36 research outputs found

    Wideband RCS reduction based on a simple chessboard metasurface

    Get PDF
    To avoid being detected by radar, it is necessary to reduce stealthy military platforms' radar cross section (RCS). The operation of overlaying the metasurface (MS) on the targets is a good solution. A simple chessboard MS structure that can achieve low RCS over a large bandwidth is proposed. Only one unit cell is used to construct the MS. First, the unit cell working in 0.5 and 1−λ modes is designed to achieve a stable phase difference of 180° for y- and x-polarized waves. Then, the unit cells and rotated ones are used to form a chessboard structure with different distributions. The compared results show that the chessboard MS with 2 × 2 quadrants can facilitate the widest 10 dB RCS reduction band of 111% and the largest RCS reduction. The proposed structure exhibits excellent RCS reduction even when irradiated by y- and x-polarized waves at an oblique incidence of 30°

    Enhancement of Antenna Array Performance Using Reconfigurable Slot-Ring Antennas and Integrated Filter/Antennas

    Get PDF
    As modern communication system technology develops, the demand for devices with smaller size, higher efficiency, and more functionality has increased dramatically. In addition, highly integrated RF-front-end modules with a reduced footprint and less transition loss between cascaded devices are desirable in most advanced wireless communication systems. Antenna arrays are widely used in wireless communication systems due to their high directivity and beam steering capability. Moreover, antenna arrays are preferred in mobile communication systems for diversity reception to reduce signal fading effects. In order to meet the various requirements of rapidly developing wireless communication systems, low cost, compact, multifunctional integrated antenna arrays are in high demand. Reconfigurable antennas that can flexibly adapt to different applications by dynamically changing their frequency and radiation properties have attracted a lot of attention. Frequency, radiation pattern, polarization, or a combination of two or more of these parameters in the reconfiguration of antennas was studied and presented in recent years. A single reconfigurable antenna is able to replace multiple traditional antennas and accomplish different tasks. Thus, the complexity of wireless communication systems can be greatly reduced with a smaller device size. On the other hand, the integration of antennas with other devices in wireless communication systems that can improve the efficiency and shrink the device size is a growing trend in antenna technology. Compact and highly efficient integrated filters and antennas were studied previously; the studies show that by seamlessly co-designing filters with patch antennas, the fractional bandwidth (FBW) of the antennas can be enhanced as compared to stand-alone antennas. However, the advantages of both the reconfigurable antenna and integrated filter/antenna technology have not been fully applied to antenna array applications. Therefore, this dissertation explores how to maximize the antenna array performance using reconfigurable antennas and integrated filter/antennas. A continuously frequency reconfigurable slot-ring antenna/array with switches and varactors is presented first. By changing the state of the loaded switches, the reconfigurable slot-ring antenna/array is able to operate as an L-band slot-ring antenna or a 2x2 S-band slot-ring antenna array. In each frequency band, the operation frequency of the antenna/array can be continuously tuned with the loaded varactors. To further enhance the functionality of the reconfigurable slot-ring antenna array, a dual-polarized fractal-shaped reconfigurable slot-ring antenna/array is developed with a reduced number of switches and an increased FBW. Additionally, ground plane solutions are explored to achieve single-sided radiation. The benefits of filter/antenna integration are also investigated in both linearly polarized patch phased arrays and circularly polarized patch antenna arrays. Finally, a preliminary study of a tunable integrated evanescent mode filter/antenna is conducted to validate the concept of combining reconfigurable antennas and integrated filter/antennas

    Metamaterials and Metasurfaces for Wireless Power Transfer and Energy Harvesting

    Get PDF

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications

    Full text link
    Radio frequency energy harvesting (RFEH) and wireless power transmission (WPT) are two emerging alternative energy technologies that have the potential to offer wireless energy delivery in the future. One of the key components of RFEH or WPT system is the receiving antenna. The receiving antenna's performance has a considerable impact on the power delivery capability of an RFEH or WPT system. This paper provides a well-rounded review of recent advancements of receiving antennas for RFEH and WPT. Antennas discussed in this paper are categorized as low-profile antennas, multi-band antennas, circularly polarized antennas, and array antennas. A number of contemporary antennas from each category are presented, compared, and discussed with particular emphasis on design approach and performance. Current design and fabrication challenges, future development, open research issues of the antennas and visions for RFEH and WPT are also discussed in this review

    Antenna Design for 5G and Beyond

    Get PDF
    This book is a reprint of the Special Issue Antenna Design for 5G and Beyond that was published in Sensors

    Autonomous Vehicles: MMW Radar Backscattering Modeling of Traffic Environment, Vehicular Communication Modeling, and Antenna Designs

    Full text link
    77 GHz Millimeter-wave (mmWave) radar serves as an essential component among many sensors required for autonomous navigation. High-fidelity simulation is indispensable for nowadays’ development of advanced automotive radar systems because radar simulation can accelerate the design and testing process and help people to better understand and process the radar data. The main challenge in automotive radar simulation is to simulate the complex scattering behavior of various targets in real time, which is required for sensor fusion with other sensory simulation, e.g. optical image simulation. In this thesis, an asymptotic method based on a fast-wideband physical optics (PO) calculation is developed and applied to get high fidelity radar response of traffic scenes and generate the corresponding radar images from traffic targets. The targets include pedestrians, vehicles, and other stationary targets. To further accelerate the simulation into real time, a physics-based statistical approach is developed. The RCS of targets are fit into statistical distributions, and then the statistical parameters are summarized as functions of range and aspect angles, and other attributes of the targets. For advanced radar with multiple transmitters and receivers, pixelated-scatterer statistical RCS models are developed to represent objects as extend targets and relax the requirement for far-field condition. A real-time radar scene simulation software, which will be referred to as Michigan Automotive Radar Scene Simulator (MARSS), based on the statistical models are developed and integrated with a physical 3D scene generation software (Unreal Engine 4). One of the major challenges in radar signal processing is to detect the angle of arrival (AOA) of multiple targets. A new analytic multiple-sources AOA estimation algorithm that outperforms many well-known AOA estimation algorithms is developed and verified by experiments. Moreover, the statistical parameters of RCS from targets and radar images are used in target classification approaches based on machine learning methods. In realistic road traffic environment, foliage is commonly encountered that can potentially block the line-of-sight link. In the second part of the thesis, a non-line-of-sight (NLoS) vehicular propagation channel model for tree trunks at two vehicular communication bands (5.9 GHz and 60 GHz) is proposed. Both near-field and far-field scattering models from tree trunk are developed based on modal expansion and surface current integral method. To make the results fast accessible and retractable, a macro model based on artificial neural network (ANN) is proposed to fit the path loss calculated from the complex electromagnetic (EM) based methods. In the third part of the thesis, two broadband (bandwidth > 50%) omnidirectional antenna designs are discussed to enable polarization diversity for next-generation communication systems. The first design is a compact horizontally polarized (HP) antenna, which contains four folded dipole radiators and utilizing their mutual coupling to enhance the bandwidth. The second one is a circularly polarized (CP) antenna. It is composed of one ultra-wide-band (UWB) monopole, the compact HP antenna, and a dedicatedly designed asymmetric power divider based feeding network. It has about 53% overlapping bandwidth for both impedance and axial ratio with peak RHCP gain of 0.9 dBi.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163001/1/caixz_1.pd

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors
    corecore