86 research outputs found

    A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure

    Full text link
    We propose a positivity preserving entropy decreasing finite volume scheme for nonlinear nonlocal equations with a gradient flow structure. These properties allow for accurate computations of stationary states and long-time asymptotics demonstrated by suitably chosen test cases in which these features of the scheme are essential. The proposed scheme is able to cope with non-smooth stationary states, different time scales including metastability, as well as concentrations and self-similar behavior induced by singular nonlocal kernels. We use the scheme to explore properties of these equations beyond their present theoretical knowledge

    Differential Equation Models in Applied Mathematics

    Get PDF
    The present book contains the articles published in the Special Issue “Differential Equation Models in Applied Mathematics: Theoretical and Numerical Challenges” of the MDPI journal Mathematics. The Special Issue aimed to highlight old and new challenges in the formulation, solution, understanding, and interpretation of models of differential equations (DEs) in different real world applications. The technical topics covered in the seven articles published in this book include: asymptotic properties of high order nonlinear DEs, analysis of backward bifurcation, and stability analysis of fractional-order differential systems. Models oriented to real applications consider the chemotactic between cell species, the mechanism of on-off intermittency in food chain models, and the occurrence of hysteresis in marketing. Numerical aspects deal with the preservation of mass and positivity and the efficient solution of Boundary Value Problems (BVPs) for optimal control problems. I hope that this collection will be useful for those working in the area of modelling real-word applications through differential equations and those who care about an accurate numerical approximation of their solutions. The reading is also addressed to those willing to become familiar with differential equations which, due to their predictive abilities, represent the main mathematical tool for applying scenario analysis to our changing world

    Hyperbolic models for the spread of epidemics on networks: kinetic description and numerical methods

    Full text link
    We consider the development of hyperbolic transport models for the propagation in space of an epidemic phenomenon described by a classical compartmental dynamics. The model is based on a kinetic description at discrete velocities of the spatial movement and interactions of a population of susceptible, infected and recovered individuals. Thanks to this, the unphysical feature of instantaneous diffusive effects, which is typical of parabolic models, is removed. In particular, we formally show how such reaction-diffusion models are recovered in an appropriate diffusive limit. The kinetic transport model is therefore considered within a spatial network, characterizing different places such as villages, cities, countries, etc. The transmission conditions in the nodes are analyzed and defined. Finally, the model is solved numerically on the network through a finite-volume IMEX method able to maintain the consistency with the diffusive limit without restrictions due to the scaling parameters. Several numerical tests for simple epidemic network structures are reported and confirm the ability of the model to correctly describe the spread of an epidemic

    A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all Froude numbers

    Full text link
    We present a novel staggered semi-implicit hybrid FV/FE method for the numerical solution of the shallow water equations at all Froude numbers on unstructured meshes. A semi-discretization in time of the conservative Saint-Venant equations with bottom friction terms leads to its decomposition into a first order hyperbolic subsystem containing the nonlinear convective term and a second order wave equation for the pressure. For the spatial discretization of the free surface elevation an unstructured mesh of triangular simplex elements is considered, whereas a dual grid of the edge-type is employed for the computation of the depth-averaged momentum vector. The first stage of the proposed algorithm consists in the solution of the nonlinear convective subsystem using an explicit Godunov-type FV method on the staggered grid. Next, a classical continuous FE scheme provides the free surface elevation at the vertex of the primal mesh. The semi-implicit strategy followed circumvents the contribution of the surface wave celerity to the CFL-type time step restriction making the proposed algorithm well-suited for low Froude number flows. The conservative formulation of the governing equations also allows the discretization of high Froude number flows with shock waves. As such, the new hybrid FV/FE scheme is able to deal simultaneously with both, subcritical as well as supercritical flows. Besides, the algorithm is well balanced by construction. The accuracy of the overall methodology is studied numerically and the C-property is proven theoretically and validated via numerical experiments. The solution of several Riemann problems attests the robustness of the new method to deal also with flows containing bores and discontinuities. Finally, a 3D dam break problem over a dry bottom is studied and our numerical results are successfully compared with numerical reference solutions and experimental data

    Modelling and numerical analysis of energy-dissipating systems with nonlocal free energy

    Get PDF
    The broad objective of this thesis is to design finite-volume schemes for a family of energy-dissipating systems. All the systems studied in this thesis share a common property: they are driven by an energy that decreases as the system evolves. Such decrease is produced by a dissipation mechanism, which ensures that the system eventually reaches a steady state where the energy is minimised. The numerical schemes presented here are designed to discretely preserve the dissipation of the energy, leading to more accurate and cost-effective simulations. Most of the material in this thesis is based on the publications [16, 54, 65, 66, 243]. The research content is structured in three parts. First, Part II presents well-balanced first-, second- and high-order finite-volume schemes for a general class of hydrodynamic systems with linear and nonlinear damping. These well-balanced schemes preserve stationary states at machine precision, while discretely preserving the dissipation of the discrete free energy for first- and second-order accuracy. Second, Part III focuses on finite-volume schemes for the Cahn-Hilliard equation that unconditionally and discretely satisfy the boundedness of the phase eld and the free-energy dissipation. In addition, our Cahn-Hilliard scheme is employed as an image inpainting filter before passing damaged images into a classification neural network, leading to a significant improvement of damaged-image prediction. Third, Part IV introduces nite-volume schemes to solve stochastic gradient-flow equations. Such equations are of crucial importance within the framework of fluctuating hydrodynamics and dynamic density functional theory. The main advantages of these schemes are the preservation of non-negative densities in the presence of noise and the accurate reproduction of the statistical properties of the physical systems. All these fi nite-volume schemes are complemented with prototypical examples from relevant applications, which highlight the bene fit of our algorithms to elucidate some of the unknown analytical results.Open Acces
    corecore