. The transmission of data from the source to destination nodes uses more energy. When the transmission of data is handled better, the energy efficiency is improved and the lifetime of the network is increased. The purpose of this research is to propose an Trust Score based Optimized Cluster Routing (TSOCR)  scheme for WSNs, which is based on Whale Optimization Algorithm (WOA). A total trust score is derived by combining the results of computing three distinct trust scores, such as the direct, indirect, and the most recent trust score. The path that has the highest trust score is chosen as the route and employed for data transmission. The effectiveness of the work is evaluated by looking at factors such as the rate of packet delivery, the latency, the amount of energy consumed and the lifetime of the network

    A Survey on Efficient Routing Strategies For The Internet of Underwater Things (IoUT)

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technology that promised to connect the underwater world to the land internet. It is enabled via the usage of the Underwater Acoustic Sensor Network (UASN). Therefore, it is affected by the challenges faced by UASNs such as the high dynamics of the underwater environment, the high transmission delays, low bandwidth, high-power consumption, and high bit error ratio. Due to these challenges, designing an efficient routing protocol for the IoUT is still a trade-off issue. In this paper, we discuss the specific challenges imposed by using UASN for enabling IoUT, we list and explain the general requirements for routing in the IoUT and we discuss how these challenges and requirements are addressed in literature routing protocols. Thus, the presented information lays a foundation for further investigations and futuristic proposals for efficient routing approaches in the IoUT

    A multi-hop routing protocol for an energy-efficient in wireless sensor network

    Get PDF
    The low-energy adaptive clustering hierarchy (LEACH) protocol has been developed to be implemented in wireless sensor networks (WSNs) systems such as healthcare and military systems. LEACH protocol depends on clustering the employed sensors and electing one cluster head (CH) for each cluster. The CH nodes are changed periodically to evenly distribute the energy load among sensors. Updating the CH node requires electing different CH and re-clustering sensors. This process consumes sensors’ energy due to sending and receiving many broadcast and unicast messages thus reduces the network lifetime, which is regarded as a significant issue in LEACH. This research develops a new approach based on modifying the LEACH protocol to minimize the need of updating the cluster head. The proposal aims to extend the WSN’s lifetime by maintaining the sensor nodes’ energy. The suggested approach has been evaluated and shown remarkable efficiency in comparison with basic LEACH protocol and not-clustered protocol in terms of extending network lifetime and reducing the required sent messages in the network reflected by 15%, and, in addition, reducing the need to reformatting the clusters frequently and saving network resources

    Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range

    Get PDF
    In wireless sensor networks (WSNs), the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas), the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT), which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms

    Energy Synchronized Transmission Control for Energy-harvesting Sensor Networks

    Get PDF
    Energy harvesting and recharging techniques have been regarded as a promising solution to ensure sustained operations of wireless sensor networks for longterm applications. To deal with the diversity of energy harvesting and constrained energy storage capability, sensor nodes in such applications usually work in a duty-cycled mode. Consequently, the sleep latency brought by duty-cycled operation is becoming the main challenge. In this work, we study the energy synchronization control problem for such sustainable sensor networks. Intuitively, energy-rich nodes can increase their transmission power in order to improve network performance, while energy-poor nodes can lower transmission power to conserve its precious energy resource. In particular, we propose an energy synchronized transmission control scheme (ESTC) by which each node adaptively selects suitable power levels and data forwarders according to its available energy and traffic load. Based on the large-scale simulations, we validate that our design can improve system performance under different network settings comparing with common uniform transmission power control strategy. Specially, ESTC can enable the perpetual operations of nodes without sacrificing the network lifetime

    An energy-aware protocol for data gathering applications in wireless sensor networks

    Get PDF
    2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
    • 

    corecore