12,451 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A ROS2 based communication architecture for control in collaborative and intelligent automation systems

    Get PDF
    Collaborative robots are becoming part of intelligent automation systems in modern industry. Development and control of such systems differs from traditional automation methods and consequently leads to new challenges. Thankfully, Robot Operating System (ROS) provides a communication platform and a vast variety of tools and utilities that can aid that development. However, it is hard to use ROS in large-scale automation systems due to communication issues in a distributed setup, hence the development of ROS2. In this paper, a ROS2 based communication architecture is presented together with an industrial use-case of a collaborative and intelligent automation system.Comment: 9 pages, 4 figures, 3 tables, to be published in the proceedings of 29th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2019), June 201

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    To mesh or not to mesh: flexible wireless indoor communication among mobile robots in industrial environments

    Get PDF
    Mobile robots such as automated guided vehicles become increasingly important in industry as they can greatly increase efficiency. For their operation such robots must rely on wireless communication, typically realized by connecting them to an existing enterprise network. In this paper we motivate that such an approach is not always economically viable or might result in performance issues. Therefore we propose a flexible and configurable mixed architecture that leverages on mesh capabilities whenever appropriate. Through experiments on a wireless testbed for a variety of scenarios, we analyse the impact of roaming, mobility and traffic separation and demonstrate the potential of our approach

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    A Lens-Calibrated Active Marker Metrology System

    Get PDF
    This paper presents a prototypical marker tracking system, MT, which is capable of recording multiple mobile robot trajectories in parallel for offline analysis. The system is also capable of providing trajectory data in realtime to agents (such as robots in an arena) and implements several multi-agent operators to simplify agent-based perception. The latter characteristic provides an ability to minimise the normally expensive process of implementing agent-centric perceptual mechanisms and provides a means for multiagent "global knowledge" (Parker 1993)

    Optimal design and experimental verification of a spherical-wheel composite robot with automatic transformation system

    Get PDF
    This paper presents a design for a dual-mode prototype robot with the advantages of both a spherical robot and wheeled robot. A spherical robot has flexible movement capabilities, and the spherical shell can protect the mechanism and electronic devices. A wheeled mobile robot operates at high speed on a flat road. Its simple structure and control system has made it a popular choice in the field of robotics. Our objective was to develop a new concept robot capable of combining two different locomotion mechanisms to increase the locomotion stability and efficiency. The proposed mobile robot prototype was found to be capable and suitable in different situations. The exchange of modes between the spherical and the wheeled robot was realized by a structural change of the robot. The spherical-wheel mobile robot prototype is composed of a deformable spherical shell system, the propulsion system for the sphere and a wheeled mobile unit module. The exchange of locomotion modes was implemented by changing the geometric structure of spherical shell. The mechanical structure of the composite robot is presented in detail as well as the control system including hardware components and the software. The control system allowed for the automatic transformation of the composite robot between either of the locomotion modes. Based on analysis and simulation, the mechanism was optimized in its configuration and dimension to guarantee that robot had a compact structure and high efficiency. Finally, the experimental results of the transformation and motion processes provided dynamic motion parameters and verified the feasibility of the robot prototype
    • …
    corecore