6 research outputs found

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Design and Implementation of an Integrated Biosensor Platform for Lab-on-a-Chip Diabetic Care Systems

    Get PDF
    Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term implantation of the sensor system. Glucose sensors combined with sensor readout, insulin bolus control algorithm, and insulin infusion devices can function as an artificial pancreas. However, challenges remain in integrated glucose sensing which include degradation of electrode sensitivity at the microscale, integration of the electrodes with low power low noise readout electronics, and correlation of fluctuations in glucose levels with other physiological data. This work develops 1) a low power and compact glucose monitoring system and 2) a low power single chip solution for real time physiological feedback in an artificial pancreas system. First, glucose sensor sensitivity and robustness is improved using robust vertically aligned carbon nanofiber (VACNF) microelectrodes. Electrode architectures have been optimized, modeled and verified with physiologically relevant glucose levels. Second, novel potentiostat topologies based on a difference-differential common gate input pair transimpedance amplifier and low-power voltage controlled oscillators have been proposed, mathematically modeled and implemented in a 0.18ÎĽm [micrometer] complementary metal oxide semiconductor (CMOS) process. Potentiostat circuits are widely used as the readout electronics in enzymatic electrochemical sensors. The integrated potentiostat with VACNF microelectrodes achieves competitive performance at low power and requires reduced chip space. Third, a low power instrumentation solution consisting of a programmable charge amplifier, an analog feature extractor and a control algorithm has been proposed and implemented to enable continuous physiological data extraction of bowel sounds using a single chip. Abdominal sounds can aid correlation of meal events to glucose levels. The developed integrated sensing systems represent a significant advancement in artificial pancreas systems

    Low-Voltage Bulk-Driven Amplifier Design and Its Application in Implantable Biomedical Sensors

    Get PDF
    The powering unit usually represents a significant component of the implantable biomedical sensor system since the integrated circuits (ICs) inside for monitoring different physiological functions consume a great amount of power. One method to reduce the volume of the powering unit is to minimize the power supply voltage of the entire system. On the other hand, with the development of the deep sub-micron CMOS technologies, the minimum channel length for a single transistor has been scaled down aggressively which facilitates the reduction of the chip area as well. Unfortunately, as an inevitable part of analytic systems, analog circuits such as the potentiostat are not amenable to either low-voltage operations or short channel transistor scheme. To date, several proposed low-voltage design techniques have not been adopted by mainstream analog circuits for reasons such as insufficient transconductance, limited dynamic range, etc. Operational amplifiers (OpAmps) are the most fundamental circuit blocks among all analog circuits. They are also employed extensively inside the implantable biosensor systems. This work first aims to develop a general purpose high performance low-voltage low-power OpAmp. The proposed OpAmp adopts the bulk-driven low-voltage design technique. An innovative low-voltage bulk-driven amplifier with enhanced effective transconductance is developed in an n-well digital CMOS process operating under 1-V power supply. The proposed circuit employs auxiliary bulk-driven input differential pairs to achieve the input transconductance comparable with the traditional gate-driven amplifiers, without consuming a large amount of current. The prototype measurement results show significant improvements in the open loop gain (AO) and the unity-gain bandwidth (UGBW) compared to other works. A 1-V potentiostat circuit for an implantable electrochemical sensor is then proposed by employing this bulk-driven amplifier. To the best of the author’s knowledge, this circuit represents the first reported low-voltage potentiostat system. This 1-V potentiostat possesses high linearity which is comparable or even better than the conventional potentiostat designs thanks to this transconductance enhanced bulk-driven amplifier. The current consumption of the overall potentiostat is maintained around 22 microampere. The area for the core layout of the integrated circuit chip is 0.13 mm2 for a 0.35 micrometer process

    Energy management techniques for ultra-small bio-medical implants

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 167-174).Trends in the medical industry have created a growing demand for implantable medical devices. In particular, the need to provide medical professionals a means to continuously monitor bio-markers over long time scales with increased precision is paramount to efficient healthcare. To make medical implants more attractive, there is a need to reduce their size and power consumption. Small medical implants would allow for less invasive procedures and greater comfort for patients. The two primary limitations to the size of small medical implants are the batteries that provide energy to circuit and sensor components, and the antennas that enable wireless communication to terminals outside of the body. In this work we present energy management and low-power techniques to help solve the engineering challenges posed by using ultracapacitors for energy storage. A major problem with using any capacitor as an energy source is the fact that its voltage drops rapidly with decreasing charge. This leaves the circuit to cope with a large supply variation and can lead to energy being left on the capacitor when its voltage gets too low to supply a sufficient supply voltage for operation. Rather than use a single ultracapacitor, we demonstrate higher energy utilization by splitting a single capacitor into an array of capacitors that are progressively reconfigured as energy is drawn out. An energy management IC fabricated in 180-nm CMOS implements a stacking procedure that allows for more than 98% of the initial energy stored in the ultracapacitors to be removed before the output voltage drops unsuitably low for circuit operation. The second part of this work develops techniques for wide-input-range energy management. The first chip implementing stacking suffered an efficiency penalty by using a switchedcapacitor voltage regulator with only a single conversion ratio. In a second implementation, we introduce a better solution that preserves efficiency performance by using a multiple conversion ratio switched-capacitor voltage regulator. At any given input voltage from an ultracapcitor array, the switched-capacitor voltage regulator is configured to maximize efficiency. Fabricated in a 180-nm CMOS process, the chip achieves a peak efficiency of 90% and the efficiency does not fall below 70% for input voltages between 1.25 and 3 V.by William R. Sanchez.Ph.D
    corecore