698 research outputs found

    Design of a tunable multi-band differential LC VCO using 0.35 mu m SiGe BiCMOS technology for multi-standard wireless communication systems

    Get PDF
    In this paper, an integrated 2.2-5.7GHz multi-band differential LC VCO for multi-standard wireless communication systems was designed utilizing 0.35 mu m SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post-layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3 V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78 GHz, 3.22-3.53 GHz, 3.48-3.91 GHz and 4.528-5.7 GHz) with a maximum bandwidth of 1.36 GHz and a minimum bandwidth of 300 MHz. The designed and simulated VCO can generate a differential output power between 0.992 and -6.087 dBm with an average power consumption of 44.21 mW including the buffers. The average second and third harmonics level were obtained as -37.21 and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment. Output power of the fundamental frequency changes between -6.087 and 0.992 dBm, depending on the bias conditions (operating bands). Based on the post-layout simulation results, the core VCO circuit draws a current between 2.4-6.3 mA and between 11.4 and 15.3 mA with the buffer circuit from 3.3 V supply. The circuit occupies an area of 1.477 mm(2) on Si substrate, including DC, digital and RF pads

    A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS

    Get PDF
    This paper reports a 6-to-18 GHz integrated phased- array receiver implemented in 130-nm CMOS. The receiver is easily scalable to build a very large-scale phased-array system. It concurrently forms four independent beams at two different frequencies from 6 to 18 GHz. The nominal conversion gain of the receiver ranges from 16 to 24 dB over the entire band while the worst-case cross-band and cross-polarization rejections are achieved 48 dB and 63 dB, respectively. Phase shifting is performed in the LO path by a digital phase rotator with the worst-case RMS phase error and amplitude variation of 0.5° and 0.4 dB, respectively, over the entire band. A four-element phased-array receiver system is implemented based on four receiver chips. The measured array patterns agree well with the theoretical ones with a peak-to-null ratio of over 21.5 dB

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    A fully integrated multiband frequency synthesizer for WLAN and WiMAX applications

    Get PDF
    This paper presents a fractional N frequency synthesizer which covers WLAN and WiMAX frequencies on a single chip. The synthesizer is fully integrated in 0.35μm BiCMOS AMS technology except crystal oscillator. The synthesizer operates at four frequency bands (3.101-3.352GHz, 3.379-3.727GHz, 3.7-4.2GHz, 4.5-5.321GHz) to provide the specifications of 802.16 and 802.11 a/b/g/y. A single on-chip LC - Gm based VCO is implemented as the core of this synthesizer. Different frequency bands are selected via capacitance switching and fine tuning is done using varactor for each of these bands. A bandgap reference circuit is implemented inside of this charge pump block to generate temperature and power supply independent reference currents. Simulated settling time is around 10μsec. Total power consumption is measured to be 118.6mW without pad driving output buffers from a 3.3V supply. The phase noise of the oscillator is lower than -116.4dbc/Hz for all bands. The circuit occupies 2.784 mm2 on Si substrate, including DC, Digital and RF pads

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    A Multiband, Low Power and Low Phase Noise CMOS Voltage-Controlled Oscillator with NMOS Varactor for UWB Applications

    Get PDF
    A multiband low power and low phase noise LC-tank Voltage Controlled Oscillator (VCO) is designed for low band channels of the standard IEEE 802.15.4a. The LC-VCO uses the structure of complementary cross-coupled differential negative resistance and tank circuit, which contains varactor arrays for frequency fine-tuning and a spiral inductor. A method that uses resistor tail biasing for reducing the phase noise and the power consumption has been adopted. The circuit is fully designed in TSMC’s 180 nm technology process. The oscillator output provides three center frequencies of 3.5, 4, 4.5 GHz with good phase noises of -113.784, -116.703 and -126.753 dBc/MHZ at 1 MHz offset, while it dissipates 9mW power energy. The proposed LC VCO not only set a good balance between low phase noise and low power consumption, but it is also a highly desired circuit for multiband wireless transceiver systems, which are the major contributions of this proposed design

    Trends and Challenges in CMOS Design for Emerging 60 GHz WPAN Applications

    Get PDF
    International audienceThe extensive growth of wireless communications industry is creating a big market opportunity. Wireless operators are currently searching for new solutions which would be implemented into the existing wireless communication networks to provide the broader bandwidth, the better quality and new value-added services. In the last decade, most commercial efforts were focused on the 1-10 GHz spectrum for voice and data applications for mobile phones and portable computers (Niknejad & Hashemi, 2008). Nowadays, the interest is growing in applications that use high rate wireless communications. Multigigabit- per-second communication requires a very large bandwidth. The Ultra-Wide Band (UWB) technology was basically used for this issue. However, this technology has some shortcomings including problems with interference and a limited data rate. Furthermore, the 3-5 GHz spectrum is relatively crowded with many interferers appearing in the WiFi bands (Niknejad & Hashemi, 2008). The use of millimeter wave frequency band is considered the most promising technology for broadband wireless. In 2001, the Federal Communications Commission (FCC) released a set of rules governing the use of spectrum between 57 and 66 GHz (Baldwin, 2007). Hence, a large bandwidth coupled with high allowable transmit power equals high possible data rates. Traditionally the implementation of 60 GHz radio technology required expensive technologies based on III-V compound semiconductors such as InP and GaAs (Smulders et al., 2007). The rapid progress of CMOS technology has enabled its application in millimeter wave applications. Currently, the transistors became small enough, consequently fast enough. As a result, the CMOS technology has become one of the most attractive choices in implementing 60 GHz radio due to its low cost and high level of integration (Doan et al., 2005). Despite the advantages of CMOS technology, the design of 60 GHz CMOS transceiver exhibits several challenges and difficulties that the designers must overcome. This chapter aims to explore the potential of the 60 GHz band in the use for emergent generation multi-gigabit wireless applications. The chapter presents a quick overview of the state-of-the-art of 60 GHz radio technology and its potentials to provide for high data rate and short range wireless communications. The chapter is organized as follows. Section 2 presents an overview about 60 GHz band. The advantages are presented to highlight the performance characteristics of this band. The opportunities of the physical layer of the IEEE 802.15.3c standard for emerging WPAN applications are discussed in section 3. The tremendous opportunities available with CMOS technology in the design of 60 GHz radio is discussed in section 4. Section 5 shows an example of 60 GHz radio system link. Some challenges and trade-offs on the design issues of circuits and systems for 60 GHz band are reported in section 6. Finally, section 7 presents the conclusion and some perspectives on future directions

    Study on wideband voltage controlled oscillator and high efficiency power amplifier ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3604号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/20 ; 早大学位記番号:新595

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system
    corecore