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Abstract

This paper presents a prototypical marker tracking
system, MT, which is capable of recording multiple
mobile robot trajectories in parallel for offline analy-
sis. The system is also capable of providing trajec-
tory data in realtime to agents (such as robots in an
arena) and implements several multi-agent operators
to simplify agent-based perception. The latter charac-
teristic provides an ability to minimise the normally
expensive process of implementing agent-centric per-
ceptual mechanisms and provides a means for multi-
agent global knowledge (Parker 1993).

1. Introduction
A frequent hurdle in mobile robotics is the challenge of
analysing the behaviour of robots in a systematic and accurate
way. Marker tracking systems fulfills this need by recording
the trajectories of markers in a scene over time, providing
positional information from which the path and position of a
collection of markers can be derived. By arranging markers in
suitable patterns for recognition, the position and optionally
the orientation of a robot can be ascertained.

A marker tracking or metrology system is a mechanism that
records the movement of markers in a scene. Markers can be
attached to objects of interest, which in this case are mobile
robots. Over time a body of data can be generated that shows
the path the marker takes through movement. With additional
processing and pre-defined arrangements of markers, high-
level analysis is possible of one or more robots in an arena.

As well as providing offline datasets for later analysis, re-
altime marker tracking systems can also provide on-line feed-
back on marker positions during experimentation. This is ad-
vantageous when implementing complex experiments where
many factors are secondary to the principal investigation; for
example when a learning system is being developed or when
perceptual mechanisms are costly or scarce, significant de-
velopment time can be expended in developing agent-based
perceptual mechanisms that are not critically important. Fur-
ther, the prospect of introducing virtual elements into visual

space is a distinct possibility, and perhaps a desirable one:
a handful of hand-built objects (such as food pucks in for-
aging experiments) can be complemented by a dearth of ob-
jects simulated in visual space to further assess effectiveness.
Similarly, the definition of particular areas or regions can be
performed with minimal adjustment of the environment. Re-
altime tracking systems can also provide an effective alterna-
tive to other more costly methods of implementing complex
operators for multi-agent collective robotics, such as radio re-
ceivers or agent-based camera units.

The metrology system (MT) presented in this paper was
developed to fulfill both realtime and offline data capture
needs while investigating a learning architecture, exploiting
a priori marker arrangements attached to robots to derive po-
sition and direction. The approach taken can also track the
position of objects such as pucks (also possessing markers)
in realtime. The most recent version of the system uses stan-
dard PC equipment, which provides significant speed im-
provements over earlier versions that were developed using
a Sun Ultra-10 SPARC with a Sun capture board and XIL
library for image processing. These earlier versions also in-
vestigated optic flow as a means for tracking, however this
was dropped in favour of predefined marker arrays in the im-
age attached to agents and objects of interest, on the grounds
of efficiency.

2. Capture Equipment
MT is a visually-based marker tracking system that uses a
video camera and capture board to observe markers in a
scene. A digital JVC camera was used in the tracking sys-
tem, with various enhancements, including automatic digi-
tal image processing, color balancing and a number of other
image-enhancing functions.

The camera was mounted on a fixed bar attached to a ceil-
ing in the laboratory, and outfitted with a 92-degree wide an-
gle lens. Facing downwards, this particular lens was cho-
sen for its ability to capture the necessary area on the labora-
tory floor in which the mobile robots operated, thus allowing
markers to be observed throughout a trial of the tracking sys-
tem. An unfortunate side-effect however of using such a lens
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Figure 1: The tracking camera orthogonally mounted on the ceiling.

is the introduction of a significant barrel distortion in the cap-
tured image, which is examined in section 8.

A key issue in performing effective extraction of the mark-
ers was found to be the removal of irrelevant information in
the scene, and it was found a combination of camera-based
modifications and software extraction stages were necessary.
Since the markers used in the eventual system were active
high-intensity bulbs, much of the irrelevant information was
less brighter than the markers themselves. A minimal aper-
ture1 setting on the camera lens was used to remove a signif-
icant amount of irrelevant information in the image, yielding
a set of isolated high-intensity markers. Later software pro-
cessing on the captured image was used to isolate the markers
from the captured images more thoroughly.

The image was carried over a composite video signal lead
to an analogue PCI Hauppauge Win TV capture board (based
on the BTTV chipset and of the kind used for television
viewing on a personal computer) resident in a Linux-based
PC. These hardware and software components are widely-
available and cost-effective.

3. Types of Markers Considered
In order for a marker extraction algorithm to be effective, it
must exploit a pixel type and structure in the image as the
marker. Several marker types were investigated during de-
velopment. Broadly two main types of marker (or “fidu-
cials”) are possible: reflective or emissive. Reflective (pas-
sive) markers reflect ambient light in the environment, and
ideally are diffuse reflectors with a low specular reflectance.
Since they reflect rather than emit light, such markers are de-
pendent on a sufficient level of ambient light to allows the
marker extraction algorithm to work effectively on captured
camera images. Reflective markers can also possess a degree

1The aperture of a camera lens determines the amount of light entering
the lens and eventually falling onto the CCD chip that generates the video
image.

of luminescence to further help the extraction process. Emis-
sive (active) markers radiate light into the environment. As
they are emitters and not reflectors, they are not dependent
on reflected light and thus ambient light in the surroundings
can vary. Better results are typically obtained with reduced
lighting.

Reflective markers are the easiest and most straightforward
kind of marker to implement. An early version of the software
made use of reflective luminescent and patterned paper mark-
ers for tracking, in normal lighting conditions. We found that
the majority of the time the marker was identified correctly,
however a noticeable number of iterations of the algorithm
showed identification of other objects in the scene in error.

Emissive markers are more difficult to implement, and for
best results tend to require reduced lighting conditions. They
are typically implemented using either Light Emitting Diodes
(LEDs) or bulbs. LEDs are usually of a specific colour and
can emit light at extremely high intensities. An LED can also
avoid saturation of the captured image, allowing for accurate
colour isolation (for marker classes). A typical Super-Bright
AlGaA LED with a diffuser lens can produce an intensity of
160mcd, but with a small viewing angle. A non-diffuser lens
version has a much higher intensity of 530mcd but a much
narrower viewing angle2. Incandescent bulbs offer the high-
est brightness, emit light in all directions, but can saturate
camera capture systems.

Markers can also be of the same or differing colours. Mark-
ers of the same colour are quicker to identify, but need other
constraints in order to extract structural information such as
robot pose—for example through the use of positional ar-
rangements. Colour markers reduce the number of markers
required in the scene, but introduce further costs in image
processing.

The properties of the laboratory were found to be a major
factor in conjunction with the cost of physically building the
markers. A low ceiling height and wide arena meant that the
ceiling camera, mounted orthogonally to the floor, needed to
be augmented with a 92 degree lens so as to ensure a capture
of the entire mobile robot arena. This lens also introduces a
~45 degree angle with the floor at the extremities, meaning
any marker must have at least such an angle (or ideally more)
of visibility in all directions for effective capture. Wide angle
lenses also present a reduced number of pixels for the same
marker in an extreme position. This lead to the use of incan-
descent bulbs for the markers, although LEDs with diffuser
lenses would be a further possibility.

For reasons of simplicity, identically colour markers were
found to be the most effective when computing within the
RGB space3. Although these bulbs tended to saturate the im-
age at the centre of the marker, relying on the pixel intensities
allowed this problem to be side-stepped. We found it to be
the most successful of all methods considered.

2Ultra-Bright LEDs are also quite expensive.
3Better results for coloured markers could be obtained through the use of

the HSV (Hue, Saturation, Variance) colour space, since the hue component
can be separated regardless of other factors.



To calculate the robot orientation an a priori structural pat-
tern was introduced using three markers: two on the rear (lat-
eral) and one on the tip (front or ventral). The lateral inter-
marker distance was significantly lower than the ventral axis-
tip distance, which allowed the tracking algorithm to deter-
mine the pose of the lighting array effectively by calculating
the shorter lateral inter-marker distances.

4. General Tracking Process
The marker tracking top-level process is a repetitive loop in
which images containing the thresholded marker pixels are
repeatedly acquired and processed. The output data from
these two steps is used to generate the offline trajectory
records and update the resources used in realtime information
processes. Robots in the environment that wish to find their
own positions can do so by querying the tracking system to
obtain this information. The data generated by the tracker
is recorded and output to file, facilitating the construction of
post-experimental metrological plots of robot activity.

The main functional stages in sequence are as follows:
Acquisition—The frame capture boards are instructed to

acquire the data from the attached camera system. This in-
volves the conversion of the raw analogue signal from the
camera (in this case a PAL signal) to appropriate representa-
tions for memory, which in this case is an RGB representa-
tion. A convolution is applied during this stage. Image acqui-
sition is performed using a Video4Linux memory map.

Marker Identification—At this point the markers in the
image are identified. This is a multi-part process involving the
isolation of appropriate parts of the image (via thresholding),
the identification of marker clusters, and the reconstruction of
disjoint pixels belonging to markers. The centres of markers
are then identified using a centre-of-mass operator. An IM-
LIB window is updated at this point to show the positions of
the markers. To remedy the curvilinear distortion exhibited
by the wide-angle lens, a calibration model is applied to the
image-space coordinates.

Record Update—At this point the markers in a given im-
age have been identified but are not yet “localised” to the ex-
isting set of markers currently being tracked by the software.
The update phase involves finding existing marker tracker
records for a given marker and updating the attached posi-
tion with the data returned from the previous stages. Higher
level tracker structures relating to the robot and objects are
also updated. Robots use a special triangular lighting array
that encodes both position and direction, and are represented
in memory using a high level structure that references indi-
vidual markers that constitute the array.

Datagram Request Processing—Robots can request from
the metrology system information associated with their indi-
vidual marker arrays, thus acquiring their own position and
direction for various behavioural routines. This is achieved
by requesting a User Datagram Protocol (UDP) datagram
from the tracking system containing a variety of global

knowledge for the task at hand4. Using wireless Ethernet
cards and cable-based Ethernet, the robots submit requests
for information that are then processed in this phase of the
loop. All of the information pertinent to a particular robot is
encoded in a string in the UDP packet, which is transmitted
back to the originating robot.

Recording Functions—As well as vending realtime live
information over the network, the marker tracker also per-
forms recording of marker data for later offline analysis af-
ter an experiment. A series of records are deposited in log
files containing marker robot and object positional informa-
tion entries, each associated with a precise µ-second time
stamp from the system clock, which is in turn synchronised
along with robot internal clocks using a Network Time Pro-
tocol (NTP) server.

5. Tracking Technique Between Frames
Several assumptions are made by the tracker to permit ef-
fective tracking, so that it has some confidence that a given
marker vector X corresponds to a tracked marker vector Y
contained in memory. A Euclidean distance threshold is used
to determine this: X = Y iff |XY | < α where α = 15px.

The use of a Euclidean distance threshold imposes a con-
straint on the amount of motion permitted in the image for a
correct capture, between two frames, and as a consequence
imposes a maximum speed on tracked robots operating in the
arena. The amount of motion allowed is a function of the
speed at which the capture system can fetch from the board
and perform the necessary computations. On the 2.4GHz Fe-
dora Core computer used (with an optimised kernel) this is
typically around 2.4Hz, meaning a maximum angular veloc-
ity of 20-25 degrees/sec was imposed on the robot motors for
effective capture, determined empirically5.

5.1 In-Memory Structures
There are several distinct tracking structures that are main-
tained in memory for the purposes of tracking, some of which
are only applicable after a particular stage of the tracking pro-
cess while others are persistent throughout the entire tracking
operation:

The list of centres-of-mass or COM list contains the list
of coordinate pairs in image space that represent the centres
of the markers observed on each iteration of the tracking al-
gorithm. Each entry in the COM list is a coordinate pair in
image space, (Ix, Iy).

The marker list is the persistent list of markers, main-
tained throughout the tracking process. Each of the entries in
the marker list is a marker record containing a unique iden-

4In the experiments using MT, this information contained a variety of op-
erators relating to foraging, such as the centroid of the cluster or the homing
position. More information can be found in Mataric (1994).

5This is a relatively low speed as is far lower than other tracking systems
(such as Mezzanine), but further refinements including the removal of the
IMLIB stage and a detailed profiling of the program would result in signifi-
cant improvements and a higher capture rate.



tifier, a coordinate pair from image space (Ix, Iy), a coordi-
nate pair containing the estimated real position in the arena
(Ax, Ay), and the recency value r.

The robot list is the persistent list of robot displays, main-
tained throughout the tracking process. Each entry in this list
is a robot record containing a unique identifier, a reference to
the identifiers for the rear markers R1 and R2, a reference to
the identifier for the tip marker (ITx, ITy), an estimated cen-
tral position of the robot display in image space C = (Ix, Iy),
estimated real arena position of the centre of the display T =
(Ax, Ay), and the estimated orientation angle of the display
in image space computed from the coordinates of the lateral
rear axis rrx, rry where rrx = R1x+R2x

2 and rry =
R1y+Ry

2 ,
and the tip marker (ITx, ITy) : θ =

atan2(rry−ITy ,rrx−ITx)
180·π−1 .

The object (puck) list is responsible for maintaining a list
of all non-robot markers, which are assumed to that of ob-
jects. Each entry in the object list contains a unique identifier
and a position pair. This list is used to generate directional
headings for the various multi-agent operators.

5.2 Detecting and Extracting Markers: Stages
The most important stage in the overall marker tracking pro-
cess is the extraction of marker pixels from the original image
and the determination of marker centrepoints, the latter being
a non-trivial process that involves the analysis of disjoint pix-
els. The process used is as follows:

Convolution—This step, more commonly referred to as
image smoothing, convolves the image by applying a Gaus-
sian kernel iteratively over the entire image. This is done with
the aim of removing steep changes in the colour between pix-
els and so ensuring a smooth continuation and more success-
ful extraction of pixels associated with a marker.

Threshold—The threshold stage removes the background
in the aim of leaving the pixels associated with markers left
in the image. Each pixel is tested against a set of equality
values, whose thresholds were determined empirically.

Coalesce—The coalescing function scans over the image
and attempts to locate similar regions or markers in the image,
grouping disjoint pixels into pixel clusters (markers).

Centre of Gravity/Mass—The COM/COG step examines
the detected markers and finds the centre of mass for each.
The centre of mass is the coordinate given by averaging each
dimension, producing a centre point x = Σxi/n, y = Σyi/n.
The final step involves the update of the marker list. This
examines the list of values produced by the COM stage and
updates the persistent marker list state using a Euclidean dis-
tance threshold.

5.2.1 Applying a Gaussian Convolution
The camera used for the tracking process is an analogue cam-
era, which requires the conversion from analogue to digital
form using a frame grabber. This process is prone to digitisa-
tion and quantisation errors into the image, producing noise

effects in the form of minor fluctuations in individual pix-
els that affect the isolation of the pixels for thresholding and
later marker extraction. It is therefore desirable to remove
such variations for a given pixel with a weighted average of
its neighbours. The tracking system incorporates a convolu-
tion operation to achieve this.

Convolution is a process in which the original image is
smoothed by applying a small matrix of values (K) to each
pixel in the image iteratively. This matrix —the convolution
kernel—is initialised at the start of the marker tracking pro-
cess and remains static or unchanged throughout the entire
run. The pixel at the centre of the kernel is redefined as the
weighted sum of the pixels that underly all of the other ele-
ments contained in the kernel K. The whole of the original
image F is convolved by sliding the kernel over the image,
starting from the top left and passing through all achievable
positions in x and y implementable using two iterative loops.
For edge pixels (which are undefined by the convolution pro-
cess) the software adopts a zero-value policy: the target im-
age H is initialised to zero values at the start of the convo-
lution process, with edge pixels in H being left zero if not
examined during the application of the kernel.

The smoothing process is performed using a Gaussian
kernel. The formal definition of the Gaussian kernel is:
Kσ(x, y) = 1

2πσ2 exp
(

− (x2+y2)
2σ2

)

. The smoothing effect
produced by the Gaussian assigns greater weighting to pixels
at the centre than to those at the periphery of the kernel. This
can be justified qualitatively: smoothing suppresses noise by
enforcing the requirement that pixels must look more like
their neighbours (Forsyth and Ponce 2003). Conversely, uni-
form smoothing kernels assigns equal weighting to all pixels
under the mask; the pixel at the centre has the same signifi-
cance as pixels at the periphery. The variation in the parame-
ter σ to the Gaussian model affects the weighting assigned to
pixels underlying the centre of the mask (Forsyth and Ponce
2003), overcoming ringing6 effects typical with unweighted
convolution (Forsyth and Ponce 2003).

A discrete smoothing kernel in a two-dimensional
2k + 1 × 2k + 1 array is used in the tracking sys-
tem, whose i, jth value is determined according to
Hij = 1

2πσ2 exp
(

− [ (i−k−1)2+(j−k−1)2 ]
2σ2

)

(Forsyth and
Ponce 2003).

5.2.2 Isolating Marker Pixels using Thresholding

Thresholding removes pixels that do not exceed a given nu-
merical value. All pixels in the original image F are passed
through a thresholding algorithm that sets the target image
pixel based on whether the red, green and blue components
of the original pixel Hij exceed a pre specified threshold, lev.

6Ringing is usually found with unweighted convolution where each com-
ponent of the kernel is 1.0, and is manifested as a series of narrow vertical
and horizontal bars in the image (Forsyth and Ponce 2003).



Figure 2: Left—An XRII image of the BB phantom produced by a
Thompson fluoroscopy unit, right—the segmented image after back-
ground subtraction (Cho and Johnson 1998)

5.2.3 Coalescing Disjoint Pixels to Find Markers
The coalescing stage takes the raw information produced by
the earlier stages, and attempts to determine the constituent
marker that a particular pixel belongs to. The algorithm used
for this stage is derived from an earlier algorithm presented
by Cho and Johnson (1998) that was designed to detect ball-
bearings in images produced by x-ray image intensifiers.

Cho and Johnson’s original aim was to find ball bearings
shown in Ball-Bearing (BB) ‘phantoms’ obtained by a va-
riety of x-ray image intensifiers (XRII) systems used in di-
agnostic radiology and other applications, whose positions
once detected could be used to correct for gravitational ef-
fects. Figure 2 shows a BB phantom produced by a Thom-
son fluoroscopy laboratory unit used for high spatial resolu-
tion applications. The images produced from the XRII pro-
cess show similarities with the images produced through the
marker tracking process, in particular the image dimensions
are similar as are the areas occupied by the BB phantoms. In
common with their process, the tracking system produces an
image that has the background removed with the remaining
logically disjoint pixels assumed to be the visible parts of a
marker. These similarities together with the common need
for marker coalescing were the main reason for adopting Cho
and Johnson’s algorithm for the metrology system.

In the Cho and Johnson algorithm clusters are assumed to
be clusters of contiguous, thresholded pixels. A row-wise
operation is used to examine each pixel and the surround-
ing neighbours. If a pixel is identified as a cluster member,
it is added to the cluster. Otherwise the pixel becomes the
“seed” of a new cluster. After this decision step, the algo-
rithm continues to analyse further adjacent pixels that exist
after thresholding, but do not possess a cluster ID.

5.2.4 Finding the Marker Centre of Mass
The Cho and Johnson process examined earlier also intro-
duced the notion of the centre of mass or COM of a given
cluster as a means to finding the central location. It is a
straightforward calculation that computes the mean average

Figure 3: The region of interest around an existing marker.

for all values along a particular dimension, the final values of
which can be recombined to form the Cartesian position of
the centre of mass in the image F . Using the notation from
the original algorithm, the centre coordinates (xc, yc) can be
computed as:xc =

P

N
i=1

xi

N
and yc =

P

N
i=1

yi

N
.

The result of this processing is a list of marker identi-
fiers and calculated position pairs in image space. The dis-
tortion the lens presents to the tracking system is accommo-
dated through the application of a calibration model in which
the coordinates are converted into a radial system from the
centrepoint of the image at the same angle of incidence (see
section 8.). With the new corrected distance from the cen-
trepoint, the coordinates of the image are recomputed into
Cartesian floor coordinates in centimetres.

5.2.5 Updating in-Memory Marker Records
After the pixel coalescing process, the metrology system at-
tempts to update the lists of markers that are currently be-
ing tracked. This is maintained as a list in memory, and
is initialised on the first iteration of the tracking system.
Each newly identified COM position in the image is checked
against the current list of markers being tracked, and whose
values are used to update entries on the list where the ob-
served COM position is thought to correspond to a marker
under tracking.

The first iteration of the metrology system is perhaps the
most important out of all of the iterations. During this first
run, the marker lists are populated with an initial set of
records one per marker identified in the actual scene. Robots
in the arena use a special lighting array so that they can be
identified and analysed for directional information, as shown
in figure 4. In the initial iteration these displays must be
placed in a number of specially designated regions in the
arena —robot regions— which can be arbitrarily defined be-
forehand as rectangular regions between two points7. Each of
the regions are examined for markers, which are constrained
to contain the three markers per display. This restriction
is necessary to enable the automatic labelling of the robot
marker arrays, and hence the initialisation of the robot record

7An arbitrary number of these regions can be defined, hence permitting
an arbitrary number of robots to be tracked at the same time. There are
limitations both in the processing time needed to track multiple robots and
the physical space needed for the robot regions (and thus how many robots
can be physically placed in the arena at the same time). We have attempting
tracking with two to four robots using this tracking system.



list. To label a robot display, MT must know which markers
correspond to which robot.

Each of the markers constituting each display is exhaus-
tively examined against its counterparts, with the two mark-
ers having the minimal Euclidean distance being designated
as the rear markers and the remaining marker being designed
as the tip. Each robot array identified in the image is allocated
a robot record, which in turn references the constituent mark-
ers that compose the array, both the rear and front markers.

Thereafter the update process is as follows: (1) A
COM position C is extracted from the newly acquired
list of coordinates, (cx, cy); (2) This position is com-
pared in a pairwise fashion with each of the markers cur-
rently being tracked in the marker list, Mi with positions
(mx, my); (3) The Euclidean distance e is evaluated e =
√

(cx − mx)2 + (cy − my)2. Depending on the value of e,
the algorithm either updates an existing record in memory or
creates a new one to express a new marker: (1) If the distance
value is less than a predefined threshold, then C is considered
the new position of the previous marker list entry, which is
updated; (2) If the distance value is greater, then a new entry
in the marker list is created and the positional values for C
are copied to the new record. See fig 3.

Each marker tracking record incorporates a recency value:
when a successful update takes place, the recency value is in-
cremented to record that the marker was recently updated and
accounted for. At every iteration, the distribution of recency
values is computed for all of the markers contained in the
tracking lists; records that have not been updated by corre-
sponding COMs garnered from the marker identification pro-
cess —reflected by low recency values— are removed auto-
matically in a periodic pruning process. This is defined as the
values below the lower quartile of the distribution.

At each iteration after the initial iteration the robot records
are updated. The markers identified in the first stage as being
part of the robot display, which have been updated continu-
ously to reflect new positions, are used to calculate the new
centre point of the robot record and the orientation. This in-
formation is also stored within the robot record. A straight-
forward set of geometric formulae can thus be used to com-
pute the position ( using rx =

Σi=3

i=0
(mx)
3 ry =

Σi=3

i=0
(my)
3 )

and orientation of the robot displays (using θ = 180.0 −
arctan2(rx − tipx, ry − tipy) ∗ 180

π
). The centrepoint is

the centre of mass of the triangular region represented by the
markers. The orientation value represents the rotation of the
display from the horizontal (converted from the internal radial
encoding to degrees largely for interpretability).

Any markers that are not found to be part of a robot light
display are assumed to be those of objects, with one marker
being attached to each object. This kind of extension is useful
for tasks where the collection of objects from the environment
using a gripper is needed. In the case of the task used with
this tracking system (foraging), the proximity of the centre-
point of each robot record is repeatedly compared with the
position of an object record, together with an analysis of the

Figure 4: The marker arrangement used on the robot displays.

directional heading of the robot compared to the direction of
the object from the centrepoint of the robot. These two com-
parisons are then used to determine if proximity is seen and
whether a grasping situation is possible. Such information
can then be used by the robot in the selection of suitable be-
haviours. Alternative possibilities include the use of sonar
sensors to detect suitable objects.

6. Providing Realtime Data over UDP

The mobile robots are also able to interact with the tracking
system to obtain what Parker (1993) terms global knowledge:
information about the task from a global reference frame. The
request for information and the response are both encapsu-
lated in datagram packets that are sent via the mobile robot
wireless Ethernet access point to and from the tracking com-
puter, which is connected by wire to the laboratory Ethernet.

The server resides on a high UDP port number, listening
for incoming UDP request packets. Upon receiving a re-
quest, the metrology system interrogates the robot list record
for the particular robot, and computes a number of different
pieces of information and sends it back out to the querying
agent. Some notable elements in the packets include the cur-
rent angle to the centroid needed to perform clustering with
the other agents in the arena, δθc, the angle away from the
centroid needed to disperse away from the other agents in the
arena, δθd, whether the robot is in a good grasping situation,
whether the robot is in the home region, and whether the arena
is in a simulated “night time”. These operators were derived
from earlier work by Mataric (1994), whose task description
was employed in our underlying investigations.

Information such as homing headings are used to manipu-
late the behaviour of the robot over time, however their ap-
pearance some time after the original request will inevitably
mean that the information will have applied to time points in
the recent past. This is a kind of temporal error, and we recog-
nise that it will occur in the realtime aspects of the approach.
Low-level avoidance routines in the behavioural architecture
will utilise current sonar data to perform avoidance, allowing
the tracking system-dependent aspects to be corrected as in-
formation can be obtained. The use of UDP packets attempts
to correct for this error partially, by minimising the network
latency and hence improving the speed of data acquisition,
however some predictive mechanism would be ideally needed
to correct for temporal error.



Figure 5: Top - a clustering multi-agent operator being used, and
bottom - the homing operator being used by two Pioneers.

7. Metrological Plots
From the recorded data, a graphical presentation of the
marker trajectories over time both possible and is a useful
means of qualitatively analysing the effectiveness both of in-
dividual behaviours and the performance of the learning sys-
tem in general.

We define a metrological plot to be a 2D vector plot gener-
ated from the perspective of the tracking camera. Some exam-
ple plots are shown in figure 5. Using the recorded stream of
data, a series of vectors can be computed from the positional
data, and plotted for a portion of time or for the entire track-
ing session8. These plots were generated using GNUPLOT, a
freely-available plotting system for UNIX. By using the vec-
torial plotting functions in GNUPLOT, the path for the robot
can be shown as a series of directed arrows through the arena.
Additional benefits include a variety of export formats using
either GNUPLOT or other freely-available image conversion
programs, including but not limited to vector-type Postscript

8We found the reliability of the approach described in this paper to be
fairly good, with a majority of trials being successfully tracked from start
to finish. One limitation arises in the dependence of agent-based perception
on the tracking system, which consequently requires continuous successful
tracking.

outputs suitable for scaling and publications.

8. Calibrating the Camera Lens
The use of a wide-angle lens offers significant advantages in
terms of arena coverage, but presents new problems in the
form of a significant curvilinear distortion in the captured im-
age. The presence of this distortion hinders effective tracking
and several operations involving the calculation of angular
data between markers are less accurate as a result. Perform-
ing a calibration procedure and forming a calibration model
of the distortion accommodates both the distortion and allows
for the conversion between image and floor space, that coor-
dinates in image space can be resolved to positions on the
arena floor in terms of actual physical measurements (cm).

8.1 Calibration Model
The lens exhibits a radial distortion caused by a position in
the image moving from the expected position in a positive
or negative direction from the centre of the image plane. A
positive shift causes a pin-cushioning effect, whilst a negative
shift causes the observed barrel distortion (Nakamura et al.
2002).

The method used is to calibrate the length from the im-
age centre Cimg to a point in image space Ip = (Ix, Iy)
against the length to the point in the arena Ap = (Ax, Ay)
from the centre of the floor, Cfloor. Under a ground plane
constraint9, taking pairs of measurements in this way pro-
duces a set of data points that captures the deviation from
the expected position on both the arena floor and the corre-
sponding point position in image space. The floor point un-
derlying the centre of the camera point is used for Cfloor.
This technique assumes that the centres of the image, lens
and floor are at the same point, and the lens has a “uniform”
fall off (such as parabolic). Using a fourth-order polynomial
y = f(x) = Ax4 + Bx3 + Cx2 + Dx + E, the distortion
exhibited by the lens can be modelled effectively using a po-
lar coordinate system where the radius from the centre of the
image is recorded against a similar distance from the centre
of the arena floor. Calibration thus reduces to estimating the
approximate values for A, B, C,D, and E—the distortion co-
efficients (Ma et al. 2003).

An effective method of calculating these values, which ef-
fectively amounts to a curve fitting procedure, can be found in
the nonlinear least-squares (NLLS) Marquardt-Levenberg al-
gorithm10. The calibration procedure amounts to the repeated
acquisition of pairs of real-world and image space centerpoint
distances. The measurement pairs are passed to the ML pro-
cedure, which fits the polynomial to the data. The resultant
polynomial can then be used to convert radial distances in
image space to corresponding radial distances on the actual
workspace. The polar coordinate system can be converted

9That the points for the markers lie on a level plane.
10The coefficients were determined using the GNUFIT component of

GNUPLOT, which implements the M-L procedure.
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Figure 6: The calibration surface.

back into a Cartesian space location using the standard for-
mulae: x = Ir ∗ cos(θ) and y = Ir ∗ sin(θ). This gives the
floor position in the units used during calibration (in this case
centimetres).

The estimated LM parameters can be inserted into the
tracking program and used to convert image space coordi-
nates into reasonable estimates of the real world position
of the marker in the arena11. Substituting into the poly-
nomial gives f(x) = −2.9797e−6x + 4.25033e−9x3 +
0.000868696x2+0.455563x+1.39055, which is maintained
in memory and used by the tracking system.

A 3D plot of the calibration surface that results is shown in
figure 612. The vertical axis shows the estimated displace-
ment between the floor centrepoint and the corresponding
point in image space, indicating the necessary radial correc-
tion shift to obtain the true floor position. The curvature in the
visualisation confirms the significant distortion that the wide
angle lens possesses.

9. Conclusions
This paper has introduced a novel metrology approach that
can be used for gathering offline data concerning the trajec-
tories of multiple active marker displays attached to mobile
robots, and can optionally provide information to agents con-
cerning their position and relative heading to various areas
of interest, such as the home area, nearest puck or a num-
ber of more complex centroid operators such as the centre of
the group (convergence or flocking), heading away from the
centre of the group (divergence) amongst others. Although

11The markers were calibrated from a level of several centimetres from the
arena floor. In practice the markers on the tracking arrays were marginally
higher than the height of the robot.

12Although the 3D plot is useful for visualising the lens distortion, the
actual calibration function is two-dimensional.

prototypical in nature, it is presented it in the hope of en-
couraging a much-needed literature on mobile robot tracking
techniques.

9.1 Similar Methods
The tracking system described in this paper is similar to sev-
eral other freely-available systems that have been devised for
tracking markers. Lund et al. (1996), in their tracker devel-
oped at Edinburgh, describe a simpler marker tracker system
that employs two LEDs mounted on a Khepera mobile robot.
Mezzanine13 is another freely-available tracking system that
offers similar functionality including a much higher capture
rate of 30Hz, and uses more accurate color space processing
methods. Other techniques can be found in face recognition
(Scassellati 2001).

Several commercial tracking systems are available, offer-
ing considerably higher levels of performance and full 3D
tracking capabilities. For example, the VICON 512 system
by Oxford Metrics Ltd. offers support for precise measure-
ment and fast acquisition suitable for biomechanical prob-
lems, incorporating multiple tripod or ceiling-mounted cam-
eras. Such systems differ considerably from the tracking sys-
tem described in this paper. MT relies on a ground plane con-
straint, and is thus restricted to the identification of markers
on a two-dimensional plane in the arena.
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