12 research outputs found

    Mixed numerologies interference analysis and inter-numerology interference cancellation for windowed OFDM systems

    Get PDF
    Extremely diverse service requirements are one of the critical challenges for the upcoming fifth-generation (5G) radio access technologies. As a solution, mixed numerologies transmission is proposed as a new radio air interface by assigning different numerologies to different subbands. However, coexistence of multiple numerologies induces the inter-numerology interference (INI), which deteriorates the system performance. In this paper, a theoretical model for INI is established for windowed orthogonal frequency division multiplexing (W-OFDM) systems. The analytical expression of the INI power is derived as a function of the channel frequency response of interfering subcarrier, the spectral distance separating the aggressor and the victim subcarrier, and the overlapping windows generated by the interferer's transmitter windows and the victim's receiver window. Based on the derived INI power expression, a novel INI cancellation scheme is proposed by dividing the INI into a dominant deterministic part and an equivalent noise part. A soft-output ordered successive interference cancellation (OSIC) algorithm is proposed to cancel the dominant interference, and the residual interference power is utilized as effective noise variance for the calculation of log-likelihood ratios (LLRs) for bits. Numerical analysis shows that the INI theoretical model matches the simulated results, and the proposed interference cancellation algorithm effectively mitigates the INI and outperforms the state-of-the-art W-OFDM receiver algorithms

    ๋น„๋ฉดํ—ˆ๋Œ€์—ญ ์…€๋ฃฐ๋ผ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•์„ธ์›….3GPP๋Š” LAA (licensed-assisted access)๋ผ๊ณ ํ•˜๋Š” 5GHz ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ LTE๋ฅผ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค. LAA๋Š” ์ถฉ๋Œ ๋ฐฉ์ง€ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด Wi-Fi์˜ CSMA / CA (Carrier Sense Multiple Access with Collision avoidance)์™€ ์œ ์‚ฌํ•œ LBT (Listen Before Talk) ์ž‘์—…์„ ์ฑ„ํƒํ•˜์—ฌ ๊ฐ LAA ๋‹ค์šด ๋งํฌ ๋ฒ„์ŠคํŠธ์˜ ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ๋Š” ๊ฐ๊ฐ์˜ ์ข…๋ฃŒ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค. ์ด์ „ LBT ์ž‘์—…. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ˆ˜์น˜ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ๋‹ค์Œ ๋‘ ๊ฐ€์ง€ ํ–ฅ์ƒ๋œ ๊ธฐ๋Šฅ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ . ๊ธฐ์กด WiFi ๋ถ„์„ ๋ชจ๋ธ๋กœ๋Š” LAA์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•˜์—ฌ ๋ณธ ์„œ์‹ ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๊ฒฝํ•ฉ ์ง„ํ™” ๋œ NodeB๋กœ ๊ตฌ์„ฑ๋œ LAA ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LAA ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ์˜ ๋ณ€ํ˜•. LTE-LAA๋Š” LTE์—์„œ ์ƒ์† ๋œ ์†๋„ ์ ์‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์œ„ํ•ด ์ ์‘ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ (AMC) ์„ ์ฑ„ํƒํ•ฉ๋‹ˆ๋‹ค. AMC๋Š” ์ง„ํ™” ๋œ nodeB (eNB)๊ฐ€ ํ˜„์žฌ ์ „์†ก์˜ ์ฑ„๋„ ํ’ˆ์งˆ ํ‘œ์‹œ๊ธฐ ํ”ผ๋“œ ๋ฐฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ ์ „์†ก์„์œ„ํ•œ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ ๋ฐฉ์‹ (MCS)์„ ์„ ํƒํ•˜๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ๋ผ์ด์„ ์Šค ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ธฐ์กด LTE์˜ ๊ฒฝ์šฐ ๋…ธ๋“œ ๊ฒฝํ•ฉ ๋ฌธ์ œ๊ฐ€ ์—†์œผ๋ฉฐ AMC ์„ฑ๋Šฅ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ž˜ ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” LTE-LAA ์˜ ๊ฒฝ์šฐ ์ถฉ๋Œ ๋ฌธ์ œ๋กœ ์ธํ•ด AMC ์„ฑ๋Šฅ์ด ์ œ๋Œ€๋กœ ์ฒ˜๋ฆฌ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์ด ํŽธ์ง€์—์„œ๋Š” AMC ์šด์˜์„ ๊ณ ๋ คํ•œ ํ˜„์‹ค์ ์ธ ์ฑ„๋„ ๋ชจ๋ธ์—์„œ LTELAA ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋ฌด์„  ๋„คํŠธ์›Œํฌ ๋ถ„์„์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” Rayleigh ํŽ˜์ด๋”ฉ ์ฑ„๋„ ๋ชจ๋ธ์„ ์ฑ„ํƒํ•˜๊ณ  ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ns-3 ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์—์„œ ์–ป์€ ๊ฒฐ๊ณผ ์™€ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ๋น„๊ต ๊ฒฐ๊ณผ๋Š” ํ‰๊ท  ์ •ํ™•๋„๊ฐ€ 99.5%๋กœ ๋ถ„์„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋†’์€ ๋ฐ์ดํ„ฐ ์†๋„์— ๋Œ€ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์œผ๋กœ ์ธํ•ด 3GPP๋Š” LTE-LAA๋ฅผ์œ„ํ•œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์šด์˜์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์€ OOBE์— ์ทจ์•ฝํ•˜๊ณ  ์ œํ•œ๋œ ์ „์†ก ์ „๋ ฅ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋น„ํšจ์œจ์  ์ธ ์ฑ„๋„ ์‚ฌ์šฉ์„ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ฑ„๋„ ํšจ์œจ์„ ๋†’์ด๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ๋ฐฉ์‹์€ ์ „์†ก ๋ฒ„์ŠคํŠธ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์ „์†ก ์ „๋ ฅ ์ œํ•œ์„ ์ถฉ์กฑํ•˜๋ฉด์„œ ์งง์€ ์„œ๋ธŒ ํ”„๋ ˆ์ž„ ์ „์†ก ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒ๋‹จํ•˜์—ฌ OOBE ๋ฌธ์ œ๋ฅผ ๊ทน๋ณต ํ•  ์ˆ˜์žˆ๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ์ •์˜ ๋ผ๋””์˜ค๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœํ†  ํƒ€์ž…์€ 99% ์ด์ƒ์˜ ์ •ํ™•๋„๋กœ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์‹คํ–‰ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆ ๋œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์•ก์„ธ์Šค ๋ฐฉ์‹์ด ๊ธฐ์กด LBT ์œ ํ˜• A ๋ฐ ์œ ํ˜• B์— ๋น„ํ•ด ์‚ฌ์šฉ์ž์ธ์ง€ ์ฒ˜๋ฆฌ๋Ÿ‰์—์„œ ๊ฐ๊ฐ ์ตœ๋Œ€ 59% ๋ฐ 21.5%์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑ ํ•จ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ ˆ๊ฑฐ์‹œ LAA์—๋Š” ๋ฐฐํฌ ๋ฌธ์ œ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— 3GPP์™€ MulteFire ์–ผ๋ผ์ด์–ธ์Šค๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šค ํ…œ์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ข…๋ž˜์˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šคํ…œ์€ ์ƒํ–ฅ ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€์˜ ์ „์†ก ํ™•๋ฅ ์ด ๋‚ฎ๋‹ค. ์ด ๋…ผ๋ฌธ์€ Wi-Fi ๋ธ”๋ก ACK ํ”„๋ ˆ์ž„์— ์—… ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€๋ฅผ ๋„ฃ๋Š” W ARQ : Wi-Fi ์ง€์› HARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ W-ARQ์˜ ์ฒ˜ ๋ฆฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณ‘๋ ฌ HARQ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋œ Minstrel์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด MulteFire๊ฐ€ ๊ฑฐ์˜ ์ œ๋กœ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒฝ์šฐ ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ ํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ ๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š” ๋ ˆ๊ฑฐ์‹œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์„ ์ฃผ์žฅํ•˜๋ฉฐ ๋น„๋ฉดํ—ˆ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ HARQ๋Š” ํšจ์œจ์ ์ด์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, ์šฐ๋ฆฌ๋Š” ์ตœ์ฒจ๋‹จ ๊ธฐ ์ˆ ์— ๋น„ํ•ด UPT ๋ฐ ์ฒ˜๋ฆฌ๋Ÿ‰๊ณผ ๊ฐ™์€ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•˜๋Š” OOBE ์ธ์‹ ์ถ”๊ฐ€ ์•ก์„ธ์Šค ๋ฐ W-ARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.3GPP has developed 5 GHz unlicensed band LTE, referred to as licensed-assisted access (LAA). LAA adopts listen before talk (LBT) operation, resembling Wi-Fis carrier sense multiple access with collision avoidance (CSMA/CA), to enable collision avoidance capability, while the frame structure overhead of each LAA downlink burst varies with the ending time of each preceding LBT operation. In this dissertation, we propose numerical model to analyze unlicensed band cellular communication. Next, we consider the following two enhancements of unlicensed band cellular communication: (i) out-of-band emission (OOBE) aware additional carrier access, and (ii) Wi-Fi assisted hybrid automatic repeat request (H-ARQ) for unlicensed-band stand-alone cellular communication. Given that, existing analytic models of Wi-Fi cannot be used to evaluate the performance of LAA, in this letter, we propose a novel Markov chain-based analytic model to analyze the performance of LAA network composed of multiple contending evolved NodeBs by considering the variation of the LAA frame structure overhead. LTE-LAA adopts adaptive modulation and coding (AMC) for the rate adaptation algorithm inherited from LTE. AMC helps the evolved nodeB (eNB) to select a modulation and coding scheme (MCS) for the next transmission using the channel quality indicator feedback of the current transmission. For the conventional LTE operating in the licensed band, there is no node contention problem and AMC performance has been well studied. However, in the case of LTE-LAA operating in the unlicensed band, AMC performance has not been properly addressed due to the collision problem. In this letter, we propose a novel Markov chain-based analysis model for analyzing LTELAA performance under a realistic channel model considering AMC operation. We adopt Rayleigh fading channel model widely used in wireless network analysis, and compare our analysis results with the results obtained from ns-3 simulator. Comparison results show an average accuracy of 99.5%, which demonstrates the accuracy of our analysis model. Due to the requirement for a high data rate, the 3GPP has provided multi-carrier operation for LTE-LAA. However, multi-carrier operation is susceptible to OOBE and uses limited transmission power, resulting in inefficient channel usage. This paper proposes a novel multi-carrier access scheme to enhance channel efficiency. Our proposed scheme divides a transmission burst into multiple ones and uses short subframe transmission while meeting the transmission power limitation. In addition, we propose an energy detection algorithm to overcome the OOBE problem by deciding the channel status accurately. Our prototype using software-defined radio shows the feasibility and performance of the energy detection algorithm that determines the channel status with over 99% accuracy. Through ns-3 simulation, we confirm that the proposed multi-carrier access scheme achieves up to 59% and 21.5% performance gain in userperceived throughput compared with the conventional LBT type A and type B, respectively. Since the legacy LAA has deployment problem, 3GPP and MulteFire alliance proposed unlicensed band stand-alone cellular communication system. However, conventional unlicensed band stand-alone cellular communication system has low transmission probability of uplink control messages. This disertation proposes W-ARQ: Wi-Fi assisted HARQ which put uplink control messages into Wi-Fi block ACK frame. In addition we propose parallel HARQ and clustered Minstrel to enhance throughput performance of W-ARQ. Our proposed algorithm shows high throughput performance where conventional MulteFire shows almost zero throughput performance. In summary, we analyze the performance of unlicensed-band cellular communication. By using the proposed model, we insist the legacy multi-carrier operation and HARQ of unlicensed cellular communication is not efficient. By this reason, we propose OOBE aware additional access and W-ARQ which achievee enhancements of network performance such as UPT and throughput compared with state-of-the-art techniques.Abstract i Contents iv List of Tables vii List of Figures viii 1 Introduction 1 1.1 Unlicensed Band Communication System . . . . . . . . . . . . . . . 1 1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . . . . 2 1.2.1 License-assisted access . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Further LAA . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Non-3GPP Unlicensed Band Cellular Communication . . . . 6 1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Performance Analysis of LTE-LAA . . . . . . . . . . . . . . 6 1.3.2 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band StandAlone Cellular Communication System . . . . . . . . . . . . 8 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 8 2 Performance Analysis of LTE-LAA network 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Proposed Markov-Chain Model . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Markov Property . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Markov Chain Model for EPS Type Variation . . . . . . . . . 16 2.3.3 LAA Network Throughput Estimation . . . . . . . . . . . . . 18 2.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Related work and Background . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Listen Before Talk . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.3 Out-of-Band Emission . . . . . . . . . . . . . . . . . . . . . 39 3.3 Multi-carrier Operation of LTE-LAA . . . . . . . . . . . . . . . . . . 39 3.4 Carrier Sensing considering Out-of-Band Emission . . . . . . . . . . 47 3.4.1 Energy Detection Algorithm . . . . . . . . . . . . . . . . . . 49 3.4.2 Nominal Band Energy Detection . . . . . . . . . . . . . . . . 50 3.4.3 OOBE-Free Region Energy Detection . . . . . . . . . . . . . 51 3.5 Additional Carrier Access Scheme . . . . . . . . . . . . . . . . . . . 52 3.5.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Transmission Power Limitation . . . . . . . . . . . . . . . . 53 3.5.3 Dividing Transmission Burst . . . . . . . . . . . . . . . . . . 54 3.5.4 Short Subframe Decision . . . . . . . . . . . . . . . . . . . . 54 3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.1 Performance of Energy Detection considering OOBE . . . . . 57 3.6.2 Simulation Environments . . . . . . . . . . . . . . . . . . . . 57 3.6.3 Performance of Proposed Carrier Access Scheme . . . . . . . 58 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System 66 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 W-ARQ: Wi-Fi assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Parallel HARQ . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.2 Clustered Minstrel . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 80 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Abstract (In Korean) 90 ๊ฐ์‚ฌ์˜ ๊ธ€ 93Docto

    Telecommunications for a deregulated power industry

    Get PDF
    Telecommunication plays a very important role in the effective monitoring and control of the power grid. Deregulation of the US power industry has enabled utilities to explore various communication options and advanced technologies. Utilities are increasingly investing in distributed resources, dynamic real-time monitoring, automated meter reading, and value added services like home energy management systems and broadband access for its customers. Telecommunication options like power line communications (PLC) and satellites are fast replacing legacy telephone and microwave systems in the US.;The objective of this thesis is to study the communication options that are available for utilities today. Phasor measurement units (PMUs) are analyzed in detail and communication delays due to the use of PMUs in wide area measurement systems (WAMS) are also studied. The highlight of this thesis is a close look at the characteristics of the power line channel by presenting a power line channel model and the use of digital modulation techniques like SS and OFDM, which help overcome the effects of such a hostile medium of communication. (Abstract shortened by UMI.)

    A windowing technique for optimal time-frequency concentration and aci rejection in ofdm-based systems

    No full text
    WOS: 000366928600028In this paper, we introduce a windowing technique, which provides optimal time-frequency containment and maximal adjacent channel interference (ACI) rejection for orthogonal frequency-division multiplexing (OFDM)-based systems. Instead of using a single pulse shape function for all subcarriers, multiple functions are considered in order to maximize the time-frequency containment of the OFDM waveform. The main strategy is to concentrate the spectrum of windowing functions into a given bandwidth while achieving maximum suppression in the out-of-band region. This is achieved by employing prolate-based windowing functions which give optimal spectral concentration for time-limited pulse shapes. The windowing functions are designed per-subcarrier basis in order to exploit available concentration band for each subcarrier. In addition, the proposed concept is considered for the receive filtering in the presence of ACI. It is shown that the optimal spectral concentration property also maximizes ACI rejection for OFDM receivers.InterDigital CommunicationsThis work was supported by InterDigital Communications Inc. The associate editor coordinating the review of this paper and approving it for publication was R. Dinis

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Advanced Microwave Circuits and Systems

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore