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i



Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are
licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC
BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You
may also create and distribute modified versions of the work. This is on the condition that: you
credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming
the licence and linking to the licence text. Where a work has been adapted, you should indicate
that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in
this licence or permitted under UK Copyright Law.

ii



Abstract

The broad objective of this thesis is to design finite-volume schemes for a family of energy-
dissipating systems. All the systems studied in this thesis share a common property: they are
driven by an energy that decreases as the system evolves. Such decrease is produced by a dis-
sipation mechanism, which ensures that the system eventually reaches a steady state where the
energy is minimized. The numerical schemes presented here are designed to discretely preserve
the dissipation of the energy, leading to more accurate and cost-effective simulations. Most of the
material in this thesis is based on the publications [16, 54, 65, 66, 243].

The research content is structured in three parts. First, Part II presents well-balanced first-,
second- and high-order finite-volume schemes for a general class of hydrodynamic systems with
linear and nonlinear damping. These well-balanced schemes preserve stationary states at machine
precision, while discretely preserving the dissipation of the discrete free energy for first- and second-
order accuracy. Second, Part III focuses on finite-volume schemes for the Cahn-Hilliard equation
that unconditionally and discretely satisfy the boundedness of the phase field and the free-energy
dissipation. In addition, our Cahn-Hilliard scheme is employed as an image inpainting filter before
passing damaged images into a classification neural network, leading to a significant improvement
of damaged-image prediction. Third, Part IV introduces finite-volume schemes to solve stochas-
tic gradient-flow equations. Such equations are of crucial importance within the framework of
fluctuating hydrodynamics and dynamic density functional theory. The main advantages of these
schemes are the preservation of non-negative densities in the presence of noise and the accurate re-
production of the statistical properties of the physical systems. All these finite-volume schemes are
complemented with prototypical examples from relevant applications, which highlight the benefit
of our algorithms to elucidate some of the unknown analytical results.
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lifelong friendship; to Borja, Catena and Gonzalo for being awesome friends, to Alex, Yajing and
Diego for inspiring me and flying with me to China, to Roberto for his continuous friendship,
to Lu and Cortina for our insightful conversations, to Pablo, Javichu, Juan, Mirari and Reig for
our friendship since school; and to my friends from ETSIAE with whom I have shared so many
moments of fun. I also cherish good memories with many other friends: Laura, Lućıa, Sergio
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CHAPTER 1

My thesis in a nutshell

Amidst the many fascinating areas of Mathematics, this thesis belongs to the field of Numerical
Analysis. Its broad objective is to design algorithms able to provide approximate solutions of
mathematical problems. One may think that Numerical Analysis should be a quite young field,
given that the word “algorithm” is usually associated to the development of computers in the
second half of the 20th century. The truth is that an algorithm is just a set of rules to perform a
numerical computation, and mathematicians had been employing them for many centuries before
the advent of computers. The earliest approximate calculation that we are aware of dates back
to some time between 1800 and 1600 BCE, where the square root of two is accurately computed
up to six decimal digits (the square root of two is an irrational number with infinite number of
decimals). The origin of the word “algorithm” is pretty old too, coming from the name of the
Arabic mathematician Al-Khwarizmi (around 780-850 CE): what happened was that the Latin
translators of his algebra book changed his name from “Al-Khwarizmi” to “Algoritmi”.

Anyhow, mathematicians discovered quite early that, more often than not, real-world problems
don’t have an exact analytical solution. Many of the basic numerical methods employed today still
bear the names of mathematicians whose work had a massive impact in a wide range of scientific
disciplines: Newton’s method, Gaussian elimination, Euler’s scheme or Lagrange interpolation
polynomial to name a few. The applicability of algorithms was turbocharged hand-in-hand with
the rapid growth of computers and the introduction of high-level programming languages after
World War II. Two main pioneers are essential to understand the birth of computer science: on
the one hand, Alan Turing (1912-1954) developed the concepts of Turing machine to formalize
the idea of an algorithm and the Turing test as a first step to Artificial Intelligence; on the other
hand, John von Neumann (1903-1957) founded the subject of game theory and introduced the
Von Neumann computer architecture. These pioneering advances in computer science built from
all the ideas developed in the previous centuries, specially from the contributions of Ada Lovelace
and Charles Baggage. The first simulation performed on a computer was during the Manhattan
project in World War II, where the process of nuclear detonation was simulated employing 12 hard
spheres and a Monte Carlo algorithm.

Nowadays Numerical Analysis finds application in most areas of engineering and physical sci-
ences, and recently it has expanded to other fields like medicine, business or social sciences. As an
example of the multidisciplinary nature of Numerical Analysis, let’s just focus on some examples of
applications provided in this thesis: chemotaxis of cells and organisms, image inpainting to remove
damage from pictures, collective behaviour of individual agents like pedestrians or school of fish,
or water flow in shallow rivers. In appearance all these applications belong to different scientific
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Chapter 1. My thesis in a nutshell

fields, yet the algorithms that I have designed apply to all of them. The merit here also comes
from the modelling of such phenomena, or in other words, the common mathematical equation
that underlies beneath all these applications and allows to simulate one application or the other
by just tuning some parts of such model.

The field of numerical analysis includes many subdisciplines: interpolation, regression, resolu-
tion of systems of equations, optimization or evaluation of integrals. In this thesis we focus on
another really essential subfield: the computation of the solution of differential equations. More
specifically, the equations solved in this thesis belong to the class of partial differential equations
(PDEs) and stochastic partial differential equations (SPDEs). For instance, the airflow around a
plane is simulated with the legendary Navier-Stokes equations, which is a system of PDEs that
evolve the density, velocity and temperature of the airflow. The Navier-Stokes equations are so
intricate that no general analytical solutions can be extracted from them (in fact, it has not yet
been proven whether smooth solutions always exist in three dimensions). This means that the only
way of resolving the airflow around a plane is via algorithms.

The first methods to solve differential equations date back a few centuries ago. It is believed
that Newton was the first in solving differential equations manually with an algorithm, and a bit
later Euler introduced the popular Euler’s forward method. More recently, in the turn from the
19th to the 20th century, Runge firstly and Kutta afterwards set the foundations of the multi-
stage Runge-Kutta methods of higher order. All these methods work well as long as we deal with
ordinary differential equations (ODE), where the derivatives in the equation only depend on one
variable (typically time). The differential equation gets trickier when we add further derivatives
into it, becoming then a PDE. As an example, the Navier-Stokes equations are PDEs because
they contain derivatives both in time and in space. For PDEs one needs to combine the previous
numerical methods of ODEs for the time variable with a discretization technique for the spatial
variables.

Such spatial discretization can be carried out in many diverse ways. The first approach was
based on finite differences on rectangular grids, where the objective is to evaluate the variables
only at discrete points of the domain. One of the first seminal papers of numerical analysis
for PDEs precisely employed this method: in 1928 Courant, Friedrichs and Levy introduced the
condition for stability of finite-difference schemes applied in hyperbolic PDEs. Their work is so
fundamental that in many chapters of this thesis I prove properties of my algorithms that depend on
a Courant-Friedrichs-Levy (CFL) condition to be satisfied. Finite differences were the mainstream
methodology until the sixties, and at that point two other more sophisticated spacial discretizations
gained traction and are still widely employed nowadays: finite volumes and finite elements. On
the one hand, finite volumes have evolved to become one of the predominant methods in the area
of Computational Fluid Dynamics (CFD), in part thanks to the conservative formulations of fluid-
type models. On the other hand, finite elements grew as a simulation tool for structural analysis
and Computational Solid Mechanics, although nowadays their applicability has spread to many
other fields including CFD. Other discretization techniques that have been developed from finite
volumes and finite elements are spectral or discontinuous Galerkin methods.

As the title of this thesis suggests, my research is focused on finite-volume schemes. Their
objective is to transform PDEs, typically depending on space and time, into a system of ODEs
depending only on time. As an example, let’s say that we are studying a PDE that models the
evolution of the density of a fluid. The first step is to discretize the spatial domain into a mesh of
non-overlapping patches or finite volumes. Then the PDEs are transformed into a system of ODEs
by integrating them over each of the finite volumes in the discretized domain. Each of the resulting
ODEs describes the evolution of the average of the fluid density over that particular finite volume.
Subsequently, the system of ODEs is solved by advancing in time with a temporal discretization
such as Euler’s forward method or Runge-Kutta. The result of the simulation is a set of discrete
temporal steps for which we have computed the averages of the fluid density in each of the finite
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Chapter 1. My thesis in a nutshell

volumes covering the spatial domain.
Finite volumes are so popular in CFD because they automatically conserve certain natural

quantities of fluid-type PDEs. For instance, in a closed system the total mass of a fluid is con-
served during the temporal evolution. This mass conservation property is directly preserved when
simulating with finite volumes, since mass is exchanged between the finite volumes but the total
mass remains constant. This occurs because, when integrating over each of the finite volumes, the
resultant ODEs contain flux terms that are evaluated solely at the boundaries of the finite volume.
Hence, since the flux entering a volume is identical to that leaving the adjacent volume, it follows
that the total mass of the system is conserved. Another nice property of finite volumes is that
the spatial discretization can be made over unstructured polygonal meshes, meaning that one can
simulate complex geometries such as a Formula-1 car or the wing of a plane. A further advantage
is that implementing boundary conditions is usually straightforward.

When a numerical method is designed to preserve a certain property of the system, such as the
conservation of total mass, we say that such method is structure-preserving. The main reason for
the success of finite volumes in CFD is that it automatically preserves some of the fundamental
properties of fluid-type systems, so we could say that finite volumes are already a structure-
preserving scheme per se. However, there may be other properties that the numerical method
seems to satisfy in practice when running the simulation, even though there is no proof that the
algorithm always preserves them. As an example, let’s think about the positivity of the density:
in Physics it is not possible to have negative densities, in the same way that there are no negative
temperatures below 0◦K. A basic finite-volume scheme with a reasonable time step is prone to
keep the density positive, as long as the fluid simulation is not too complicated. The issue here
is that we cannot guarantee that the density remains positive for all possible simulations – there
may be particular configurations that trigger numerical artefacts resulting in negative densities.
Consequently, a really appealing scientific objective is to design the finite-volume scheme so that
it always keeps the density positive.

In this thesis, I focus on designing structure-preserving finite volumes with the objective of
conserving specific properties of a particular family of PDEs. My finite-volume schemes, in addition
to satisfying positivity, ensure the preservation of more sophisticated properties such as the decay
of the free energy of the system or the maximum principle of a particular quantity (i.e. the quantity
has an upper bound). There are however several difficulties to design these schemes. The first
one is to translate such properties from the continuum language of PDEs to the discrete domain
of algorithms. The second is to mathematically prove that the discrete version of the property
is satisfied by the numerical scheme. The third is to design them general enough so that the
same scheme is valid for PDEs modelling different applications but sharing a somehow common
structure. Overall, structure-preserving schemes are well sought after in the current research of
numerical methods, and their advantages are humongous: from greater robustness when designing
general-purpose commercial simulation software to less numerical error for simulations with similar
computational cost and mesh sizes.

My finite-volume schemes are designed for a general family of PDEs whose main property is the
existence of a free energy that decreases when the system evolves. Such free energy accounts for
how the agents of the system modelled by the PDE interact – for instance, atoms repel each other
at short distances but are attracted at large distances, resulting in an intermediate equilibrium
distance that is stable and where the free energy is minimum. That system of two atoms evolves
until a equilibrium distance is reached, and during the evolution the free energy decreases until it
gets to its minimum value. A more complicated configuration emerges when there are multiples
agents all interacting with one another. The key concept here is that the interactions between two
agents are modelled via a specific mathematical expression depending, for instance, on the distance
between them. With many agents one just needs to compute all the possible interactions of each
particle with all the other particles, sum them and proceed to the next time step.
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Chapter 1. My thesis in a nutshell

This kind of interacting particle system has sparked a lot of interest in biological problems
related to animal behaviour, pedestrian flow, cell adhesion or chemotaxis. The three basic interac-
tion rules, denoted as the first principles of swarming, are attraction, repulsion and alignment or
re-orientation of the individuals. With these three simple interactions one can create models for
the interaction of particular animals such as birds, fish, ducks, and insects for instance. A really
important concept here is the so-called emergent behaviour, which leads to schools of fish, flocks or
birds or swarms of insects. The impressive remark here is that such collective behaviour stems just
from the one-to-one interactions of each member with all the other members. Another flourishing
field where interacting agents play a major role is colloidal fluids, which consist of nano- to micro-
meter sized particles suspended in a viscous Newtonian fluid (known as the bath). The colloidal
particles are much larger than the bath particles, and this creates interesting dynamics due to
the different length scales of the particles. Colloidal fluids have plenty of valuable applications
such as wetting phenomena like droplet formation, aerosol deposition, cloud formation, and the
transport and coagulation of nanoparticles in pulsating flow, such as in the cardiovascular system
and oscillatory flow mixing.

Without a doubt these systems of interacting agents lead to a rich variety of applications.
Nevertheless, this thesis is focused on algorithms applied to fluid-type equations, where instead of
independent particles there is a continuous liquid or gas. What is the connection between these
two apparently different systems? It turns out that, in many cases, it is possible to transform a
microscopic system of interacting particles into a macroscopic equation that models the density of a
fluid or gas. The mathematical tools to accomplish this are based on taking the limit of the number
of particles to infinity, together with other sophisticated assumptions and statistical methods. As
a result, describing a system as a fluid only makes sense if the number of particles in it is pretty
high. These derivations are usually called mean-field limits, and to go from the microscopic to
the macroscopic description there is a transition through an intermediate mesoscopic level, which
consists of a kinetic equation based on probability distributions. Interestingly, for some systems the
fluid-type equation has been established before understanding how to perform the mathematical
derivation from the microscopic to the macroscopic level – these descriptions are usually called
phenomenological or empirical, since they have not been derived from first principles of interacting
particles.

Describing a particle system as a fluid is definitely an interesting abstraction from the mathe-
matical point of view. Are there however any practical advantages in doing so? Definitely, and the
reasons for it are precisely quite aligned with the objectives of this thesis: reducing the computa-
tional cost of the simulation. In a particle system of n particles there are n ODEs to solve, one
per particle. In each of those ODEs we take into account the contribution of the interactions of
that precise particle with all the other particles, which results in n− 1 interactions. Consequently,
the order of computations to solve a time step is O(n2), and as we go to systems with higher and
higher number of particles it follows that such order of computations becomes unbearable. The
numerical methods to simulate these particle systems are called Molecular Dynamics, and usually
alleviate the computational cost with parallelization techniques and truncations in the interaction
range.

Contrary to the system of n ODEs to solve when simulating n particles, in fluid-type systems
there are at most three PDES to solve: density, momentum and energy. The cost of solving these
three PDEs does not depend on the number of particles in the system, since somehow we are
already considering infinite particles in it. There is an additional difficulty though: while the
ODEs for particles only have derivatives with respect to time, the PDEs for fluids have derivatives
both in time and in space. As a result, one has to combine the temporal discretization of the
equations with a spatial discretization of the domain containing the fluid. The finer the spatial
mesh is, the more costly and accurate the simulation becomes. In any case, solving a fluid-type
equation is always more cost-efficient than solving a system of high-number interacting particles,
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Chapter 1. My thesis in a nutshell

and in many applications it is the only option when the order of agents escalates to thousands or
millions.

After four pages without a single equation it is high time to present some of the fluid-type
PDEs of this thesis. Depending on the macroscopic description, there are three alternatives for the
number of PDES to consider: only one PDE for the density, two PDEs for density and momentum,
or three PDEs for density, momentum and energy. When only density is considered, the typical
PDE to describe the density ρ(x, t) of a fluid, with x being space and t time, satisfies

∂ρ

∂t
= ∇ ·

(
ρ∇δF [ρ]

δρ

)
, (1.1)

where I have removed the dependency of ρ with respect to x and t for simplicity. The term
∂ρ/∂t denotes the partial derivative of ρ with respect to t, and the divergence ∇· and gradient ∇
contain the partial derivatives of ρ with respect to x. The term F [ρ] is the free-energy functional
of the system, which contains the information about how the particle interaction is produced and
depends on the density ρ. The expression δF [ρ]/δρ is just a way of expressing the derivative of
the functional F [ρ] with respect to ρ (usually denoted as the variation of a functional). Finally,
the PDE has to be complemented with an initial density ρ(x, t = 0) and some conditions for the
density in the boundary of the domain (usually denoted as boundary conditions).

From the mathematical point of view, one can try to prove various properties of the above PDE
describing the density evolution. For instance, many research lines are devoted to study whether
the solutions are global-in-time, or on the contrary whether at some point in time there is a blow
up that prevents the solution from evolving further. In this thesis, I particularly focus on another
really fundamental property: the temporal decay of the free energy F [ρ]. A system satisfying
this property is usually denoted as a gradient flow or energy-dissipating, and to mathematically
prove this one just needs to differentiate the free energy over time and apply boundary conditions,
leading to

d

dt
F [ρ] = −

∫

Ω
ρ

∣∣∣∣∇
δF [ρ]

δρ

∣∣∣∣
2

dx, (1.2)

where we notice that the right-hand side is negative since the terms inside the integral are positive
but there is a negative sign outside, and Ω just denotes that the integral is over the whole domain of
the fluid. This property is precisely the one that I aim to discretely preserve with my finite-volume
schemes.

The power of the density equation in (1.1) comes from the rich variety of applications it models.
The choice of the free-energy functional F [ρ] determines the interactions between the members of a
particular system, and by simply tuning a few parameters one can move from modelling biological
cells to simulating the flow of a river or how people interact in an underground station. And since
the density equation always satisfies (1.1), it also follows that the temporal decay of the free energy
in (1.2) also holds. In this thesis I focus on general free-energies that can be applied in a wide
range of multidisciplinary scientific problems. Three examples of such free energies are:

a) Ideal-gas free energy with external and interaction potentials: an ideal gas is just a theoretical
gas without any interparticle interactions, but it turns out that many gases such as nitrogen,
oxygen, hydrogen or noble gases behave as ideal gas in a wide range of scenarios. Their
equation of state is the well-known ideal-gas law with the pressure being proportional to the
product of density times temperature. Ideal gases serve as a foundation to model many other
applications, which complement the ideal-gas law with customized external and interaction
potentials. The free energy for this kind of systems satisfy

F [ρ] =

∫

Ω
ρ(log(ρ)− 1)dx+

∫

Ω
V (x)ρ(x)dx+

1

2

∫

Ω

∫

Ω
W (x− y)ρ(x)ρ(y)dxdy,
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Chapter 1. My thesis in a nutshell

where there are three distinct integrals in it: the first one comes from the ideal-gas law, the
second one contains the external potential V (x), and the third one accounts for interparticle
interactions with the kernel W (x− y). Different choices of the potentials V (x) and W (x− y)
lead to radically different applications. For instance, this free energy can model chemotaxis,
which is usually defined as the directed movement of cells and organisms in response to
chemical gradients [177]. However, this free energy also finds its applications in astrophysics
and gravitation [113, 261].

b) Shallow-water free energy: the shallow-water equations model free-surface gravity waves
whose wavelength is much larger than the characteristic bottom depth. These equations
are applied in a wide range of engineering and scientific applications involving free-surface
flows [282], such as tsunami propagation [78], dam break and flooding problems [98] and the
evolution of rivers and coastal areas [93]. Their free energy corresponds to

F [ρ] =

∫

Ω
ρ2dx+

∫

Ω
V (x)ρ(x)dx.

The first integral contains ρ2, instead of the ideal-gas term ρ(log(ρ) − 1). This leads to the
presence of dry regions during the water-height evolution. The external potential V (x) now
accounts for the topography of the shallow-water system, and can be interpreted as the depth
of the bottom at point x measured from a fixed level of reference.

c) Cahn-Hilliard free energy: it was firstly proposed by Cahn and Hilliard [48] to describe the
process of phase separation in binary alloys. Since then it has found applicability in a wide
variety of modelling problems, from capillarity and wetting phenomena [13, 258], diblock
copolymer molecules [298] and tumour growth [278] to image inpainting [33, 65], topology
optimization [300] and many more [180]. The free energy for all these applications satisfies

F [ρ] =

∫

Ω

(
H(ρ) +

ε2

2
|∇ρ|2

)
dΩ +

∫

∂Ω
fw(ρ, β)ds.

In the first integral there is a competition between the hydrophobic H(ρ) and hydrophilic
ε2

2 |∇ρ|2 terms: on the one hand, H(ρ) is a potential whose minima correspond to the stable

phases of the system; on the other hand, ε2

2 |∇ρ|2 penalizes for the existence of interfaces
between the stable phases. The last integral accounts for the wall free energy, which depends
on the density at the wall and the equilibrium contact angle β.

The next sections of this introduction present the basic concepts of two fundamental tools of this
thesis: finite-volume schemes and gradient-flow/energy-dissipating equations. First, in Chapter 2 I
explain the finite-volume methodology to discretize in space, together with the temporal integrators
to advance the system in time. Second, in Chapter 3 I focus on mathematically describing the
PDEs solved in this thesis, placing special emphasis on their property to dissipate the free energy
in time.

The rest of this section is devoted to summarizing the contributions of the main parts of this
thesis. There are three core parts: Part II is focused on well-balanced finite-volume schemes for
hydrodynamic systems, Part III deals with finite-volume schemes for the Cahn-Hilliard equation
and its application to image inpainting, and Part IV presents finite-volume schemes for fluctuating
hydrodynamics. Finally, Part V discusses some conclusions and future perspectives of the research
in this thesis.

7



Chapter 1. My thesis in a nutshell

1.1 Summary of Part II: well-balanced schemes for hydrodynamic
systems

We present well-balanced first-, second- and high-order finite-volume schemes for a general class of
hydrodynamic systems with linear and nonlinear damping. The variation of the natural Liapunov
functional of the system, given by its free energy, allows for a characterization of the stationary
states by its variation. An analogue property at the discrete level enables us to preserve stationary
states at machine precision, while discretely preserving the dissipation of the discrete free energy
for first- and second-order accuracy. Our schemes are also equipped with a nonnegative-density
reconstruction which allows for vacuum regions during the simulation. These schemes can robustly
analyse the stability properties of stationary states in challenging problems such as: phase tran-
sitions in collective behaviour, generalized Euler-Poisson systems in chemotaxis and astrophysics,
and models in dynamic density functional theories. We provide several prototypical examples from
relevant applications highlighting the benefit of our algorithms elucidate also some of our analytical
results.

1.2 Summary of Part III: the Cahn-Hilliard equation

We propose finite-volume schemes for the Cahn-Hilliard equation that unconditionally and dis-
cretely satisfy the boundedness of the phase field and the free-energy dissipation. Our numerical
framework is applicable to a variety of free-energy potentials including the Ginzburg-Landau and
Flory-Huggins, general wetting boundary conditions and degenerate mobilities. Its central thrust is
the finite-volume upwind methodology, which we combine with a semi-implicit formulation based
on the classical convex-splitting approach for the free-energy terms. Extension to an arbitrary
number of dimensions is straightforward thanks to their cost-saving dimensional-splitting nature,
which allows to efficiently solve higher-dimensional simulations with a simple parallelization. The
numerical schemes are validated and tested in a variety of prototypical configurations with different
numbers of dimensions and a rich variety of contact angles between droplets and substrates.

In addition, our Cahn-Hilliard scheme is employed as an image inpainting filter before passing
damaged images into a classification neural network. The benchmark dataset employed here is
MNIST, which consists of binary images of handwritten digits and is a standard dataset to validate
image-processing methodologies. We train a neural network based of dense layers with the training
set of MNIST, and subsequently we contaminate the test set with damage of different types and
intensities. We then compare the prediction accuracy of the neural network with and without
applying the Cahn-Hilliard filter to the damaged images test. Our results quantify the significant
improvement of damaged-image prediction due to applying the Cahn-Hilliard filter, which for
specific damages can increase up to 50% and is in general advantageous for low to moderate
damage.

1.3 Summary of Part IV: finite-volume schemes for fluctuating
hydrodynamics

We introduce a finite-volume numerical scheme for solving stochastic gradient-flow equations. Such
equations are of crucial importance within the framework of fluctuating hydrodynamics and dy-
namic density functional theory. Our proposed scheme deals with general free-energy functionals,
including, for instance, external fields or interaction potentials. This allows us to simulate a range
of physical phenomena where thermal fluctuations play a crucial role, such as nucleation and other
energy-barrier crossing transitions. A positivity-preserving algorithm for the density is derived
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based on a hybrid space discretization of the deterministic and the stochastic terms and different
implicit and explicit time integrators. We show through numerous applications that not only our
scheme is able to accurately reproduce the statistical properties (structure factor and correlations)
of the physical system, but, because of the multiplicative noise, it allows us to simulate energy
barrier crossing dynamics, which cannot be captured by mean-field approaches.

9



CHAPTER 2

Finite-volume schemes

Finite volumes are a commonplace numerical technique to solve PDEs such as conservation laws
and hyperbolic systems. In finite volumes, the spatial domain is discretized in small or “finite”
volumes, and in each of them we evaluate the average value of the solution. Then the PDEs
are integrated over each of those finite volumes, yielding a system of ODEs for the evolution of
each of the average values. Such system of ODEs is then solved in time by applying a suitable
temporal discretization. Finite volumes are especially popular in fluid dynamics, where the PDEs
contain divergence terms that can be evaluated at the boundaries after employing Gauss divergence
theorem. Those terms can be interpreted as fluxes, and since a flux entering a cell is the same as
the flux leaving the adjacent cell, it follows that finite volume schemes are conservative. They also
adapt seamlessly to complex geometries or unstructured meshes, and the application of boundary
conditions is usually straightforward.

In this chapter, I provide the foundations to understand the finite-volume schemes of this thesis.
This is just an introduction, and I would like to point out several books that have greatly helped
me to better grasp the concepts behind finite volumes and more generally numerical schemes for
PDEs:

• [196] from LeVeque is an excellent and complete introductory book into finite-volume schemes,
which in addition explains many advanced concepts and numerical recipes.

• [188] from Laney is another fantastic introductory book, with a strong emphasis into the
fundamentals of numerical analysis.

• [254] from Shu is a clear and concise set of notes about high-order schemes based on ENO
and WENO reconstructions. It also provides many numerical test cases to validate the order
of the schemes.

• [269] from Toro offers a broad overview of numerical techniques for hyperbolic systems.

In this introduction, I focus on the following one-dimensional (1D) equation that models the
evolution of the density ρ of a fluid:

∂tρ(x, t) + ∂xF (ρ(x, t)) = S(ρ(x, t), x). (2.1)

This equation is basically an advection equation with a source term. From now on I omit the
dependency of ρ with respect to x and t. ∂tρ is the partial derivative of the density with respect to
time, ∂xF (ρ) is the spatial partial derivative of a flux function F (ρ), which depends on the density
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ρ, and S(ρ, x) is a source term depending on the density ρ and space x. Note that the steady state
of ρ satisfies ∂tρ = 0, and in that scenario the advective term has to be balanced out with the
source term and it follows that ∂xF (ρ) = S(ρ, x).

2.1 General formulation

The 1D finite-volume approximation of (2.1) begins by dividing the computational domain [0, L]
into N cells Ci = [xi−1/2, xi+1/2], all with uniform size ∆x = L/N , so that the centres of the cells
satisfy xi = (i − 1)∆x + ∆x/2, i ∈ 1, . . . , N . A schematic of the finite-volume discretization is
displayed in Figure 2.1.

Figure 2.1: Schematic of the finite-volume discretization of a density field ρ(x) with the fluxes
Fni−1/2 and Fni+1/2 at the cell interfaces.

In each of the cells Ci we define the cell average ρi as

ρi(t) =
1

∆x

∫

Ci

ρ(x, t)dx. (2.2)

Numerically, this integral has to be computed via quadrature rules satisfying a particular order of
accuracy. The simplest choice is to evaluate ρi(t) as the value of ρ(x, t) at xi, which is the midpoint
of the cell Ci. In that case the error is of order O(∆x2) for smooth functions, and consequently for
first- and second-order finite-volume schemes one need not care about applying quadrature rules
to the cell-average integral: it is enough with taking the midpoint value directly. This is also why
up to second order the finite-difference and finite-volume formulations are usually identical. For
higher-order schemes this is not true though.

Subsequently, one has to integrate (2.1) over each of the cells Ci, resulting in
∫

Ci

∂tρ dx+

∫

Ci

∂xF (ρ) dx =

∫

Ci

S(ρ, x) dx. (2.3)

Let’s analyse each of the integrals. Firstly, the integral with ∂tρ leads to
∫

Ci

∂tρ dx = ∆x
dρi(t)

dt
, (2.4)

where the cell-average definition in (2.2) is applied. Secondly, the integral of ∂xF (ρ) yields
∫

Ci

∂xF (ρ) dx = F (ρ(xi+1/2, t))− F (ρ(xi−1/2, t)), (2.5)
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where the Gauss divergence theorem allows to evaluate the integral by only considering the flux
values at the boundaries of the cell. Finally, the integral with S(ρ, x) cannot be simplified without
further assumptions, so it remains as it is. It follows that the integral equation in (2.3) results in
the semi-discrete scheme

dρi(t)

dt
= − 1

∆x

(
F (ρ(xi+1/2, t))− F (ρ(xi−1/2, t))

)
+

1

∆x

∫

Ci

S(ρ, x) dx (2.6)

for each of the cells Ci. Now the PDE in (2.2) has turned into a set of N ODEs, one per cell and
accounting for the evolution of the average density. The next step is to integrate in time from tn
to tn+1, with the time step defined as ∆t = tn+1 − tn. The integration in time results in

ρn+1
i − ρni =− 1

∆x

(∫ tn+1

tn

F (ρ(xi+1/2, t)) dt−
∫ tn+1

tn

F (ρ(xi−1/2, t)) dt

)

+
1

∆x

∫ tn+1

tn

∫

Ci

S(ρ, x) dx dt;

(2.7)

where ρn+1
i and ρni are just the evaluations of ρi at tn+1 and tn, respectively, and result from

applying the Gauss divergence theorem.
The temporal integrals in (2.7) can be evaluated in an explicit, implicit or even semi-implicit

fashion. With an explicit approximation it follows that

∫ tn+1

tn

F (ρ(xi+1/2, t)) dt ≈ ∆t F (ρ(xi+1/2, tn)), (2.8)

while for the implicit approximation one takes

∫ tn+1

tn

F (ρ(xi+1/2, t)) dt ≈ ∆t F (ρ(xi+1/2, tn+1)). (2.9)

In semi-implicit approximations there may be an interpolation between the evaluations at tn and
tn+1, or simply some terms of F (ρ(xi+1/2, t) are evaluated at tn and others at tn+1. Generally
implicit schemes are considered more stable than explicit schemes and allow to employ larger time
steps. However, their computational cost is higher since they require the resolution of a system of
equations, and in addition they may introduce some numerical diffusion.

At this point let’s just consider an explicit approximation in time. For simplicity the following
notation is introduced:

Fni+1/2 := F (ρ(xi+1/2, tn)), Fni−1/2 := F (ρ(xi−1/2, tn)). (2.10)

The fluxes Fni+1/2 and Fni−1/2 are evaluated from the cell averages ρi. How many cells should
be considered for their evaluations? It turns out that only the cell averages directly at the left
and at the right of the boundary are needed, and the reason for this comes from the finite-speed
propagation of information in hyperbolic systems such as (2.1). Since information travels at a
certain speed, one can limit the time step to ensure that only the information from the cells at the
left and at the right has time to arrive at the boundary. This is the essence of the CFL condition
for stability, as explained in Section 2.5. Consequently, for a first-order discretization the fluxes
satisfy

Fni+1/2 = F(ρni , ρ
n
i+1), (2.11)

where F is the so-called numerical flux. More generally, the numerical flux depends on a recon-
struction of the density at the left of the boundary, ρn,−i+1/2, and at the right of the boundary, ρn,+i+1/2,
so that

Fni+1/2 = F(ρn,−i+1/2, ρ
n,+
i+1/2). (2.12)
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The numerical flux F is usually denoted as Riemann solver, since it provides a stable resolution
of the Riemann problem located at the cell interfaces. The literature concerning Riemann solvers
is vast and there are different choices for it [269]: Godunov, Lax-Friedrich, kinetic, Roe, etc.

2.2 Boundary reconstructions

The numerical flux in (2.12) relies on the reconstruction of the density at the left of the bound-
ary, ρn,−i+1/2, and at the right of the boundary, ρn,+i+1/2. Such reconstruction is computed from an
interpolation polynomial that depends on the cell averages surrounding the boundary. The higher
the order of the polynomial, the more coefficients one needs to estimate, and as a result the more
cell averages ought to be considered. The spatial accuracy of a finite-volume scheme is directly
linked to the order of the reconstruction polynomial. Usually, as the order of the reconstruction
polynomial increases, the spatial order of the finite-volume scheme also grows.

Furthermore, the reconstruction polynomial can be tuned to ensure the preservation of discrete
properties of the finite-volume scheme. For instance, let’s think of the positivity of the density:
it may occur that the reconstruction returns a negative value of the density at the boundary, due
to a sharp local variation in the cell averages. To prevent this, the coefficients of the polynomial
are modified, resulting in a polynomial that maintains its order of accuracy but ensures that all
the reconstructed values are positive. The same philosophy applies to other more sophisticated
properties, such as the well-balanced schemes presented in detail in Part II.

In this section, I review some relevant first-, second- and high-order reconstructions that lay the
foundations for the contents of this thesis. For a more complete list of reconstruction techniques I
refer the reader to [196].

2.2.1 First-order reconstruction

In a first-order reconstruction the left and right values are simply taken as

ρn,−i+1/2 = ρi, ρn,+i+1/2 = ρi+1. (2.13)

The reconstruction polynomial follows a piecewise constant distribution, with the constant value
in each cell corresponding to the cell average. This is the most basic method to compute the
reconstructions.

2.2.2 Second-order MUSCL reconstruction

MUSCL stands for Monotonic Upstream-centred Scheme for Conservation Laws, and this recon-
struction was firstly proposed in the seminal paper of Van Leer in 1979 [272]. The reconstruction
procedure relies on three steps: prediction of the gradients in each cell, linear extrapolation and
limiting procedure to preserve nonnegativity of the density.

The reconstructions at the left and at the right of the boundary are computed as

ρn,−i+1/2 = ρi +
φ(ri)

2
(ρi+1 − ρi) , ρn,+i+1/2 = ρi+1 −

φ(ri+1)

2
(ρi+2 − ρi+1) . (2.14)

φ(ri) is a flux limiter whose objective is to limit the slope of the reconstruction. This is necessary
to avoid spurious oscillations that may arise with shocks, discontinuities of sharp variations in the
density profile. The input of the flux limiter is ri, which represents the ratio of successive gradients
of the density:

ri =
ρi − ρi−1

ρi+1 − ρi
. (2.15)
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The ratio ri is negative if the cell average ρi is a local minimum or maximum in the stencil of
cell averages {ρi−1, ρi, ρi+1}. Another challenging scenario is when ri has a high value due to the
presence of sharp gradients. In these situations the flux limiter ensures that the reconstruction
comes back to the first-order choice in (2.13). There are many proposed flux functions in the
literature, and one of the most extended ones is the minmod limiter:

φ(ri) = max[0,min(1, ri)]. (2.16)

Consequently, the MUSCL reconstruction is second order in the regions of the density profile that
are smooth. It however returns to a first-order reconstruction in those regions of the domain where
there is a risk of generating spurious oscillations.

2.2.3 High-order WENO-like reconstruction

Weighted Essentially Non-Oscillatory (WENO) schemes are a class of high-order reconstructions
that are designed to prevent the generation of spurious oscillations while maintaining a high-order
accuracy. Their key insight is to employ a nonlinear adaptive procedure to automatically choose
the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure
as much as possible. There are WENO schemes of varied orders of accuracy, and in this thesis I
focus on third- and fifth-order reconstructions. In addition, certain modified WENO schemes such
as the Compact Weighted Essentially Non-Oscillatory (CWENO) reconstruction operators [52,
197, 198] offer crucial advantages when applied together with finite-volume schemes. The main
advantage of CWENO compared to WENO (see [253, 256, 257]) reconstruction operators is that
CWENO reconstructions achieve uniform high-order approximation in the entire cell, while WENO
reconstruction operators are proposed to achieve high-order approximation at the boundaries of
the cell. Thus, standard WENO-5 reconstructions achieves fifth-order at the boundaries of the cell,
while it is only third-order at the interior points. Therefore, CWENO reconstruction operators are
specially useful in balance laws such as (2.1), where the source term has to be evaluated at inner
points of the cell.

Given a family of density values {ρi(t)}, a WENO-type reconstruction provides at every cell
[xi−1/2, xi+1/2] a smooth function that depends on the values at some neighbour cells whose indexes
belong to the so-called stencil Si:

Rρi (x) = Rρi (x; {ρj(t)}j∈Si),
so that Rρi (x) is a high-order approximation of ρ(x, t) in the cell Ci at time t. The reconstructions at
the left and at the right of the boundary are computed by evaluating the reconstructed polynomial:

ρn,−i+1/2 = Rρi (xi+1/2), ρn,+i+1/2 = Rρi+1(xi+1/2). (2.17)

WENO schemes can be complemented with the positive-density limiters [299] to ensure physical
admissible reconstructed values for the density. The WENO schemes applied in this thesis are
thoroughly detailed in Appendix 6.B within Chapter 6, where third- and fifth-order CWENO
reconstructions are employed to design high-order well-balanced schemes.

2.3 Numerical flux

A numerical flux aims to correctly approximate the physical flux by employing the cell-average
density values. The design of numerical fluxes has been a thriving research field in the last decades,
and the reader can find excellent summaries of the state of the art in [188, 196]. An essential
property for a numerical flux is convergence, which implies that the numerical solution should
converge to the true solution as the grid is refined both in time and in space. Convergence requires
two conditions:
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1. Consistency with the physical flux, so that F(ρ, ρ) = F (ρ).

2. Stability in some appropriate sense, meaning that small errors don’t accumulate in time.

Another desirable property is that the numerical flux preserves the nonnegativity of the density
ρi(t) for the homogeneous problem. More sophisticated properties are Total Variation Diminishing
(TVD) or monotonicity.

Numerical fluxes typically rely on two inputs: the reconstructed density values at the left and
at the right of the boundary. Such reconstructed values can be computed following Section 2.2.
The next step is to devise a function that, given those two values, correctly approximates the
physical flux. A first naive proposal is to just evaluate the physical flux with the average of the
two input values. This however turns out to be unstable even for simple physical fluxes, and one
can show this by conducting a von Neumann stability analysis (see section 4.6 in [196] for further
details).

For simplicity, in this section I assume that the physical flux satisfies F (ρ) = uρ, where u is a
constant velocity. This flux is typical in advection problems whose solutions satisfy

ρ(x, t) = ρ̃(x− ut) (2.18)

for some ρ̃. This implies that the density values just translate with constant velocity u. For
this choice of flux I proceed to explain two of the most versatile numerical fluxes: upwind and
Lax-Friedrichs.

2.3.1 Upwind flux

Upwind methods are especially suited for hyperbolic equations such as (2.1), where the information
is propagated as waves following certain characteristics. For the choice of flux F (ρ) = uρ, the
information is propagated at constant velocity u. The sign of the velocity plays a vital role here: if
the velocity is positive, the information that arrives at the boundary xi+1/2 comes from the cell Ci,
whereas for negative velocities the information comes from the cell Ci+1. Upwind numerical fluxes
take advantage of this knowledge about the structure of the solution to approximate the physical
flux.

The upwind numerical flux when F (ρ) = uρ satisfies

Fni+1/2 = F
(
ρn,−i+1/2, ρ

n,+
i+1/2

)
= u+ ρ

n,−
i+1/2 + u− ρ

n,+
i+1/2 (2.19)

where
u+ = max(u, 0), u− = min(u, 0).

Clearly only one of the summands in (2.19) is nonzero, depending on the sign of the velocity u.
For more complicated systems with more than one equation there are several waves propagating
at different speeds and directions, and the usual technique for upwind relies on performing a
characteristic decomposition to evaluate from which side is the information coming from.

2.3.2 Lax-Friedrichs flux

The Lax-Friedrichs scheme is one of the most popular and versatile numerical fluxes. It is based
on adding numerical diffusion to the naive numerical flux based on just taking the average of the
flux of the two input values. As described in the introduction of this section, a numerical flux with
just the average is unstable, but it turns out that the addition of numerical diffusion dampens the
instabilities and renders the numerical flux stable as long as a CFL condition is satisfied.
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Chapter 2. Finite-volume schemes

The classical version of the Lax-Friedrichs numerical flux reads

Fi+1/2 = F
(
ρn,−i+1/2, ρ

n,+
i+1/2

)
=

1

2

(
F
(
ρn,−i+1/2

)
+ F

(
ρn,+i+1/2

))
− ∆x

2∆t

(
ρn,+i+1/2 − ρ

n,−
i+1/2

)
, (2.20)

where the last term is added to provide numerical diffusion. Note that this numerical flux is
consistent with the physical flux since the last term vanishes as the mesh is refined.

Nevertheless, one of the main drawbacks of the classical Lax-Friedrichs flux is the addition of
too much diffusivity, leading to numerical results that are badly smeared unless the mesh is really
fine. The numerical diffusivity can be reduced by modifying the coefficient ∆x/∆t to be a locally
determined value, so that the numerical flux satisfies

Fi+1/2 = F
(
ρn,−i+1/2, ρ

n,+
i+1/2

)
=

1

2

(
F
(
ρn,−i+1/2

)
+ F

(
ρn,+i+1/2

))
−
λi+ 1

2

2

(
ρn,+i+1/2 − ρ

n,−
i+1/2

)
, (2.21)

where λi+ 1
2

is taken as the maximum of the absolute value of the eigenvalues of the system,

λi+ 1
2

= max
(∣∣∣F ′(ρn,−i+1/2)

∣∣∣ ,
∣∣∣F ′(ρn,+i+1/2)

∣∣∣
)
. (2.22)

This maximum is taken locally for every node, resulting in different values of λi+ 1
2

in each of the

boundaries. This method is denoted as Rusanov’s method or just local Lax-Friedrichs. Choosing
a local viscosity coefficient instead of a global one reduces the numerical diffusivity of the scheme.

2.4 Temporal discretization

Finite volumes turn the PDE in (2.1) into a system of ODEs, each of them accounting for the
evolution of the average density in a particular cell. The next step is to discretize the ODEs in
time by applying an appropriate temporal discretization. This can be achieved by several means,
and the method to choose depends on the trade-off between computational cost, temporal order
of accuracy and stability. In this section, I review some of the temporal discretizations employed
in this thesis.

2.4.1 Forward Euler explicit scheme

This is the most basic first-order temporal integrator to solve an ODE. Due to its explicit nature
all the terms at the right-hand side of (2.7) are evaluated at t = tn, leading to

ρn+1
i − ρni = −∆t

∆x

(
Fni+1/2 − Fni−1/2

)
+

∆t

∆x

∫

Ci

S(ρ(x, tn), x) dx dt. (2.23)

All the terms at the right-hand side can be straightforwardly computed from the available values
of the density cell averages at t = tn. However, this scheme can become unstable for combinations
of ∆x and ∆t that lay outside of its stability region. This can be prevented by ensuring that a
CFL condition is satisfied, as explained in Section 2.5.

2.4.2 Backwards Euler implicit scheme

This method is also one of the most popular schemes to solve an ODE. Contrary to the explicit
version, the implicit technique evaluates the right-hand side of (2.7) at t = tn+1, resulting in

ρn+1
i − ρni = −∆t

∆x

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
+

∆t

∆x

∫

Ci

S(ρ(x, tn+1), x) dx dt. (2.24)
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Chapter 2. Finite-volume schemes

The inconvenience of implicit methods comes from the fact that the cell averages at t = tn+1 are
unknown, and as a result one needs to solve a (non)linear system of equations to advance in time.
This increase in computational cost is compensated with much better stability properties, and in
many cases one can prove that the implicit Euler scheme is unconditionally stable for all choices
of ∆t.

2.4.3 Multi-stage Runge-Kutta

Euler-type schemes, either explicit or implicit, are limited to first-order accuracy in time. The
family of Runge-Kutta methods employs subsequent stages to achieve a desired accuracy, but
relying only on the values at t = tn. There are many types of Runge-Kutta methods, including
explicit, implicit or even stochastic. For instance, the classical second-order Runge-Kutta applied
to ∂tρ = L(ρ), with L(ρ) defined as L(ρ) = S(ρ, x)− ∂xF (ρ) following (2.1), reads

{
ρn+1/2 − ρn = −∆t

2 L(ρn),

ρn+1 − ρn = −∆t L(ρn+1/2).
(2.25)

Runge-Kutta schemes are quite flexible, and have often been adapted to satisfy specific proper-
ties. In particular, a relevant property to achieve high-order accuracy with finite volumes is Total
Variation Diminishing (TVD). With it, the total variation of the solution does not increase, mean-
ing that new extrema are not generated. A related property is Total Variation Bounded (TVB),
in which the growth of the total variation is bounded. These two properties enhance the stability
of finite-volume schemes. As an example, the third-order TVD Runge-Kutta scheme proposed in
[156] satisfies 




ρ(1) = ρn + ∆tL (ρn) ,

ρ(2) = 3
4ρ

n + 1
4ρ

(1) + 1
4∆tL

(
ρ(1)
)
,

ρn+1 = 1
3ρ

n + 2
3ρ

(2) + 2
3∆tL

(
ρ(2)
)
.

(2.26)

2.5 CFL condition

The Courant-Friedrichs-Levy (CFL) condition is a fundamental concept when implementing finite-
volume schemes in hyperbolic equations such as (2.1). Basically, it is a necessary condition that
the time step has to satisfy for stability, and imposes a limit to the maximum size of the time step.
The CFL condition is essential when implementing numerical fluxes such as the ones described in
Section 2.3: in particular, they ensure that the information that arrives at the boundaries only
comes from the directly adjacent cells, and not from farther cells.

The exact form of the CFL condition depends on the problem under consideration and the
choice of numerical flux. As an example, here I prove a CFL condition for the positivity of (2.1)
with F (ρ) = uρ, where u is a particular constant velocity. The discretization is completed with the
upwind flux in Subsection 2.3.1, the first-order reconstruction in Subsection 2.2.1 and the explicit
Euler scheme in Subsection 2.4.1. For simplicity I assume that there is no source term, so that
S(ρ, x) = 0. The finite-volume scheme for this configuration satisfies

ρn+1
i = ρni −

∆t

∆x

(
Fni+1/2 − Fni−1/2

)
, (2.27)

with the numerical flux satisfying

Fni+1/2 = u+ ρ
n
i + u− ρni+1, u+ = max(u, 0), u− = min(u, 0). (2.28)
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Chapter 2. Finite-volume schemes

Theorem 2.5.1 (CFL condition). Consider the discrete scheme (2.27) complemented with the
upwind numerical flux in (2.28). Then, given that ρni ≥ 0 ∀i, it follows that ρn+1

i ≥ 0 ∀i provided
that the following CFL condition is satisfied:

∆t ≤ ∆x

maxi (u+ − u−)
. (2.29)

Proof. After plugging the numerical flux (2.28) into the finite-volume scheme (2.27) it follows that

ρn+1
i =ρni −

∆t

∆x

(
u+ ρ

n
i + u− ρni+1 − u+ ρ

n
i−1 − u− ρni

)

=

(
1− ∆t

∆x
u+ +

∆t

∆x
u−

)
ρni −

∆t

∆x
u− ρni+1 +

∆t

∆x
u+ ρ

n
i−1.

The second and third terms on the right hand side are positive since u+ ≥ 0 and u− ≤ 0 from
(2.28). The first term is also positive provided that the CFL condition (2.29) is satisfied. As a
result, ρn+1

i ≥ 0 ∀i as long as the CFL condition (2.29) holds.
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CHAPTER 3

Gradient-flow and energy-dissipating equations

All the systems studied in this thesis share a common property: they are driven by an energy that
decreases as the system evolves. Such decrease is driven by a dissipation mechanism, which ensures
that the system eventually reaches a steady state where the energy is minimized. The striking fact
about the energy and dissipation mechanism is that they are not determined by the PDE(s) of the
system: depending on the application, there may be many choices of the pair energy-dissipation
mechanism that lead to the same PDE(s). When the system under consideration is formed by a
single PDE, typically describing the evolution of the density, the system is said to be a gradient
flow. If the system is formed by multiple PDE, such as the density and momentum equations of
hydrodynamic systems, the system is said to be energy-dissipating.

For instance, let’s focus on the classical heat or diffusion equation:

∂ρ

∂t
= ∆ρ.

This equation can be understood as a gradient flow that decays an energy F [ρ], whose form depends
on the metric under consideration. Under the L2 norm the equation can be rewritten as

∂ρ

∂t
= −∇L2(Rd)F [ρ] = −δF [ρ]

δρ
,

with the choice of the free energy F [ρ] equal to

F [ρ] =
1

2

∫

Ω
|∇ρ|2 dx.

But the heat equation in (3) can also be written by employing a Wasserstein norm, so that it reads

∂ρ

∂t
= −∇W2F [ρ] = ∇ ·

(
ρ∇δF [ρ]

δρ

)
,

with the free energy F [ρ] now being

F [ρ] =

∫

Ω
ρ (log(ρ)− 1) dx.

One can check that with both metrics the result is the same, and the original heat equation (3) is
recovered after plugging in the free energy and computing its variation with respect to the density.
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Chapter 3. Gradient-flow and energy-dissipating equations

Interestingly, the heat equation can be understood as a gradient flow under many other metrics,
and I refer the reader to the excellent notes of Marc Peletier about this topic [229].

The description of the heat equation as a gradient flow under the L2 norm and other metrics
has been known for a really long time. What really sprang a new wave of interests in gradient
flows was the realization that continuity equations such as ∂tρ +∇ · (ρu) = 0 can be interpreted
as gradient flows under a Wasserstein metric, with the velocity u given by u = ∇δF [ρ]/δρ. This
discovery is quite recent, and it was thanks to Jordan, Kinderlehrer and Otto [170, 225] in the
turn from the 20th to the 21st century. Their inspiring insight became formal and general with the
work of Ambrosio, Gigli and Savaré [4], and heavily relies on the theory of optimal transport [273].
A nice recent review about the topic is [244]. The number of applications relying on continuity
equations is vast, and the application of the concept of Wasserstein gradient flow has fostered much
progress both in analytical results and numerical schemes.

Some of the applications with a structure of Wasserstein gradient flow are:

• Convection and nonlinear diffusion [170], which appear in certain Fokker-Planck equations
of the form:

∂tρ = ∇
(
ρ∇(Π′(ρ) + V (x))

)
.

• Aggregation-diffusion equations and granular flows with interactions [68]:

∂tρ = ∇
(
ρ∇(Π′(ρ) +W (x) ? ρ)

)
.

• Thin-film equations [171]:
∂tρ = −∇ (ρ∇(∆ρ)) .

• The Cahn-Hilliard equation [13]:

∂tρ = ∇
(
M(ρ)∇(−∆ρ+H ′(ρ))

)
.

The notation introduced here is carefully explained in the different chapters of this thesis. At this
point I just remark that each of these applications possesses a distinct type of free energy, but
all of them share a common PDE structure based on a gradient flow under a Wasserstein metric.
Precisely, it is thanks to this common structure that it is possible to design general finite-volume
schemes applicable to all of them. The schemes designed in this thesis replicate the main properties
of Wasserstein gradient flows at a discrete level, such as the dissipation of the free energy.

In this thesis there are mainly two types of systems: gradient-flow overdamped equations and
energy-dissipating hyperbolic systems. The former is usually derived from the latter in the strong
damping limit, and in many cases both of them can be derived from many-particle systems via
techniques such as mean-field limits or Density Functional Theory (DFT). The concept of gradient
flow only applies to the overdamped equations. Nevertheless, the hyperbolic systems studied
here also possess a free energy with the same structure and interpretation as in the overdamped
equation. The dissipation mechanism is also similar, but in addition involves a kinetic energy due
to the presence of momentum in the system. Another property that applies to hyperbolic systems
is the existence of an entropy identity. Section 3.1 of this introduction is devoted to presenting
the properties of the gradient-flow overdamped equations in this thesis, and Section 3.2 focuses on
energy-dissipating hyperbolic systems.

3.1 Gradient-flow overdamped equation

Many applications are modelled with a PDE describing the time evolution of the density. In
particular, in this thesis we are interested in PDEs with the following structure:

∂ρ

∂t
= ∇ ·

(
ρ∇δF [ρ]

δρ

)
, (3.1)
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Chapter 3. Gradient-flow and energy-dissipating equations

where ρ is the density and F is the free energy of the system. Equation (3.1) possesses a variational
structure and it is a gradient flow for the free energy F [ρ]. The evolution of the free energy along
a solution of (3.1) is given by

d

dt
F [ρ] =

∫

Ω

δF [ρ]

δρ

dρ

dt
dx

=

∫

Ω

δF [ρ]

δρ
∇ ·
(
ρ∇δF [ρ]

δρ

)
dx

=−
∫

Ω
ρ

∣∣∣∣∇
δF [ρ]

δρ

∣∣∣∣
2

dx

≤0,

(3.2)

where we have applied integration by parts and no-flux boundary conditions. The first equality in
(3.2) results from combining the chain rules of functional variation and derivation, and the spatial
integral appears due to the fact that F [ρ] is equal to a spatial integral while δF [ρ]/δρ not. To
clarify this further, this is an example of free energy and its corresponding variation with respect
to the density:

F [ρ] =

∫

Ω
ρ (log(ρ)− 1) dx,

δF [ρ]

δρ
= log(ρ).

Interestingly, the dissipation property determines the set of stationary states of (3.1): they are
given by nonnegative densities where δF [ρ]/δρ is constant. As a result, the free energy F [ρ] is a
Lyapunov functional for (3.1).

In this thesis we focus on two general structures for the free energy F [ρ]: aggregation-diffusion
with external and interaction potentials and Cahn-Hilliard with wall free energy.

3.1.1 Aggregation-diffusion free energy

The free energy for nonlocal and nonlinear aggregation-diffusion equations satisfies

F [ρ] =

∫

Ω
Π(ρ)dx+

∫

Ω
V (x)ρ(x)dx+

1

2

∫

Ω

∫

Ω
W (x− y)ρ(x)ρ(y)dxdy, (3.3)

where Π(ρ) is the density of the internal energy, V (x) is an external or confining potential, and
W (x) is an interactive potential. The steady states for this choice of free energy are obtained by
computing the variation of the free energy with respect to the density, leading to

δF
δρ

= Π′(ρ) + V (x) +W (x) ? ρ = constant on each connected component of supp(ρ). (3.4)

Aggregation-diffusion free energies of this type have many applications: granular materials [44],
chemotaxis and cell migration [138, 248], opinion formation [3], collective behaviour of animals
[184], self-assembly of nanoparticles [168] and mathematical finance [141], to name but a few. If
V (x) and W (x) vanish and the internal energy density satisfies Π(ρ) = ρ(log(ρ − 1)) or Π(ρ) =
ρm, one recovers the classical heat equation or porous medium equation. Confining potentials
such as V (x) appear in Fokker-Planck-type equations [39]. There is a rich variety of interaction
potentials W (x): radial fully attractive like in chemotaxis [59] or based on power-laws as in granular
materials [68]; repulsive in the short range and attractive in the large range; or compactly-supported
potentials in varied biological applications [23].
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3.1.2 Cahn-Hilliard free energy

The Cahn-Hilliard (CH) equation is a popular phase-field model initially proposed by Cahn and
Hilliard [48] to describe the process of phase separation in binary alloys. Since then it has found
applicability in a wide variety of modelling problems, from capillarity and wetting phenomena
[13, 258], diblock copolymer molecules [298] and tumour growth [278] to image inpainting [33, 45,
65], topology optimization [300] and many more [180]. Similar to other phase-field models, the
CH equation avoids the explicit treatment of sharp interfaces altogether by replacing them with
thin transition regions through which pertinent variables and physical properties vary rapidly but
continuously.

The free energy for the CH equation satisfies

F [ρ] =

∫

Ω

(
H(ρ) +

ε2

2
|∇ρ|2

)
dx+

∫

∂Ω
fw(ρ, β)ds, (3.5)

where H(ρ) is a double-well potential with minima corresponding to the stable phases in the
system, ε is a positive parameter related to the diffuse-interface width (e.g. [79]) and fw(ρ, β) is
the wall free energy which depends on the phase field at the wall and the (equilibrium) contact
angle β.

The boundary conditions imposed for the CH equation are a combination of the natural bound-
ary condition for the wall free energy and no-flux for the chemical potential [13, 192],

ε2∇ρ · n = −f ′w(ρ, β), M(ρ)∇δF [ρ]

δρ
· n = 0, (3.6)

where n is an inward-pointing unit vector normal to the wall and M(ρ) is a mobility term.
The variation of the free energy (3.5) with respect to ρ follows from

d

dγ
F [ρ+ γΨ]

∣∣∣∣
γ=0

=

∫

Ω

(
ΨH ′(ρ) + ε2∇ρ · ∇Ψ

)
dx+

∫

∂Ω
Ψf ′w(ρ, β)ds

=

∫

Ω

(
H ′(ρ)− ε2∆ρ

)
Ψdx+

∫

∂Ω

(
ε2∇ρ · n+ f ′w(ρ, β)

)
Ψds.

Now, bearing in mind that from the rules of functional variations it holds that

d

dγ
F [ρ+ γΨ]

∣∣∣∣
γ=0

=

∫

Ω

δF [ρ]

δρ
Ψdx

and applying the boundary conditions (3.6) to cancel out the surface integral, it results that

δF [ρ]

δρ
= H ′(ρ)− ε2∆ρ.

3.2 Energy-dissipating hyperbolic system

The hyperbolic systems studied in this thesis are formed by two coupled PDEs, modelling the
evolution of the density ρ and the momentum ρu:





∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −ρ∇δF [ρ]

δρ
− γρu.

(3.7)

On the one hand, the density equation in (3.7) follows the structure of the overdamped equa-
tion (3.1), where the term ∇δF [ρ]/δρ is substituted by a velocity u modelled by the momentum
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equation. On the other hand, the momentum equation contains advection terms ∇· (ρu ⊗ u),
damping terms −γρu with γ being a positive parameter, and the free-energy term −ρ∇δF [ρ]/δρ
that leads to the pressure and potentials. The form that we assume for F [ρ] is the same as the
aggregation-diffusion free energy in (3.3), and as a result the free-energy term −ρ∇δF [ρ]/δρ is
usually substituted as

−ρ∇δF [ρ]

δρ
= −∇P (ρ)− ρ∇ (V (x) +W (x) ? ρ) ,

where
ρΠ′′(ρ) = P ′(ρ).

In the strong damping limit (γ →∞), the characteristic time scale of the momentum dynamics is
much shorter than the density one. Thus, as a first approximation, the contributions of the terms
∇·(ρu⊗ u) and ∂t (ρu) in (3.7) can be neglected. As a result, it follows that u = −γ−1∇δF [ρ]/δρ,
and one recovers the overdamped equation in (3.1) where we have assumed that γ = 1.

The system (3.7) is said to be hyperbolic if the Jacobian matrix of its vector of fluxes is
diagonalizable, which means that it has only real eigenvalues and a full set of eigenvectors. The
fluxes in (3.7) are formed by the advection terms plus the pressure part of the free energy. For
instance, in 1D they satisfy

F (ρ, ρu) =

(
ρu

ρu2 + P (ρ)

)
.

The Jacobian matrix of this 1D flux has two eigenvalues: u+
√
P ′(ρ) and u−

√
P ′(ρ). Consequently,

the choice of a suitable pressure is fundamental to ensure that the system (3.7) remains hyperbolic.
Here we assume that the pressure is increasing, so that P ′(ρ) > 0. With this condition of the
pressure one can check that the system (3.7) is hyperbolic. This fact is essential when designing
numerical schemes, and there are wide differences between schemes to solve elliptic, parabolic
or hyperbolic systems. In particular, hyperbolic numerical schemes take advantage of the finite
propagation speed of information across the domain and the fact that the eigenvalues are real.
Elliptic systems on the contrary, have complex eigenvalues and are typically associated to a special
state of a system, in principle corresponding to the minimum of the energy. Finally, in parabolic
systems there is only one family of real characteristic curves.

The system (3.7) doesn’t necessarily dissipate the free energy F [ρ], in opposition to what we
prove in (3.2) about the overdamped system. Instead, the system (3.7) dissipates the so-called
total energy, which is the sum of the kinetic energy and the free energy:

E(ρ,u) =

∫

Ω

1

2
ρ |u|2 dx+ F(ρ). (3.8)

The strategy to prove it is based on deriving the total energy over time [60, 69, 144], in a similar
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fashion as in (3.2):

dE(ρ,u)

dt
=

∫

Ω

1

2
u
d (ρu)

dt
dx+

∫

Ω

1

2
ρu

du

dt
dx+

∫

Ω

δF [ρ]

δρ

dρ

dt
dx

=

∫

Ω

1

2
u
d (ρu)

dt
dx+

∫

Ω

1

2
u

(
dρu

dt
− udρ

dt

)
dx+

∫

Ω

δF [ρ]

δρ

dρ

dt
dx

=

∫

Ω
u
d (ρu)

dt
dx+

∫

Ω

1

2
|u|2∇ · (ρu) dx−

∫

Ω

δF [ρ]

δρ
∇ · (ρu) dx

=

∫

Ω
u
d (ρu)

dt
dx+

∫

Ω
u∇ · (ρu⊗ u) dx+

∫

Ω
ρu∇δF [ρ]

δρ
dx

=

∫

Ω
u

(
d (ρu)

dt
+∇ · (ρu⊗ u) +∇δF [ρ]

δρ

)
dx

=− γ
∫

Ω
ρ |u|2 dx

≤0.

Consequently, the total energy is the system is dissipated because of the inclusion of the linear
damping term γρu. Without damping the total energy remains constant, even if there is dynamic
evolution in the system. The term γρu ensures that the total energy E(ρ,u) keeps decreasing
in time while there is kinetic energy in the system. At the same time, since the definition of the
total energy in (3.8) also depends on the velocity u, it follows that the velocity throughout the
domain eventually vanishes. When u = 0 throughout the domain, the momentum equation in
(3.7) reduces to

ρ∇δF [ρ]

δρ
= 0,

meaning that the same steady state relation as in the overdamped case (3.4) holds, but now
including the momentum:

δF [ρ]

δρ
= Π′(ρ) +H(x, ρ) = constant on each connected component of supp(ρ) and u = 0,

where the constant can vary on different connected components of supp(ρ). This applies to the
points inside the support of the density. For those points outside the support of the density and
satisfying u = 0, the variation of the free energy with respect to the density does not need to keep
the constant value when the steady state is reached.

The system in (3.7) also satisfies an entropy identity

∂tη(ρ, ρu) +∇ ·G(ρ, ρu) = −ρu · ∇ (V (x) +W (x) ? ρ)− γρ |u|2 ,

where η(ρ, ρu) and G(ρ, ρu) are the entropy and the entropy flux defined as

η(ρ, ρu) = ρ
|u|2

2
+ Π(ρ), G(ρ, ρu) = ρu

(
|u|2

2
+ Π′(ρ)

)
.
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CHAPTER 4

Introduction to well-balanced schemes

Well-balanced schemes have emerged as a paramount tool to simulate systems governed by bal-
ance/conservation laws. This is due to their ability to numerically preserve steady states and
resolve small perturbations of those states even with coarse meshes. Well-balanced schemes were
introduced nearly three decades ago, with the initial works by Bermúdez and Vázquez [29], Green-
berg and Leroux [157] and Gosse [152]. One of the most popular applications for well-balanced
schemes from the beginning has been the shallow-water equations. Further contributions of note are
the hydrostatic reconstruction in [11, 76] together with application scenarios where well-balanced
schemes have proven quite successful: tsunami propagation [78], coastal hydrodynamics [206] and
irregular topographies [137], to name but a few. Inspired by the strong results for the shallow-
water equations, plenty of authors have successfully employed well-balanced schemes in a plethora
of balance-law problems from wave propagation in elastic media [285] and chemosensitive move-
ment of cells [131] to flow through a nozzle [142] and the Euler equations with gravity [181, 267].
The historical evolution of well-balanced schemes is reviewed in [154]. Furthermore, the deriva-
tion of numerical schemes preserving structural properties of the evolutions under study such as
dissipations or conservations of relevant physical quantities is an important line of research in
hydrodynamic systems and their overdamped limits, see for instance [55, 106, 226, 264].

In the present work, we propose numerical schemes with well-balanced and free energy dissipa-
tion properties for a general class of balance laws or hydrodynamic models with attractive-repulsive
interaction forces. In particular we consider interactions associated with nonlocal convolutions or
functions of convolutions, which is commonplace in applications such as the Keller-Segel model
[49], more general Euler-Poisson systems [162] or in dynamic-density functional theory (DDFT)
[147, 148]. This class of balance laws may contain linear or nonlinear damping effects, such as
the Cucker-Smale alignment term in collective behaviour [102]. The corresponding hydrodynamic
systems have the general form





∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −∇P (ρ)− ρ∇H(x, ρ)− γρu−ρ
∫

Rd
ψ(x− y)(u(x)− u(y))ρ(y) dy,

(4.1)
where ρ = ρ(x, t) and u = u(x, t) are the density and the velocity, P (ρ) is the pressure, H(x, ρ)
contains the attractive-repulsive effects from external V or interaction potentials W , assumed to
be locally integrable, given by

H(x, ρ) = V (x) +W (x) ? ρ,

26



Chapter 4. Introduction to well-balanced schemes

and ψ(x) is a nonnegative symmetric smooth function called the communication function in the
Cucker-Smale model [102, 103] describing collective behavior of systems due to alignment [56].

The fractional-step methods [196] have been the widely-employed tool to simulate the temporal
evolution of balance laws such as (4.1). They are based on a division of the problem in (4.1) into two
simpler subproblems: the homogeneous hyperbolic system without source terms and the temporal
evolution of density and momentum without the flux terms but including the sources. These
subproblems are then resolved alternatively employing suitable numerical methods for each. This
procedure introduces a splitting error which is acceptable for the temporal evolution, but becomes
critical when the objective is to preserve the steady states. This is due to the fact that the steady
state is reached when the fluxes are exactly balanced with the source terms in each discrete node
of the domain. However, when solving alternatively the two subproblems, this discrete balance can
never be achieved, since the fluxes and source terms are not resolved simultaneously.

To correct this deficiency, well-balanced schemes are designed to discretely satisfy the balance
between fluxes and sources when the steady state is reached [42]. The strategy to construct well-
balanced schemes relies on the fact that, when the steady state is reached, there are some constant
relations of the variables that hold in the domain. These relations allow the resolution of the
fluxes and sources in the same level, thus avoiding the division that the fractional-step methods
introduce. Moreover, if the system enjoys a dissipative property and it has a Liapunov functional,
obtaining analogous tools at the discrete level is key for the derivation of well-balanced schemes.
In this work the steady-state relations and the dissipative property are obtained by means of the
associated free energy, which in the case of the system in (4.1) is formulated as

F [ρ] =

∫

Rd
Π(ρ)dx+

∫

Rd
V (x)ρ(x)dx+

1

2

∫

Rd

∫

Rd
W (x− y)ρ(x)ρ(y)dxdy, (4.2)

where
ρΠ′′(ρ) = P ′(ρ). (4.3)

The pressure P (ρ) and the potential term H(x, ρ) appearing in the general system in (4.1) can be
gathered by considering the associated free energy. Taking into account that the variation of the
free energy in (4.2) with respect to the density ρ is equal to

δF
δρ

= Π′(ρ) +H(x, ρ), (4.4)

it follows that the general system in (4.1) can be written in a compact form as





∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −ρ∇δF
δρ
− γρu−ρ

∫

Rd
ψ(x− y)(u(x)− u(y))ρ(y) dy.

(4.5)

The system in (4.5) is rather general containing a wide variety of physical problems all under
the so-called density functional theory (DFT) and its dynamic extension (DDFT) see e.g. [121,
147, 148, 149, 293, 294] and the references therein. A variety of well-balanced schemes have already
been constructed for specific choices of the terms Π(ρ), V (x) and W (x) in the free energy in (4.2),
see [11, 42, 131] for instance. Here the focus is set on the free energy and the natural structure
of the system in (4.5). It is naturally advantageous to consider the concept of free energy in
the construction procedure of well-balanced schemes, since they rely on relations that hold in the
steady states, and moreover, the variation of the free energy with respect to the density is constant
when reaching these steady states, more precisely

δF
δρ

= Π′(ρ) +H(x, ρ) = constant on each connected component of supp(ρ) and u = 0, (4.6)
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Chapter 4. Introduction to well-balanced schemes

where the constant can vary on different connected components of supp(ρ). As a result, the
constant relations in the steady states, which are needed for well-balanced schemes, are directly
provided by the variation of the free energy with respect to the density.

The steady state relations in (4.6) hold due to the dissipation of the linear damping −ρu
or nonlinear damping in the system in (4.1), which eventually eliminates the momentum of the
system. This can be justified by means of the total energy of the system, defined as the sum of
kinetic and free energy,

E(ρ,u) =

∫

Rd

1

2
ρ |u|2 dx+ F(ρ), (4.7)

since it is formally dissipated, see [60, 69, 144], as

dE(ρ,u)

dt
= −γ

∫

Rd
ρ |u|2 dx−

∫

Rd

∫

Rd
ψ(x− y) |u(y)− u(x)|2 ρ(x) ρ(y) dx dy. (4.8)

The system in (4.1) also satisfies an entropy identity

∂tη(ρ, ρu)+∇·G(ρ, ρu) = −ρu·∇H(x, ρ)−γρ |u|2−ρ
∫

Rd
ψ(x−y)u(x)·(u(x)−u(y))ρ(y) dy, (4.9)

where η(ρ, ρu) and G(ρ, ρu) are the entropy and the entropy flux defined as

η(ρ, ρu) = ρ
|u|2

2
+ Π(ρ), G(ρ, ρu) = ρu

(
|u|2

2
+ Π′(ρ)

)
. (4.10)

From a physical point of view the entropy is always a convex function of the density [189]. As a
result, from (4.10) it is justified to assume that Π(ρ) is convex, meaning that Π′(ρ) has an inverse
function for positive densities ρ. This last fact is a necessary requirement for the construction of
the well-balanced schemes of this work. Finally, notice that from the entropy identity in (4.9), one
recovers the free energy dissipation in (4.8) by integration using the continuity equation to deal
with the forces term H(x, ρ) and using symmetrization of the nonlinear damping term due to ψ
being symmetric.

Let us also point out that the evolution of the centre of mass of the density can be computed
in some particular cases. In fact, it is not difficult to deduce from (4.5) that

d

dt

∫

Rd
xρdx =

∫

Rd
ρudx and

d

dt

∫

Rd
ρudx = −

∫

Rd
∇V (x)ρdx− γ

∫

Rd
ρudx , (4.11)

due to the antisymmetry of ∇W (x) and the symmetry of ψ(x). Therefore, in case V (x) is not
present or quadratic, (4.11) is explicitly solvable. Moreover, if the potential V (x) is symmetric,
the initial data for the density is symmetric, and the initial data for the velocity is antisymmetric,
then the solution to (4.5) keeps these symmetries in time, i.e., the density is symmetric and the
velocity is antisymmetric for all times, and the centre of mass is conserved

d

dt

∫

Rd
xρdx = 0 .

The steady state relations in (4.6) only hold when the linear damping term is included in the
system in (4.1). When only the nonlinear damping of Cucker-Smale type is present, the system
has the so-called moving steady states, see [56, 58, 69], which satisfy the more general relations

δF
δρ

= constant on each connected component of supp(ρ) and u = constant. (4.12)
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Chapter 4. Introduction to well-balanced schemes

However, the construction of well-balanced schemes satisfying the moving steady state relations
has proven to be more difficult than for the still steady states in (4.6) without dissipation. For
literature about well-balanced schemes for moving steady states without dissipation, we refer to
[218, 287].

The most popular application in the literature for well-balanced schemes deals with the Saint-
Venant system for shallow water flows with nonflat bottom [11, 42, 51, 199, 282, 283], for which
Π(ρ) = g

2ρ
2, with g being the gravity constant, and H(x, ρ) depends on the bottom. Here it is

important to remark the work of Audusse et al. in [11], where they propose a hydrostatic recon-
struction that has successfully inspired more sophisticated well-balanced schemes in the area of
shallow water equations [206, 217]. Another area where well-balanced schemes have been fruitful
is chemosensitive movement, with the works of Filbet, Shu and their collaborators [130, 131, 153,
285]. In this case the pressure satisfies Π(ρ) = ρ (ln(ρ)− 1) and H depends on the chemotactic
sensitivity and the chemical concentration. The list of applications of the system in (4.1) contin-
ues growing with more choices of Π(ρ) and H(x, ρ) [285]: the elastic wave equation, nozzle flow
problem, two phase flow model, etc.

The orders of accuracy from the finite volume well-balanced schemes presented before range
from first- and second-order [11, 186, 195, 199, 289] to higher-order versions [137, 217, 276, 285].
Again, the most popular application has been shallow water equations, and the survey from Xing
and Shu [282] provides a summary of all the shallow water methods with different accuracies. Some
of the previous schemes proposed were equipped to satisfy natural properties of the systems under
consideration, such as nonnegativity of the density [12, 186] or the satisfaction of a discrete entropy
inequality [11, 131], enabling also the computation of dry states [137] . Theoretically the Godunov
scheme satisfies all these properties [194], but its main drawback is its computationally expensive
implementation. Several authors have already proposed high-order well-balanced schemes for sys-
tems where the potential terms in the free energy in (4.2) are local, such as the shallow-water
equations [73, 75, 80, 90, 217], chemotaxis [131] and other applications [285].

Other well-balanced numerical approaches employed to simulate the system in (4.5) are finite
differences [283, 284], which are equivalent to the finite volume methods for first-and second-order,
and the discontinuous Galerkin methods [285]. There have been plenty of contributions devoted
to particular configurations and scenarios, with a especial emphasis on shallow-water equations:
presence of dry areas and bottom topography [137], tsunami propagation in 2D meshes [78], traffic
flow model [80], moving steady states [73, 87, 218], etc. The overdamped system of (4.5) with
ψ ≡ 0, obtained in the free inertia limit where the momentum reaches equilibrium on a much
faster timescale than the density, has also been numerically resolved for general free energies of
the form in (4.2), via finite volume schemes [55] or discontinuous Galerkin approaches [264]. This
scheme for the overdamped system also conserves the dissipation of the free energy at the discrete
approximation.

In addition to the well-balanced property, many authors have sought to construct numerical
schemes that preserve the structural properties of the system in (4.1) during its temporal evolu-
tion. These endeavours have aimed to first satisfy discretely the entropy identity and second the
dissipation relations for the total energy, both for the original system in (4.1) and its overdamped
versions. We refer the reader to Refs. [10, 132, 266] for more information about entropy stable
schemes and to Refs. [15, 55] for insights details and useful insights energy dissipating schemes.
The well-balanced finite-volume scheme of our previous work [71] was designed to be at the same
time well-balanced, entropy stable and energy dissipating, though only for first- and second-order
accuracy.
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Chapter 4. Introduction to well-balanced schemes

4.1 Contribution to first- and second-order well-balanced schemes

In this work we present a finite volume scheme for a general choice of Π(ρ) andH(x, ρ) which is first-
and second-order accurate and satisfies the nonnegativity of the density, the well-balanced property,
the semidiscrete entropy inequality and the semidiscrete free energy dissipation. Furthermore, as
it is shown in Example 5.3.9 of Section 5.3, it can also be applied to more general free energies
than the one in (4.2) and with the form

F [ρ] =

∫

Rd
Π(ρ)dx+

∫

Rd
V (x)ρ(x)dx+

1

2

∫

Rd
K (W (x) ? ρ(x)) ρ(x)dx, (4.13)

where K is a function depending on the convolution of ρ(x) with the kernel W (x). Its variation
with respect to the density satisfies

δF
δρ

= Π′(ρ) + V (x) +
1

2
K (W (x) ? ρ) +

1

2
K ′ (W (x) ? ρ) (W (x) ? ρ) . (4.14)

These free energies arise in applications related to (D)DFT [121, 147], see [70] for other related
free energies and properties.

The novelty of this work is twofold. Foremost, all these previous schemes were only applicable
for specific choices of Π(ρ) and H(x, ρ), meaning that a general scheme valid for a wide range of
applications is lacking. And while some previous schemes [285] could be employed in more general
cases, the focus in the literature has been on the shallow water and chemotaxis equations. In
addition, the function H(x, ρ), which results from summing V (x) and W (x) ? ρ as in (4), has so
far been taken as dependent on x only, unlike the present work where it depends on ρ by means
of the convolution with an interaction potential W (x).

The other novel technical aspect of this work concerns the numerical treatment of the different
source terms in (4.1). In fact, in order to keep the well-balanced property and the decay of the free
energy we treat source terms differently. While the dissipative terms are harmless and treated by
direct approximations, the fundamental question is how to choose the discretization of the potential
term given by H(x, ρ) = V (x) + W (x) ? ρ. For this purpose we appropriately extend the ideas
in [42, 131] to our case to keep the well-balanced property and the energy decay. The condition
for stationary states in (4.6) is crucial in defining an approximation of the term −ρ∇H(x, ρ) by a
discretization of ∇P (ρ) which is consistent when the new reconstructed values of the density at the
interfaces taking into account the potential H(x, ρ). This general treatment includes as specific
cases both the shallow-water equations [11, 42] and the hyperbolic chemotaxis problem [131].

Chapter 5 is devoted to this contribution. Sections 5.1 and 5.2 describe the first- and second-
order well-balanced scheme reconstructions, and provides the proofs of their main properties. Sec-
tion 5.3 contains the numerical simulations: firstly, Subsection 5.3.1 details the validation of the
well-balanced property and the orders of accuracy is conducted; secondly, Subsection 5.3.2 with nu-
merical experiments from different applications. Finally, a wide range of free energies is employed
to remark the extensive nature of our well-balanced scheme.

4.2 Contribution to high-order well-balanced schemes

The main contribution of the present work is to extend our previous scheme for the system in
(4.1) from first and second order to high order. Here we consider the much broader class of
free energies in (4.2), which include interaction potentials leading to forces given by convolution
with the density ρ and possible linear or nonlinear damping effects from the field of collective
behaviour. Applications of this type include the Keller-Segel model, generalized Euler-Poisson
systems [162] and DDFT [147, 148]. We complement our high-order finite volume schemes with the
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desired properties of well-balancing and the nonnegativity of the density, which allows for vacuum
regions in the simulations. It is worth mentioning that previous works have already addressed
the construction of high-order well-balanced schemes for diverse types of steady-state relations.
Nevertheless the technical challenge here is to consider non-linear and non-local steady states that
involve convolutions. The well-balanced methodology for shallow-water equations, for instance, is
not directly applicable to our steady states.

Our work lays the foundations for the construction of well-balanced high-order schemes that
may satisfy further fundamental properties of the system in (4.1), such as the discrete versions of
the energy dissipation in (4.8) and entropy identity in (4.9), or even the well-balanced property
for the challenging moving steady states. Developing schemes, amongst the class of positivity-
preserving high-order schemes introduced in the present work, satisfying also the entropy stability
and energy dissipating properties, is a challenging open question. In Section 6.5 we however show
that the numerical simulations satisfy the discrete energy dissipation in practice, even if we are
not able to prove it for our high-order finite-volume scheme.

Chapter 6 is devoted to this contribution. In Section 6.1 we begin by recalling our first-order
numerical scheme from Chapter 5, and then in Section 6.2 we provide an first-attempt extension
of such scheme to high order. The correct well-balanced formulation for that high-order scheme
is provided in Section 6.3. Section 6.4 contains the summarized algorithmic implementation of
the scheme. Then, in Section 6.5 we depict a battery of simulations for relevant applications of
system in (4.1). In Subsection 6.5.1 we numerically check the well-balanced property and high-
order accuracy of our scheme, and subsequently in Subsection 6.5.2 we tackle applications for
varied choices of the free energy, leading to interesting numerical experiments for which analytical
results are limited in the literature.

31



CHAPTER 5

First- and second-order well-balanced schemes

The contents of this chapter are based on the publication [66], done in collaboration with José A.
Carrillo, Serafim Kalliadasis and Chi-Wang Shu:

[66] J. A. Carrillo, S. Kalliadasis, S. P. Perez, and C. W. Shu. “Well-balanced finite-volume
schemes for hydrodynamic equations with general free energy”. In: Multiscale Modeling &
Simulation 18.1 (2020), pp. 502-541.

The terms appearing in the one-dimensional system in (4.5) are usually gathered in the form
of

∂tU + ∂xF (U) = SH(U,H) + SD(x, U), (5.1)

with

U =

(
ρ
ρu

)
, F (U) =

(
ρu

ρu2 + P (ρ)

)

and and

SH(U,H) =

(
0

−ρ∂xH

)
, SD(x, U) =




0

−γρu− ρ
∫

R
ψ(x− y)(u(x)− u(y))ρ(y) dy


 ,

where U are the unknown variables, F (U) the fluxes, and SH(U,H) and SD(x, U) the sources
related to forces with potential H and damping terms respectively. The one-dimensional finite
volume approximation of (5.1) is obtained by breaking the domain into grid cells

(
xi−1/2

)
i∈Z and

approximating in each of them the cell average of U . Then these cell averages are modified after
each time step, depending on the flux through the edges of the grid cells and the cell average of
the source term [196]. Finite volume schemes for hyperbolic systems employ an upwinding of the
fluxes and in the semidiscrete case they provide a discrete version of (5.1) under the form

dUi
dt

= −
Fi+1/2 − Fi−1/2

∆xi
+ SH,i + SD,i, (5.2)

where the cell average of U in the cell
(
xi−1/2, xi+1/2

)
is denoted as

Ui =

(
ρi
ρiui

)
,
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Fi+1/2 is an approximation of the flux F (U) at the point xi+1/2, SH,i and SD,i approximations
of the source terms SH(U,H) and SD(x, U) in the cell

(
xi−1/2, xi+1/2

)
, and ∆xi is the possibly

variable mesh size ∆xi = xi+1/2 − xi−1/2.
The approximation of the flux F (U) at the point xi+1/2, denoted as Fi+1/2, is achieved by means

of a numerical flux F which depends on two reconstructed values of U at the left and right of the
boundary between the cells i and i+ 1. These two values, U−i+1/2 and U+

i+1/2, are computed from
the cell averages following different construction procedures that seek to satisfy certain properties,
such as order of accuracy or nonnegativity. Two widely-employed reconstruction procedures are
the second-order finite volume monotone upstream-centred scheme for conservation laws, referred
to as MUSCL [223], or the weighted-essentially non-oscillatory schemes, widely known as WENO
[254].

Once these two reconstructed values are computed, Fi+1/2 is obtained from

Fi+1/2 = F
(
U−i+1/2, U

+
i+1/2

)
. (5.3)

The numerical flux F is usually denoted as Riemann solver, since it provides a stable resolution
of the Riemann problem located at the cell interfaces, with U−i+1/2 denoting the reconstruction at

the left of the interface and U+
i+1/2 at the right. The literature concerning Riemann solvers is vast

and there are different choices for it [269]: Godunov, Lax-Friedrich, kinetic, Roe, etc. Some usual
properties of the numerical flux that are assumed [11, 42, 131] are:

1. It is consistent with the physical flux, so that F(U,U) = F (U).

2. It preserves the nonnegativity of the density ρi(t) for the homogeneous problem, where the
numerical flux is computed as in (5.3).

3. It satisfies a cell entropy inequality for thd entropy pair (4.10) for the homogeneous problem.
Then, according to [42], it is possible to find a numerical entropy flux G such that

G(Ui+1) +∇U η(Ui+1) (F(Ui, Ui+1)− F (Ui+1))

≤ G(Ui, Ui+1) ≤ G(Ui) +∇U η(Ui) (F(Ui, Ui+1)− F (Ui)) , (5.4)

where ∇U η is the derivative of η with respect to U =

(
ρ
ρu

)
.

The first- and second-order well-balanced schemes described in this section propose an alter-
native reconstruction procedure for U−i+1/2 and U+

i+1/2 which ensures that the steady state in (4.6)
is discretely preserved when starting from that steady state. Sections 5.1 and 5.2 contain the first-
and second-order schemes, respectively, together with their proved properties.

5.1 First-order scheme

The basic first-order schemes approximate the flux Fi+1/2 by a numerical flux F which depends on
the cell averaged values of U at the two adjacent cells, so that the inputs for the numerical flux in
(5.3) are

Fi+1/2 = F (Ui, Ui+1) . (5.5)

The resolution of the finite volume scheme in (5.2) with a numerical flux of the form in (5.5)
and a cell-centred evaluation of −ρ∂xH for the source term Si is not generally able to preserve
the steady states, as it was shown in the initial works of well-balanced schemes [155, 157]. These
steady states are provided in (4.6), and satisfy that the variation of the free energy with respect
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to the density has to be constant in each connected component of the support of the density. The
discrete steady state is defined in a similar way,

(
δF
δρ

)

i

= Π′(ρi) +Hi = CΓ in each ΛΓ,Γ ∈ N , (5.6)

where ΛΓ, Γ ∈ N, denotes the possible infinite sequence indexed by Γ of subsets ΛΓ of subsequent
indices i ∈ Z where ρi > 0 and ui = 0, and CΓ the corresponding constant in that connected
component of the discrete support.

As it was emphasized above, the preservation of these steady states for particular choices of
Π′(ρ) and H(x, ρ), such as shallow water [11] or chemotaxis [131], is paramount. A solution to
allow for this preservation is the so-called hydrostatic reconstruction proposed by Audusse et al.
[11], where instead of evaluating the numerical flux as in (5.3), they chose

Fi+1/2 = F
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
, where UHR,±i+1/2 =




ρHR,±i+1/2

ρHR,±i+1/2u
HR,±
i+1/2


 . (5.7)

The interface values UHR,±i+1/2 are reconstructed from Ui and Ui+1 by taking into account the steady

state relation in (5.6). Contrary to other works in which the interface values are reconstructed to
increase the order of accuracy, now the objective is to satisfy the well-balanced property. Bearing
this in mind, we make use of (5.6) to the cells with centred nodes at xi and xi+1 to define the
interface values such that

Π′
(
ρHR,−i+1/2

)
+Hi+1/2 = Π′ (ρi) +Hi,

Π′
(
ρHR,+i+1/2

)
+Hi+1/2 = Π′ (ρi+1) +Hi+1,

where the term Hi+1/2 is evaluated to preserve consistency and stability, with an upwind or average
value obtained as

Hi+1/2 = max (Hi, Hi+1) or Hi+1/2 =
1

2
(Hi +Hi+1) . (5.8)

Then, by denoting as ξ(s) the inverse function of Π′(s) for s > 0, we conclude that the interface
values UHR,±i−1/2 are computed as

ρHR,−i+1/2 = ξ
(
Π′ (ρi) +Hi −Hi+1/2

)
+
, uHR,−i+1/2 = ui,

ρHR,+i+1/2 = ξ
(
Π′ (ρi+1) +Hi+1 −Hi+1/2

)
+
, uHR,+i+1/2 = ui+1.

(5.9)

The function ξ(s) is well-defined for s > 0 since Π(s) is strictly convex, Π′′(s) > 0. This is always
the case since, as mentioned in the introduction, the physical entropies are always strictly convex
from (4.10). However, some physical entropies and applications allow for vacuum of the steady
states, therefore we need to impose the value of ρHR,±i+1/2 , given that they should be nonnegative.

Henceforth, ξ(s) denotes the extension by zero of the inverse of Π′(s) whenever s > 0.
Furthermore, the discretization of the source term with potentials SH(U,H) is taken as

SH,i = SHR,−i+1/2 + SHR,+i−1/2 , (5.10)

where

SHR,−i+1/2 =
1

∆xi

(
0

P
(
ρHR,−i+1/2

)
− P (ρi)

)
, SHR,+i−1/2 =

1

∆xi

(
0

P (ρi)− P
(
ρHR,+i−1/2

)
)
.
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This choice is motivated by the fact that in the steady state, with u = 0 in (5.1), the fluxes are
balanced with the sources,

ρ∂xΠ′(ρ) = −ρ∂xH.
The source term with damping SD(x, U) is simply discretized as

SD,i = −




0

γρiui + ρi
∑

j

∆xj(ui − uj)ρjψij


 .

Here ψij is an approximation of the average value of ψ on the interval centred at xi − xj of length
∆xj . From here, and integrating over the cell volume, it results that
∫ xi+1/2

xi−1/2

−ρ∂xH dx =

∫ xi+1/2

xi−1/2

ρ∂xΠ′(ρ) dx =

∫ xi+1/2

xi−1/2

∂xP (ρ) dx = P (ρHR,−i+1/2)− P (ρHR,+i−1/2), (5.11)

with the relation between Π′(ρ) and P (ρ) was given in (13.6). This idea of distributing the source
terms along the interfaces has already been explored in previous works [172].

The discretization of the source term in (5.10) entails that the discrete balance between fluxes
and sources is accomplished when Fi+1/2 = P (ρHR,−i+1/2) = P (ρHR,+i+1/2). The computation of the

numerical fluxes expressed in (5.7), in which the interface values UHR,±i−1/2 are considered, enables

this balance if in the steady states UHR,−i+1/2 = UHR,+i+1/2 = (ρHR,−i+1/2 , 0) = (ρHR,+i+1/2 , 0). Moreover, the

discretization of the source term as in (5.10) may seem counter-intuitive when the system is far
away from the steady state, given that the balanced expressed in (5.11) only holds in those states.
In spite of this, the consistency with the original system in (5.1) is not lost, as it will be proved in
Subsection 5.1.1.

Let us finally discuss the discretization of the potential H(x, ρ) = V (x) + W ∗ ρ(x). We will
always approximate it as

Hi = Vi +
∑

j

∆xjWijρj , for all i ∈ Z ,

where Vi = V (xi) and Wij = W (xi − xj) in case the potential is smooth or choosing Wij as an
average value of W on the interval centred at xi − xj of length ∆xj in case of general locally
integrable potentials W . Let us also point out that this discretization keeps the symmetry of the
discretized interaction potential Wij = Wji for all i, j ∈ Z whenever W is smooth or solved with
equal size meshes ∆xi = ∆xj for all i, j ∈ Z.

5.1.1 Properties of the first-order scheme

The first-order semidiscrete scheme defined in (5.2), constructed with (5.7)-(5.10), and for a nu-
merical flux F (Ui, Ui+1) = (Fρ,Fρu) (Ui, Ui+1) satisfying the properties stated in the introduction
of Chapter 5, satisfies:

(i) preservation of the nonnegativity of ρi(t);

(ii) well-balanced property, thus preserving the steady states given by (5.6);

(iii) consistency with the system in (4.5);

(iv) cell entropy inequality associated to the entropy pair in (4.10),

∆xi
dηi
dt

+ ∆xiHi
dρi
dt

+Gi+1/2 −Gi−1/2 = −ui


γ∆xiρiui + ∆xiρi

∑

j

∆xjρj (ui − uj)ψij


 ,

(5.12)
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where ηi = Π (ρi) + 1
2ρiu

2
i and

Gi+1/2 = G
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
+ Fρ

(
UHR,−i+1/2 , U

HR,+
i+1/2

)
Hi+1/2.

(v) the discrete analogue of the free energy dissipation property in (4.8) given by

d

dt
E∆(t) ≤ −γ

∑

i

∆xiρiu
2
i −

1

2

∑

i,j

∆xi∆xjρiρj (ui − uj)2 ψij (5.13)

with

E∆ =
∑

i

∆xi
2
ρiu

2
i + F∆ and F∆ =

∑

i

∆xi [Π (ρi) + Viρi] +
1

2

∑

i,j

∆xi∆xjWijρiρj .

(5.14)

(vi) the discrete analogue of the evolution for centre of mass in (4.11),

d

dt

(∑

i

∆xiρixi

)
=
∑

i

∆xiF
ρ
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
, (5.15)

which is reduced to ∑

i

∆xiρixi = 0 (5.16)

when the initial density is symmetric and the initial velocity antisymmetric. This implies
that the discrete centre of mass is conserved in time and centred at 0.

Proof. Some of the following proofs follow the lines considered in [11, 131].

(i) If a first-order numerical flux F (Ui, Ui+1) = (Fρ,Fρu) (Ui, Ui+1) for the homogeneous prob-
lem, such as the Lax-Friedrich scheme detailed in Appendix 5.A, satisfies the nonnegativity
of the density ρi(t), then it necessarily follows that

Fρ((ρi = 0, ui), (ρi+1, ui+1))− Fρ((ρi−1, ui−1), (ρi = 0, ui)) ≤ 0 ∀(ρi, ui)i. (5.17)

In our case, the sources do not contribute to the continuity equation in (5.1), and for the
numerical flux in (5.7) we need to check that

Fρ
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
− Fρ

(
UHR,−i−1/2 , U

HR,+
i−1/2

)
≤ 0 (5.18)

whenever ρi = 0. When ρi = 0, the reconstruction in (5.8) and (5.9) yields ρHR,−i+1/2 = ρHR,+i+1/2 =

0 since Π(ρ) is assumed to be convex, and (5.18) results in

Fρ((0, ui), (ρ
HR,+
i+1/2 , ui+1))− Fρ((ρHR,−i−1/2 , ui−1), (ρi = 0, ui)) ≤ 0 ∀(ρHR,+i+1/2 , ρ

HR,−
i+1/2 , ui)i. (5.19)

Then, given that the numerical scheme is chosen so that it preserves the nonnegativity of the
density for the homogeneous problem and (5.17) holds, it follows that (5.19) is satisfied too.

(ii) To preserve the steady state the discrete fluxes and source need to be balanced,

Fi+1/2 − Fi−1/2 = ∆xSi. (5.20)
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When the steady state holds it follows from (5.9) that ρHR,−i+1/2 = ρHR,+i+1/2 and uHR,−i+1/2− =

uHR,+i−1/2 = 0, and as a result UHR,−i+1/2 = UHR,+i+1/2 . Then, by consistency of the numerical flux F,

Fi+1/2 = F
(

(ρHR,−i+1/2 , 0), (ρHR,+i+1/2 , 0)
)

= F (UHR,−i+1/2 ) = F (UHR,+i+1/2 ) =

(
0

P (ρHR,−i+1/2)

)
=

(
0

P (ρHR,+i+1/2)

)
.

(5.21)
Concerning the source term Si of (5.10), in the steady state it is equal to

∆xiSi =

(
0

P
(
ρHR,−i+1/2

)
− P

(
ρHR,+i−1/2

)
)
. (5.22)

Then the balance in (5.20) is obtained from (5.21) and (5.22).

(iii) For the consistency with the original system of (4.5) one has to apply the criterion in [42], by
which two properties concerning the consistency with the exact flux F and the consistency
with the source term need to be checked. Before proceeding, the finite volume discretization
in (5.2) needs to be rewritten in a non-conservative form as

dUi
dt

= −Fl(Ui, Ui+1, Hi, Hi+1)− Fr(Ui−1, Ui, Hi−1, Hi)

∆xi

−
(

0
γρiui + ρi

∑
j(ui − uj)ρjψ(xi − xj)

) (5.23)

where
Fl(Ui, Ui+1, Hi, Hi+1) = Fi+1/2 −∆xiS

HR,−
i+1/2 ,

Fr(Ui−1, Ui, Hi−1, Hi) = Fi−1/2 + ∆xiS
HR,+
i−1/2 .

Here the source term Si is considered as being distributed along the cells interfaces, satisfying

Si = SHR,−i+1/2 + SHR,+i−1/2 −
(

0
γρiui + ρi

∑
j(ui − uj)ρjψ(xi − xj)

)
,

SHR,−i+1/2 =
1

∆xi

(
0

P (ρHR,−i+1/2)− P (ρi)

)
and SHR,+i−1/2 =

1

∆xi

(
0

P (ρi)− P (ρHR,+i−1/2)

)
.

The consistency with the exact flux means that Fl(U,U,H,H) = Fr(U,U,H,H) = F (U).
This is directly satisfied since UHR,−i+1/2 = Ui and UHR,+i+1/2 = Ui+1 whenever Hi+1 = Hi, due to

(5.9).

For the consistency with the source term the criterion to check is

Fr(Ui, Ui+1, Hi, Hi+1)− Fl(Ui, Ui+1, Hi, Hi+1) =

(
0

−ρ(Hi+1 −Hi) + o(Hi+1 −Hi)

)

as Ui, Ui+1 → U and Hi, Hi+1 → H. For this case,

Fr(Ui, Ui+1, Hi, Hi+1)− Fl(Ui, Ui+1, Hi, Hi+1) =

(
0

SHR,+i+1/2 + SHR,−i+1/2

)
=




0

−(P (ξ(Π′(ρi+1) +Hi+1 −Hi+1/2)− P (ρi+1)) + (P (ξ(Π′(ρi) +Hi −Hi+1/2)− P (ρi))


 ,

(5.24)
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where Hi+1/2 = max (Hi, Hi+1). By assuming without loss of generality that Hi+1/2 = Hi,
the second term of the last matrix results in

−P (ξ(Π′(ρi+1) +Hi+1 −Hi)) + P (ξ(Π′(ρi))) = −P (ξ(Π′(ρi+1) +Hi+1 +Hi))− P (ρi) .

This term can be further approximated as

−(P ◦ ξ)′(Π′(ρi+1)) (Hi+1 −Hi) + o(Hi+1 −Hi) = −ρi+1(Hi+1 −Hi) + o(Hi+1 −Hi)

since

(P ◦ ξ)′(Π′(ρi+1)) = P ′(ρi+1)
1

Π′′(ρi+1)
= ρi+1

by taking derivatives in (ξ ◦ Π′)(ρ) = ρ and making use of (13.6). Finally, since ρi+1 → ρ,
the consistency with the source term is satisfied. An analogous procedure can be followed
whenever Hi+1/2 = Hi+1.

(iv) To prove (5.12) we follow the strategy from [131]. We first set Gi+1/2 to be

Gi+1/2 = G
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
+ Fρ

(
UHR,−i+1/2 , U

HR,+
i+1/2

)
Hi+1/2.

Subsequently, and employing the inequalities for G
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
in (5.4), it follows that

Gi+1/2 −Gi−1/2 ≤ G
(
UHR,−i+1/2

)
+∇Uη

(
UHR,−i+1/2

)(
F
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
− F

(
UHR,−i+1/2

))

−G
(
UHR,+i−1/2

)
−∇Uη

(
UHR,+i−1/2

)(
F
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
− F

(
UHR,+i−1/2

))

+ Fρ
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
Hi+1/2 − Fρ

(
UHR,−i−1/2 , U

HR,+
i−1/2

)
Hi−1/2.

This last inequality can be rewritten after some long computations as

Gi+1/2 −Gi−1/2 ≤
(

Π′
(
ρHR,−i+1/2

)
− 1

2
u2
i +Hi+1/2

)
Fρ
(
UHR,−i+1/2 , U

HR,+
i+1/2

)

−
(

Π′
(
ρHR,+i−1/2

)
− 1

2
u2
i +Hi−1/2

)
Fρ
(
UHR,−i−1/2 , U

HR,+
i−1/2

)

+ ui

(
Fρu

(
UHR,−i+1/2 , U

HR,+
i+1/2

)
− Fρu

(
UHR,−i−1/2 , U

HR,+
i−1/2

)
+ P

(
ρHR,+i−1/2

)
− P

(
ρHR,−i+1/2

))
.

From here, by bearing in mind the definition of ρHR,−i+1/2 and ρHR,+i−1/2 in (5.9) and the definition

of the scheme in (5.2)-(5.7)-(5.10), we get

Gi+1/2 −Gi−1/2 ≤
(

Π′ (ρi)−
1

2
u2
i +Hi

)(
Fρ
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
− Fρ

(
UHR,−i−1/2 , U

HR,+
i−1/2

))

+ ui

(
Fρu

(
UHR,−i+1/2 , U

HR,+
i+1/2

)
− Fρu

(
UHR,−i−1/2 , U

HR,+
i−1/2

)
+ P

(
ρHR,+i−1/2

)
− P

(
ρHR,−i+1/2

))

= −
(

Π′ (ρi)−
1

2
u2
i +Hi

)
∆xi

dρi
dt
−∆xiui

d

dt
(ρiui)

− ui


γ∆xiρiui + ∆xiρi

∑

j

ρj (ui − uj)ψij


 .

Finally, this last inequality results in the desired cell entropy inequality in (5.12) by rear-
ranging according to (5.1), yielding

∆xi
dηi
dt

+ ∆xiHi
dρi
dt

+Gi+1/2 −Gi−1/2 = −ui


γ∆xiρiui + ∆xiρi

∑

j

ρj (ui − uj)ψij


 .

(5.25)
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(v) The last property of the scheme and formulas (5.13)-(5.14) follow by summing over the index i
over identity in (5.25), collecting terms and symmetrizing the dissipation using the symmetry
of ψ.

(vi) Starting from the finite volume equation for the density in (5.1),

∆xi
dρi
dt

= −Fρ
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
+ Fρ

(
UHR,−i−1/2 , U

HR,+
i−1/2

)
,

one can multiply it by xi and sum it over the index i, resulting in

d

dt

(∑

i

∆xiρixi

)
=
∑

i

xi

(
−Fρ

(
UHR,−i+1/2 , U

HR,+
i+1/2

)
+ Fρ

(
UHR,−i−1/2 , U

HR,+
i−1/2

))
.

By rearranging and considering, for instance, periodic or no flux boundary conditions, we
get (5.15).

On the other hand, the finite volume equation for the momentum in (5.1), after summing
over the index i, becomes

d

dt

(∑

i

∆xiρiui

)
=
∑

i

(
P
(
ρHR,−i+1/2

)
− P

(
ρHR,+i−1/2

))
− γ

∑

i

∆xiρiui

−
∑

i,j

∆xi∆xjρiρj(ui − uj)ψij ,
(5.26)

since the numerical fluxes cancel out due to the sum over the index i. In addition, the
Cucker-Smale damping term also vanishes due to the symmetry in ψ(x). Finally, if the
initial density is symmetric and the initial velocity antisymmetric, the sum of pressures in
the RHS of (5.26) is 0, due to the symmetry in the density. This implies that the discrete
solution for the density and momentum maintains those symmetries, since (5.26) is simplified
as ∑

i

∆xiρiui = 0

and as a result (5.15) reduces to (5.16). This means that the discrete centre of mass is
conserved in time and is centred at 0, for initial symmetric densities and initial antisymmetric
velocities.

Remark 5.1.1. As a consequence of the previous proofs, our scheme conserves all the structural
properties of the hydrodynamic system (4.5) at the semidiscrete level including the dissipation of
the discrete free energy (4.8) and the characterization of the steady states. These properties are
analogous to those obtained for finite volume schemes in the overdamped limit [55, 264].

Remark 5.1.2. All the previous properties, which are applicable for free energies of the form (4.2),
can be extended to the general free energies in (13.7). It can be shown indeed that the discrete
analogue of the free energy dissipation in (5.13) still holds for a discrete total energy defined as in
(5.14) and a discrete free energy of the form

F∆ =
∑

i

∆xi [Π (ρi) + Viρi] +
1

2

∑

i

∆xiρiKi, (5.27)

where Ki is a discrete approximation of K(W (x) ? ρ) at the node xi and is evaluated as

Ki = K


∑

j

∆xjWijρj


 . (5.28)
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5.2 Second-order extension

The usual procedure to extend a first-order scheme to second order is by computing the numerical
fluxes (5.3) from reconstructed values of the density and momentum at each side of the boundary,
contrary to the cell-centred values taken for the first-order schemes (5.5). These values are clas-
sically computed in three steps: prediction of the gradients in each cell, linear extrapolation and
limiting procedure to preserve nonnegativity. For instance, MUSCL [223] is a usual reconstruction
procedure following these steps. From here the values ρ+

i+1/2, ρ−i+1/2, u+
i+1/2 and u−i+1/2 are obtained

∀i, where ρ+
i+1/2 indicates the reconstruction at the right of the boundary xi+1/2 and ρ−i+1/2 at the

left. Then the inputs for the numerical flux in (5.3), for a usual second-order scheme, are

Fi+1/2 = F
(
U−i+1/2, U

+
i+1/2

)
.

This procedure has already been adapted to satisfy the well-balanced property and maintain the
second order for specific applications, such as shallow water [11] or chemotaxis [131]. In this
subsection the objective is to extend the procedure to general free energies of the form (4.2).
As it happened for the well-balanced first-order scheme, the boundary values introduced in the
numerical flux, which in this case are U−i+1/2 and U+

i+1/2, need to be adapted to satisfy the well-
balanced property.

For the well-balanced scheme the first step is to reconstruct the boundary values ρ+
i−1/2, ρ−i+1/2,

u+
i−1/2 and u−i+1/2 following the three mentioned steps. In addition, the reconstructed values of

the potential H(x, ρ) at the boundaries, H−i+1/2 and H+
i−1/2 ∀i, have to be also computed. This is

done as suggested in [11]. Instead of reconstructing directly H−i+1/2 and H+
i−1/2 following the three

mentioned steps, for certain applications one has to reconstruct firstly (Π′(ρ) +H(x, ρ))i to obtain
(Π′(ρ) +H(x, ρ))−i+1/2 and (Π′(ρ) +H(x, ρ))+

i−1/2, and subsequently compute H−i+1/2 and H+
i−1/2

as
H−i+1/2 =

(
Π′(ρ) +H(x, ρ)

)−
i+1/2

−Π′
(
ρ−i+1/2

)
,

H+
i−1/2 =

(
Π′(ρ) +H(x, ρ)

)+
i−1/2

−Π′
(
ρ+
i−1/2

)
.

This is shown in [11] to be necessary in order to maintain nonnegativity and the steady state in
applications where there is an interface between dry and wet cells. For instance, these interfaces
appear when considering pressures of the form P = ρm with m > 0, as it is shown in Examples 5.3.4
and 5.3.6 of Section 5.3. For other applications where vacuum regions do not occur, the values
H−i+1/2 and H+

i−1/2 can be directly reconstructed following the three mentioned steps.

After this first step, the inputs for the numerical flux are updated from (5.3) to satisfy the
well-balanced property as

Fi+1/2 = F
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
, where UHR,−i+1/2 =

(
ρHR,−i+1/2

ρHR,−i+1/2u
−
i+1/2

)
, UHR,+i+1/2 =

(
ρHR,+i+1/2

ρHR,+i+1/2u
+
i+1/2

)
.

The interface values ρHR,±i+1/2 are reconstructed as in the first-order scheme, by taking into account

the steady state relation in (5.6). The application of (5.6) to the cells with centred nodes xi and
xi+1 leads to

Π′
(
ρHR,−i+1/2

)
+Hi+1/2 = Π′

(
ρ−i+1/2

)
+H−i+1/2,

Π′
(
ρHR,+i+1/2

)
+Hi+1/2 = Π′

(
ρ+
i+1/2

)
+H+

i+1/2,

where the term Hi+1/2 is evaluated to preserve consistency and stability, with an upwind or average
value obtained as

Hi+1/2 = max
(
H+
i−1/2, H

+
i+1/2

)
or Hi+1/2 =

1

2

(
H+
i−1/2 +H+

i+1/2

)
.
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Then, by denoting as ξ(x) the inverse function of Π′(x), the interface values ρHR,±i+1/2 are computed
as

ρHR,−i+1/2 = ξ
(

Π′
(
ρ−i+1/2

)
+H−i+1/2 −Hi+1/2

)
,

ρHR,+i+1/2 = ξ
(

Π′
(
ρ+
i+1/2

)
+H+

i+1/2 −Hi+1/2

)
.

The source term is again distributed along the interfaces,

SH,i = SHR,−i+1/2 + SHR,+i−1/2 + Sci ,

where

SHR,−i+1/2 =
1

∆xi

(
0

P
(
ρHR,−i+1/2

)
− P

(
ρ−i+1/2

)
)
, SHR,+i−1/2 =

1

∆xi

(
0

P
(
ρ+
i−1/2

)
− P

(
ρHR,+i−1/2

)
)
.

The inclusion of the central source term Sci is vital in order to preserve the second-order accuracy
and well-balanced property of the scheme. This idea was firstly introduced in [173], where second
order error estimates are derived under certain conditions for Sci . Further works customize this
central source term Sci for particular applications such as shallow water equations [11, 174] or
chemotaxis [131]. There is some flexibility in the choice of this term, as far as it satisfies two
criteria for second-order accuracy and well-balancing. In the following remark we summarize the
two criteria, which are described with more extend in Ref. [42] (specifically, (4.187) for second-order
accuracy, and (4.204) for well-balancing).

Remark 5.2.1. The central source term Sci preserves the second-order accuracy and well-balanced
property of the scheme if the following two criteria are satisfied:

(i) Second-order accuracy if

Sci

(
ρ+
i−1/2, ρ

−
i+1/2, H

−
i+1/2, H

+
i−1/2

)
=




0(
−ρ+

i−1/2
+ρ−

i+1/2

2 +O
(∣∣∣ρ−i+1/2 − ρ

+
i−1/2

∣∣∣
2

+
∣∣∣H+

i−1/2 −H
−
i+1/2

∣∣∣
2
))(

H+
i−1/2 −H

−
i+1/2

)



(5.29)
as ρ−i+1/2 − ρ

+
i−1/2 → 0 and H+

i−1/2 −H
−
i+1/2 → 0.

(ii) Well-balanced property if

Sci

(
ρ+
i−1/2, ρ

−
i+1/2, H

−
i+1/2, H

+
i−1/2

)
= F

(
ρ−i+1/2, H

+
i−1/2

)
− F

(
ρ+
i−1/2, H

−
i+1/2

)
, (5.30)

meaning that the steady states are let invariant.

The objective here is to provide a general form of Sci which applies to general free energies of
the form (4.2). Following the strategy in [42], we propose to approximate the generalized centred
sources as

Sci =
1

∆xi

(
0

P (ρ−i+1/2)− P (ρ−,∗i+1/2)− P (ρ+
i−1/2) + P (ρ+,∗

i−1/2)

)
−
(

0
γρiui + ρi

∑
j(ui − uj)ρjψ(xi − xj)

)
,

where the values ρ+,∗
i−1/2 and ρ−,∗i+1/2 are computed from the steady state relation (5.6) as

ρ+,∗
i−1/2 = ξ

(
Π′
(
ρ+
i−1/2

)
+H+

i−1/2 −H
∗
i

)
,

ρ−,∗i+1/2 = ξ
(

Π′
(
ρ−i+1/2

)
+H−i+1/2 −H

∗
i

)
,
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and H∗i is a centred approximation of the potentials satisfying

H∗i =
1

2
(H−i+1/2 +H+

i−1/2).

The proposed structure of Sci is suggested in [42] and satisfies the two criteria for second-order
accuracy (5.29) and well-balanced property (5.30).

The source term with damping SD(x, U) is discretized as in the first-order scheme,

SD,i = −




0

γρiui + ρi
∑

j

∆xj(ui − uj)ρjψij


 .

Overall, the second-order semidiscrete scheme defined in (5.2) and constructed as detailed in
Section 5.2, and for a numerical flux F satisfying the properties stated in the introduction of
Chapter 5, satisfies:

(i) preservation of the nonnegativity of ρi(t);

(ii) well-balanced property, thus preserving the steady states given by (5.6);

(iii) consistency with the system (4.5);

(iv) second-order accuracy.

The proof of these properties is omitted here since it follows the same techniques from [11, 131],
and the general procedure is very similar to the one from the first-order scheme in Subsection 5.1.1.

5.3 Numerical simulations

This section details numerical simulations in which the first- and second-order schemes from Chap-
ter 5 are employed. Firstly, Subsection 5.3.1 contains the validation of the first- and second-order
schemes: the well-balanced property and the order of accuracy of the schemes are tested in four
different configurations. Secondly, Subsection 5.3.2 illustrates the application of the numerical
schemes to a variety of choices of the free energy, leading to interesting numerical experiments for
which analytical results are limited in the literature.

Unless otherwise stated, all simulations contain linear damping with γ = 1 and have a to-
tal unitary mass. Only the indicated ones contain the Cucker-Smale damping term, where the
communication function satisfies

ψ(x) =
1

(1 + |x|2)
1
4

.

The pressure function in the simulations has the form of P (ρ) = ρm, with m ≥ 1. When
m = 1 the pressure satisfies the ideal-gas relation P (ρ) = ρ, and the density does not develop
vacuum regions during the temporal evolution. For this case the employed numerical flux is the
versatile local Lax-Friedrich flux. For the simulations where P (ρ) = ρm and m > 1 vacuum regions
with ρ = 0 are generated. This implies that the hyperbolicity of the system (4.5) is lost in those
regions, and the local Lax-Friedrich scheme fails. As a result, an appropriate numerical flux has
to be implemented to handle the vacuum regions. In this case a kinetic solver based on [236], and
already implemented in previous works [12], is employed.

The time discretization is accomplished by means of the third order TVD Runge-Kutta method
[156] and the CFL number is taken as 0.7 in all the simulations. The boundary conditions are chosen
to be no flux. For more details about the numerical fluxes, temporal discretization, boundary
conditions and CFL number, we remit the reader to Appendix 5.A.

Videos from all the simulations displayed in this work are available at [232].
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5.3.1 Validation of the numerical scheme

The validation of the schemes from Chapter 5 includes a test for the well-balanced property and a
test for the order of accuracy in the transient regimes. These tests are completed in four different
examples with steady states satisfying (4.6), which differ in the choice of the free energy, potentials
and the inclusion of Cucker-Smale damping terms. An additional fifth example presenting moving
steady states of the form (4.12) is considered to show that our schemes satisfy the order of accuracy
test even for this challenging steady states.

The well-balanced property test evaluates whether the steady state solution is preserved in
time up to machine precision. As a result, the initial condition of the simulation has to be directly
the steady state. The results of this test for the four examples of this section are presented in
Table 5.1. All the simulations are run from t = 0 to t = 5, and the number of cells is 50.

Table 5.1: Preservation of the steady state for Examples 5.3.1 to 5.3.4 with the first- and second-
order schemes and double precision, at t = 5

Order of the scheme L1 error L∞ error

Example 5.3.1
1st 9.1012E-18 1.1102E-16
2nd 2.3191E-17 2.2843E-16

Example 5.3.2
1st 7.8666E-18 1.1102E-16
2nd 1.4975E-17 1.5057E-16

Example 5.3.3
1st 5.5020E-17 6.6613E-16
2nd 6.4514E-17 7.2164E-16

Example 5.3.4
1st 1.3728E-17 2.2204E-16
2nd 3.4478E-18 1.1102E-16

The order of accuracy in the transient regimes test is based on evaluating the L1 error of a
numerical solution for a particular choice of ∆x with respect to a reference solution, and for a time
when the steady state is not reached yet. Subsequent L1 errors are obtained after halving the ∆x
of the previous numerical solution, doubling in this way the total number of cells. The order of
the scheme is then computed as

Order of the scheme = ln2

(
L1 error(∆x)

L1 error(∆x/2)

)
, (5.31)

and the ∆x is halved four times.
The reference solution is frequently taken as an explicit solution of the system that is being

tested. In this case, the system in (4.5) does not have an explicit solution in time for the free
energies presented here, even though the steady solution can be analytically computed. Since we
are interested in evaluating the order of accuracy away from equilibrium, the reference solution
is computed from the same numerical scheme but with a really small ∆x, so that the numerical
solution can be considered as the exact one. In all cases here the reference solution is obtained
from a mesh with 25600 cells, while the numerical solutions employ a number of cells between 50
and 400.

The results from the accuracy tests are shown in Tables 5.2 to 5.6. The simulations were run
with the configurations specified in each example and from t = 0 to t = 0.3, unless otherwise
stated. The final time of t = 0.3 is taken so that all examples are in the transient regime.

Example 5.3.1 (Ideal-gas pressure and attractive potential). In this example the pressure

satisfies P (ρ) = ρ and there is an external potential of the form V (x) = x2

2 . As a result, the
relation holding in the steady state is

δF
δρ

= Π′(ρ) +H = ln(ρ) +
x2

2
= constant on supp(ρ) and u = 0. (5.32)
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The steady state, for an initial mass M0, explicitly satisfies

ρ∞ = M0
e−x

2/2

∫
R e
−x2/2dx

. (5.33)

For the order of accuracy test the initial conditions are

ρ(x, t = 0) = M0
0.2 + 5 cos

(
πx
10

)
∫
R
(
0.2 + 5 cos

(
πx
10

))
dx
, ρu(x, t = 0) = −0.05 sin

(πx
10

)
, x ∈ [−5, 5], (5.34)

with M0 equal to 1 so that the total mass is unitary. The order of accuracy test from this example
is shown in Table 5.2, and the evolution of the density, momentum, variation of the free energy with
respect to the density, total energy and free energy are depicted in Figure 5.1. From Figure 5.1d
one can notice how the discrete total energy always decreases in time, due to the discrete free
energy dissipation property (5.13), and how there is an exchange between free energy and kinetic
energy which makes the discrete free energy plot oscillate.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.1: Temporal evolution of Example 5.3.1.
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Table 5.2: Accuracy test for Example 5.3.1 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.8797E-03 - 7.6166E-04 -

100 3.4068E-03 1.01 2.0206E-04 1.91

200 1.6826E-03 1.02 5.0308E-05 2.01

400 8.3104E-04 1.02 1.2879E-05 1.97

Example 5.3.2 (Ideal-gas pressure, attractive potential and Cucker-Smale damping
terms). In this example the pressure satisfies P (ρ) = ρ and there is an external potential of the

form V (x) = x2

2 . The difference with Example 5.3.1 is that the Cucker-Smale damping terms are
included, and the linear damping term −ρu excluded.

The relation holding in the steady state is expressed in (5.32) and the steady state satisfies
(5.33). The initial conditions are also (5.34). The order of accuracy test from this example is
shown in Table 5.3, and the evolution of the density, momentum, variation of the free energy with
respect to the density, total energy and free energy are depicted in Figure 5.2. The lack of linear
damping leads to higher oscillations in the momentum plots in comparison to Figure 5.1. There is
also an exchange of kinetic and free energy during the temporal evolution, which could be noticed
from the oscillations of the discrete free energy in Figure 5.2d.

Table 5.3: Accuracy test for Example 5.3.2 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.3195E-03 - 7.3045E-04 -

100 3.2658E-03 0.95 1.9462E-04 1.91

200 1.6373E-03 1.00 4.8629E-05 2.00

400 8.7771E-04 1.01 1.2468E-05 1.97

Example 5.3.3 (Ideal-gas pressure and attractive kernel). In this case study the pressure

satisfies P (ρ) = ρ and there is an interaction potential with a kernel of the form W (x) = x2

2 . The
steady state for a general total mass M0 is again equal to the steady states from Examples 5.3.1
and 5.3.2 with unit mass. The linear damping coefficient γ has been reduced, γ = 0.01, in order
to compare the evolution with respect to the previous examples.

The initial conditions for the order of accuracy test are the ones from Example 5.3.1 in (5.34).
The order of accuracy test from this example is shown in Table 5.4, and the evolution of the density,
momentum, variation of the free energy with respect to the density, total energy and free energy
are depicted in Figure 5.3. Due to the low value of γ in the linear damping, there is a repeated
exchange of free energy and kinetic energy during the temporal evolution, which can be noticed
from the oscillations of the free energy plot in Figure 5.3d. In the previous examples the linear
damping term dissipates the momentum in a faster timescale and these exchanges only last for a
few oscillations. One can also notice that the time to reach the steady state is higher than in the
previous examples.

Example 5.3.4 (Pressure proportional to square of density and attractive potential).
For this example the pressure satisfies P (ρ) = ρ2 and there is an external potential of the form

V (x) = x2

2 . Contrary to the previous Examples 5.3.1 to 5.3.3, the choice of P (ρ) = ρ2 implies
that regions of vacuum where ρ = 0 appear in the evolution and steady solution of the system. As

45



Chapter 5. First- and second-order well-balanced schemes

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.2: Temporal evolution of Example 5.3.2.

Table 5.4: Accuracy test for Example 5.3.3 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.6938E-03 - 7.6135E-04 -

100 3.4702E-03 0.95 2.0207E-04 1.91

200 1.7410E-03 1.00 5.0306E-05 2.01

400 8.6890E-04 1.00 1.2879E-05 1.97

explained in the introduction of this section, the numerical flux employed for this case is a kinetic
solver based on [42].

The steady state for this example with an initial mass of M0 satisfies

ρ∞(x) =




−1

4

(
x+ 3

√
3M0

)(
x− 3

√
3M0

)
for x ∈

[
− 3
√

3M0,
3
√

3M0

]
,

0 otherwise.
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.3: Temporal evolution of Example 5.3.3.

The initial conditions taken for the order of accuracy test are

ρ(x, t = 0) = M0
0.1 + e−x

2

∫
R
(
0.1 + e−x2

)
dx
, ρu(x, t = 0) = −0.2 sin

(πx
10

)
, x ∈ [−5, 5],

with M0 being the mass of the system and equal to 1. The order of accuracy test from this example
is shown in Table 5.5, and the evolution of the density, momentum, variation of the free energy with
respect to the density, total energy and free energy are depicted in Figure 5.4. The initial kinetic
energy represents a large part of the initial total energy, and there is also an exchange between
the kinetic energy and the free energy resulting in the oscillations for the plot of the discrete free
energy.

As a remark, in this example the order of accuracy for the schemes with order higher than one
is reduced to one both in the vacuum and interface regions, as it is also pointed out in [131]. The
orders showed in Table 5.5 are computed by considering only the cells in the support of the density
that are away from the interface region, and the vacuum regions are not taken into consideration.

Example 5.3.5 (Moving steady state with ideal-gas pressure, attractive kernel and
Cucker-Smale damping term). The purpose of this example is to show that our scheme from
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.4: Temporal evolution of Example 5.3.4.

Table 5.5: Accuracy test for Example 5.3.4 with the first and second-order schemes, at t = 0.3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 6.8826E-03 - 1.0735E-03 -

100 3.5106E-03 0.97 2.9188E-04 1.88

200 1.7596E-03 1.00 7.6113E-05 1.94

400 8.8184E-04 1.00 1.9103E-05 1.99

Chapter 5 preserves the order of accuracy for moving steady states of the form (4.12), where the
velocity is not dissipated. As mentioned in the introduction, the generalization of well-balanced
schemes to preserve moving steady states has proven to be quite complicated [218, 287], and it is
not the aim of this work to construct such schemes.

For this example the pressure satisfies P (ρ) = ρ and there is an interaction potential with a

kernel of the form W (x) = x2

2 . The linear damping is eliminated and the Cucker-Smale damping
term included. Under this configuration, there exists an explicit solution for system (4.5) consisting
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in a travelling wave of the form

ρ(x, t) = M0
e−(x−ut)2/2

∫
R e
−x2/2dx

, u(x, t) = 0.2, (5.35)

with M0 equals to 1 so that the total mass is unitary. As a result, the order of accuracy test can
be accomplished by computing the error with respect to the exact reference solution, contrary to
what was proposed in the previous examples. It should be remarked however that the velocity and
the variation of the free energy with respect to the density profiles are not kept constant along the
domain by our numerical scheme, since the well-balanced property for moving steady states is not
satisfied.

The initial conditions for our simulation are (5.35) at t = 0, in a numerical domain with
x ∈ [−8, 9]. The simulation is run until t = 3. The table of errors for different number of cells is
showed in Table 5.6, and a depiction of the evolution of the system is illustrated in Figure 5.5. The
velocity and the variation of the free energy plots are not included since they are not maintained
constant with our scheme.

Table 5.6: Accuracy test for Example 5.3.5 with the first and second-order schemes, at t = 3

Number of
cells

First-order Second-order
L1 error order L1 error order

50 9.84245E-03 - 2.78988E-03 -

100 4.92029E-03 1.00 9.09342E-04 1.62

200 2.44627E-03 1.01 2.55340E-04 1.83

400 1.21228E-03 1.01 7.47905E-05 1.77

(a) Evolution of the density (b) Evolution of the total energy and free
energy

Figure 5.5: Temporal evolution of Example 5.3.5.

5.3.2 Numerical experiments and applications

This subsection applies the well-balanced scheme in Chapter 5 to a variety of free energies from
systems which have acquired an important consideration in the literature. Some of these systems
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have been mainly studied in their overdamped form, resulting when γ → ∞, and as a result our
well-balanced scheme can be useful in determining the role that inertia plays in those systems.

Example 5.3.6 (Pressure proportional to square of density and double-well potential).
In this example the pressure is taken as in Example 5.3.4, with P (ρ) = ρ2, thus leading to vacuum
regions. The external potential are chosen to have a double-well shape of the form V (x) = a x4 −
b x2, with a, b > 0. This system exhibits a variety of steady states depending on the symmetry of
the initial condition, the initial mass and the shape of the external potential V (x). The general
expression for the steady states is

ρ∞ = (C(x)− V (x))+ =
(
C(x)− a x4 + b x2

)
+
,

where C(x) is a piecewise constant function, zero outside the support of the density. Notice that
C(x) can attain a different value in each connected component of the support of the density.

Three different initial data are simulated in order to compare the resulting long time asymp-
totics, i.e., we show that different steady states are achieved corresponding to different initial data.
The initial conditions are

ρ(x, t = 0) = M0
0.1 + e−(x−x0)2

∫
R
(
0.1 + e−(x−x0)2

)
dx
, ρu(x, t = 0) = −0.2 sin

(πx
10

)
, x ∈ [−10, 10],

with M0 equal to 1 so that the total mass is unitary. When x0 = 0, the initial density is symmetric,
and when x0 6= 0 the initial density is asymmetric.

a. First case: The external potential satisfies V (x) = x4

4 − 3x2

2 and the initial density is symmetric
with x0 = 0. For this configuration the steady solution presents two disconnected bumps of
density with the same mass in each of them, as it is shown in Figures 5.6a and 5.6b. The
variation of the free energy with respect to the density presents the same constant value in
the two disconnected supports of the density. The evolution is symmetric throughout.

b. Second case: The external potential satisfies V (x) = x4

4 − 3x2

2 and the initial density is asym-
metric with x0 = 1. The final steady density is characterised again by the two disconnected
supports but for this configuration the mass in each of them varies, as shown in Figures 5.6c
and 5.6d. Similarly, the variation of the free energy with respect to the density presents
different constant values in the two disconnected supports of the density.

c. Third case: for this last configuration the external potential is varied and satisfies V (x) =
x4

4 − x2

2 , and the initial density is asymmetric with x0 = 1. For this case, even though the
initial density is asymmetric, the final steady density is symmetric and compactly supported
due to the shape of the potential, as it is shown in Figures 5.6e and 5.6f. The variation of
the free energy with respect to the density presents constant value in all the support of the
density.

This behaviour shows that this problem has a complicated bifurcation diagram and correspond-
ing stability properties depending on the parameters, for instance the coefficient on the potential
well controlling the depth and support of the wells used above.

Example 5.3.7 (Ideal pressure with noise parameter and its phase transition). The
model proposed for this example has a pressure satisfying P (ρ) = σρ, where σ is a noise parameter,

and external and interaction potentials chosen to be V (x) = x4

4 − x2

2 and W (x) = x2

2 , respectively.
The corresponding model in the overdamped limit has been previously studied in the context of
collective behaviour [21], mean field limits [150], and systemic risk [141], see also [271] for the proof
in one dimension.
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(a) Density in first case (b) Variation of the free energy in first case

(c) Density in second case (d) Evolution of the variation of the free
energy in second case

(e) Density in third case (f) Variation of the free energy in third case

Figure 5.6: Temporal evolution of the first, second and third cases from Example 5.3.6.
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We find that this hydrodynamic system exhibits a supercritical pitchfork bifurcation in the
centre of mass x̂ of the steady state when varying the noise parameter σ as its overdamped limit
counterpart discussed above. For values of σ higher than a certain threshold, all steady states
are symmetric and have the centre of mass x̂ at x = 0. However, when σ decreases below that
threshold, the pitchfork bifurcation takes place. On the one hand, if the centre of mass of the
initial density is at x = 0, the final centre of mass in the steady state remains at x = 0. On
the other hand, if the centre of mass of the initial density is at x 6= 0, the centre of mass of the
steady state approaches asymptotically to x = 1 or x = −1 as σ → 0, depending on the sign of
the initial centre of mass. Finally, when σ = 0, the steady state turns into a Dirac delta at x = 0,
x = 1 or x = −1, depending on the initial density. The pitchfork bifurcation is supercritical since

(a) Bifurcation diagram (b) Steady state profiles for different σ

Figure 5.7: Bifurcation diagram (a) and steady states for different values of the noise parameter
σ (b) from Example 5.3.7

the branch of the bifurcation corresponding to x̂ = 0 is unstable. This means that any deviation
from an initial centre of mass at x = 0 leads to a steady centre of mass located in one of the two
branches of the parabola in the bifurcation state.

The numerical scheme outlined in Chapter 5 captures this bifurcation diagram for the evolution
of the hydrodynamic system. The results are shown in Figure 5.7. In it, Figure 5.7a depicts the
bifurcation diagram of the final centre of mass when the noise parameter σ is varied, and for an
initial centre of mass at x 6= 0. For a symmetric initial density and antisymmetric velocity, the
centre of mass numerically remains at x = 0 for an adequate stopping criterion, since property (vi)
in Subsection 5.1.1 holds. However, any slight error in the numerical computation unavoidably
leads to a steady state deviating towards any of the two stable branches, due to the strong unstable
nature of the branch with x = 0. In Figure 5.7a there is an illustration of the steady states resulting
from an initial centre of mass located at x > 0, for different choices of the noise parameter σ. For
σ = 0.001, which is the smallest value of σ simulated, the density profile approaches the theoretical
Dirac delta expected at x = 1 when σ → 0. When σ = 0 the hyperbolicity of the system in (4.5) is
lost since the pressure term vanishes, and as a result the numerical approach in Chapter 5 cannot
be applied.

The numerical strategy followed to recover the bifurcation diagram is based on the so-called
differential continuation. It simply means that, as σ → 0, the subsequent simulations with new and
lower values of σ have as initial conditions the previous steady state from the last simulation. This
allows to complete the bifurcation diagram, since otherwise the simulations with really small σ take
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long time to converge for general initial conditions. In addition, to maintain sufficient resolution
for the steady states close to the Dirac delta, the mesh is adapted for each simulation. This is
accomplished by firstly interpolating the previous steady state with a piecewise cubic Hermite
polynomial, which preserves the shape and avoids oscillations, and secondly by creating a new
and narrower mesh where the interpolating polynomial is employed to construct the new initial
condition for the differential continuation.

Example 5.3.8 (Hydrodynamic generalization of the Keller-Segel system - Generalized
Euler-Poisson systems). The original Keller-Segel model has been widely employed in chemo-
taxis, which is usually defined as the directed movement of cells and organisms in response to
chemical gradients [177]. These systems also find their applications in astrophysics and gravitation
[113, 261]. It is a system of two coupled drift-diffusion differential equations for the density ρ and
the chemoattractant concentration S,




∂tρ = ∇ · (∇P (ρ)− χρ∇S) ,

∂tS = Ds∆S − θS + βρ.

In this system P (ρ) is the pressure, and the biological/physical meaning of the constants χ, Ds,
α and β can be reviewed in the literature [28, 167, 169]. For this example they are simplified as
usual so that χ = Ds = β = 1 and θ = 0. A further assumption usually taken in the literature is
that ∂tρ is very big in comparison to ∂tS [167], leading to a simplification of the equation for the
chemoattractant concentration S, which becomes the Poisson equation −∆S = ρ. Hydrodynamic
extensions of the model, which include inertial effects, have also been proven to be essential for
certain applications[82, 83, 138], leading to a hyperbolic system of equations with linear damping
which in one dimension reads as





∂tρ+ ∂x (ρu) = 0,

∂t(ρu)+ ∂x(ρu2)= −∂xP (ρ) + ∂xS − γρu,

−∂xxS = ρ.

By using the fundamental solution of the Laplacian in one dimension, this equation becomes
2S = |x| ? ρ. This term, after neglecting the constant, can be plugged in the momentum equation
so that the last equation for S can be removed. As a result, the hydrodynamic Keller-Segel
model is reduced to the system of equations (4.1) considered in this work, with W (x) = |x|/2,
V (x) = 0 and ψ ≡ 0. As a final generalization [55], the original interaction potential W (x) = |x|/2
can be extended to be a homogeneous kernel W (x) = |x|α/α, where α > −1. By convention,
W (x) = ln |x| for α = 0. Further generalizations are Morse-like potentials as in [55, 64] where
W (x) = 1− exp(−|x|α/α) with α > 0.

The solution of this system can present a rich variety of behaviours due to the competition
between the attraction from the local kernel W (x) and the repulsion caused by the diffusion of
the pressure P (ρ), as reviewed in [49, 50]. By appropriately tuning the parameters α in the kernel
W (x) and m in the pressure P (ρ), one can find compactly supported steady states, self-similar
behaviour, or finite-time blow up. Three different regimes have been studied in the overdamped
generalized Keller-Segel model [55]: diffusion dominated regime (m > 1 − α), balanced regime
(m = 1− α) where a critical mass separates self-similar and blow-up behaviour, and aggregation-
dominated regime (m < 1 − α). These three regimes have not been so far analytically studied
for the hydrodynamic system except for few particular cases [57, 58], and the presence of inertia
indicates that the initial momentum profile plays a role together with the mass of the system to
separate diffusive from blow-up behaviour.
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The well-balanced scheme provided in Chapter 5 is a useful tool to effectively reach the varied
steady states resulting from different values of α and m. The objective of this example is to
provide some numerical experiments to show the richness of possible behaviours. This scheme can
be eventually employed to numerically validate the theoretical studies concerning the existence of
the different regimes for the hydrodynamic system for instance, or how the choice of the initial
momentum or the total mass can lead to diffusive or blow-up behaviour. This will be explored
further elsewhere.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.8: Temporal evolution of Example 5.3.8 with compactly-supported steady state.

We have conducted two simulations with different choices of the parameters α and m. In both
m > 1, so that a proper numerical flux able to deal with vacuum regions has to be implemented. As
emphasised in the introduction of this section, the kinetic scheme developed in [235] is employed.
Both of the simulations share the same initial conditions,

ρ(x, t = 0) = M0
e−

4(x+2)2

10 + e−
4(x−2)2

10

∫
R

(
e−

4(x−2)2

10 + e−
4(x+2)2

10

)
dx

, ρu(x, t = 0) = 0, x ∈ [−8, 8],

where the total mass M0 of the system is 1.
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In the first simulation the choice of parameters is α = 0.5 and m = 1.5. According to the
regime classification for the overdamped system, this would correspond to the diffusion-dominated
regime. In the overdamped limit, solutions exist globally in time, and the steady state is compactly
supported. The results are depicted in Figure 5.8 and adequately agree with this regime. In the
steady state the variation of the free energy with respect to density has a constant value only
in the support of the density, as expected. The total energy decreases in time and there is no
exchange between the free energy and the kinetic energy since the free energy in Figure 5.8d does
not oscillate.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.9: Temporal evolution of Example 5.3.8 with finite-time blow up.

The second simulation has a choice of parameters of α = −0.5 and m = 1.3. In the case of the
overdamped system this would correspond to the aggregation-dominated regime, where blow-up
and diffusive behaviour coexist and depend on the initial density profile. The results from this
simulation of the hydrodynamic system are illustrated in Figure 5.9. For this particular initial
condition there is analytically finite-time blow up. Our scheme, due to the conservation of mass
of the finite volume scheme, concentrates all the mass in one single cell in finite time, that is,
the scheme achieves in finite time the better approximation to a Dirac Delta at a point with the
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chosen mesh. Once this happens, this artificial numerical steady state depending on the mesh is
kept for all times. From Figure 5.9c it is evident that the variation of the free energy with respect
to density does not reach a constant value, and in Figure 5.9d the free energy presents a sharp
decay when the concentration in one cell is produced (around t ≈ 65). The value of the slope in
the free energy plot theoretically tends to −∞ due to the blow up, but in the simulation the decay
is halted due to conservation of mass and the artificial steady state. This agrees with the fact
that the expected Dirac delta profile in the density at the blow up time is obviously not reached
numerically. It was also checked that this phenomena repeats for all meshes leading to more
concentrated artificial steady states with more negative free energy values for more refined meshes.
For other more spread initial conditions our scheme produces diffusive behaviour as expected from
theoretical considerations.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.10: Temporal evolution of Example 5.3.8 with Morse-type potential and three initial
density bumps.

A further simulation is carried out to explore the convergence in time towards equilibration
with a Morse-type potential of the form W (x) = −e−|x|2/2/

√
2π. With this potential the attraction

between two bumps of density separated at a considerable distance is quite small. However, when
enough time has passed and the bumps get closer, they merge in an exponentially fast pace due
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to the convexity of the Gaussian potential, and a new equilibrium is reached with just one bump.
The interesting fact about this system is therefore the existence of two timescales: the time to get
the bumps of density close enough, which could be arbitrarily slow, and the time to merge the
bumps, which is exponentially fast in time.

We have set up a simulation whose initial state presents three bumps of density, with the initial
conditions satisfying

ρ(x, t = 0) = M0
e−

(x+3)2

2 + e−
(x−3)2

2 + 0.55e−
(x−8.5)2

2

∫
R

(
e−

(x+3)2

2 + e−
(x−3)2

2 + 0.55e−
(x−8.5)2

2

)
dx

, ρu(x, t = 0) = 0, x ∈ [−8, 12],

and the total mass of the system equal to M0 = 1.2. The parameter m in the pressure satisfies
m = 3, and the effect of the linear damping is reduced by assigning γ = 0.05.

The results are depicted in Figure 5.10. In Figure 5.10a one can observe how the two central
bumps of density merge after some time, and how the third bump, with less mass, starts getting
closer in time until it also blends. This is also reflected in the evolution of the free energy in
Figure 5.10d, where there are two sharp and exponential decays corresponding to the merges of
the bumps.

Example 5.3.9 (DDFT for 1D hard rods). Classical (D)DFT is a theoretical framework
provided by nonequilibrium statistical mechanics but has increasingly become a widely-employed
method for the computational scrutiny of the microscopic structure of both uniform and non-
uniform fluids [121, 147, 202, 293, 294]. The DDFT equations have the same form as in (4.5)
when the hydrodynamic interactions are neglected. The starting point in (D)DFT is a functional
F [ρ] for the fluid’s free energy which encodes all microscopic information such as the ideal-gas
part, short-range repulsive effects induced by molecular packing, attractive interactions and exter-
nal fields. This functional can be exactly derived only for a limited number of applications, for
instance the one-dimensional hard rod system from Percus [230]. However, in general it has to be
approximated by making appropriate assumptions, as e.g. in the so-called fundamental-measure
theory of Rosenfeld [241]. These assumptions are usually validated by carrying out appropriate
test simulations (e.g. of the underlying stochastic dynamics) to compare e.g. the DDFT system
with the approximate free-energy functional to the microscopic reference system [148].

The objective of this example is to show that the numerical scheme in Chapter 5 can also
be applied to the physical free-energy functionals employed in (D)DFT, which satisfy the more
complex expression for the free energy described in (13.7), and with a variation satisfying (13.8).
For this example the focus is on the hard rods system in one dimension. Its free energy has a
part depending on the local density and which satisfies the classical form for an ideal gas, with
P (ρ) = ρ. It is therefore usually denoted as the ideal part of the free energy,

Fid[ρ] =

∫
Π(ρ)dx =

∫
ρ(x) (ln ρ− 1) dx.

There is also a part of general free energy in (13.7) which contains the non-local dependence
of the density, and has different exact or approximative forms depending of the system under
consideration. In (D)DFT it is denoted as the excessive free energy, and for the hard rods satisfies

Fex[ρ] =
1

2

∫
K (W (x) ? ρ(x)) ρ(x)dx

= −1

2

∫
ρ(x+ σ/2) ln (1− η(x)) dx− 1

2

∫
ρ(x− σ/2) ln (1− η(x)) dx,

where σ is the length of a hard rod and η(x) the local packing fraction representing the probability
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.11: Temporal evolution of Example 5.3.9 with 8 hard rods and a confining potential.

that a point x is covered by a hard rod,

η(x) =

∫ σ
2

−σ
2

ρ(x+ y)dy.

The function K(x) in this case satisfies K(x) = ln(1 − x) and the kernel W (x) takes the form of
a characteristic function which limits the interval of the packing function (5.3.9). To obtain the
excessive free energy for the hard rods one has to also consider changes of variables in the integrals.
The last part of the general free energy in (13.7) corresponds to the effect of the external potential
V (x). On the whole, the variation of the free energy in (13.7) with respect to the density, for the
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case of hard rods, satisfies

δF [ρ]

δρ
=
δFid[ρ]

δρ
+
δFex[ρ]

δρ
+ V (x)

= ln(ρ)− 1

2
ln

(
1−

∫ x

x−σ
ρ(y)dy

)
− 1

2
ln

(
1−

∫ x+σ

x
ρ(y)dy

)

+
1

2

∫ x+σ/2

x−σ/2

(
ρ(x+ σ/2) + ρ(x− σ/2)

1− η(x)

)
dx+ V (x).

This system can be straightforwardly simulated with the well-balanced scheme from Chapter 5
by gathering the excessive part of the free energy and the external potentials under the term
H(x, ρ), so that

H(x, ρ) =
δFex[ρ]

δρ
+ V (x).

The first simulation seeks to capture the steady state reached by 8 hard rods of unitary mass
and length σ = 1 under the presence of an external potential of the form V (x) = x2. The initial
conditions of the simulation are

ρ(x, t = 0) = e−
x2

20.372 , ρu(x, t = 0) = 0, x ∈ [−13, 13],

where the density is chosen so that the total mass of the system is 8. The results are plotted in
Figure 5.11. The steady state reached for the density reveals layering due to the confining effects
of the external potential and the repulsion between the hard rods. These layering effects can be
amplified by increasing the coefficient in the external potential. It is also observed how each of the
8 peaks has a unitary width. This is due to the fact that the length of the hard rods σ was taken
as 1. The variation of the free energy with respect to the density also reaches a constant value
in all the domain. For microscopic simulations of the underlying stochastic dynamics for similar
examples we refer the reader to [147].

Starting from this last steady state, the second simulation performed for this example shows
how the hard rods diffuse when the confining potential is removed. This simulation has as initial
condition the previous steady state from Figure 5.11 and the external potential is set to V (x) = 0.
The results are depicted in Figure 5.12, and they share the same features of the simulations in
[207]. The final steady state of the density is uniform profile resultant from the diffusion of the
hard rods, and in this situation the variation of the free energy with respect to the density also
reaches a constant value in the steady state, as expected.
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free en-
ergy

(d) Evolution of the total energy and free
energy

Figure 5.12: Temporal evolution of Example 5.3.9 with 8 hard rods and no potential.
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Appendix

5.A Numerical flux, temporal scheme, and CFL condition

This appendix aims to present the necessary details to compute the numerical flux, boundary
conditions, the CFL condition, and the temporal discretization for the simulations in Section 5.3.

The pressure function in the simulations has the form of P (ρ) = ρm, with m ≥ 1. When m = 0
the pressure satisfies the ideal-gas relation P (ρ) = ρ, and the density does not present vacuum
regions during the temporal evolution. For this case the employed numerical flux is the versatile
local Lax-Friedrich flux, which approximates the flux at the boundary Fi+1/2 in (5.3) as

Fi+1/2 = F
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
=

1

2

(
F
(
UHR,−i+1/2

)
+ F

(
UHR,+i+1/2

)
− λi+ 1

2

(
UHR,+i+1/2 − U

HR,−
i+1/2

))
,

(5.36)
where λ is taken as the maximum of the absolute value of the eigenvalues of the system,

λi+ 1
2

= max(
UHR,−
i+1/2

,UHR,+
i+1/2

){∣∣∣u+
√
P ′(ρ)

∣∣∣ ,
∣∣∣u−

√
P ′(ρ)

∣∣∣
}
. (5.37)

This maximum is taken locally for every node, resulting in different values of λ along the lines
of nodes. It is also possible to take the maximum globally, leading to the classical Lax-Friedrich
scheme.

For the simulations where P (ρ) = ρm and m > 1 vacuum regions with ρ = 0 are generated.
This implies that the hiperbolicity of the system (4.5) is lost in those regions, and the local
Lax-Friedrich scheme fails. As a result, an appropriate numerical flux has to be implemented to
handle the vacuum regions. In this case a kinetic solver based on [236] is employed. This solver is
constructed from kinetic formalisms applied in macroscopic models, and has already been employed
in previous works for shallow-water applications [12]. The flux at the boundary Fi+1/2 in (5.3) is
computed from

Fi+1/2 = F
(
UHR,−i+1/2 , U

HR,+
i+1/2

)
= A−

(
UHR,−i+1/2

)
+A+

(
UHR,+i+1/2

)
, (5.38)

where

A− (ρ, ρu) =

∫

ξ≥0
ξ

(
1
ξ

)
M(ρ, u− ξ) dξ, A+ (ρ, ρu) =

∫

ξ≤0
ξ

(
1
ξ

)
M(ρ, u− ξ) dξ. (5.39)

The function M(ρ, ξ) is chosen accordingly to the kinetic representation of the macroscopic system,
and for this case satisfies

M(ρ, ξ) = ρ
2−m

2 χ

(
ξ

ρ
m−1

2

)
. (5.40)
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The function χ(ω) can be chosen in different ways. For this simulations we simply take it as a
characteristic function,

χ(ω) =
1√
12
1{|ω|≤√3}, (5.41)

although [236] presents other possible choices for χ(ω). Further valid numerical fluxes able to treat
vacuum, such as the Rusanov flux or the Suliciu relaxation solver, are reviewed in [42].

The boundary conditions are taken to be no flux both for the density and the momentum
equations. As a result, the evaluation of the numerical fluxes in (5.3) at the boundaries of the
domain is taken as

Fi−1/2 = 0 if i = 1 and Fi+1/2 = 0 if i = n. (5.42)

The time discretization is acomplished by means of the third order TVD Runge-Kutta method
[156]. From (5.1) we can define L(U) as L(U) = S(x, U) − ∂xF (U), so that ∂tU = L(U). Then,
the third order TVD Runge-Kutta temporal scheme to advance from Un to Un+1 with a time step
∆t reads

U (1) = Un + ∆tL (Un) ,

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL

(
U (1)

)
,

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL

(
U (2)

)
.

The time step ∆t for the case of Lax-Friedrich flux is chosen from the CFL condition,

∆t = CFL
mini ∆xi

max∀
(
UHR,−
i+1/2

,UHR,+
i+1/2

) {∣∣∣u+
√
P ′(ρ)

∣∣∣ ,
∣∣∣u−

√
P ′(ρ)

∣∣∣
} , (5.43)

and the ∆t for the kinetic flux, with a function χ(ω) as in (5.41), is chosen as

∆t = CFL
mini ∆xi

max∀
(
UHR,−
i+1/2

,UHR,+
i+1/2

) {|u|+ 3
m−1

4

} . (5.44)

The CFL number is taken as 0.7 in all the simulations.
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CHAPTER 6

High-order well-balanced schemes

The contents of this chapter are based on the publication [54], done in collaboration with José A.
Carrillo, Manuel J. Castro and Serafim Kalliadasis:

[54] J. A. Carrillo, M. J. Castro, S. Kalliadasis, and S. P. Perez. “High-Order Well-Balanced
Finite-Volume Schemes for Hydrodynamic Equations With Nonlocal Free Energy”. In:
SIAM Journal on Scientific Computing 43.2 (2021), A828-A858.

The different terms of the one-dimensional system (4.1) are usually gathered in the form of

∂tU + ∂xF (U) = SH(U,H) + SD(x, U), (6.1)

with

U =

(
ρ
ρu

)
, F (U) =

(
ρu

ρu2 + P (ρ)

)

and

SH(U,H) =

(
0

−ρ∂xH

)
, SD(x, U) =




0

−γρu− ρ
∫

R
ψ(x− y)(u(x)− u(y))ρ(y) dy


 ,

where U are the unknown variables, F (U) the fluxes, and SH(U,H) and SD(x, U) are the sources
related to forces with potential H and damping terms respectively. In what follows, we only
consider the source term SH(U,H) due to the forces as we focus on the definition of a well-
balanced high-order scheme for stationary solutions in (4.6). In Section 6.3 we propose a high-order
discretization of the source damping term SD(x, U) that vanishes at stationary states.

We consider a mesh composed by cells [xi−1/2, xi+1/2], 1 ≤ i ≤ N , whose length ∆x is supposed
to be constant for simplicity. Let us denote by Ui(t) the approximation of the average of the exact
solution at the ith cell, [xi−1/2, xi+1/2] at time t,

Ui(t) =

ns∑

j=1

αjU(xji , t)
∼= 1

∆x

∫ xi+1/2

xi−1/2

U(x, t) dx, (6.2)
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and we denote by Hi(t) the approximation of the cell average of H(x, ρ) = V (x) + W (x) ? ρ at
time t,

Hi(t) =

ns∑

j=1

αjH(xji , ρ(xji , t))
∼= 1

∆x

∫ xi+1/2

xi−1/2

H(x, ρ(x, t)) dx.

In the previous expressions we denote as αj and xji , for j = 1, · · · , ns, the weights and quadrature
points of a particular high-order quadrature formula for the cell [xi−1/2, xi+1/2]. In this work we
employ the fifth-order standard Gaussian quadrature described in Appendix 6.A.

As pointed out in the introduction, one of the main contributions of this work is to construct
high-order well-balanced schemes for free energies that may depend on the convolution of the
density and an interaction potential, W (x) ? ρ. These convolutions are included in the steady
state relations in (4.6), but for the discrete version of these relations one has to approximate the
convolutions by a high-order quadrature formula. In the next definition we clarify the concept of
well-balanced scheme for this kind of free energies.

Definition 6.0.1 (Well-balanced scheme). We consider a semi-discrete method to approximate
(6.1), 




dUi
dt

= − 1

∆x
L(∆x, Uj(t), Hj(t), j ∈ Si),

U(0) = U0,
(6.3)

where U(t) = {Ui(t)}Ni=1 represents the vector of the approximations of the averaged values of the
exact solutions at time t, U0 = {Ui(0)} is the vector of the initial conditions, and Si the stencil of
the numerical scheme.

Now let us assume that u(x) = 0, ρ(x) is a smooth function and H∆x(x) is a discrete approxi-
mation of H = V +W ? ρ with the form

H∆x(x) = V (x) + ∆x
M∑

l=1

ns∑

m=1

αmW (x− xml )ρ(xml )

and satisfying
Π′(ρ(x)) +H∆x(x) = CΓ in each ΛΓ,Γ ∈ N, (6.4)

where ΛΓ, Γ ∈ N, denotes the possible infinite sequence indexed by Γ of subsets ΛΓ of subsequent
indices i ∈ {1, . . . , N} where ρ(x) > 0 and u = 0, and CΓ the corresponding constant in that
connected component of the discrete support.

Then it follows that the semi-discrete numerical scheme (6.3) is said to be well-balanced for

U =

(
ρ(x)

0

)
and H∆x

if the vector of their approximated averages is a critical point of (6.3), i.e.

L(∆x, Uj , Hj , j ∈ Si) = 0, 1 ≤ i ≤ N,

where

Ui =

ns∑

j=1

αjU(xji ) and Hi =

ns∑

j=1

αjH∆x(xji ).

In what follows we begin by briefly recalling in Section 6.1 the first-order well-balanced scheme
for (6.1) introduced in [71], which serves as an starting point to construct high-order schemes by
employing a high-order reconstruction operator, as described in Section 6.2. Then in Section 6.3
we describe how to adapt these high-order schemes so that they are well-balanced in the sense
defined in Definition 6.0.1.
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6.1 Summary of the first-order well-balanced scheme

The first-order semi-discrete well-balanced finite-volume scheme for system (6.1) introduced in [71]
can be written as

dUi
dt

= − 1

∆x

(
F−i+1/2 − F+

i−1/2

)
, (6.5)

where F±i+1/2 is defined using a standard consistent numerical flux for the homogeneous system
applied to the so-called hydrostatic-reconstructed states, with an extra term ensuring the consis-
tency of the numerical scheme (6.5) applied to system (6.1), as well as its well-balanced character.
In [71] the midpoint quadrature formula is used to approximate both the cell-averages of the exact
solution and H∆x(x). In what follows we suppress the time-dependence in the cell averages for
simplicity. We define F±i+1/2 in terms of the cell averages Ui, Ui+1, Hi and Hi+1 as

F±i+1/2(Ui, Ui+1, Hi, Hi+1) = F(UHR,−i+1/2 , U
HR,+
i+1/2 )± SHR,±i+1/2 , (6.6)

where F(U, V ) is the standard local Lax-Friedrich numerical flux for the homogeneous system,

F(U, V ) =
1

2
(F (U) + F (V )− |λ(U, V )|(V − U)) , (6.7)

where |λ(U, V )| is a bound for the maximum absolute value of the wave speeds for the Riemann
problem with the constant states U and V .

In [71] we employ the hydrostatic reconstruction firstly introduced in [11] in the context of
shallow-water equations. Here we denote the hydrostatic-reconstructed states as UHR,±i+1/2 , and we
compute them as follows:

1) Firstly an intermediate state Hi+1/2 is computed as

Hi+1/2 = max(Hi+1, Hi).

2) Next, we define the hydrostatic-reconstructed states as

UHR,±i+1/2 =


 ρHR,±i+1/2

(ρu)HR,±i+1/2


 ,

where
ρHR,−i+1/2 = ξ

(
Π′ (ρi) +Hi −Hi+1/2

)
, (ρu)HR,−i+1/2 = ρHR,−i+1/2ui,

ρHR,+i+1/2 = ξ
(
Π′ (ρi+1) +Hi+1 −Hi+1/2

)
, (ρu)HR,+i+1/2 = ρHR,+i+1/2ui+1,

(6.8)

with ξ(s) being the inverse function of Π′(s) for s > 0 and ui = (ρu)i/ρi.

The last ingredients for the flux in (6.6) are the terms SHR,±i+1/2 , which correspond to the correction

introduced in the numerical scheme to guarantee consistency and well-balanced properties (see [11,
71]),

SHR,+i+1/2 =

(
0

P (ρi+1)− P
(
ρHR,+i+1/2

)
)

and SHR,−i+1/2 =

(
0

P
(
ρHR,−i+1/2

)
− P (ρi)

)
. (6.9)

It is straightforward to check that the semi-discrete numerical scheme (6.5)-(6.9) is well-balanced
in the sense defined in Definition 6.0.1 (see [71]). It may also be surprising that the potential cell
averages Hi do not appear in the source terms (6.9), but this is a consequence of the well-balanced
methodology and we refer the reader to [11, 42, 71] for further details.

65



Chapter 6. High-order well-balanced schemes

6.2 Ingredients to construct a high-order finite-volume scheme

The basic ingredients to design a high-order finite volume method for system (6.1), assuming
SD(x, U) = 0, are:

• a consistent first order numerical flux for system (6.1), like the one proposed in [71] and
described in the previous Subsection;

• a high-order reconstruction operator, i.e. an operator that, given a family of cell values
{Ui(t)}, provides at every cell [xi−1/2, xi+1/2] a smooth function that depends on the values
at some neighbour cells whose indices belong to the so-called stencil Si:

RUi (x) = RUi (x; {Uj(t)}j∈Si),

so that RUi (x) is a high-order approximation of U(x, t) in the ith cell at time t. Here we
use third- and fifth-order Compact Weighted Essentially Non-Oscillatory (CWENO) recon-
struction operators [52, 197, 198]. The main advantage of CWENO compared to WENO
(see [253, 256, 257]) reconstruction operators is that CWENO reconstructions achieve uni-
form high-order approximation in the entire cell, while WENO reconstruction operators are
proposed to achieve high-order approximation at the boundaries of the cell. Thus, standard
WENO-5 reconstructions achieves 5th-order at the boundaries of the cell, while it is only
3rd-order at the interior points. Therefore, CWENO reconstruction operators are specially
useful in balance laws such as (6.1), where the source term has to be evaluated at inner points
of the cell. We complement the CWENO reconstruction operators with the positive-density
limiters from [299] to ensure physical admissible reconstructed values for the density. For
further details we refer the reader to Appendix 6.B.

Using these ingredients, one could consider a high-order finite-volume semi-discrete numerical
method of the form:

dUi
dt

= − 1

∆x

(
F−i+1/2 − F+

i−1/2

)
+

1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x)) dx, (6.10)

where

• RUi (x) and RHi (x) are the approximations of the solution U(x, t) and the function H∆x(x),
respectively, at the ith cell given by some high-order reconstruction operators from the se-
quence of cell values {Ui(t)} and {Hi(t)}, respectively, i.e.

RUi (x) = Ri(x; {Uj(t)}j∈Si) and RHi (x) = Ri(x; {Hj(t)}j∈Si);

• F±i+1/2 is the numerical flux defined in (6.6) applied to the reconstructed states U∓i+1/2 and

H∓i+1/2, i.e.

F±i+1/2 = F(U−i+1/2, U
+
i+1/2, H

−
i+1/2, H

+
i+1/2)

with
U−i+1/2 = RUi (xi+1/2), U+

i+1/2 = RUi+1(xi+1/2),

and
H−i+1/2 = RHi (xi+1/2), H+

i+1/2 = RHi+1(xi+1/2).

Following the procedure described in [74, Theorem 3.2] and [75, Section 4], it is possible to prove
that the semi-discrete numerical scheme (6.10) is a high-order numerical scheme of order p > 1, if
the following three conditions are satisfied:
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(i) H∆x(x) is a high-order approximation of H(x, ρ) of order p > 1;

(ii) RUi (x) and RHi (x) are high-order reconstruction operators of order at least p > 1;

(iii) the volume integral
1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x)) dx

is computed exactly or approximated with a quadrature formula of order greater or equal to
p > 1.

Unfortunately, when employing standard (CWENO, WENO, . . . ) reconstruction the resulting
numerical scheme is, in general, not well-balanced. Indeed, if {Ui}Ni=1 and {Hi}Ni=1 are the cell
averages of a discrete steady state satisfying (6.4), then their reconstructions do not necessary
satisfy the discrete relations

Π′ (Rρi (x)) +RHi (x) = C, 1 ≤ i ≤ N. (6.11)

In the previous expression we suppose, for simplicity, that we have only one connected component.
In what follows we aim to propose a modified reconstruction procedure which respects (6.11)

for any discrete steady state satisfying (6.4). As we show in the next Subsection, thanks to this
modification we can prove that our scheme is both high-order accurate and well-balanced.

6.3 High-order well-balanced numerical schemes

Let us suppose that the sequences of cell averages {Ui}Ni=1 and {Ki}Ni=1 are known, with

Ui =




ρi =

ns∑

j=1

αjρ(xji )

(ρu)i =

ns∑

j=1

αj(ρu)(xji )




and

Ki =

ns∑

j=1

αj

[
Π′(ρ(xji )) +H∆x(xji )

]
. (6.12)

For such cell averages we propose the following reconstruction procedure:

• We consider a standard high-order reconstruction operator for the conserved variables ρ and
ρu, and also applied to the sequence {Ki}Ni=1,

Rρi (x) = Ri (x, {ρj}j∈Si) ,

Rρui (x) = Ri (x, {(ρu)j}j∈Si) ,

RKi (x) = Ri (x, {K}j∈Si) ;

(6.13)

• the reconstruction operator for H∆x(x) is defined as

RHi (x) = RKi (x)−Π′ (Rρi (x)) , (6.14)

with RHi not being a polynomial since it depends on the function Π′(ρ).
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The previous reconstruction procedure satisfies the following property:

Theorem 6.3.1. Let u = 0, ρ(x) and H∆x(x) satisfying (6.4), that is ρ, u = 0 is a discrete
stationary solution of system (6.1), then the reconstructions Rρi (x), Rρui (x) and RHi (x) are discrete
stationary solutions of system (6.1) at [xi−1/2, xi+1/2].

Proof. Let us suppose for simplicity that the stationary solution is only defined in one connected
component. Therefore, Ki = C, 1 ≤ i ≤ N .

As standard reconstruction operators like CWENO are exact for constant functions, we have
that Rρui (x) = 0 and RKi (x) = C. Therefore in (6.11) we have that C = Π′(Rρi (x)) +RHi (x), which
proves the result setting H∆x(x) = RHi (x).

It is important to remark that, even if the reconstruction procedure satisfies the discrete steady
state of system in (6.11), the semi-discrete numerical scheme (6.10) may not be in general well-
balanced. This is because the integral

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x)) dx

has to be numerically approximated, and if such integration is not exact then the well-balancing
property may be destroyed (see [77]). To overcome this difficulty, we follow the strategy proposed
in [77]: a local discrete stationary solution is added to the numerical scheme for every cell. We
denote this solution by U∗i (x) = (ρ∗i (x), 0)T and H∗i (x), and it satisfies

1

∆x

(
F (U∗i (xi+1/2))− F (U∗i (xi−1/2))

)
=

1

∆x

∫ xi+1/2

xi−1/2

SH(U∗i (x), H∗i (x)) dx. (6.15)

The previous steady state relation in (6.15) is satisfied if we choose U∗i (x) = (ρ∗i (x), 0)T and
H∗i (x) as

U∗i (x) =

(
ρ∗i (x) = Rρi (x)

0

)
, H∗i (x) = Ki −Π′(Rρi (x)). (6.16)

Observe that the convolution is indirectly approximated in the previous expression.
Now, we could rewrite the semi-discrete numerical scheme (6.10) by just adding the steady

state expression in (6.15), yielding

dUi
dt

= − 1

∆x

(
F−i+1/2 − F+

i−1/2 − F (U∗i (xi+1/2)) + F (U∗i (xi−1/2))
)

+
1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) dx.
(6.17)

The advantage of this new version of the scheme relies in the fact that the integral term in
(6.17) could be approximated by any high-order quadrature formula, without perturbing the well-
balanced character of the numerical scheme. This comes from the fact that, for any discrete
stationary solution satisfying (6.4), we have that RHi (x) = H∗i (x) and Rρi (x) = ρ∗i (x), so that

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) = 0.

For such integral here we follow [217], where an n-th order Richardson extrapolation formula is
proposed to evaluate source terms of the form ρ∂xH. We detail the fourth- and sixth-order formulas
in the Appendix 6.C. We finally conclude with the following result.

Theorem 6.3.2. The numerical scheme (6.17) with the reconstruction operators (6.13) and (6.14)
is well-balanced in the sense of Definition 6.0.1.
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Proof. Let us suppose that u = 0, ρ(x), H∆x(x) satisfy (6.4). We also assume for simplicity
that the stationary solution is defined on one connected component. Then, as proved in Theorem
(6.3.1), the reconstructions Rρi (x), Rρui (x) and RHi (x) satisfy (6.11). Moreover,

1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) dx = 0,

and the reconstructed states at the intercells verify

Π′(ρ+
i+1/2) +H+

i+1/2 = Π′(ρ−i+1/2) +H−i+1/2 = C, u−i+1/2 = u+
i+1/2 = 0. (6.18)

The relation (6.18) implies that the hydrostatic-reconstructed states satisfy

ρHR,−i+1/2 = ρHR,+i+1/2 , (ρu)HR,−i+1/2 = (ρu)HR,+i+1/2 = 0. (6.19)

Using (6.18) and (6.19) and the definition of (6.6) and (6.9), F−i+1/2 reduces to

F−i+1/2 =

(
0

P (ρ−i+1/2)

)
.

Analogously, we deduce that

F+
i−1/2 =

(
0

P (ρ+
i−1/2)

)
.

Now, taking into account the definition of U∗i (x) given in (6.16),

U∗i (xi+1/2) =

(
ρ−i+1/2

0

)
, U∗i (xi−1/2) =

(
ρ+
i−1/2

0

)
,

we finally conclude by noting that the numerical scheme (6.17) reduces to

dUi
dt

=
1

∆x

(
F−i+1/2 − F+

i−1/2 − F (U∗i (xi+1/2)) + F (U∗i (xi−1/2))
)

= 0.

Remark 6.3.3. The well-balanced reconstruction operators defined in (6.13) and (6.14) employ, as
expected, the approximated cell averages of the solution at each time step and an extra quantity
corresponding to the cell average of the variation of the free-energy, denoted by Ki. This quantity
plays an important role to achieve the well-balanced property of the reconstruction operators and
the final numerical scheme. Note that the semi-discrete numerical scheme (6.17) only allows to
evolve in time the cell averages of conserved variables, and as a result we should provide an extra
equation to evolve the variation of the free-energy. We propose the following: suppose that {ρni }
{(ρu)ni } and {Kn

i } are known at time t = n∆t, and suppose in addition that we use the standard
explicit first order Euler scheme to evolve the conserved variables up to time t = (n+ 1)∆t. Then
we propose to update Kn+1

i as

Kn+1
i =Kn

i +

ns∑

j=1

αj

[
Π′
(
Rρ

n+1

i (xji )
)
−Π′

(
Rρ

n

i (xji )
)]

+

ns∑

j=1

αj

[
M∑

l=1

ns∑

m=1

∆xαmW
(
xji − xml

) [
Rρ

n+1

l (xml )−Rρnl (xml )
]]
, (6.20)
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where we use some high-order quadrature formula for the cell averages and convolution operator.
Here we will use the fifth-order Gaussian quadrature described in Appendix 6.A. A similar proce-
dure could be applied if a high-order RK-TVD scheme (see [156]) is used instead of the explicit
Euler scheme to discretize the ODE system (6.17). This is based on the classical observation that
these schemes can be written as linear combinations of explicit Euler steps. Observe also that
Kn+1
i = Kn

i on discrete stationary solutions satisfying (6.4).

Finally, if the term SD(x, U) is now added to the system, our full high-order semi-discrete
well-balanced finite volume scheme can be written as

dUi
dt

=− 1

∆x

(
F−i+1/2 − F+

i−1/2 − F (U∗i (xi+1/2)) + F (U∗i (xi−1/2))
)

+
1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) dx (6.21)

− γ(ρu)i +
1

∆x

ns∑

j=1

αjR
ρ,t
i (xji )

[
M∑

l=1

ns∑

m=1

∆xαmψ(xji − xml )
(
Ru,ti (xji )−R

u,t
l (xml )

)
Rρ,tl (xml )

]
,

where Ru,ti =
Rρu,ti

Rρ,ti
. Note that the new terms do not affect to the well-balance property of the

scheme as they vanishes when u = 0.

Remark 6.3.4. In practical applications is quite important to guarantee that the numerical scheme
preserves the non-negativity of the density ρi(t). The high-order numerical scheme (6.21) preserves
the non-negativity of the density as consequence of:

1. the first order numerical flux preserves the non-negativity of the density (see [71]);

2. the application of the positive-density limiter introduced in [299] and described in Subap-
pendix 6.B.3;

3. a suitable CFL restriction (see (6.43) and [299]), described also in Subappendix 6.B.3.

6.4 Algorithmic implementation

In this section we summarize the steps to efficiently implement the high-order well-balanced finite-
volume scheme of Section 6.3.

The initial conditions for system (6.1) are the initial density profile ρ0(x) and momentum profile
(ρu)0 (x). These initial conditions are introduced in the numerical scheme by computing their cell
averages via high-order quadrature formula,

ρ0
i =

ns∑

j=1

αjρ0(xji ),

(ρu)0
i =

ns∑

j=1

αj(ρu)0(xji ),

where the coefficients αj denote the weights of the quadrature formula that multiply the evaluation

of ρ0(x) and (ρu)0 (x) at the quadrature points xji , and ns denotes the number of quadrature points.
Here we employ the fifth-order Gaussian quadrature formula described in the Appendix 6.A.

The initial cell averages of the derivative of the free energy (6.4) are also required, and are
similarly computed via fifth-order Gaussian quadrature

K0
i =

ns∑

j=1

αj

[
Π′
(
ρ0(xji )

)
+ V (xji ) +

n∑

l=1

ns∑

m=1

∆xαmW
(
xji − xml

)
ρ0(xml )

]
.
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The computation of the cell averages using quadrature formulas is only necessary at the initial
time step of the algorithm. For further time steps, the algorithm presented here takes as inputs
the cell averages ρni , (ρu)ni and Kn

i , evaluated at t = n∆t, and directly returns the cell averages
ρn+1
i , (ρu)n+1

i and Kn+1
i at the subsequent time step t = (n+ 1)∆t. The steps for such algorithm

are:

1) Perform high-order reconstructions Rρi (x), Rρui (x) and RKi (x) from the sequences of cell val-
ues {ρni }, {(ρu)ni }, {Kn

i }, following (6.13). In our case, such reconstructions are conducted
via third- and fifth-order CWENO reconstructions [52, 197, 198], details provided in Ap-
pendix 6.B.

For simplicity, the evaluations of the previous reconstructions at the intercells at time t = n∆t
are denoted as

ρ+
i−1/2 = Rρi (xi−1/2), ρ−i+1/2 = Rρi (xi+1/2),

(ρu)+
i−1/2 = Rρui (xi−1/2), (ρu)−i+1/2 = Rρui (xi+1/2),

K+
i−1/2 = RKi (xi−1/2), K−i+1/2 = RKi (xi+1/2).

(6.22)

Furthermore, when required, the reconstruction of the velocity field u is computed as

Rui (x) =
Rρui (x)

Rρi (x)
, u+

i−1/2 = Rui (xi−1/2), u−i+1/2 = Rui (xi+1/2).

2) Obtain the reconstruction RHi (x) for H∆x(x) from (6.14), and their evaluations at the inter-
cells as

H+
i−1/2 = RHi (xi−1/2), H−i+1/2 = RHi (xi+1/2).

In general H+
i+1/2 6= H−i+1/2. The average value between them is taken as

Hi+1/2 = max
(
H+
i+1/2, H

−
i+1/2

)
.

3) Reconstruct the local discrete stationary solution in (6.15) for every cell, so that U∗i (x) and
H∗i (x) are computed from (6.16).

4) Perform the so-called hydrostatic reconstruction described in (6.8), but now with the high-
order reconstructions at the intercells. By denoting as ξ(s) the inverse function of Π′(s) for
s > 0,

ρHR,−i+1/2 = ξ
(

Π′
(
ρ−i+1/2

)
+H−i+1/2 −Hi+1/2

)
, (ρu)HR,−i+1/2 = ρHR,−i+1/2u

−
i+1/2,

ρHR,+i+1/2 = ξ
(

Π′
(
ρ+
i+1/2

)
+H+

i+1/2 −Hi+1/2

)
, (ρu)HR,+i+1/2 = ρHR,+i+1/2u

+
i+1/2.

5) The cell averages ρn+1
i and (ρu)n+1

i at the subsequent time step t = (n + 1)∆t are updated
by means of (6.21), where

F±i+1/2(UHR,−i+1/2 , U
HR,+
i+1/2 , H

−
i+1/2, H

+
i+1/2) = F(UHR,−i+1/2 , U

HR,+
i+1/2 )± SHR,±i+1/2 , (6.23)

with the Lax-Friedrich flux in (6.7),

SHR,+i+1/2 =

(
0

P
(
ρ+
i+1/2

)
− P

(
ρHR,+i+1/2

)
)
, SHR,−i+1/2 =

(
0

P
(
ρHR,−i+1/2

)
− P

(
ρ−i+1/2

)
)
, (6.24)
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F
(
U∗i (xi−1/2)

)
=

(
0

P
(
ρ+
i−1/2

)
)
, F

(
U∗i (xi+1/2)

)
=

(
0

P
(
ρ−i+1/2

)
)
, (6.25)

and the integral for the high-order corrections in the source term is computed from the fourth-
and sixth-order formulas in the Appendix 6.C.

6) Finally, update the value Kn+1
i by means of fluctuations from (6.20).

6.5 Numerical simulations

Here we employ the high-order finite volume scheme in a variety of relevant applications, taken
from the fields of gas dynamics, porous media, collective behaviour and chemotaxis. First, in
Subsection 6.5.1 we conduct the validation of the properties from the numerical scheme to ensure
both that the high-order and the well-balanced properties are numerically satisfied. Second, in
Subsection 6.5.2 we proceed to apply the scheme to challenging scenarios where analytical results
are scarce.

The numerical flux for the simulations is chosen depending on the form of the pressure term,
which satisfies P (ρ) = ρm with m ≥ 1. A local Lax-Friedrich numerical flux is employed for the
examples with ideal-gas pressure, where m = 1 and the support of the density is not compact.
On the contrary, a kinetic scheme based on [236] is employed for pressures with m > 1, due to
the presence of vacuum regions and compactly-supported densities. For the details of these two
numerical fluxes we refer the reader to our previous work [71].

For the temporal integration we implement the third-order TVD Runge-Kutta method [156],
with the CFL number chosen as 0.7 in all the simulations. The CFL conditions for these two
numerical fluxes are detailed in equation (6.43) of Appendix 6.B. The boundary conditions are
periodic unless otherwise specified. In all the simulation we set γ = 1 in the linear damping while
the nonlinear damping is in general deactivated, except for Example 6.5.4. The number of cells
employed to create the plots is 200. For the figures we use the third-order time discretization
scheme, unless otherwise stated.

In the following numerical simulations we focus on the temporal evolution of the density, mo-
mentum and free-energy variation in (6.12). For illustrative purposes, we also plot the evolution
of the discrete versions of the total energy in (4.7) and free energy in (4.2), which are given by

E∆ =
∑

i

∆xi
2
ρiu

2
i + F∆ and F∆ =

∑

i

∆xi [Π (ρi) + Viρi] +
1

2

∑

i,j

∆xi∆xjWijρiρj . (6.26)

It is worth mentioning that previous works have constructed finite-volume schemes that satisfy the
discrete analogue of the entropy identity in (4.9) (see “entropy stable schemes” in [132, 266]) and
free energy dissipation property in (4.8) (see “energy dissipating schemes” in [15, 55, 71]). The
simulations satisfy the discrete energy dissipation in practice, even if we are not able to prove it for
our finite-volume scheme. The extension of the present scheme to satisfy the challenging discrete
properties of entropy stability and energy dissipation with high-order accuracy will be explored
elsewhere.

6.5.1 Validation of the numerical scheme

The validation of the finite-volume scheme encompasses a test for the well-balanced property and a
test for the high-order accuracy in the transient regimes. Both tests are conducted in two different
scenarios, for which different choices of the free energy in (4.2) are taken. The details of such
scenarios are written in Examples 6.5.1 and 6.5.2.
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On the one hand, for the well-balanced property we show that the steady-state solution is
preserved in time up to machine precision. For this we select as initial condition a density and
momentum profile satisfying the steady states obtained from (4.6). Numerically this means that
the discrete version of the variation of the free energy in (6.4) holds, while the momentum vanishes
throughout the domain. The results for this test are depicted in Table 6.5.1, for a simulation time
run from t = 0 to t = 5 and a number of cells of 50.

Table 6.5.1: Preservation of the steady state for the examples 6.5.1 and 6.5.2 with the third- and
fifth-order schemes and machine precision in Matlab, at t = 5

Order of the scheme L1 error

Example 6.5.1
3rd 1.7082e-16
5th 1.7094e-16

Example 6.5.2
3rd 5.5020E-17
5th 6.4514E-17

On the other hand, the spatial order of accuracy in the transient regimes is computed by
evaluating the L1 error of the numerical solution for a particular mesh-size grid ∆x with respect to
a reference solution. To measure the spatial high-order accuracy of the scheme we select scenarios
where shock waves or sharp gradients in the density and momentum profile do not evolve, such as
the ones in the examples 6.5.1 and 6.5.2, and we let the simulation run until t = 0.1. We repeat
this procedure by halving the ∆x from the previous simulation and the order of the scheme is
computed as

Order of the scheme = ln2

(
L1 error(∆x)

L1 error(∆x/2)

)
.

For the system with a nonlocal free energy in (4.1) there are generally no explicit solutions in
the transient regime. This implies that the reference solution has to be computed from the same
numerical scheme with an extremely refined ∆x with the aim of accepting that numerical solution
as the exact one. Here we take 25600 cells to compute such reference solution, while the other
numerical simulations for the order of accuracy employ 50, 100, 200 and 400 cells. The results
showing the spatial third- and fifth-order of accuracy for the scenarios in examples 6.5.1 and 6.5.2
are displayed in Table 6.5.2 and 6.5.3. Note too that the timestep has to be selected as ∆t ≈ ∆x
and ∆t ≈ (∆x)5/3 for the third- and fifth-order spatial discretizations respectively, if one wants
to obtain a correct order of convergence in space. This is because we employ a third-order TVD
Runge-Kutta temporal integrator. This is a common practive in the literature, and we refer the
reader to [286, Subsection 5.4] as an example with the same choice for ∆t.

Example 6.5.1 (Ideal-gas pressure under an attractive potential). For this example we
select an ideal-gas free energy with pressure P (ρ) = ρ (or equivalently Π(ρ) = ρ ln(ρ)−1) and with
a quadratic external potential V (x) = x2/2. The steady state that we aim to preserve follows from

δF
δρ

= Π′(ρ) +H(x, ρ) = ln(ρ) +
x2

2
= constant on supp(ρ) and u = 0. (6.27)

Free energies of this type appear in the context of chemotaxis with a fixed chemoattractant profile
[131, 138, 248], where cells will typically vary their direction when reacting to the presence of a
chemical substance, so that they are attracted by chemically favourable environments and dodge
unfavourable ones. In chemotaxis there is a chemo-attractant function playing a role similar to
the external potential V (x), and in more complex models this chemo-attractant function may even
have its own parabolic equation for its evolution. There are numerous well balanced schemes for
chemotaxis. Amongst them we highlight the fully implicit finite-volume scheme in [129], the scheme

73



Chapter 6. High-order well-balanced schemes

allowing for vacuum states in [216], the Godunov scheme in [153] and the high-order finite-volume
and finite-differences schemes in [131, 215, 285].

The density profile for the steady state in (6.27) for an initial mass M0 satisfies a Gaussian
distribution of the form

ρ∞ = M0
e−x

2/2

∫
R e
−x2/2dx

. (6.28)

Table 6.5.2: Spatial order-of-convergence test for Example 6.5.1 with the third- and fifth-order
schemes, at t = 0.1

Number of
cells

Third-order Fifth-order
L1 error order L1 error order

50 1.4718E-04 - 1.9260E-05 -

100 2.3726E-05 2.63 5.1254E-07 5.23

200 2.4182E-06 3.29 2.1997E-08 4.54

400 2.6708E-07 3.18 9.2613E-10 4.57

For the spatial order-of-accuracy test we take as initial condition a perturbation of the steady
state in (6.28),

ρ(x, t = 0) = M0
e−x

2/2 + 0.1 ∗ e−5(x+3)2

∫
R
(
e−x2/2 + 0.1 ∗ e−5(x+3)2

)
dx
, ρu(x, t = 0) = 0, x ∈ [−5, 5], (6.29)

with M0 equal to 1 so that the total mass is also 1. The spatial order-of-accuracy test from this
example is shown in Table 6.5.2, while the temporal evolution of the density, momentum, free-
energy with respect to the density, total energy and free energy are displayed in figure 6.5.1. The
spatial third- and fifth-order of accuracy of the numerical scheme are evident from table 6.5.2.
From Figure 6.5.1a we notice how the Gaussian distribution corresponding to the steady state is
reached at t = 12, while in Figure 6.5.1c the variation of the free energy is constant throughout
the domain, given that the density is not compactly supported and (6.4) is satisfied. Finally, it is
evident from figure Figure 6.5.1d that the discrete analogues of the total energy and free energy
(6.26) decay in time.

In Figure 6.5.2 we visually illustrate the difference in accuracy between employing the third- and
fifth-order schemes of this work versus the first-order scheme in Chapter 5, which is summarized in
Section 6.1. We display the density and momentum fluctuation profiles at two different times
(t = 0.2 and t = 0.4), which result from substracting the initial conditions in (6.29) to the
numerical profiles obtained with the same mesh of 100 cells for the three schemes. The choice
of measuring the fluctuations with respect to the initial condition is motivated by capturing the
transient behaviour. We also plot a reference profile obtained with the third-order scheme and
12600 cells. From Figure 6.5.2 we observe the benefit of employing the high-order schemes in
comparison to the first-order one, since they provide a numerical solution much closer to the
reference profile for the same number of cells.

Example 6.5.2 (Generalized Euler-Poisson system: ideal-gas pressure and attractive
kernel). For this example we select an ideal-gas free energy with pressure P (ρ) = ρ (or equivalently

Π(ρ) = ρ ln(ρ) − 1) together with an interaction potential with a kernel of the form W (x) = x2

2 .
In this case the steady state aimed to be preserved satisfies

δF
δρ

= Π′(ρ) +H(x, ρ) = ln(ρ) +
x2

2
? ρ = constant on supp(ρ) and u = 0. (6.30)
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free
energy

(d) Evolution of the total energy and
free energy

Figure 6.5.1: Temporal evolution of Example 6.5.1.

Free energies of this type are common in Euler-Poisson systems, in which the Euler equations for
a compressible gas are coupled to a self-consistent force field created by the gas particles [162]. This
interaction could be gravitational, leading to the modelling of Newtonian stars [37], or electrostatic
with repelling forces between the particles is is the case of plasma [97, 160]. For Euler-Poisson
systems the free energy contains a function S(t, x) which follows a Poisson-like equation, so that

δF
δρ

= Π′(ρ) + S(t, x) and ∂xxS(t, x) = cρ, (6.31)

with c being either 1 for the gravitational case or -1 for the plasma one. The Poisson equation
for S(t, x) can be solved considering the fundamental solution of the Laplacian in one dimension
[190], which leads to 2S = −c |x| ? ρ. Then, by plugging this expression for S in the variation of
the free energy in (6.31), one recovers the interaction potential W (x) which is convoluted with the
density ρ. For a S(t, x) following the Poisson equation the interaction potential is W (x) = −c |x|,
but for c = −1 one can generalize it to a homogeneous kernel W (x) = |x|α/α, where α > −1
and W (x) = ln |x| when α = 0 for convention. A popular application of these more general
kernels W (x) is in the Keller-Segel system for cells and bacteria [36, 49, 63] which we explore in
Example 6.5.5.

For Example 3.2 we select α = 2, leading to the interaction potential W (x) = x2

2 in the
variation of the free energy in (6.30). The steady state for a general mass M0 is equal to the steady
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(a) Density fluctuations at t = 0.2 (b) Momentum fluctuations at t = 0.2

(c) Density fluctuations at t = 0.4 (d) Momentum fluctuations at t = 0.4

Figure 6.5.2: Density and momentum fluctuations in Example 6.5.1 for a first-, third- and fifth-
order scheme with the same mesh of 100 cells. The reference solution is computed with the
third-order scheme and 12600 cells.

Table 6.5.3: Spatial order-of-convergence test for Example 6.5.2 with the third- and fifth-order
schemes, at t = 0.1

Number of
cells

Third-order Fifth-order
L1 error order L1 error order

50 5.0109E-04 - 1.0913E-04 -

100 1.2721E-04 1.98 5.0556E-06 4.43

200 1.7573E-05 2.86 5.3713E-08 6.56

400 2.3001E-06 2.93 2.3448E-10 4.52

state for Example 6.5.1 and satisfies (6.28). Notice that the particular choice of W (x) = x2

2 and
a symmetric initial condition makes this Example analytically equivalent to the case of external
quadratic potential in Example 3.1 with the same initial data, just expand the convolution and
use symmetry. However, by treating it numerically as a convolution we are able to check the order
of accuracy for interaction potentials. For the spatial order-of-accuracy test the initial condition
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is a symmetric perturbation of the steady state in (6.28),

ρ(x, t = 0) = M0
e−x

2/2 + 0.05 ∗ e−5(x+3)2
+ 0.05 ∗ e−5(x−3)2

∫
R
(
e−x2/2 + 0.05 ∗ e−5(x+3)2 + 0.05 ∗ e−5(x−3)2

)
dx
, ρu(x, t = 0) = 0,

with x ∈ [−10, 10] and M0 equal to 1 so that the total mass is also 1. The spatial order-of-
accuracy test from this example is shown in Table 6.5.3, while the temporal evolution of the
density, momentum, variation of the free energy with respect to the density, total energy and free
energy are depicted in Figure 6.5.3. The spatial third- and fifth-order of accuracy of the numerical
scheme are evident from table 6.5.3. Figure 6.5.3a shows that the density remains symmetric at
all times eventually reaching the steady state profile in (6.28). It is also evident from Figure 6.5.3c
that the variation of free energy reaches a constant value in the regions where the density is
non-compactly supported, while Figure 6.5.3d demonstrates that the total energy and free energy
exhibit a temporal decay.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free
energy

(d) Evolution of the total energy and
free energy

Figure 6.5.3: Temporal evolution of Example 6.5.2.

6.5.2 Numerical experiments and applications

Here we apply the finite-volume scheme to applications of the shallow-water system, a collective
behaviour system with Cucker-Smale and Motsch-Tadmor damping terms, and the Keller-Segel
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model. Our scheme is useful to run challenging numerical experiments for which analytical results
are limited in the literature, such as in the above applications.

Example 6.5.3 (Shallow water: pressure proportional to square of density and attrac-
tive potential). In this example we select a pressure satisfying P = ρ2 (or equivalently Π(ρ) = ρ2)
together with an attractive external potential V (x). This scenario corresponds to the well-known
shallow-water equations, which model free-surface gravity waves whose wavelength is much larger
than the characteristic bottom depth. The choice of P = ρ2 leads to the presence of dry regions
during the water-height evolution. These equations are applied in a wide range of engineering
and scientific applications involving free-surface flows [282], such as tsunami propagation [78], dam
break and flooding problems [98] and the evolution of rivers and coastal areas [93].

The main three challenges to accurately simulate the shallow-water equations are the preser-
vation of the steady states, the preservation of the water-height positivity and the transitions
between wet and dry areas. Many authors have consequently proposed various numerical schemes
addressing these challenges, employing methodologies ranging from finite-difference and finite-
volume schemes to discontinuous Galerkin ones. The reader can find more relevant references
about high-order schemes [73], well-balanced reconstructions [11], density positivity [299] and the
simulation of the wet/dry front [137] in the introduction of this work and in the comprehensive
survey from Xing and Shu [282].

For this example we aim to show that our numerical scheme accurately captures the dry regions
during the simulation and when reaching the steady states. This is thanks to the combination of
the positive-density reconstruction in Appendix 6.B and the choice of a kinetic numerical flux
which is able to handle vacuum regions [236]. We show this by conducting simulations with two
different choices for the external potential V (x) with the following initial conditions for both cases

ρ(x, t = 0) =
e−(x−x0)2/16

∫
R e
−(x−x0)2/16dx

, ρu(x, t = 0) = −0.1 sin
(πx

10

)
, x ∈ [−5, 5],

with x0 being the initial centre of mass. The steady states for the choice of pressure and external
potentials of this example satisfy

ρ∞ = (C(x)− V (x))+, (6.32)

where C(x) is a piecewise constant function being zero outside the support of the density.
The details of each simulation are:

1) Single-well external potential and symmetric density: V (x) = x2/2 and x0 = 0. The results
of this simulation are depicted in Figure 6.5.4. Figure 6.5.4a shows the formation of the
compact support of the density during the time evolution with the steady state taking the
shape of a positive parabola and satisfying (6.32). We also observe that the variation of the
free energy in figure 6.5.4c reaches a constant value only in the support of the density, in
agreement with the steady-state relation in (4.6). We also note that in 6.5.4d the discrete
total energy decreases in time, while the discrete free energy has a slight increase around
t = 3 due to an exchange of energy with the kinetic energy.

2) Double-well external potential and asymmetric density: V (x) = x4/4− 3x2/2 and x0 = 1.5.
The results of this simulation are depicted in Figure 6.5.5. From the evolution of the density
in Figure 6.5.5a it is evident that two compactly-supported bumps of density are formed
when reaching the steady state. This is due to the external potential having two wells. In
addition, the mass in the bumps is not the same, since the initial density is not symmetric.
It is also important to remark that, when reaching the steady state, the variation of the free
energy in each compacted support of the density is constant but has different values. This is
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free
energy

(d) Evolution of the total energy and
free energy

Figure 6.5.4: Temporal evolution with single-well external potential and symmetric density in
Example 6.5.3.

depicted in Figure 6.5.5c and agrees with the steady state relation (4.6). We refer the reader
to our previous work [71] for similar simulations considering varied scenarios with double-well
potentials.

Example 6.5.4 (Collective behaviour: comparison of linear, Cucker-Smale and Motsch–
Tadmor dampings). In this example we explore the impact of adding linear and nonlinear damp-
ing terms to the general system (4.1). The motivation for the nonlinear damping comes from the
field of collective behaviour, in which a large amount of interacting individuals or agents orga-
nize their dynamics by influencing each other and without the presence of a leader. Most of the
literature in collective behaviour is based on individual based models (IBMs) which are particle
descriptions considering the three basic effects of attraction, repulsion and alignment of the indi-
viduals. The combination of these three effects has proven to be very versatile and extends beyond
the typical animal applications for schools of fish [175], herds of mammals [143] or flocks or birds
[165]. Indeed, these models are now playing a critical role in understanding complex phenomena
including consensus and spatio-temporal patterns in diverse problems ranging from the evolution
of human languages [104] to the prediction of criminal behaviour [252] and space flight formation
[231].

There are plenty of works in the literature addressing the mean-field derivation of kinetic
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free
energy

(d) Evolution of the total energy and
free energy

Figure 6.5.5: Temporal evolution with double-well external potential and asymmetric density in
Example 6.5.3.

and other macroscopic models from the original particle descriptions [61, 62, 161]. These derived
hydrodynamic equations agree with our general system (4.1) and model the attraction and repulsion
effects via the interaction potential W (x). The third effect for collective behaviour is alignment
which in our system (4.1) it is achieved by means of the nonlinear and nonlocal damping of the
RHS of the momentum equation. The most popular approach for the velocity consensus is the
Cucker-Smale (CS) model [102, 103] which adapts the momentum of a particle depending on the
momentum and distance of the other particles. Several authors have proposed refined variations of
the CS model, and among them we remark the weighted-normalized model by Motsch and Tadmor
(MS) [214] (which will be referred to in the following as the MS model). It basically corrects
the CS model by eliminating the normalization over the total number of agents, which leads to
inaccurate behaviours in far-from-equilibrium scenarios. Instead, the MT model introduces the
concept of relative distances between agents with the cost, however, of destroying the symmetry
of the original CS model. For further details on flocking and alignment with the CS and related
models we refer the reader to [56, 57, 91, 211].

The objective of this example is to illustrate the differences of adding to the general system

80



Chapter 6. High-order well-balanced schemes

(4.1) linear damping, the CS or the MT model. The damping term for each of them is





−γρu if linear damping,

−ρ
∫

Rd
ψ(x− y)(u(x)− u(y))ρ(y) dy if Cucker-Smale damping,

− ρ
ψ?ρ

∫

Rd
ψ(x− y)(u(x)− u(y))ρ(y) dy if Motsch-Tadmor damping,

(6.33)

where ψ(x) is a nonnegative symmetric smooth function, called the communication function, sat-
isfying for this example

ψ(x) =
1

(1 + |x|2)
1
4

.

It should be noted that the CS damping term in (6.33) would reduce to linear damping if the
communication function ψ(x) was a constant function ψ(x) = 1. In addition, the difference between
the CS and MT models is the normalization over ψ ? ρ that is added to the MT model to ensure
that the damping term is independent of the total mass of the system.

The simulation for this example is chosen to specifically address a particular drawback of the
CS model. This occurs in the evolution of two groups of agents separated by a certain significant
distance and whose masses have different degrees of magnitude. What happens with the CS model
is that the damping term for the small group of agents is negligible due to the normalization over
the total number of agents in the system. This means that those agents do not seek alignment from
the beginning of the simulation, and as a result the convergence towards alignment is delayed. On
the contrary, with the MT model the normalization over ψ ? ρ in (6.33) allows to take the relative
distances between the agents into account, and the small group of agents reacts much faster to the
effect of the rest of agents. In the simulation we also add a Morse-like interaction potential [55,
64] of the form W (x) = −e−|x|2/2/

√
2π, which quickly decays at large distances and does not add

any attraction between the two groups of agents. Note that we are forced to add this attraction
term to balance the pressure and thus allow for our well-balanced scheme. The pressure follows
P (ρ) = ρ (or equivalently Π(ρ) = ρ ln(ρ)− 1).

This configuration is depicted in Figure 6.5.6. Specifically, Figures 6.5.6a and 6.5.6b show with
blue the initial conditions for the density and the momentum. On the one hand, in the density
there are two groups of agents with mass of 0.9 and 0.1, satisfying

ρ(x, t = 0) = 0.9
e−(x+1)2/2

∫
R e
−(x+1)2/2dx

+ 0.1
e−(x−11)2

∫
R e
−(x−11)2

dx
, x ∈ [−5, 14],

while on the other hand for the momentum the groups have opposite velocity signs, in agreement
with

ρu(x, t = 0) =

{
2 ρ(x, t = 0) if x < 5,

−2 ρ(x, t = 0) if x ≥ 5.

What we expect to happen in this situation is that the large group imposes its velocity sign
over the small group, so eventually all the agents align with positive velocity. From the momentum
simulation in Figure 6.5.6b we observe that after t = 1 the MT model has already changed the
velocity sign of the small group from negative to positive, while for the CS model the velocity is
still negative. In general, linear damping is the one that dissipates more momentum, as depicted
in the momentum plot of Figure 6.5.6b and in the total energy plot of Figure 6.5.6d. The free
energy and total energy decay are similar for both the CS and MT models. A similar numerical
experiment was already conducted in [56] using particle methods.
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the discrete free energy (d) Evolution of the discrete total en-
ergy

Figure 6.5.6: Simulation of Example 6.5.4 until t = 1. γ = 1 denotes the linear damping simulation,
CS the Cucker-Smale simulation and MT the Motsch-tadmor simulation.

Example 6.5.5 (Hydrodynamic Keller-Segel system). The Keller-Segel model has been
widely employed for chemotactic aggregation of biological populations such as cells, bacteria or
insects. It models how the production of a particular chemical by these organisms leads to long-
range attraction and eventually results in self-organization. Its first formulation was proposed in
[177] and consisted in a drift-diffusion equation for the density (which is obtained in the overdamped
limit of our system (4.1)) coupled with a diffusion equation for the chemical concentration.

In this example we are interested in the hydrodynamic extension of the Keller-Segel model
proposed in [83]. It takes into account the inertia of the biological entities and has been proposed in
[83]. It follows the same structure as the generalized Euler-Poisson system in the Example 6.5.2 with
the free energy satisfying (6.31) and the chemical concentration usually taken as S = W (x)?ρ (see
[50, 63]). The homogeneous kernel W (x) follows W (x) = |x|α/α, where α > −1 and W (x) = ln |x|
when α = 0 for convention. The difference with Example 6.5.2 is that here the pressure follows
P (ρ) = ρm with m ≥ 1 (or equivalently Π(ρ) = ρm/(m−1)), thus allowing for compactly-supported
steady states and vacuum in the density if m > 1. We refer the reader to [28] for more information
about the Keller-Segel model and the diffusion equation for the chemical concentration.

In our previous work [71] we applied our first- and second-order well-balanced scheme to inves-
tigate the competition between the attraction from the local kernel W (x) and the repulsion caused
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free
energy

(d) Evolution of the total energy and
free energy

Figure 6.5.7: Temporal evolution of the Keller-Segel system with P = ρ, W (x) = ln |x| and initial
conditions (6.34) with M = 0.1. Global-in-time solution.

by the diffusion of the pressure P (ρ). For the overdamped Keller-Segel model there are basically
three possible regimes [49, 50], which result from adequately tuning the parameters α in the kernel
W (x) and m in the pressure P (ρ): diffusion dominated regime (m > 1 − α), balanced regime
(m = 1− α) where a critical mass separates self-similar and blow-up behaviour, and aggregation-
dominated regime (m < 1− α). Results with the momentum equation included, and thus inertia,
are still quite limited in the literature, with only some specific scenarios studied [57, 69]. In our
previous work [71] we investigated the role of inertia for a choice of parameters of α = 0.5, m = 1.5
and α = −0.5, m = 1.3, which led to a diffusion-dominated and aggregation-dominated regimes,
respectively.

For this example we aim to explore the case of α = 0 which leads to the singular potential
W (x) = ln |x|. Initially, for the two first simulations of this example we set m = 1 so that P (ρ) = ρ.
In the overdamped limit this scenario corresponds to the balanced regime since m = 1 − α, and
there is a critical mass separating the global-in-time from the finite-time blowup solution. We run
two simulations with identical initial conditions which differ only in a multiplicative constant for
the density which allows to set a different mass of the system. The objective is to find global-in-
time and finite-time blowup solutions by only changing the mass of the system. For this we set
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the initial conditions as

ρ(x, t = 0) = M
e−(x)2/16

∫
R e
−(x)2/16dx

, ρu(x, t = 0) = 0, x ∈ [−8, 8], (6.34)

with M being the mass of the system.
For the first simulation we set the mass of the system to be M = 0.1. The results are shown

in Figure 6.5.7 where the numerical solution is clearly global-in-time and diffusion-dominated.
Eventually the steady state is reached,

δF
δρ

= Π′(ρ) +H(x, ρ) = ln(ρ) + ln |x| ? ρ = constant on supp(ρ) and u = 0.

From Figure 6.5.7a we observe that the solution is completely diffused and the final profile for the
density is uniform. From figure 6.5.7c we notice that the variation of the free energy with respect
to the density is constant once the steady state is reached, and from Figure 6.5.7d we remark how
the total and free energy decay during the temporal evolution.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the variation of the free
energy

(d) Evolution of the total energy and
free energy

Figure 6.5.8: Temporal evolution of the Keller-Segel system with P = ρ, W (x) = ln |x| and initial
conditions (6.34) with M = 3. Finite-time blowup solution.

For the second simulation we select a mass of M = 3 while keeping the same initial conditions
as in (6.34). As displayed in figure 6.5.8, the solution now presents a finite-time blowup around
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t ≈ 7.5, leading to an aggregation-dominated behaviour. Figure 6.5.8a reveals that the density
is concentrated towards the middle of the domain while Figure 6.5.8b shows that the momentum
presents an infinite slope when reaching the blowup. From figure 6.5.8d we notice that the total
and free energy temporally decay until the blowup occurs.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the density (d) Evolution of the total energy and
free momentum

Figure 6.5.9: Temporal evolution of the Keller-Segel system with W (x) = ln |x| and initial con-
ditions (6.34) with M = 1. Compactly-supported steady state. (a)-(b) P = 3ρ2, steady state
t = 250, (c)-(d) P = 3ρ2.5, steady state t = 100.

Finally, we also aim to compare diffusion-dominated solutions where m > 1 leading to steady
states that are compactly supported. For this purpose we set the initial conditions to be (6.34)
with a mass of M = 1. For comparison we look at two scenarios with P = 3ρ2 and P = 3ρ2.5 so
that the exponent m is different. In Figure 6.5.9 we depict the final steady states that arise from
the two choices of m. From figures Figures 6.5.9a and 6.5.9c we observe that the final compactly-
supported density profiles have slightly different shapes due to the balances between the attraction
from the local kernel W (x) and the repulsion caused by the diffusion of the pressure P (ρ).
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Appendix

6.A Details about the fifth-order Gaussian quadrature

In this section we detail the procedure to approximate an integral via the fifth-order Gaussian
quadrature. Briefly, Gaussian quadratures of n points yield exact values of integrals for polynomials
of degree up to 2n − 1. In our case we implement Gaussian quadratures of 3 points, so that the
spatial error is of the order O(∆x5). In this way we do not limit the order of the high-order finite
volume schemes, since the order of this quadrature is always higher or equal than ones in the
reconstructions of the scheme.

The approximation of a function f(x) within an interval [−1, 1] via a three-point Gaussian
quadrature [2] satisfies

∫ 1

−1
f(x) dx =

5

9
f

(
−
√

3

5

)
+

8

9
f (0) +

5

9
f

(√
3

5

)
.

In our case, this integration is performed within each of the finite volume cells in [xi−1/2, xi+1/2]
centred at xi and with size ∆x. The cell averages in the finite volume schemes are also divided over
∆x. As a result, the transformation of weights and spatial coordinates for the Gaussian quadrature
from [−1, 1] to [xi−1/2, xi+1/2] results in

1

∆x

∫ xi+1/2

xi−1/2

f(x) dx =
5

18
f

(
xi −

∆x

2

√
3

5

)
+

4

9
f (xi) +

5

18
f

(
xi +

∆x

2

√
3

5

)
.

From this last expression we get that the coefficients αj for j ∈ {1, 2, 3} satisfy

α1 =
5

18
, α2 =

4

9
, α3 =

5

18
,

with the spatial nodes xji within the cell i for the evaluations of the integrand located at

x1
i = xi −

∆x

2

√
3

5
, x2

i = xi, x3
i = xi +

∆x

2

√
3

5
.

6.B Details about the positive-density CWENO reconstruction

In this section we proceed to summarize the third- and fifth-order CWENO reconstructions of a
generic function g(x) whose cell averages {gi}, defined as in (6.2), are taken as input. Each cell has
size ∆x, is centred at {xi} and is contained in the region

[
xi−1/2, xi+1/2

]
. These reconstructions

are applied in (6.13) to compute the high-order reconstructions Rρi (x), Rρui (x) and RKi (x). For
further details about the CWENO algorithm, we refer the reader to [52, 99, 197, 198].
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In Subappendix 6.B.1 we detail the third-order reconstruction, in Subappendix 6.B.2 we proceed
with the fifth-order reconstruction, and finally in Subappendix 6.B.3 we end up by summarizing
the positive-density limiters from [299], which are essential to prove the positivity of the overall
finite volume scheme.

6.B.1 Third-order CWENO reconstruction

The third-order CWENO reconstruction from [197] satisfies

Rgi (x) = gi + g′i(x− xi) +
1

2
g′′i (x− xi)2, (6.35)

with gi, g
′
i and g′′i resulting from

gi = wii−1

(
g̃i−1 + ∆x g̃′i−1 +

1

2
∆x2 g̃′′i−1

)
+ wii g̃j + wii+1

(
g̃i+1 −∆x g̃′i+1 +

1

2
∆x2 g̃′′i+1

)
,

g′i = wii−1

(
g̃′i−1 + ∆x g̃′′i−1

)
+ wii g̃

′
i + wii+1

(
g̃′i+1 −∆x g̃′′i+1

)
,

g′′i = wii−1 g̃
′′
i−1 + wii g̃

′′
i + wii+1 g̃

′′
i+1,

(6.36)

and g̃k, g̃
′
k and g̃′′k , for k = {i− 1, i, i+ 1}, being computed as

g̃k = gk −
gk−1 − 2gk + gk+1

24
, g̃′k =

gk+1 − gk−1

2∆x
, g̃′′k =

gk+1 − 2gk + gk−1

∆x2
.

The weights wik appearing in (6.36), for k = {i− 1, i, i+ 1}, satisfy

wik =
αik

αii−1 + αii + αii+1

, where αik =
Ck(

ε+ ISik
)p . (6.37)

The constants Ci−1, Ci, Ci+1, ε and p for αik in (6.37) are

Ci−1 =
3

16
, Ci =

5

8
, Ci+1 =

3

16
, ε = 10−6, p = 3. (6.38)

Finally, the smoothness indicators ISik for αik in (6.37), where k = {i− 1, i, i+ 1}, result from

ISii−1 =
13

12
(gi−2 − 2gi−1 + gi)

2 +
1

4
(gi−2 − 4gi−1 + 3gi)

2 ,

ISii =
13

12
(gi−1 − 2gi + gi+1)2 +

1

4
(gi−1 − gi+1)2 ,

ISii+1 =
13

12
(gi − 2gi+1 + gi+2)2 +

1

4
(3gi − 4gi+1 + gi+2)2 .

(6.39)

The proposed choice of the constants in (6.38) and the smoothness indicators in (6.39) is based
on the original work for third-order CWENO reconstruction in [197]. The reader can find about
other more refined choices in [198] and later works [5, 99, 183, 246].

6.B.2 Fifth-order CWENO reconstruction

The fifth-order CWENO reconstruction from [52] satisfies

Rgi (x) = gopt(x) +
∑

k∈{1,2,3,c}

(
wik − Ck

)
gk(x), (6.40)
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with gopt, g1, g2, g3 and gc resulting from

gopt(x) =
5∑

j=1

aj(x− xi)j−1, g1(x) =
3∑

j=1

bj(x− xi)j−1, g2(x) =
3∑

j=1

cj(x− xi)j−1,

g3(x) =

3∑

j=1

dj(x− xi)j−1, gc(x) = (gopt(x)− C1 g1(x)− C2 g2(x)− C3 g3(x)) /Cc.

(6.41)

The coefficients aj for j ∈ {1, 2, 3, 4, 5} which appear in the optimal polynomial gopt(x) in (6.41)
are taken as

a1 =
1067

960
gi −

29

480
(gi+1 + gi−1) +

3

640
(gi+2 + gi−2) , a2 =

34 (gi+1 − gi−1) + 5 (gi−2 − gi+2)

48∆x
,

a3 =
gi−2 + 22 gi + gi+2 − 12 (gi+1 + gi−1)

−16∆x2
, a4 =

2 (gi+1 − gi−1) + (gi−2 − gi+2)

−12∆x3
,

a5 =
gi−2 + 6gi + gi+2 − 4 (gi+1 + gi−1)

24∆x4
.

The rest of the coefficients bj , cj and dj for j ∈ {1, 2, 3} which appear in the polynomials g1,
g2 and g3, respectively, follow from

b1 =
23

24
gi +

1

12

(
gi−1 −

1

2
gi−2

)
, b2 =

3gi − 4gi−1 + gi−2

2∆x
, b3 =

gi − 2gi−1 + gi−2

2∆x2
,

c1 =
13

12
gi +

1

24
(gi−1 + gi+1) , c2 =

gi+1 − gi−1

2∆x
, c3 =

gi+1 − 2gi + gi−1

2∆x2
,

d1 =
23

24
gi +

1

12

(
gi+1 −

1

2
gi+2

)
, d2 =

3gi − 4gi+1 + gi+2

−2∆x
, d3 =

gi − 2gi+1 + gi+2

2∆x2
.

The weights wik for k ∈ {1, 2, 3, c} in the fifth-order CWENO reconstruction (6.40) satisfy

wik =
αik∑

k∈{1,2,3,c} α
i
k

, where αik =
Ck(

ε+ ISik
)p . (6.42)

The constants C1, C2, C3, Cc, ε and p for αik in (6.42) are

C1 =
1

8
, C2 =

1

4
, C3 =

1

8
, Cc =

1

2
, ε = 10−6, p = 2.

Finally, the smoothness indicators ISik which appear in the computation of αik in (6.42), with
k ∈ {1, 2, 3, c}, result from

ISi1 = b22∆x2 +
13

3
b23∆x4, ISi2 = c2

2∆x2 +
13

3
c2

3∆x4, ISi3 = d2
2∆x2 +

13

3
d2

3∆x4,

ISi4 = a2
2∆x2 +

(
13

3
a2

3 +
1

2
a2 a4

)
∆x4.

6.B.3 Positive-density CWENO reconstruction

The third- and fifth-order CWENO reconstructions in (6.35) or (6.40), respectively, can be modified
to yield positive values for evaluations at specific spatial points of the finite volume cell. In our
case we are interested in obtaining positive values of the density at the points required by the
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numerical scheme in (6.21). Namely, those points are: the boundaries of the cell, computed in
(6.22) and employed for in (6.23), (6.24) and (6.25), and the quadrature points to compute the
integrals in the nonlinear damping term in (6.21), the distribution of the high-order corrections in
the source term in (6.21) and described in Appendix 6.C, and the update of Kn+1

i in (6.20).
Zhang and Shu [299] proposed a methodology to construct maximum-principle-satisfying high-

order schemes. Here we apply their work in [299] to modify the CWENO reconstructions in the
subsections 6.B.1 and 6.B.2, so that they preserve the positivity of the density. The procedure is
the following:

1) Construct the third- or fifth-order CWENO polynomial in (6.35) or (6.40), respectively, for
all the finite volume cells.

2) Evaluate the reconstructed polynomials at the spatial points required by the numerical
scheme in (6.21): the boundaries of the cells and quadrature points. We denote as M
the total number those spatial points.

3) For each cell i compute the minimum mi of the evaluations of the reconstructed polynomial
at the required spatial points xji , for j ∈ {1, . . . ,M}, so that mi = minj∈{1,...,M}R

g
i (x

j
i ).

4) Modify the reconstructed polynomial in (6.35) or (6.40) so that mi ≥ 0, in the following way:

R̃gi (x) = θ (Rgi (x)− gi) + gi, with θ = min

{ |0− gi|
|mi − gi|

, 1

}
.

5) Evaluate all the M spatial points within each cell with the modified reconstructed polynomial

R̃gi (x).

6) Apply the following CFL condition for the time step ∆t, depending on the numerical flux
employed and where αj is the quadrature weight of the spatial point xji , for j ∈ {1, . . . ,M}:

∆t =





CFL
∆x minj∈{1,...,M} αj

max
∀
(
U−
i+ 1

2

,U+

i+ 1
2

){∣∣∣u+
√
P ′(ρ)

∣∣∣,∣∣∣u−√P ′(ρ)
∣∣∣} , if Lax-Friedrich flux,

CFL
∆x minj∈{1,...,M} αj

max
∀
(
U−
i+ 1

2

,U+

i+ 1
2

){|u|+3
m−1

4

} , if kinetic flux.
(6.43)

The quadrature weights αj employed in this work come from the fifth-order Gaussian quadra-
ture and the integration of the source term corrections in Appendix 6.C. For the details about
the numerical fluxes we refer the reader to our previous work [71]. Note too that our CFL
condition is constructed to ensure the positivity of the density, but it doesn’t set any con-
straints for the momentum. As a result, the CFL condition doesn’t depend on the source
terms, given that they do not appear in the density equation and our temporal integrator is
explicit. This is fine for our simulations since our source terms are not stiff. It is true though
that it may be challenging to simulate stiff source terms, and for that case one may have
to rely on more stable implicit temporal integrators with CFL conditions depending on the
source term.
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6.C Details about the integration for the high-order corrections

In this section we follow [217, 218] to propose a fourth- and sixth-order quadrature for the high-
order corrections in the source term, which appear in the last term of (6.21) and satisfy

Ii =

∫ x
i+ 1

2

x
i− 1

2

(
S
(
Rρi (x), RHi (x)

)
− S (U∗i (x), H∗i (x))

)
dx. (6.44)

The first step is to define a general trapezoidal numerical quadrature Imi for the integral Ii in

(6.44), which employs m points xji = xi−1/2 + (j− 1)∆x/m of the cell i, with j ∈ {1, . . . ,m}. Such
integral yields

Imi =
m−1∑

j=1

[
Rρi (x

j
i ) +Rρi (x

j+1
i )

2

(
RHi (xj+1

i )−RHi (xji )
)
− Rρi (x

j
i ) +Rρi (x

j+1
i )

2

(
H∗i (xj+1

i )−H∗i (xji )
)]

.

(6.45)
The integral Imi is a second-order approximation of Ii in (6.44), and its asymptotic form satisfies
[217]

Imi = Ii + c1

(
∆x

m

)2

+ c2

(
∆x

m

)4

+ . . . (6.46)

The strategy to obtain the fourth- and sixth-order schemes relies in computing the integral Ii in
(6.44) as a linear combination of Imi for different m, such that the desired errors in (6.46) are
cancelled. The required formulas of integration are:

a) Fourth-order quadrature employing I1
i and I2

i , so that

Ii =
4I2
i − I1

i

3
+O(∆x4).

b) Sixth-order quadrature employing I1
i , I2

i and I3
i , so that

Ii =
81

40
I3
i −

16

15
I2
i +

1

24
I1
i +O(∆x6).

As a remark, the order of these quadratures is maintained as long as the order of the recon-
structions for the density in (6.13) and the potential in (6.14) is greater than or at least equal to
the order of the quadrature formulas. Otherwise the order of the quadrature is diminished and
matches the order of the reconstruction.
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Part III

An example of overdamped system:
the Cahn-Hilliard equation
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CHAPTER 7

Introduction to the Cahn-Hilliard equation

The Cahn-Hilliard (CH) equation is a popular phase-field model initially proposed by Cahn and
Hilliard [48] to describe the process of phase separation in binary alloys. Since then it has found
applicability in a wide variety of modelling problems, from capillarity and wetting phenomena [13,
258], diblock copolymer molecules [298] and tumor growth [140, 278] to image inpainting [33, 45,
65], topology optimization [300] and many more [180]. Similar to other phase-field models, the
CH equation avoids the explicit treatment of sharp interfaces altogether by replacing them with
thin transition regions through which pertinent variables and physical properties vary rapidly but
continuously. The CH equation has a gradient-flow structure of the form

∂φ

∂t
= ∇ ·

(
M(φ)∇δF [φ]

δφ

)
, (7.1)

where φ is the phase-field, which plays the role of an order parameter and describes the phases of
the system and is a continuous function depending on time t and space x. In a binary system it
takes on the limiting values φ = 1 in one phase and φ = −1 in the other phase.

The free energy of the system F [φ] satisfies

F [φ] =

∫

Ω

(
H(φ) +

ε2

2
|∇φ|2

)
dΩ +

∫

∂Ω
fw(φ, β)ds, (7.2)

where H(φ) is a double-well potential with minima corresponding to the stable phases in the
system, ε is a positive parameter related to the diffuse-interface width (e.g. [79]) and fw(φ, β) is
the wall free energy which depends on the phase field at the wall and the (equilibrium) contact
angle β (e.g. [279]) – see Fig. 7.0.1 for a schematic of a droplet on a solid substrate with contact
angle β). From now on f ′w(φ, β) denotes the derivative of fw(φ, β) with respect to the phase field

φ. The variation of the free energy with respect to the phase field δF [φ]
δφ is typically denoted as the

chemical potential ξ. The mobility term M(φ) is usually taken as a degenerate mobility satisfying
a quadratic polynomial with roots at φ = ±1,

M(φ) = M0(1− φ)(1 + φ), (7.3)

but it can be taken just as a constant, M(φ) = M0. The boundary conditions imposed for the CH
equation in (7.1) are a combination of the natural boundary condition for the wall free energy and
no-flux for the chemical potential [13, 192],

ε2∇φ · n = −f ′w(φ, β), M(φ)∇ξ · n = 0, (7.4)
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Phase φ ≈ +1 Phase φ ≈ −1

Substrate

Interface φ = 0

β

Figure 7.0.1: Schematic of a sessile droplet with φ ≈ 1 on a solid substrate and surrounded by a
fluid with φ ≈ −1. The contact angle between the droplet and substrate is defined as β.

where n is an inward-pointing unit vector normal to the wall. The form of the term fw(φ) has
received considerable attention in the literature, starting from the early contributions in the field
where a linear form was stipulated, e.g. [247]. Here we assume that the function fw has bounded
second derivative on [−1, 1], so that it can be split into a convex part and a concave part satisfying

fw(φ, β) = fc,w(φ, β)− fe,w(φ, β), (7.5)

where fc,w and fe,w are convex functions. A good choice is the cubic form [13, 258, 259, 260],
which is the lowest-order polynomial to allow for the minimization of the wall free energy for the
bulk densities, while at the same time preventing the formation of boundary layers,

fw(φ, β) =
ε
√

2

2
cosβ

(
φ3

3
− φ

)
. (7.6)

We note that the convex-concave splitting of this cubic function depends on the choice of β. Here
we employ

fc,w(φ, β) =

{
ε
√

2
2 cosβ

(
φ3

3 − φ+ φ2
)

if cosβ ≥ 0,

− ε
√

2
2 cosβφ2 otherwise,

fe,w(φ, β) = fc,w(φ, β)− fw(φ, β),

so that fc,w(φ, β) and fe,w(φ, β) are convex for φ ∈ [−1, 1].
The variation of the free energy (7.2) with respect to φ follows from

d

dγ
F [φ+ γΨ]

∣∣∣∣
γ=0

=

∫

Ω

(
ΨH ′(φ) + ε2∇φ · ∇Ψ

)
dΩ +

∫

∂Ω
Ψf ′w(φ, β)ds

=

∫

Ω

(
H ′(φ)− ε2∆φ

)
ΨdΩ +

∫

∂Ω

(
ε2∇φ · n+ f ′w(φ, β)

)
Ψds,

from which one can apply the boundary conditions (7.4) to derive an expression for the chemical
potential ξ,

ξ =
δF [φ]

δφ
= H ′(φ)− ε2∆φ. (7.7)

The free energy (7.2) experiences a temporal decay due to the gradient-flow structure of the
CH equation in (7.1). This is one of the main properties of gradient flows and is obtained by
differentiating the free energy F [φ] with respect to time and applying the boundary conditions in
(7.4), leading to

d

dt
F [φ] = −

∫

Ω
M(φ)

∣∣∣∣∇
δF [φ]

δφ

∣∣∣∣
2

dΩ.
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Mimicking this free-energy dissipation at the discrete level has been the aim of many numer-
ical works on the CH equation. A scheme endowed with such discrete property is categorized as
energy-stable, and the first unconditionally energy-stable scheme was devised by Eyre [128], who
put forward the popular convex-splitting technique by which the potential H(φ) is separated in
implicit contractive (convex) and explicit expansive (concave) terms. In fact this semi-implicit for-
mulation has proven so far to be the only method of deriving unconditional energy-stable schemes,
and one can show that fully implicit schemes for nonlinear systems such as the CH equation are
only conditionally energy-stable depending on the time-step. This counter-intuitive fact has been
recently analysed in [288], where the authors prove that the convex-splitting scheme for the CH
model is exactly the same as the fully-implicit for a different model that is a nontrivial perturbation
of the original CH, and the gain of stability is at the expense of a possible loss of accuracy. In any
case, the convex-splitting technique is a mainstream ingredient in the construction of energy-stable
schemes for the CH equation, and has been successfully applied in various discretization strategies
such as finite differences [135, 159], finite volumes [105], finite elements [20, 25, 114, 278], spectral
methods [164] and discontinuous Galerkin schemes [8] (see [268] for an extensive review of energy-
stable schemes for the CH equation). A recent and promising strategy to design energy-stable
schemes is the so-called scalar auxiliary variable [249, 250].

The convex-splitting technique has been applied for different choices of the potential H(φ).
The two main ones in the literature [24, 268] that we apply in this work are: the Ginzburg-Landau
double-well potential,

H(φ) =
1

4

(
φ2 − 1

)2
; (7.8)

and the logarithmic potential Hlog(φ),

Hlog(φ) =
θ

2

[
(1 + φ) ln

(
1 + φ

2

)
+ (1− φ) ln

(
1− φ

2

)]
+
θc
2

(1− φ2) for φ ∈ (−1, 1), (7.9)

where θ and θc are positive constants with θ < θc, corresponding to the absolute temperature
and absolute critical temperature, respectively. The logarithmic potential, usually referred to as
the Flory-Huggins energy potential in the polymer-science community [117], is considered more
physically realistic in comparison to the polynomial double-well potential in (7.8) because it can
be mathematically derived from regular or ideal solution theories [117, 191]. It is, however, singular
as φ approaches −1 or 1, in contrast to the double-well potential (7.8). The usual convex-splitting
for the double-well (7.8) and logarithmic (7.9) potentials satisfy

H(φ) = Hc(φ)−He(φ) =
φ4 + 1

4
− φ2

2
,

Hlog(φ) = Hc,log(φ)−He,log(φ) =
θ

2

[
(1 + φ) ln

(
1 + φ

2

)
+ (1− φ) ln

(
1− φ

2

)]
−
(
−θc

2
(1− φ2)

)
,

(7.10)
so that all the functions Hc, He, Hc,log, and He,log are convex functions.

Another fundamental property that has received much attention, both in terms of PDE analysis
and construction of numerical schemes, is the maximum principle or boundedness of the phase-field.
On the one hand, the phase-field solution of the CH equation with logarithmic potential satisfies
|φ| < 1 due to the singularities of the potential (7.9) at φ = ±1, both for degenerate and constant
mobilities. This has already been proved at the PDE level in various works [1, 212], including
for degenerate mobilities of the type (7.3) in [24, 125]. On the other hand, for the double-well
potential (7.8) the phase-field solution might leave the interval (−1, 1) in the general case [92, 268],
due to the absence of singularities in the potential. There are, however, two cases when one can
analytically prove a maximum principle for the double-well potential (7.8): firstly, for degenerate
mobilities of the type (7.3) vanishing when φ = ±1, the phase field is bounded in |φ| ≤ 1, as shown
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in [125]; secondly, for general mobilities by truncating the potential (7.8) with quadratic growth
at infinities, as shown in [46] and applied in [94, 251].

The construction of numerical schemes with the discrete maximum principle property has at-
tracted considerable attention, especially in recent years. The pioneering work by Copetti and
Elliot [95] proposed a fully implicit scheme that satisfies a discrete maximum principle under a
condition for ∆t, which depends on ε and the critical temperature θ0. More recent works have
sought to derive schemes that unconditionally satisfy the discrete maximum principle. An impor-
tant contribution has been by Chen et al. [86], where a finite-difference scheme with unconditional
discrete maximum principle for the logarithmic potential case is constructed for both constant and
degenerate mobilities. In another recent work [134], the authors propose a flux-limiting technique
based on high-order discontinuous Galerkin schemes and which unconditionally preserves global
bounds for a family of PDEs including the CH equation. Many other works apply the truncation
of the potential (7.8) with quadratic growth at infinities, with the objective of forcing their simu-
lations to satisfy the discrete maximum principle when no rigorous proof can be derived [84, 251].
In spite of these remarkable efforts, there is still no scheme flexible enough to satisfy the discrete
maximum principle for a general family of free energy potentials including the double-well (7.8)
or the logarithmic (7.9), and at the same time allowing for wetting boundary conditions such as
(7.4).

7.1 Contribution to finite-volume schemes for the Cahn-Hilliard
equation

The main thrust of this work is precisely the construction of a finite-volume scheme that uncon-
ditionally satisfies both the discrete maximum principle and free-energy dissipation. The scheme
maintains these two fundamental properties for general potentials including the double-well (7.8)
and logarithmic (7.9), wetting conditions such as (7.5) as well as more general wall free energies,
and degenerate mobilities of the type (7.3) vanishing when φ = ±1. In contrast to previous works,
the scheme is not restricted to only particular choices of the free energy potential such as the
logarithmic one (7.9). In addition, for the case of the double-well potential (7.8) we do not rely on
truncated potentials. Furthermore, the scheme is efficiently extended to higher-dimensional con-
figurations due its flexible and cost-saving dimensional-splitting nature thanks to an upwind and
finite-volume formulation. The computational cost can be further reduced with a straightforward
parallelization resulting from the dimensional-splitting approach. The satisfaction of these uncon-
ditional properties imposes a trade-off in the order of our scheme, which in this work is limited
to first-order accuracy. Nevertheless, the extension of this scheme to high order will be explored
in future works. The present study builds naturally from our previous works aimed at designing
structure-preserving finite-volume schemes for gradient flows and hydrodynamic systems, where a
general free energy containing nonlocal interaction potentials drives the temporal evolution towards
a steady state dictated by the minimizer of such free energy [15, 17, 54, 55, 66, 243].

Chapter 8 is devoted to this contribution. First, in Section 8.1 we explain the construction of
the one-dimensional semi-implicit scheme, with its properties of conservation of mass, boundedness
of the phase field and free-energy dissipation proved in Subsection 8.1.1. In Section 8.2 we continue
with the two-dimensional semi-implicit scheme based on the dimensional-splitting formulation, and
its related properties are proved in Subsection 8.2.1. Next, in Section 8.3 we depict a battery of
simulations for relevant applications of the CH equation. In Subsection 8.3.1 we begin by validating
the first-order spatial order of convergence of our scheme, for both one- and two-dimensional test
cases. In Subsection 8.3.2 we provide one-dimensional simulations to analyze the impact of selecting
different free-energy potentials and mobility functions. Finally, in Subsection 8.3.3 we depict two-
dimensional simulations considering the evolution of a initial random field with different mobilities
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and including wall free energy terms leading to contact angles between the droplets and substrates.

7.2 Contribution to Cahn-Hilliard image inpainting

The objective of this work is to show precisely the applicability of our numerical framework in [16]
for a benchmark dataset of images in need of restoration through image inpainting. For this task
we purposely add different types and intensities of damage to the popular MNIST dataset [112],
and then apply image inpainting by solving the modified CH equation (9.1) with our finite-volume
scheme in [16]. The MNIST database (Modified National Institute of Standards and Technology
database) is a standard dataset to validate image-processing methodologies, and it contains binary
handwritten images of numbers from zero to nine. We choose this dataset since the modified CH
equation (9.1) is applicable to binary images such as the ones in the MNIST dataset. The extension
of this work to non-binary images is also relevant and will be explored elsewhere. We also assess
the improvement in pattern recognition accuracy of the restored MNIST images, and for this we
construct a neural network for the task of classification. A key objective of our study is to quantify
the benefits of including a CH filter before introducing a damaged image into a neural network.
Our results demonstrate that accuracies in classification can increase up to 50% for particular
damages in the images, and, in general, applying the CH filter improves the accuracy prediction
for a wide range of low to moderate image damage. This increase in accuracy is obtained by
applying our image-inpainting methodology to the MNIST dataset exclusively, and as a disclaimer
we remark that other datasets or types of damage may result in different increases of accuracy.
The application of other types of filters, such as texture inpainting or generative inpainting, may
also result in different increases of accuracy, but overall the accuracy should be higher compared
to the case where no filter is applied to the damaged image.

The robust semi-implicit finite-volume scheme for the CH equation in Chapter 8 offers crucial
advantages when applied to the field of image inpainting:

• Firstly, finite volumes are a straightforward discretization when dealing with images, which
often consist of rectangular-shaped pixel cells with an average color intensity. This is exactly
the starting point of finite-volume schemes, and as a result it is conceptually simpler to
apply finite volumes in comparison with finite elements, finite differences or discontinuous
Galerkin (which would be more suitable for other more complex and rare pixel shapes such
as triangular ones).

• Secondly, our scheme is based on a dimensional-splitting approach: instead of solving the full
two-dimensional (2D) image altogether, this technique initially solves row by row and then
column by column. This has a massive benefit in computational cost, which is reduced from
O(Ndγ) for an image with N cells in d dimensions to O(dNd+γ−1), with 2 < γ < 3. The
reason for this is that the cost of inverting aN×N matrix isO(Ndγ), with a value of 2 < γ < 3
that slightly varies depending on the inversion algorithm and matrix structure (see [96] for
details). For images with N cells per dimension, the solution of the full 2D scheme involves
inverting a Nd × Nd Jacobian matrix, with a subsequent cost of O(Ndγ). In contrast, the
dimensional-splitting technique requires inverting dNd−1 Jacobians of size N×N , amounting
for a total computational cost of O(dNd+γ−1). This is already advantageous for a 2D image,
and the computational cost is further reduced for high-dimensional images, such as the ones
for [41] or X-ray computed tomography [158] in medical image analysis. To add more, such
dimensional-splitting technique allows for parallelization, and it is possible to half the total
computational cost by solving nonadjacent rows and columns in parallel.

• Thirdly, our scheme has been extensively tested in [16] for challenging configurations of the
original CH equation (7.1). In addition, in [16] we prove that the scheme unconditionally
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satisfies the discrete decay of the free energy for different choices of potentials (7.8) [40],
while at the same time we prove the phase-field boundedness for mobilities of the form
M(φ) = 1 − φ2. Even though the modified CH equation (9.1) is not strictly a gradient
flow due to the inclusion of the fidelity term, our scheme preserves its robustness for all the
image-inpainting test cases presented in this work.

The combination of these properties and reduced computational cost, together with the versatility
of finite volumes, make our scheme efficient and robust for the solution of the modified CH equation
in (9.1) for a variety of applications in image inpainting.

In Section 9.2 we outline the methodology: in Subsection 9.2.1 we adapt our finite-volume
scheme in [16] for the modified CH equation in (9.1); in Subsection 9.2.2 we recall the two-step
method for image inpainting in [33]; in Subsection 9.2.3 we detail the neural network architecture
for the classification task; and lastly in Subsection 9.2.4 we explain the structure of the integrated
algorithm which takes a damaged image, applies a CH filter to it, and then classifies the image
through a neural network. Subsequently in Section 9.3 we present the results of the integrated
algorithm applied to the MNIST dataset: in Subsection 9.3.1 we begin by identofying appropiate
tunings for the values of ε and λ0; in Subsection 9.3.2 we present the different types of damage
introduced into the MNIST testset of images; and finally in Subsection 9.3.3 we quantify the im-
provement in accuracy of applying the CH filter to the damaged MNIST images before introducing
them into the neural network.
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CHAPTER 8

Finite-volume schemes for the Cahn-Hilliard equation

The contents of this chapter are based on the publication [16], done in collaboration with Rafael
Bailo, José A. Carrillo, and Serafim Kalliadasis:

[16] R. Bailo, J. A. Carrillo, S. Kalliadasis, and S. P. Perez. “Unconditional bound-preserving
and energy-dissipating finite-volume schemes for the Cahn-Hilliard equation”. In: arXiv
preprint arXiv:2105.05351 (2021). To be submitted.

8.1 One-dimensional semi-implicit scheme

For 1D finite-volume approximation of the CH equation (7.1) the computational domain [0, L] is
divided into N cells Ci = [xi−1/2, xi+1/2], all with uniform size ∆x = L/N , so that the centres of
the cells satisfy xi = (i − 1)∆x + ∆x/2, i ∈ 1, . . . , N . In each of the cells Ci we define the cell
average φi as

φi(t) =
1

∆x

∫

Ci

φ(x, t)dx.

Subsequently, one has to integrate the CH equation (7.1) over each of the cells Ci, resulting in

φn+1
i − φni = −∆t

∆x

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
. (8.1)

For the approximation of the flux at the boundary we follow an upwind approach inspired by
Refs [15, 55], with the fluxes computed as

Fn+1
i+1/2 =

(
un+1
i+1/2

)+
M(φn+1

i , φn+1
i+1 ) +

(
un+1
i+1/2

)−
M(φn+1

i+1 , φ
n+1
i ) (8.2)

where the velocity un+1
i+1/2 satisfies

un+1
i+1/2 = −ξ

n+1
i+1 − ξn+1

i

∆x

and the upwind is obtained from
(
un+1
i+1/2

)+
= max(un+1

i+1/2, 0),
(
un+1
i+1/2

)−
= min(un+1

i+1/2, 0).
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The discretized mobility in (8.2) is approximated with implicit density values from the left of the
boundary, φn+1

i , and values from the right, φn+1
i+1 . We construct the discretized mobility as

M(x, y) = M0(1 + x)+(1− y)+ or M(x, y) = M0, (8.3)

depending on the choice of mobility taken in (7.3). The proof of the unconditional boundedness of
our numerical scheme in Subsection 8.1.1 relies heavily on the approximated mobility (8.3).

The discretized variation of the free energy ξn+1
i follows a semi-implicit formulation: the con-

tractive part of the potential, Hc(ρ), is taken as implicit; the expansive part of the potential, He(ρ),
is taken as explicit; and the Laplacian is taken as an average between the explicit and the implicit
second-order discretizations. More precisely, the approximation of ξn+1

i is given by

ξn+1
i = H ′c(φ

n+1
i )−H ′e(φni )− ε2

2

[
(∆φ)ni + (∆φ)n+1

i

]
+

1

∆x
Wi(φ

n+1
i , φni ), (8.4)

where (∆φ)i is the discrete 1D second-order approximation of the Laplacian appearing in (7.7),
defined as

(∆φ)ni =
φni+1 − 2φni + φni−1

∆x2
, (∆φ)n+1

i =
φn+1
i+1 − 2φn+1

i + φn+1
i−1

∆x2
,

and the wetting term W (φn+1
i , φni ) is only evaluated at the boundaries,

Wi(φ
n+1
i , φni ) =





f ′c,w(φn+1
1 , β)− f ′e,w(φn1 , β) if i = 1;

f ′c,w(φn+1
N , β)− f ′e,w(φnN , β) if i = N ;

0 otherwise.

(8.5)

The no-flux boundary conditions (7.4) are implemented by taking the numerical flux to vanish
at the boundaries,

Fn+1
i−1/2 = 0 if i = 1; Fn+1

i+1/2 = 0 if i = N ; (8.6)

and by computing the Laplacian terms (∆φ)ni and (∆φ)n+1
i at the boundaries as





(∆φ)ni =
φn2−φn1

∆x2 , (∆φ)n+1
i =

φn+1
2 −φn+1

1
∆x2 if i = 1;

(∆φ)ni =
−φnN+φnN−1

∆x2 , (∆φ)n+1
i =

−φn+1
N +φn+1

N−1

∆x2 if i = N.
(8.7)

8.1.1 Properties of the scheme

The finite-volume scheme proposed in Section 8.1 satisfies the following properties:

(i) conservation of mass so that
∑N

i=1 φ
n
i =

∑N
i=1 φ

n+1
i ;

(ii) boundedness of the phase-field φ for mobilities of the form M(φ) = M0(1 +φ)(1−φ), so that
if |φni | ≤ 1∀i, then |φn+1

i | ≤ 1∀i;

(iii) dissipation of the discrete free energy, defined as

Fn∆ = ∆x
N∑

i=1

(He(φ
n
i )−Hc(φ

n
i )) + ∆x

N−1∑

i=1

ε2

2
|(∇φ)ni+1/2|2 + fw(φn1 ) + fw(φnN ), (8.8)

where (∇φ)ni+1/2 is the discrete 1D approximation of the gradient at the interface, satisfying

the first-order form (∇φ)ni+1/2
:=

φni+1−φni
∆x . The discrete dissipation is

Fn+1
∆ −Fn∆ ≤ −∆t∆x

N−1∑

i=1

min
(
M(φn+1

i , φn+1
i+1 ),M(φn+1

i+1 , φ
n+1
i )

) ∣∣∣un+1
i+1/2

∣∣∣
2
≤ 0. (8.9)
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Proof. Some of the ideas in these proofs are inspired by the studies in Refs [14, 15, 34, 55].

(i) The conservation of mass follows from summing the finite-volume scheme (8.1) for all cells
Ci and applying the no-flux conditions (8.7),

N∑

i=1

(
φn+1
j − φnj

)
= −∆t

∆x

N∑

i=1

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
= −∆t

∆x

(
Fn+1
N+1/2 − F

n+1
1−1/2

)
= 0.

(ii) We follow the general proof in [14] to show the boundedness of our scheme via contradiction.
Without loss of generality, assume first that there is a group of contiguous cells satisfying
φn+1
i > 1, for some values i. The cells belonging to such group are {φn+1

j , φn+1
j+1 , . . . , φ

n+1
k }.

The proof also applies if there are more groups or if the groups have only one cell. The next
step is to sum the scheme (8.1) over the group of cells, resulting in

∆x

∆t

k∑

i=j

(
φn+1
i − φni

)
= −

(
Fn+1
k+1/2 − F

n+1
j−1/2

)
. (8.10)

Since we have assumed that φn+1
i > 1 for i ∈ {j, j + 1, . . . , k}, it follows that the left-hand

side of (8.10) is positive. As a result, the right-hand side of (8.10) also has to be positive,

0 < −
(
Fn+1
k+1/2 − F

n+1
j−1/2

)
=−

(
un+1
k+1/2

)+
M(φn+1

k , φn+1
k+1)−

(
un+1
k+1/2

)−
M(φn+1

k+1 , φ
n+1
k )

+
(
un+1
j−1/2

)+
M(φn+1

j−1 , φ
n+1
j ) +

(
un+1
j−1/2

)−
M(φn+1

j , φn+1
j−1 ).

(8.11)

The first and fourth terms in the right-hand side of (8.11) are negative since the mobility
function returns a nonnegative value, due to (8.3), φn+1

k+1 ≤ 1 and φn+1
j−1 ≤ 1. The second

and third terms are zero since φn+1
k > 1 and φn+1

j > 1, according to (8.3). As a result, the
whole of the right-hand side of (8.11) is negative implying a contradiction that comes from
assuming φn+1

i > 1 for i ∈ {j, j + 1, . . . , k}.
Proving that φn+1

i > −1 is done by following an identical strategy based on contradiction.

(iii) To show the energy dissipation we first have to take the finite-volume scheme in (8.1), multiply
it over ξn+1

i in (8.4) and sum it over all cells Ci, yielding

N∑

i=1

(
φn+1
i − φni

)
ξn+1
i = −∆t

∆x

N∑

i=1

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
ξn+1
i .

Then, by substituting the expression for ξn+1
i in (8.4) and rearranging, it follows that

N∑

i=1

(
φn+1
i − φni

) ε2
2

[
(∆φ)ni + (∆φ)n+1

i

]
=

∆t

∆x

N∑

i=1

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
ξn+1
i

+

N∑

i=1

(
φn+1
i − φni

) (
H ′c(φ

n+1
i )−H ′e(φni )

)

+
(
φn+1

1 − φn1
)W1(φn+1

i , φni )

∆x

+
(
φn+1
N − φnN

)WN (φn+1
N , φnN )

∆x
.

(8.12)
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Now we proceed to subtract the discrete free energies in (8.8) at subsequent times,

Fn+1
∆ −Fn∆

∆x
=

N∑

i=1

(
Hc(φ

n+1
i )−Hc(φ

n
i )
)
−

N∑

i=1

(
He(φ

n+1
i )−He(φ

n
i )
)

+
ε2

2

N−1∑

i=1

(
|(∇φ)n+1

i+1/2|
2 − |(∇φ)ni+1/2|2

)

+
1

∆x

(
fw(φn+1

1 )− fw(φn1 ) + fw(φn+1
N )− fw(φnN )

)
.

(8.13)

The next step is to expand the term with the discrete gradients at the interfaces. For that
we apply summation by parts and the boundary conditions in (8.7), leading to

ε2

2

N−1∑

i=1

(
|(∇φ)n+1

i+1/2|
2 − |(∇φ)ni+1/2|2

)

=
ε2

2

N−1∑

i=1

(
(∇φ)n+1

i+1/2 + (∇φ)ni+1/2

)(
(∇φ)n+1

i+1/2 − (∇φ)ni+1/2

)

=
ε2

2

N−1∑

i=1

(
φn+1
i+1 − φn+1

i

∆x
+
φni+1 − φni

∆x

)(
φn+1
i+1 − φn+1

i

∆x
− φni+1 − φni

∆x

)

=− ε2

2

N−1∑

i=2




φn+1
i+1 −φ

n+1
i

∆x − φn+1
i −φn+1

i−1

∆x

∆x
+

φni+1−φni
∆x − φni −φni−1

∆x

∆x


(φn+1

i − φni
)

+
ε2

2

(
φn+1
N − φn+1

N−1

∆x2
+
φnN − φnN−1

∆x2

)
(
φn+1
N − φnN

)

− ε2

2

(
φn+1

2 − φn+1
1

∆x2
+
φn2 − φn1

∆x2

)(
φn+1

1 − φn1
)

=−
N∑

i=1

(
φn+1
i − φni

) ε2
2

[
(∆φ)ni + (∆φ)n+1

i

]
.

(8.14)

The outcome of the last computations is the left-hand side of (8.12). We can then connect
(8.14) and (8.12) to obtain

ε2

2

N−1∑

i=1

(
|(∇φ)n+1

i |2 − |(∇φ)ni |2
)

=− ∆t

∆x

N∑

i=1

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
ξn+1
i

−
N∑

i=1

(
φn+1
i − φni

) (
H ′c(φ

n+1
i )−H ′e(φni )

)

−
(
φn+1

1 − φn1
)W1(φn+1

i , φni )

∆x
−
(
φn+1
N − φnN

)WN (φn+1
N , φnN )

∆x
.

(8.15)
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Then, by taking into account (8.15), (8.13) can be rewritten as

Fn+1
∆ −Fn∆

∆x
=

N∑

i=1

(
Hc(φ

n+1
i )−Hc(φ

n
i )−

(
φn+1
i − φni

)
H ′c(φ

n+1
i )

)

−
N∑

i=1

(
He(φ

n+1
i )−He(φ

n
i )−

(
φn+1
i − φni

)
H ′e(φ

n
i )
)

+
1

∆x

(
fw(φn+1

1 )− fw(φn1 )−
(
φn+1

1 − φn1
)
W1(φn+1

i , φni )
)

+
1

∆x

(
fw(φn+1

N )− fw(φnN )−
(
φn+1
N − φnN

)
WN (φn+1

i , φni )
)

− ∆t

∆x

N∑

i=1

(
Fn+1
i+1/2 − F

n+1
i−1/2

)
ξn+1
i

=I + II + III + IV + V.

Due to the convexity of both Hc(φ) and He(φ), which satisfy

Hc(φ
n
i )−Hc(φ

n+1
i )−

(
φni − φn+1

i

)
H ′c(φ

n+1
i ) ≥ 0,

He(φ
n+1
i )−He(φ

n
i )−

(
φn+1
i − φni

)
H ′e(φ

n
i ) ≥ 0,

it results that I ≤ 0 and II ≤ 0.

Due to the convex splitting of fw in (7.5), and the construction of Wi(φ
n+1
i , φni ) in (8.5), it

follows that
fc,w(φn1 )− fc,w(φn+1

1 )−
(
φn1 − φn+1

1

)
f ′c,w(φn+1

1 , β) ≥ 0,

fe,w(φn+1
1 )− fe,w(φn1 )−

(
φn+1

1 − φn1
)
f ′e,w(φn1 , β) ≥ 0.

The same holds for i = N . As a result III ≤ 0 and IV ≤ 0.

For V we can apply the discrete summation by parts as well as the no-flux conditions in
(8.6),

III =− ∆t

∆x

N−1∑

i=1

Fn+1
i+1/2

(
ξn+1
i − ξn+1

i+1

)
= −∆t

N−1∑

i=1

Fn+1
i+1/2u

n+1
i+1/2

=−∆t
N−1∑

i=1

((
un+1
i+1/2

)+
M(φn+1

i , φn+1
i+1 ) +

(
un+1
i+1/2

)−
M(φn+1

i+1 , φ
n+1
i )

)
un+1
i+1/2

≤−∆t

N−1∑

i=1

min
(
M(φn+1

i , φn+1
i+1 ),M(φn+1

i+1 , φ
n+1
i )

) ∣∣∣un+1
i+1/2

∣∣∣
2
≤ 0,

and this is precisely the decay rate for the discrete free energy written in (8.9).

8.2 Two-dimensional semi-implicit dimensional-splitting scheme

Here we construct a dimensional-splitting finite-volume scheme to solve the 2D CH equation (7.1).
This scheme is more computationally-efficient than a full 2D scheme, and as we will demonstrate
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it satisfies the unconditional properties of decay of the discrete free energy and boundedness of the
phase-field.

The 2D finite-volume approximation of the CH equation (7.1) follows from initially dividing
the computational domain [0, L]× [0, L] in N ×N cells Ci,j := [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], all
with uniform size ∆x∆y so that xi+1/2 − xi−1/2 = ∆x and yj+1/2 − yj−1/2 = ∆y. In each of the
cells we define the cell average φi as

φi,j(t) =
1

∆x∆y

∫

Ci,j

φ(x, y, t) dx dy. (8.16)

For the dimensional-splitting approach we firstly update the solution along the x directions,
for each index j corresponding to a fixed value of yj where j ∈ [1, N ]. Subsequently, we proceed in
the same way along the y directions, for each index i corresponding to a fixed value a value of xi
where i ∈ [1, N ]. The index r, where r ∈ [1, N ], denotes the index j of the fixed yj value in every x
direction of the first loop, and the updated average density for each x direction with j = r is φn,ri,j .
Similarly, the index c ∈ [1, N ] denotes the index i for every fixed value of xj in each y direction of
the second loop, and the updated density for each y direction with i = c is φn,ci,j .

To begin with we march along each of the x direction of the domain, each of them at a fixed yj
with j = r. The initial conditions for the scheme are φn,0 := φn. The scheme for each x direction
satisfies:

Step 1.- for each r = 1, . . . ,N do:

φn,ri,j =




φn,r−1
i,j − ∆t

∆x

(
Fn,ri+1/2,j − F

n,r

i− 1
2
,j

)
if j = r;

φn,r−1
i,j otherwise;

(8.17a)

Fn,ri+1/2,j =
(
un,ri+1/2,j

)+
M(φri,j , φ

r
i+1,j) +

(
un,ri+1/2,j

)−
M(φri+1,j , φ

r
i,j); (8.17b)

(
un,ri+1/2,j

)+
= max

{
un,ri+1/2,j , 0

}
,
(
un,ri+1/2,j

)−
= min

{
un,ri+1/2,j , 0

}
; (8.17c)

un,ri+1/2,j = −
ξn,ri+1,j − ξ

n,r
i,j

∆x
; (8.17d)

ξn,ri,j = H ′c(φ
n,r
i,j )−H ′e(φn,r−1

i,j )− ε2

2

[
(∆φ)n,r−1

i,j + (∆φ)
n,?

i,j

]
(8.17e)

+
1

∆x
W x
i,j(φ

n,r
i,j , φ

n,r−1
i,j ) +

1

∆y
W y
i,j(φ

n,r
i,j , φ

n,r−1
i,j );

(∆φ)n,r−1
i,j =

φn,r−1
i+1,j − 2φn,r−1

i,j + φn,r−1
i−1,j

∆x2
+
φn,r−1
i,j+1 − 2φn,r−1

i,j + φn,r−1
i,j−1

∆y2
; (8.17f)

(∆φ)n,?i,j =
φn,ri+1,j − 2φn,ri,j + φn,ri−1,j

∆x2
+
φn,r−1
i,j+1 − 2φn,ri,j + φn,r−1

i,j−1

∆y2
. (8.17g)

The wetting terms W x
i,j(φ

n,r
i,j , φ

n,r−1
i,j ) and W y

i,j(φ
n,r
i,j , φ

n,r−1
i,j ) only apply at the boundaries and

as in (8.5) satisfy,

W x
i,j(φ

n,r
i,j , φ

n,r−1
i,j ) =





f ′c,w(φn,r1,j , β)− f ′e,w(φn,r−1
1,j , β) if i = 1;

f ′c,w(φn,rN,j , β)− f ′e,w(φn,r−1
N,j , β) if i = N ;

0 otherwise;

(8.18)

and

W y
i,j(φ

n,r
i,j , φ

n,r−1
i,j ) =





f ′c,w(φn,ri,1 , β)− f ′e,w(φn,r−1
i,1 , β) if j = 1;

f ′c,w(φn,ri,N , β)− f ′e,w(φn,r−1
i,N , β) if j = N ;

0 otherwise.

(8.19)
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The no-flux conditions (7.4) are numerically implemented by taking the numerical flux to vanish
at the boundaries,

Fn,r
i− 1

2
,j

= 0 if i = 1; Fn,ri+1/2,j = 0 if i = N ;

and by computing the Laplacian terms (∆φ)n,r−1
i,j and (∆φ)n,?i,j at the boundaries considering that





φn,r−1
i,j − φn,r−1

i−1,j = 0, φn,ri,j − φ
n,r
i−1,j = 0 if i = 1;

φn,r−1
i+1,j − φ

n,r−1
i,j = 0, φn,ri+1,j − φ

n,r
i,j = 0 if i = N ;

φn,r−1
i,j − φn,r−1

i,j−1 = 0, φn,r−1
i,j − φn,ri,j−1 = 0, φn,ri,j − φ

n,r−1
i,j−1 = 0 if j = 1;

φn,r−1
i,j+1 − φ

n,r−1
i,j = 0, φn,r−1

i,j+1 − φ
n,r
i,j = 0, φn,ri,j+1 − φ

n,r−1
i,j = 0 if j = N.

(8.20)

Once the loop for the rows is completed, we define the intermediate density values as ρn+1/2 :=
ρn,N . Subsequently, we continue through each of the y direction with index c = 1, . . . , N , each of
them at a fixed xi with i = c. The initial condition for this scheme is φn,0 := φn+1/2:

Step 2.- for each c = 1, . . . ,N do:

φn,ci,j =




φn,c−1
i,j − ∆t

∆y

(
Gn,ci,j+1/2 −G

n,c

i,j− 1
2

)
if i = c;

φn,c−1
i,j otherwise;

(8.21a)

Gn,ci,j+1/2 =
(
vn,ci,j+1/2

)+
M(φci,j , φ

c
i,j+1) +

(
vn,ci,j+1/2

)−
M(φci,j+1, φ

c
i,j); (8.21b)

(
vn,ci,j+1/2

)+
= max

{
vn,ci,j+1/2, 0

}
,
(
vn,ci,j+1/2

)−
= min

{
vn,ci,j+1/2, 0

}
; (8.21c)

vn,ci,j+1/2 = −
ξn,ci,j+1 − ξ

n,c
i,j

∆y
; (8.21d)

ξn,ci,j = H ′c(φ
n,c
i,j )−H ′e(φn,c−1

i,j )− ε2

2

[
(∆φ)n,c−1

i,j + (∆φ)
n,�
i,j

]
(8.21e)

+
1

∆x
W x
i,j(φ

n,c
i,j , φ

n,c−1
i,j ) +

1

∆y
W y
i,j(φ

n,c
i,j , φ

n,c−1
i,j );

(∆φ)n,c−1
i,j =

φn,c−1
i+1,j − 2φn,c−1

i,j + φn,c−1
i−1,j

∆x2
+
φn,c−1
i,j+1 − 2φn,c−1

i,j + φn,c−1
i,j−1

∆y2
; (8.21f)

(∆φ)n,�i,j =
φn,c−1
i+1,j − 2φn,ci,j + φn,c−1

i−1,j

∆x2
+
φn,ci,j+1 − 2φn,ci,j + φn,ci,j−1

∆y2
. (8.21g)

Here the terms W x
i,j(φ

n,c
i,j , φ

n,c−1
i,j ) and W y

i,j(φ
n,c
i,j , φ

n,c−1
i,j ) are defined as in (8.18) and (8.19). The

no-flux conditions (7.4) are numerically implemented by taking the numerical flux to vanish at the
boundaries,

Gn,ci,j−1/2 = 0 if j = 1; Gn,ci,j+1/2 = 0 if j = N ;

and by computing the Laplacian terms (∆φ)n,c−1
i,j and (∆φ)n,�i,j at the boundaries considering that





φn,c−1
i,j − φn,c−1

i−1,j = 0, φn,c−1
i,j − φn,ci−1,j = 0, φn,ci,j − φ

n,c−1
i−1,j = 0 if i = 1;

φn,c−1
i+1,j − φ

n,c−1
i,j = 0, φn,c−1

i+1,j − φ
n,c
i,j = 0, φn,ci+1,j − φ

n,c−1
i,j = 0 if i = N ;

φn,c−1
i,j − φn,c−1

i,j−1 = 0, φn,ci,j − φ
n,c
i,j−1 = 0 if j = 1;

φn,c−1
i,j+1 − φ

n,c−1
i,j = 0, φn,ci,j+1 − φ

n,c
i,j = 0, if j = N.

Once the loop for the columns is completed, we define the final density values ρn+1 after a
discrete timestep ∆t as ρn+1 := ρn,N .
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8.2.1 Properties of the dimensional-splitting 2D scheme

The dimensional-splitting 2D finite-volume scheme satisfies the following properties:

(i) conservation of mass so that
∑N

i,j=1 φ
n
i,j =

∑N
i,j=1 φ

n+1
i,j ;

(ii) boundedness of the phase-field φ for mobilities of the form M(φ) = M0(1 +φ)(1−φ), so that
if |φni,j | ≤ 1 ∀i, then |φn+1

i,j | ≤ 1 ∀i;

(iii) dissipation of the discrete free energy, Fn+1
∆ −Fn∆ ≤ 0, with Fn∆ defined as

Fn∆ =∆x∆y
N∑

i,j=1

(
Hc(φ

n
i,j)−He(φ

n
i,j)
)

+ ∆x∆y
N−1∑

i=1

N∑

j=1

ε2

2

(
φni+1,j − φni,j

∆x

)2

+ ∆x∆y
N∑

i=1

N−1∑

j=1

ε2

2

(
φni,j+1 − φni,j

∆y

)2

+ ∆x

N∑

j=1

(
fw(φn1,j) + fw(φnN,j)

)
+ ∆y

N∑

i=1

(
fw(φni,1) + fw(φni,N )

)
.

(8.22)

Proof. (i) For the conservation of mass we need to show that the mass is conserved in every row
and every column, and this can be done as in the 1D case of Subsection 8.1.1.

(ii) For the unconditional boundedness of the phase-field we need to show that the phase-field is
bounded in every row and every column. This is accomplished by following the contradiction
strategy employed for the 1D case of Subsection 8.1.1, which in this case has to be applied
independently to every row and column.

(iii) For the decay of the discrete free energy in (8.22) we show that the discrete free energy decays
for every row and for every column. For this we refer the reader to Lemmas 8.A.1 and 8.A.2
in Section 8.A, where we firstly show that for every row r we have that

F∆ (ρn,r)−F∆

(
ρn,r−1

)
≤ 0 ∀r,

and subsequently for every column c we have that

F∆ (ρn,c)−F∆

(
ρn,c−1

)
≤ 0 ∀c.

Consequently, it follows that the global decay of the discrete free energy is satisfied.

Remark 8.2.1 (Full 2D scheme). It is possible to construct a full 2D implicit scheme that satisfies
the unconditional boundedness and decay of the free energy. Supposing that the cost of inverting
a N × N matrix is O(N3), it follows that the full 2D scheme has a computational complexity of
O(N6), as we need to invert a N2×N2 matrix. Alternatively, the cost of the dimensional-splitting
scheme would be O(2N4), since we need to invert a N × N matrix in each of the 2N rows and
columns. As a result, there is a significant reduction of computational cost by employing the
dimensional-splitting approach, and such cost is reduced even further in higher dimensions.

Remark 8.2.2 (Parallelization of the dimensional-splitting scheme in two and higher dimensions).
The dimensional-splitting scheme in Section 8.2 can be fully parallelized in order to save compu-
tational time. This is possible due to two important observations: first, the scheme does not take
notice of the order of updating the rows-columns, as long as all of them are updated; second, one
row or column only depends on the values of the directly adjacent rows or columns, respectively.
As a result, a strategy to parallelize the dimensional splitting scheme consists in updating at the
same time all the odd rows-columns, as they do not depend on one another. At the same time the
even rows-columns are also updated.
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8.3 Numerical simulations

In this Section we test the applicability of our 1D and 2D schemes in a variety of configurations
for the CH equation (7.1). But first, in Subsection 8.3.1 we test the spatial order of convergence of
both schemes, showing that they satisfy a first-order spatial order of convergence. Subsequently,
in Subsection 8.3.2 we present several test cases of 1D configurations. Finally, in Subsection 8.3.3
we focus on 2D simulations.

In all simulations the discrete free energy is computed as (8.8) and (8.22), for the 1D and 2D
cases respectively. The full wetting boundary conditions are applied in Subsubsection 8.3.4, but
for the rest of examples we assume fw(φ, β) = 0.

The code to reproduce all simulations is available in a Github repository [233]. The films of
the 2D simulations are available in the figshare repository [234].

8.3.1 Order-of-convergence validation with explicit steady state

The selected test case was firstly proposed in [24], and it has subsequently served as a computational
prototype adopted by many authors to validate their numerical schemes for the CH equation [166,
280]. The advantage of this test case is that an explicit steady state is known given particular
initial conditions. Hence, once the steady state is reached, it can be readily utilized to measure
the error of the numerical simulations for different mesh choices.

The original test case in [24] was formulated only for 1D simulations. Here, we appropriately
extend it to two dimensions. We choose the logarithmic potential (7.9) in the deep quench limit
with θ = 0 and θc = 1, so that Hlog(φ) = (1 − φ2)/2. The mobility satisfies the degenerate form
in (7.3) and ε = 0.1. The time step is ∆t = 0.0001 for all simulations and we let the evolution run
until t = 0.1.

For the 1D the spatial domain is [0, 1], with the number of cells taken as 25, 50, 100 and 200
in successive simulations. For the 2D case the domain is [0, 1] × [0, 1] with the number of cells in
each of the two axes as 10, 20, 40 and 80. When doubling the number of cells, the mesh size is
halved and we can then compute the spatial order of the scheme as

Order of the scheme = ln2

(
L1 error(∆x)

L1 error(∆x/2)

)
,

with the L1 error measured from the explicitly known steady state.
Following [24] we set the initial conditions of the simulation as

φ0(x, y) =

{
cos
(
x−1/2
ε

)
− 1, if

∣∣x− 1
2

∣∣ ≤ πε
2 ,

−1, otherwise.

Following [24] we set the initial conditions of the simulation as

φ0(x, y) =

{
cos
(
x−1/2
ε

)
− 1, if

∣∣x− 1
2

∣∣ ≤ πε
2 ,

−1, otherwise,

for both the 1D and 2D simulations. We notice that for the 1D simulation y = 0 ∀x, while for
the 2D simulation the phase-field is symmetric with respect to x = 0.5 (see Figure 8.3.2a for a
depiction of the initial phase-field). With this choice of initial conditions the explicit steady state
satisfies

φsteady(x, y) =

{
1
π

[
1 + cos

(
x−1/2
ε

)]
− 1, if

∣∣x− 1
2

∣∣ ≤ πε,
−1, otherwise.

(8.23)
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In Table 8.3.1 we present the L1 errors and spatial order of convergence for both the 1D and 2D
tests. Clearly for both cases the spatial order of convergence stabilizes around 1 after increasing
the number of cells. In Figure 8.3.1 we plot the temporal evolution of the 1D solution and the
decay of the discrete free energy (8.8). For the latter we observe that the steady state is reached at
t ' 0.1 as is evident from the plateau that the free energy at that time. In Figure 8.3.2 we display
the initial and steady phase-fields of the 1D test. The 2D free-energy decay is omitted due to its
similarity to the 1D behaviour in Figure 8.3.1b.

Number of
cells L1 error order

25 6.797E-03 -

50 7.136E-04 3.25

100 2.938E-04 1.28

200 1.205E-05 1.29

Number of
cells L1 error order

10× 10 1.112E-02 -

20× 20 6.752E-03 0.72

40× 40 2.278E-03 1.57

80× 80 7.736E-04 1.56

Table 8.3.1: Order-of-convergence test validating the first-order spatial accuracy of the 1D (left)
and 2D (right) schemes. The errors are computed at t = 0.1 from the explicit solution (8.23) in
Subsection 8.3.1

0.0 0.5 1.0

x

0.0

−0.5

−1.0

φ

t = 0

t = 0.01

t = 0.02

t = 0.1

(a) Phase-field profile at different times

10−4 10−3 10−2 10−1

t

0.20

0.18

0.16

F [φ]

(b) Free-energy decay in log-x scale

Figure 8.3.1: Temporal evolution for the one-dimensional test in Subsection 8.3.1.

8.3.2 One-dimensional simulations

In Example 8.3.1 we evolve a randomized initial phase-field to show the phase separation and
coarsening for the Ginzburg-Landau double-well potential (7.8) and the logarithmic potential (7.9).
Then in Example 8.3.2 we compare the impact of a constant mobility versus a degenerate mobility,
for the choice of a logarithmic potential.

Example 8.3.1 (Phase separation in randomized initial phase-field). We focus on the
behaviour of the CH equation (7.1) with the double-well potential (7.8) and with the logarithmic
potential (7.9). As is well known, a process of phase separation with emerging clusters at φ = ±1
takes place during the temporal evolution, and here we explore how the choice of potential affects
the temporal scales and phase-field profiles at equilibrium. The initial phase-field is taken as
φi(t = 0) = r, with r being a random variable with uniform distribution in [−0.5, 0.5]. After
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(b) Steady phase-field at t = 0.1

Figure 8.3.2: Initial and steady phase-fields for the two-dimensional test in Subsection 8.3.1.

the sampling, we keep the same initial phase-field for the two simulations. The spatial domain is
x ∈ [−40, 40], and the number of cells is 200. The mobility is taken as the degenerate form in
(7.3), and the interface parameter as ε = 1. For the logarithmic potential we select as absolute
temperature θ = 0.3 and as critical temperature θc = 1. The time step is ∆t = 0.01 and we let the
evolution run until t = 30. A similar simulation can be found in [163].

Figures 8.3.3a and 8.3.3b depict the temporal evolution of the phase-field, for the double-
well and logarithmic potentials, respectively. There is a clear phase separation after starting the
simulation with a randomized phase-field. Figures 8.3.3c and 8.3.3d provide a zoom of the density
profile at t = 30, after the steady state has been reached. For the double-well potential, we observe
a wider interface thickness with peaks lower than |φ| = 1, while for the logarithmic potential the
peaks form a plateau and have the value of |φ| = 1. Lastly, in Figures 8.3.3e and 8.3.3f we illustrate
the evolution of the discrete free energy (8.8), where we observe that the logarithmic potential takes
slightly less time to reach the steady state.

Example 8.3.2 (Effect of mobility with logarithmic potential). The aim here is to test the
effect of choosing a constant mobility M = 1 versus a degenerate mobility M = (1 − φ)(1 + φ).
This example was firstly proposed in [24] and later implemented in [280]. The scheme proposed in
Section 8.1 satisfies the boundedness of the solution only for the degenerate mobility.

As initial condition for the simulation we select

φ0(x) =





1, if 0 ≤ x ≤ 1
3 − 1

20

20
(

1
3 − x

)
, if

∣∣x− 1
3

∣∣ ≤ 20,

−20
∣∣x− 41

50

∣∣ , if
∣∣x− 41

50

∣∣ ≤ 1
20 ,

−1, otherwise.

As potentials we choose the logarithmic potential (7.9) with θ = 0.3 and θc = 1. The spatial
domain of the simulation is x ∈ [0, 1], and the number of cells is 80. The time step is ∆t = 0.01,
ε =
√

10−3 and we let the evolution run until t = 0.1.
The results for the phase-field and free energy evolution are displayed in Figure 8.3.4. We notice

that for the constant mobility M = 1 the bump at the right of the domain is quickly dissipated,
while for the degenerate mobility it takes a much longer time. This happens because the bump is
surrounded by a pure phase with φ = −1, and the degenerate mobility is zero in pure phases. As a
result, the mobility term is much higher for the constant mobility, and the exchange of mass occurs
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Figure 8.3.3: Temporal evolution for the initially-randomized phase-field in Example 8.3.1.

faster. In Figures 8.3.4c and 8.3.4d we depict the decay of the free energy during the evolution,
and the timescale until the stationary solution is clearly much shorter for the constant mobility.
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Figure 8.3.4: Temporal evolution for the logarithmic potential in Example 8.3.2.

8.3.3 Two-dimensional simulations

In Example 8.3.3 we analyse the impact of a constant versus a degenerate mobility when evolving
a random initial phase-field. Then in Example 8.3.4 we analyse wetting phenomena with sessile
droplets on a flat solid surface, by means on taking into account the wall free energy (7.6).

Example 8.3.3 (Phase separation with different mobilities). We choose the Ginzburg-
Landau double-well potential in (7.8). It is a widely-employed potential for benchmarking numer-
ical schemes of the CH equation, and we refer the reader to [24, 151, 280] for similar simulations.

As initial phase-field we select φ0(x, y) = −0.4+r, with r being a random variable with uniform
distribution in [−0.25, 0.25]. The 2D spatial domain of the simulation is chosen as [−0.5, 0.5] ×
[−0.5, 0.5] with 256 cells in each of the x and y directions. The mobility is taken as the degenerate
form in (7.3), and the interface parameter as ε = 0.18. The time step is ∆t = 0.0016 and the
evolution is monitored up to t = 1.

The results of the two simulations, for constant and degenerate mobility, are displayed in
Figure 8.3.5, for three different snapshots of time. The decay of the corresponding free energy is
depicted in Figure 8.3.6. For the case of constant mobility in Figures 8.3.5a, 8.3.5c and 8.3.5e we
observe an initial stage of phase separation followed by a coarsening process with merging phases.
From the free-energy plot in Figure 8.3.6 we remark the short time-scale of the phase separation
in comparison to the long timescale of coarsening, which in turn leads to sudden decreases of free
energy when distant phases merge. The log−x plot in 8.3.6b illustrates the exponential decay of
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the free energy during the short time-scale due to the initial phase separation from a randomised
field. A similar phenomenon occurs in macroscopic systems with Morse-type interaction potentials
[66], where two different timescales are also present: one for the attraction of phases and another
one for the merging process. In the final snapshot at t = 1 only two phases remain in the domain.

The evolution with degenerate mobility is displayed in Figures 8.3.5b, 8.3.5d and 8.3.5f. The
phase-separation stage is similar to the one with constant mobility, and as both simulations share
the same initial condition, not surprisingly the first snapshots in Figures 8.3.5a and 8.3.5b look
alike. The initial timescales also have the same order of magnitude, as displayed in the free energy
plot in Figure 8.3.6. However, once the phases are formed there is little evolution in the system,
due to the fact that the degenerate mobility is cancelled when φ = ±1. As a consequence at t = 1
the phases have not yet merged, in sharp contrast to the case of constant mobility. In addition, the
free energy reaches a much lower value for the case of constant mobility, a result of the merging of
phases combined with reduction of interphases.

Example 8.3.4 (Contact angle in wetting phenomena). In this example we analyse wetting
phenomena with sessile droplets on a flat solid substrate. In this application a fluid-fluid interface
moves along the solid substrate, while a contact line is formed at the intersection between the
interface and the substrate. Of special interest is the contact angle at the three-phase conjunction,
which is determined by the wetting properties of the substrate.

For this setting the free energy in (7.2) takes into account the wetting effects at the boundary
∂Ω between the droplet and the substrate [47, 192], with fw(φ) contributing to the wall component
of the free energy. The form of the term fw(φ) has received considerable attention in the literature,
starting with early works using linear forms for liquid-gas problems [247]. Here we adopt the cubic
form suggested in [13, 258, 259, 260] on the basis that it is the lowest-order polynomial to allow for
the minimization of the wall free energy for the bulk densities, while at the same time preventing
the formation of boundary layers. As noted in the introduction, the basic idea is that the contact
line singularity can be removed without any additional physics. Details on how exactly this works,
together with the associated asymptotic analysis are given in [259, 260].

Our choice for fw(φ) satisfies (7.6), where β is the equilibrium contact angle, taken here as
constant. Analogous modifications of the CH model have been applied in a variety of wetting
scenarios including wetting of complex topographical geometries and chemically-heterogeneous
substrates, with applications from microfluidic devices [238] to polymer films [179] and rheological
systems [43].

In our first simulations we check that the equilibrium contact angle of sessile droplet on flat
substrate obtained with our 2D scheme in Section 8.2 matches with the angle β imposed in the
wall free-energy term fw(φ, β). This is done for five choices of β: π/3, 5π/12, π/2, 7π/12 and
2π/3. We point out that the choice of β = π/2 cancels fw(φ, β) since cosβ is multiplying the rest
of the terms in (7.6).

As initial phase in the domain [−0.5, 0.5]× [0, 0.4] we select the semicircle

φ0(x, y) =





0.97 if x2 + y2 < 0.252;

−0.97 if x2 + y2 ≥ 0.252.

The number of cells both in each of the x and y directions is 256. The mobility takes the degenerate
form in (7.3), and the interface parameter is chosen as ε = 0.005. The time step is ∆t = 0.001
and we follow the evolution until t = 0.1. We adopt the Ginzburg-Landau double-well potential in
(7.8). The solid substrate boundary condition is imposed along y = 0. It should be noted that the
initial phase-field is selected with values of ±0.97 instead of ±1 so that the degenerate mobility is
not cancelled and the simulation can proceed uninterrupted. Similar simulations but with constant
mobility were performed in [13].
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(f) t = 1 and M = (1 − φ)(1 + φ)

Figure 8.3.5: Temporal evolution for the initially-randomized phase-field in Example 8.3.3. Com-
parison of constant mobility (left) versus degenerate mobility (right).

The equilibrium phase-fields at t = 0.1 are displayed in Figures 8.3.7a to 8.3.7e, while the
free-energy dissipation comparison is depicted in Figure 8.3.7f. The numerical contact angle β̂ is
close to the predefined angle β, and the quotient between the two is reported in the captions of
Figures 8.3.7a to 8.3.7e. Such numerical angle is measured by employing the Drop Shape Analysis
open-source software from [263]. From Figure 8.3.7f we observe that all the droplets stabilize after
a short time of ' 0.01. It is also clear that the angle with the largest cosβ, which is β = π/3,
has the greatest free energy overall due to the contribution of fw(φ, β) in (7.6). On the contrary,
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Figure 8.3.6: Free-energy decay in time comparing the constant-mobility and degenerate-mobility
simulations in Example 8.3.3.

the angle β = 2π/3 has the lowest overall free energy. Interestingly, for the angle β = π/2 there
is dynamical evolution even if the initial configuration already has the right contact angle. This is
due to the fact that there are no interphases in the initial phase-field.

In the simulations that follow, we analyse the effect of contact angle on the merging of droplets
on both hydrophilic (β < π/2) and hydrophobic (β > π/2) solid substrates. The objective is
to show that on hydrophilic substrates droplets are prone to merging and, as a consequence, to
forming a single phase; on the other hand, on hydrophobic substrates droplets tend to remain
isolated.

As initial phase-field in the domain [−1, 1]× [0, 0.5] we select the two semicircles

φ0(x, y) =





0.97 if (x+ 0.35)2 + y2 < 0.32 or (x− 0.35)2 + y2 < 0.32;

−0.97 elsewhere.

We now have 256 cells in the x direction and 64 in the y direction. The mobility assumes the
degenerate form in (7.3), and the interface parameter has the value ε = 0.012. The time step is
∆t = 0.0005 and we follow the system up until t = 15. The employed contact angles are β = π/4
and β = 3π/4. The remaining parameters are identical to our previous simulations with single
droplets.

The dynamic evolution of the droplets for the two choices of contact angle is detailed in Fig-
ures 8.3.8a to 8.3.8f, while the free-energy evolution can be found in 8.3.8g. From the plots with
contact angle β = π/4 corresponding to a hydrophilic substrate, it can be seen that the two
droplets coalesce and after t = 15 a single phase is clearly formed. On the contrary, the droplets
with contact angle β = 3π/4 remain distant and do not merge during the dynamic evolution. From
the free-energy plots in 8.3.8g we also find that the free energy reaches a plateau for both contact
angles, meaning that the stationary state has been reached. We again employ a log−x scale due
to the significant free-energy decay at short timescales at the beginning of the simulation.
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Figure 8.3.7: (a)-(e) Equilibrium phase-fields at t = 2 for different choices of angle β. (f) Dissipa-
tion of the free energy for different choices of angle β.
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Figure 8.3.8: (a)-(f) Temporal evolution of two droplets with the hydrophilic angle β = π/4 (left)
and the hydrophobic angle β = 3π/4 (right). (g) Comparison of free-energy decay for β = π/4 and
β = 3π/4.
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Appendix

8.A Dissipation of the discrete free energy in the dimensional-
splitting scheme

Here we prove the dissipation of the discrete free energy in every row and every column for the
dimensional-splitting 2D scheme of Section 8.2. Firstly, in Lemma 8.A.1 we prove the dissipation
of the free energy in each x-direction iteration. Subsequently, in Lemma 8.A.2 we prove the
dissipation of the free energy in each y-direction iteration. Both lemmas are necessary to show the
global dissipation of the discrete free energy for the dimensional-splitting 2D scheme, as already
highlighted in Subsection 8.2.1.

Lemma 8.A.1. Dissipation of the discrete free energy in each x-direction iteration. Let the discrete
free energy of (7.2) for a particular r be defined as:

F∆ (φn,r) =∆x∆y

n∑

i,j=1

(
Hc(φ

n,r
i,j )−He(φ

n,r
i,j )
)

+ ∆x∆y
N−1∑

i=1

N∑

j=1

ε2

2

(
φn,ri+1,j − φ

n,r
i,j

∆x

)2

+ ∆x∆y
N∑

i=1

N−1∑

j=1

ε2

2

(
φn,ri,j+1 − φ

n,r
i,j

∆y

)2

+ ∆y
N∑

j=1

(
fw(φn,r1,j ) + fw(φn,rN,j)

)
+ ∆x

N∑

i=1

(
fw(φn,ri,1 ) + fw(φn,ri,N )

)
.

(8.24)

It then follows that in the scheme (8.17) the discrete free energy at every x-direction iteration, so
that

F∆ (ρn,r)−F∆

(
ρn,r−1

)
≤ 0.

Proof. Multiply by ξn,ri,r in (8.17a) and sum up the result over the indices i and j, so that

N∑

i,j=1

ξn,ri,j

(
φn,ri,j − φ

n,r−1
i,j

)
= −∆t

∆x

N∑

i=1

ξn,ri,j

(
Fn,r
i+ 1

2
,j
− Fn,r

i− 1
2
,j

)
.

By substituting in the previous equation the expression of ξn,ri,j in (8.17e), it follows that

N∑

i,j=1

(
φn,ri,j − φ

n,r−1
i,j

) ε2
2

[
(∆φ)n,r−1

i,j + (∆φ)
n,?

i,j

]
=

∆t

∆x

N∑

i=1

ξn,ri,j

(
Fn,r
i+ 1

2
,j
− Fn,r

i− 1
2
,j

)

+

N∑

i,j=1

(
φn,ri,j − φ

n,r−1
i,j

)(
H ′c(φ

n,r
i,j )−H ′e(φn,r−1

i,j )
)
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+
1

∆x

N∑

i,j=1

(
φn,ri,j − φ

n,r−1
i,j

)
W x
i,j(φ

n,r
i,j , φ

n,r−1
i,j )

+
1

∆y

N∑

i,j=1

(
φn,ri,j − φ

n,r−1
i,j

)
W y
i,j(φ

n,r
i,j , φ

n,r−1
i,j ).

(8.25)

Considering now the definition of the discrete free energy in (8.24), the decay between the
x-direction iterations at r and r − 1 yields

F∆ (φn,r)−F∆

(
φn,r−1

)

∆x∆y
=

N∑

i,j=1

(
Hc(φ

n,r
i,j )−Hc(φ

n,r−1
i,j )

)
−

N∑

i,j=1

(
He(φ

n,r
i,j )−He(φ

n,r−1
i,j )

)

+

N−1∑

i=1

N∑

j=1

ε2

2




(
φn,ri+1,j − φ

n,r
i,j

)2

∆x2
−

(
φn,r−1
i+1,j − φ

n,r−1
i,j

)2

∆x2




+
N∑

i=1

N−1∑

j=1

ε2

2




(
φn,ri,j+1 − φ

n,r
i,j

)2

∆y2
−

(
φn,r−1
i,j+1 − φ

n,r−1
i,j

)2

∆y2




+
1

∆x

N∑

j=1

(
fw(φn,r1,j )− fw(φn,r−1

1,j ) + fw(φn,rN,j)− fw(φn,r−1
N,j )

)

+
1

∆y

N∑

i=1

(
fw(φn,ri,1 )− fw(φn,r−1

i,1 ) + fw(φn,ri,N )− fw(φn,r−1
i,N )

)
.

(8.26)

The next step is to expand the sums with the discrete gradients at the interfaces, which corre-
spond to the second and third line of the expression in (8.26). For this we follow the same strategy
as with the 1D proof in (8.14): firstly, we apply summation by parts in the x direction (for the
sum depending on ∆x2) and in the y direction (for the sum depending on ∆y2); secondly, the
boundary conditions in (8.20) are taken into account; and thirdly, we apply the definition of the
discrete Laplacians (8.17f) and (8.17g) bearing in mind that φn,ri,j+1 = φn,r−1

i,j+1 and φn,ri,j−1 = φn,r−1
i,j−1

when j 6= r.
Such expansion leads to

N−1∑

i=1

N∑

j=1

ε2

2




(
φn,ri+1,j − φ

n,r
i,j

)2

∆x2
−

(
φn,r−1
i+1,j − φ

n,r−1
i,j

)2

∆x2




+

N∑

i=1

N−1∑

j=1

ε2

2




(
φn,ri,j+1 − φ

n,r
i,j

)2

∆y2
−

(
φn,r−1
i,j+1 − φ

n,r−1
i,j

)2

∆y2




=
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ε2
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)(
φn,ri+1,j − φ
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−
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n,r−1
i,j

∆x

)

+

N∑
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N−1∑

j=1

ε2

2

(
φn,ri,j+1 − φ

n,r
i,j

∆y
+
φn,r−1
i,j+1 − φ

n,r−1
i,j
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)(
φn,ri,j+1 − φ

n,r
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−
φn,r−1
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i,j
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)

117



Chapter 8. Finite-volume schemes for the Cahn-Hilliard equation

= −
N−1∑

i=2

N∑

j=1
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(8.27)

where φn,ri,j−1 = φn,r−1
i,j−1 and φn,ri,j+1 = φn,r−1

i,j+1 due to (8.17a). The resultant expression (8.27) matches
with the left-hand side in (8.25). The next step is to substitute (8.25) in (8.26), but at the same
time recall that W x

i,j = 0 unless i = 1, N due to (8.18), and W y
i,j = 0 unless j = 1, N due to (8.19).

It follows that

F∆ (φn,r)−F∆

(
φn,r−1

)

∆x∆y
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.

Following now the same reasoning as with the proof of the 1D case in Section 8.1, we get that the
discrete free-energy dissipation in (8.24) is satisfied.
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Lemma 8.A.2. Dissipation of the discrete free energy in each y-direction iteration. Let the discrete
free energy of (7.2) for a particular c be defined as:

F∆ (φn,c) =∆x∆y
n∑
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(
Hc(φ

n,c
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)
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(8.28)

It then follows that for the scheme (8.21) the discrete free energy decays at every y-direction iter-
ation, which in turn implies

F∆ (ρn,c)−F∆

(
ρn,c−1

)
≤ 0.

Proof. The proof follows the same steps as in lemma 8.A.1, and after some algebra, we obtain
that the dissipation of discrete free energy (8.28) between the y-direction iterations at c and c− 1
satisfies
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Following once again the same reasoning as with the proof of the 1D case in Section 8.1, proves
that the discrete free-energy dissipation in (8.28) is satisfied.
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CHAPTER 9

An application of the Cahn-Hilliard equation in image

inpainting

The contents of this chapter are based on the publication [65], done in collaboration with José A.
Carrillo, Serafim Kalliadasis, and Fuyue Liang:

[65] J. A. Carrillo, S. Kalliadasis, F. Liang, and S. P. Perez. “Enhancement of damaged-image
prediction through Cahn-Hilliard Image Inpainting”. In: Royal Society Open Science 8
(2021), 201294.

9.1 Introduction to image inpainting

Image inpainting consists in filling damaged or missing areas of an image, with the ultimate ob-
jective of restoring it and making it appear as the true and original image. There are multiple
applications of image inpainting, ranging from restoration of the missing areas of oil paintings and
removal scratches in photographs to noisy MRI scans and blurred satellite images of the earth.
Manual image inpainting techniques have been employed for many centuries by art conservators
and professional restorers, but it was not until the turn of the 21st century that digital image
inpainting models based on PDEs and variational methods were introduced [31, 72, 209]. These
methods are usually referred to as non-texture, geometrical or structural inpainting since they
focus on restoring the structural information in the inpainted domain such as edges, corners or
curvatures. This is done by performing an image interpolation of the damaged areas based on the
information collected from the surrounding environment only, leading to appealing images for the
human vision system. On the contrary, texture inpainting is based on recovering global patterns of
the image for the inpainted region [101], and a popular tool in this category is the exemplar-based
inpainting methods[100, 193]. Associated with these developments, a field that has gained a lot
of traction in recent years is the so-called generative image inpainting, where deep learning based
approaches have proven to be successful even for blind inpainting in which the inpaited region
is not provided a priori [281, 296, 297]. In this work we focus on non-texture image inpainting
methods based on PDEs, and we refer the reader to Ref. [245] for a general review of the topic.

There have been multiple PDE models for image inpainting proposed since the initial work of
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Bertalmio et al. [31] nearly 20 years ago. Their trailblazing model is able to propagate isotopes, i.e.
contours of uniform greyscale image intensity, through the inpainted region, a common technique
employed by museum artists in restoration. As it also turns out that the original model bears
close connection to fluid dynamics through the Navier-Stokes equation with the image intensity
function acting as the stream function [30]. Another fluid dynamic equation that has played a
pivotal role in image inpainting is the Cahn-Hilliard (CH) equation, initially proposed in [48] for
phase separation in binary alloys.

The CH equation was firstly proposed in the context of image inpainting by [33]. Specifically,
the authors adopted a modified CH equation for binary images with inpainting quality as accurate
as the state-of-art inpainting models but with a much faster computational speed taking advantage
of the efficient computational techniques already available for the CH equation [128, 274]. Since
then several authors have extended the applicability of the CH equation in the field of image
inpainting, for instance by taking into account greyvalue images [45, 89], nonsmooth potentials
instead of the double-well potential (7.8) [40], and considering colour image inpainting [88]. The
modified CH equation in [33] introduces a fidelity term λ(x) to avoid modifying the original image
outside of the inpainted region D, and the CH equation in (7.1) becomes

∂φ(x, t)

∂t
= −∇2

(
ε2∇2φ−H ′(φ)

)
+ λ(x) (φ(x, t = 0)− φ) , (9.1)

where

λ(x) =

{
0 if x ∈ D,
λ0 if x /∈ D,

(9.2)

and φ(x, t = 0) refers to the original damaged image. The parameter ε plays a similar role as in
the original CH equation, and here it is related to the interface between the two phases or colours
presented in the image. The fidelity term λ(x) is nonzero only in the pixels of the image that
are outside the inpainted domain: the objective is to preserve those pixels in their initial values,
and that’s why the term λ(x) (φ(x, t = 0)− φ) is added to introduce a penalty proportional to
the difference with respect to the initial phase fields. The two parameters ε and λ0 are essential
to achieve an adequate image inpainting outcome, and it is usually necessary to iterate until
finding appropriate tunings for their values, which typically depend on the image specifications.
Furthermore, the new modified CH equation (9.1) is not stricly a gradient flow: although the
original CH equation satisfies a gradient-flow structure under an H−1 norm and the fidelity term
in (9.1) can be derived from a gradient flow under an L2 norm, the combined modified CH equation
is neither a gradient flow in H−1 nor L2.

9.2 Integrated algorithm with image inpainting and pattern recog-
nition

We detail the construction of an integrated algorithm that firstly applies image inpainting and
subsequently conducts pattern recognition for the restored image. In Subsection 9.2.1 we begin by
presenting the finite-volume scheme employed to solve the modified CH equation, based on the work
in Chapter 8. Then in Subsection 9.2.2 we illustrate the two-step method for image inpainting,
based on tuning the parameters ε and λ0 of the modified CH equation. In Subsection 9.2.3 we
present the neural network employed for pattern recognition, detailing its architecture and training
parameters. Finally, in Subsection 9.2.4 we gather all previous elements to formulate an integrated
algorithm for prediction with an image inpainting filter.

121



Chapter 9. An application of the Cahn-Hilliard equation in image inpainting

9.2.1 2D finite-volume scheme for the modified CH equation

We summarise the 2D finite-volume scheme constructed for the original CH equation in Chapter 8.
This scheme satisfies an unconditional decay of the discrete free energy of the original CH equation
in (7.2), for no matter what choice of the time step, and for specific choice of mobility M(φ) = 1−φ2

it ensures the unconditional boundedness of the phase field. The scheme can be straightforwardly
extended to the modified CH equation in (9.1) proposed in [33] as we show here. Even though
the modified CH equation does not possess some of the properties of the original CH equation,
such as the gradient-flow structure, our finite-volume scheme preserves its robustness for all the
image-inpainting test cases presented in this work. In Remark 9.2.1 we explain how to choose
the time step and the mesh size, and in Remark 9.2.2 we detail how to turn the scheme into a
dimensional splitting one, with promising applicability in high-dimensional images such as medical
ones. We refer the reader to [17] for further details about dimensional-splitting schemes.

For simplicity, let’s rewrite (9.1) in 2D by introducing u = (v, w) as the physical velocity term
and ξ as the variation of the free energy with respect to the density,

∂φ(x, y, t)

∂t
= −∇ · u+ λ(x, y) (φ(x, y, t = 0)− φ(x, y, t)) , (9.3)

where

ξ =
δF [φ]

δφ
= ε2∇2φ−H ′(φ), u = ∇ξ, v =

∂ξ

∂x
, and w =

∂ξ

∂y
. (9.4)

For the finite-volume formulation we begin by dividing the computational domain [0, L]× [0, L] in
N ×N cells Ci,j := [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], all with uniform size ∆x∆y so that xi+1/2 −
xi−1/2 = ∆x and yj+1/2 − yj−1/2 = ∆y. The time step is denoted as ∆t. In each of the cells we
define the cell average φni,j at time t = n∆t as

φni,j =
1

∆x∆y

∫

Ci,j

φ(x, y, t = n∆t) dx dy, (9.5)

where φ0
i,j is the phase field at t = 0, which corresponds to the normalized pixel intensities of the

initial damaged image to be inpainted.
The finite-volume scheme is then derived by integrating the modified CH equation (9.3) over

each of the cells Ci,j of the domain, leading to an implicit formulation satisfying

φn+1
i,j − φni,j

∆t
= −

Fn+1
i+ 1

2
,j
− Fn+1

i− 1
2
,j

∆x
−
Gn+1
i,j+ 1

2

−Gn+1
i,j− 1

2

∆y
+ λi,j(φ

0
i,j − φni,j), (9.6)

with Fn+1
i+1/2,j and Gn+1

i,j+1/2 being flux approximations at the boundaries, and λi,j the discrete version

of λ(x) in (9.2) satisfying

λi,j =

{
0 if (xi, yj) ∈ D,
λ0 if (xi, yj) /∈ D,

(9.7)

with D being the inpainted domain where the image damage is located. The inpainted domain
has to be determined beforehand for each image, and is formed by those finite-volume cells to be
repaired during the image inpainting.

The flux terms Fn+1
i+1/2,j and Gn+1

i,j+1/2 are the discrete approximations of the velocity components

v and w at the cell interfaces
(
xi+1/2, yj

)
and

(
xi, yj+1/2

)
, respectively. Such approximations follow

an upwind and implicit approach inspired by the works in Refs [15, 16, 34, 55], satisfying

Fn+1
i+ 1

2
,j

=
(
vn+1
i+1/2,j

)+
+
(
vn+1
i+1/2,j

)−
,

Gn+1
i,j+ 1

2

=
(
wn+1
i,j+1/2

)+
+
(
wn+1
i,j+1/2

)−
,

(9.8)
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where the velocities vn+1
i+ 1

2
,j

and wn+1
i,j+ 1

2

are discretized from (9.4) as

vn+1
i+ 1

2
,j

= −
ξn+1
i+1,j − ξn+1

i,j

∆x
, wn+1

i,j+ 1
2

= −
ξn+1
i,j+1 − ξn+1

i,j

∆y
, (9.9)

where ξn+1
i,j is the discretized variation of the free energy defined in (9.4). The upwind approach

in (9.8) follows from
(
vn+1
i+1/2,j

)+
= max(vn+1

i+1/2,j , 0),
(
vn+1
i+1/2,j

)−
= min(vn+1

i+1/2,j , 0),
(
wn+1
i,j+1/2

)+
= max(wn+1

i,j+1/2, 0),
(
wn+1
i,j+1/2

)−
= min(wn+1

i,j+1/2, 0).
(9.10)

The discretized variation of the free energy ξn+1
i,j in (9.4) is computed with a semi-implicit

scheme inspired by the ideas of [128, 274], where the so-called convexity splitting scheme is proposed
to construct unconditional gradient-stable schemes (i.e. schemes that ensure the decay of the
discrete version of the free energy in (7.2)). In our recent effort Chapter 8 we show that our
finite-volume scheme unconditionally decreases the discrete free energy of the CH equation if the
contractive part of the potential, Hc(φ), is taken as implicit; the expansive part of the potential,
He(φ), is taken as explicit; and the Laplacian is taken as an average between the explicit and the
implicit second-order discretizations, so that

ξn+1
i,j = H ′c(φ

n+1
i,j )−H ′e(φni,j)−

ε2

2

[
(∆φ)ni,j + (∆φ)n+1

i,j

]
,

H(φ) = Hc(φ)−He(φ) =
φ4 + 1

4
− φ2

2
,

(9.11)

where the potential H(φ) in (7.8) is decomposed into two convex functions, Hc(φ) and He(φ),

H(φ) = Hc(φ)−He(φ) =
φ4 + 1

4
− φ2

2
.

The discrete two-dimensional approximation of the Laplacian (∆φ)ni,j is chosen to satisfy the
second-order form

(∆φ)ni,j :=
φni+1,j − 2φni,j + φni−1,j

∆x2
+
φni,j+1 − 2φni,j + φni,j−1

∆y2
. (9.12)

The modified CH equation in (9.1) employs the no-flux boundary conditions defined in (7.4).
The numerical implementation of the boundary conditions follows from

φni−1,j = φni,j for i = 1,∀j; φni+1,j = φni,j for i = N, ∀j;
φni,j−1 = φni,j for j = 1,∀i; φni,j+1 = φni,j for j = N, ∀i;
Fn+1
i− 1

2
,j

= 0 for i = 1,∀j; Fn+1
i+ 1

2
,j

= 0 for i = N, ∀j;

Gn+1
i,j− 1

2

= 0 for j = 1,∀i; Gn+1
i,j+ 1

2

= 0 for j = N, ∀i.

(9.13)

Remark 9.2.1 (Choice of time step ∆t and mesh size ∆x = ∆y). Explicit finite-volume schemes
are often stable under a CFL condition imposed over the time step and mesh size. The implicit
scheme presented in Subsection 9.2.1 does not need of a CFL condition to decay the discrete free
energy of the original Cahn-Hilliard equation in (7.1), as proved in Chapter 8. This doesn’t mean
however that any ∆t works in practice: in each time step the nonlinear system (9.6) has to be
solved by iteration, and with a large ∆t the convergence is likely to fail. In this work we have
tested that with the choice of ∆t = 0.1 and ∆x = ∆y = 1 our simulations converge to the right
solution for the simulations presented in Section 9.3.
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Remark 9.2.2 (Dimensional-splitting scheme and parallelisation). The full 2D finite-volume scheme
presented in Subsection 9.2.1 can be reformulated by employing a dimensional-splitting methodol-
ogy: instead of solving the full 2D image altogether, this technique initially solves row by row and
then column by column. The detailed construction of such scheme is presented in Chapter 8 and
is based on [17], and here we briefly illustrate how it works.

For the dimensional-splitting approach we firstly update the solution along the x axis, for each
index j corresponding to a fix value of yj where j ∈ [1, N ]. Subsequently, we proceed in the same
way along the y axis, for each index i corresponding to a fixed value a value of xi where i ∈ [1, N ].
The index r, where r ∈ [1, N ], denotes the index j of the fixed yj value in every x axis of the
first loop, and the updated average density for each x axis with j = r is φn,ri,j . Similarly, the index
c ∈ [1, N ] denotes the index i for every fixed value of xj in each y axis of the second loop, and the
updated density for each y axis with i = c is φn,ci,j .

In the first place we go through each of the x axes of the domain at a fixed yj with j = r. The

initial conditions for the scheme are φn,0i,j := φni,j . The scheme for each x along the loop r = 1, . . . , N
satisfies

φn,ri,j =




φn,r−1
i,j − ∆t

∆x

(
Fn,ri+1/2,j − F

n,r

i− 1
2
,j

)
+ λi,j(φ

0
i,j − φn,r−1

i,j ) if j = r;

φn,r−1
i,j otherwise;

(9.14)

with Fn,ri+1/2,j computed in a similar fashion as in (9.8). Once the loop for the rows is completed, we

define the intermediate density values as ρn+1/2 := ρn,N . Subsequently, we continue through each
of the y axes with index c = 1, . . . , N , each of them at a fixed xi with i = c. The initial condition

for this scheme is φn,0i,j := φ
n+1/2
i,j . The scheme for each y along the loop c = 1, . . . , N satisfies:

φn,ci,j =




φn,c−1
i,j − ∆t

∆y

(
Gn,ci,j+1/2 −G

n,c

i,j− 1
2

)
+ λi,j(φ

0
i,j − φn,c−1

i,j ) if i = c;

φn,c−1
i,j otherwise.

(9.15)

Once the loop for the columns is completed, we define the final density values φn+1
i,j after a discrete

timestep ∆t as φn+1
i,j := φn,Ni,j . This dimensional-splitting scheme can be fully parallelized in order to

save computational time. This is because: (i) the scheme does not take notice the order of updating
the rows/columns, as long as all of them are updated; (ii) one row or column only depends on the
values of the directly adjacent rows or columns respectively. As a result, a strategy to parallelize
the dimensional splitting scheme consists of updating at the same time all the odd rows/columns,
since they do not depend on one another. One can then proceed with all the even rows/columns
at the same time.

9.2.2 Two-step method for the modified CH equation

The two-step method followed here was firstly proposed in [33]. It basically consists of applying
the finite-volume scheme in subsection 9.2.1 twice with different values of the parameter ε. The
first stage consists of taking a large ε to execute a large-scale topological reconnection of shapes,
leading to images with diffused edges. Subsequently, and in order to sharpen the edges after the
first stage, ε is substantially reduced, and the final outcome becomes less blurry and diffused. We
denote the corresponding values of ε as ε1 and ε2.

Adequately tuning the two values of ε in each stage, as well as λ, is vital to complete a successful
image inpainting. Those values have to be chosen empirically and depend on the dataset and type
of damage, and in Subsection 9.3.1 we conduct a study to select them. As explained there, the
appropriate values for ε are between 0.5 and 1.5 for MNIST-like images, while λ ∈ [1, 1000]. The
cell sizes are ∆x = ∆y = 1. The reader can find the exact values employed after the analysis of
Subsection 9.3.1 in Table 9.3.2.
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9.2.3 Neural network architecture for classification

The prediction of the label in the restored images is performed via a neural network constructed
in TensorFlow [221]. Its architecture is defined taking into account that in this work we employ
the MNIST dataset [112], which contains binary images of digits from 0 to 9 and has a resolution
of 28 × 28 pixels. This is a benchmark dataset in the community and is the de facto “hello
world” dataset of computer vision. There are consequently plenty of neural network architectures
attaining extremely high accuracies for the MNIST dataset, and we refer the reader to the Kaggle
competition of Digit Recognizer in [116] for examples of such architectures.

Here, however, our overarching objective aim is to quantify how the prediction of damaged
images is enhanced once the CH filter is applied to the images beforehand. Hence we do not
require a highly sophisticated neural network and a cutting-edge architecture as in computer vision:
our images are not going to be exactly the same as in the training set due to the damage and the
subsequent restoration. We then select a standard architecture for classification based on sequential
dense layers. Such architecture is formed by:

1) A flatten layer that takes the 28×28 image input and turns it into an array with 784 elements.
There are no weights to optimize in this layer.

2) A dense layer with 64 units and the ReLU activation function, defined as f(x) = max{0, x}
for x ∈ R. There are 784× 64 weights to optimize in this layer, in addition to the bias term
in each of the 64 units.

3) Another dense layer with 64 units and the ReLU activation function. There are 64 × 64
weights to optimize in this layer, in addition to the bias term in each of the 64 units.

4) A final dense layer with 10 units and the softmax activation function, which returns the nor-
malized probability distribution for the 10 labels and satisfies σ(zi) = exp(zi)/

∑10
j=1 exp(zj),

with z = (z1, . . . , z10) being the output of the final dense layer with 10 units. There are
64× 10 weights to optimize in this layer, in addition to the bias term in each of the 10 units.

For the training of this network we initially divide the original MNIST dataset in 60000 training
images and 10000 testing images. Then we train the neural network for 10 epochs with the Adam
optimizer, choosing as loss function the categorical crossentropy defined as

J(w) =
1

N

N∑

i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] ,

with w being the weights to optimize, yi each of the N true labels of the training dataset, and
ŷi each of the N predicted labels. After 10 epochs we get an accuracy for the training dataset of
99.02%, while for the test set the accuracy is 97.47%. Once the neural network is trained we keep
the weights fixed for the comparison of damaged and restored images in Section 9.3. A display of
the neural network is depicted in Figure 9.2.1.

9.2.4 Integrated Algorithm

The integrated algorithm proposed and tested in this work takes as input a damaged image, applies
the CH filter based on Subsection 9.2.1 and Subsection 9.2.2 to restore it, and finally applies the
already-trained neural network in Subsection 9.2.3 to predict its label.

To show the applicability of this integrated algorithm we initially create damage in the images
of the test set in the MNIST dataset [112]. After we apply the image inpainting to the damaged
test images, we introduce the restored images in the neural network. At that point, and since we

125



Chapter 9. An application of the Cahn-Hilliard equation in image inpainting

Figure 9.2.1: Diagram showing the layers of the neural network of Subsection 9.2.3.

have the true labels of the test set, we can assess the attained accuracy in comparison to directly
introducing the damaged images or the original images into the neural network. This procedure is
conducted for multiple types of damage in Section 9.3, and a schematic representation of all steps
is depicted in Figure 9.2.2.

9.3 Application of the integrated algorithm to the MNIST dataset

Our focus here is testing the applicability of the integrated algorithm in Subsection 9.2.4 to increase
predictability in damaged images. In Subsection 9.3.1 we start by analysing the impact of the
parameters λ0 and ε on the inpainting process, with the objective of calibrating them before
employing the MNIST dataset. In Subsection 9.3.2 we detail the types of damage that we insert
into the MNIST dataset, and we also show the restored outcomes of applying the CH equation
as an image inpainting filter. Finally, in Subsection 9.3.3 we evaluate how the accuracy of the
damaged images increases after applying the CH filter to them, for various types and degrees of
damage.

9.3.1 Inpainting of a Crossline

We employ the crossline example in [33] to analyse the role of the parameters ε and λ0 in the
finite-volume scheme of Subsection 9.2.1. These two parameters crucially determine the success of
the image inpainting procedure, and consequently appropriate calibrations for the parameters must
be chosen before running the scheme. The original crossline image is depicted in Figure 9.3.1a,
and we add to it a grey damage in the center, as shown in Figure 9.3.1b. This image contains
50 × 50 pixels or cells, each with a size of ∆x = ∆y = 1. We apply the finite-volume scheme in
Subsection 9.2.1 to the damaged image in Figure 9.3.1b.

We first aim to determine λ0 in (9.7) and we set ε = 1 as an initial guess so that ε = ∆x = ∆y.
From (9.7), λi,j is only nonzero for the predefined area of undamaged pixels. Indeed the term with
λi,j in the finite-volume scheme in (9.6) ensures that the undamaged pixels are not modified during
the image inpainting, but for this λ0 has to be sufficiently large to counterbalance the fluxes of
the scheme. Bearing this in mind we run the numerical scheme with a ∆t = 0.1 and until the L1

norm between successive states is lower than a certain tolerance fixed to be 10−4. Our simulation
produces satisfactory results and does not break down for a range of λ ∈ [1, 1000]. Table 9.3.1
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Figure 9.2.2: A schematic representation to show the applicability of the integrated algorithm.

shows that the computational time to reach the required tolerance decreases when increasing the
value of λ. In addition, the L1 norm between the final and initial state is also lower for greater
λ. It is worth mentioning that different choices for ∆t yield different ranges of valid λ, given that
(9.6) is a singularly perturbed problem for large λ0. Hence, greater values of λ are possible if ∆t
is refined. In our case, with the choice of ∆t = 0.1, our finite-volume scheme does not yield any
result and breaks down during the for values of λ /∈ [1, 1000] .

λ time L1 norm

1 489.8 61.2
10 489.7 60.8
100 484.8 60.8
1000 481.5 60.7

Table 9.3.1: Comparison for different values of λ: computational time before reaching the tolerance
and L1 norm between the final and initial state.

We next consider the tuning of the parameter ε which in turn is related to the pixel size ∆x and
∆y. For values of ε larger than the pixel size the outcome tends to be diffusive, while for smaller
values the edges are sharpened. When applying the finite-volume scheme in (9.6) with λ ∈ [1, 1000]
we obtain satisfactory results for ε ∈ [0.5, 1.5], while for values outside this range the simulation
breaks down because of the singular nature of (9.6) introduced by the parameter λ (see Section 9.A
for more details). As a consequence, for the two-step method in Subsection 9.2.2 we first take the
value ε1 = 1.5 for the large-scale topological reconnection of shapes, while for the second step we
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choose the value ε2 = 0.5 to sharpen the edges. The image inpainting of the damaged image in
Figure 9.3.1b resulting from applying this choice of parameters is shown in Figure 9.3.1c. More
details about the choice of λ, ε1 and ε2 are provided in Section 9.A, where a sensitivity analysis is
carried out depicting the outcome of choosing a not optimal combination of parameters.

(a) Initial crossline (b) Damaged crossline (c) Result from image inpainting

Figure 9.3.1: Image inpainting of a crossline, inspired by [33].

The final outcome after the image inpainting in Figure 9.3.1c is not the same as the original
image in Figure 9.3.1a. The reason for this is explained in the work of [32], where multiple steady-
state solutions of the modified CH equation were shown to exist. As the information under the
inpainting region has been destroyed, there is no way of knowing that the steady state we obtain
is less accurate than other viable solutions, in comparison to Figure 9.3.1a. For further details we
refer the reader to [32], where a bifurcation analysis is carried out to show that the steady state
may vary depending on the choices for ε and ∆x, ∆y.

9.3.2 Damage introduced in the MNIST dataset

Here we discuss the types of damage inserted into the MNIST test set, with the objective of
subsequently applying the CH filter developed in Subsection 9.2.1 for image inpainting. The
varied damage employed aims to represent a mock case of damage that may be encountered in
an image in need for restoration. As a result, we decide to employ two kinds of damage with
different intensities: customized damage affecting particular regions of the image, and random
damage selecting arbitrary pixels or horizontal lines in the image. The details of both are:

a) Customized damage: this type of damage is applied in four different fashions, as shown in
Figure 9.3.2. The basic idea is to turn vertical or horizontal lines of pixels into a uniform
grey intensity between black and white colour. In Figure 9.3.2 we show the outcome of
applying the CH filter to the damaged images. It can be seen that our model is able to
recover the images from the different types of damage, albeit with varying degrees of success.
For instance, the damage introduced in Figure 9.3.2c is a thick horizontal line which implied
a considerable loss of information from the original image, compared to the other types of
damage. As a result, the inpainted image filter for this type of damage is not as effective as
the other ones, as it can be seen from the inpaintings in Figure 9.3.2.

b) Random damage: this second type of damage is inserted in a random fashion and with
different levels of intensity. Two ways of randomly creating damage are considered: one
makes use of randomly selecting whole horizontal rows of pixels, while the other is obtained
by randomly selecting individual pixels. In addition, for both types of random damage we
employ different levels of damage intensity, so that a higher percentage of the image contains
damage if the intensity rises. This allows us to test how our image inpainting algorithm
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.3.2: Customized damage applied to a particular sample of the MNIST dataset. (a)-(d):
the sample with four different types of damage; (e)-(h): The outcome of applying image inpainting
to the damaged samples.

behaves with increasing levels of damage in the image. Examples of these damages are
shown in Figure 9.3.3. Similarly to the case of customized damage, the higher the intensity
of damage the more information is lost in the inpainting, as we can see for example in the
case of 80% pixel damage in Figure 9.3.3. But despite of this, our image inpainting algorithm
renders recognisable images even with relative high amounts of damage.

Parameters ε1 ε2 λ

Customized damage 1.5 0.5 1000

Random damage
Rows 1.5 0.5 1000
Pixels 1.5 0.5 9000

Table 9.3.2: Optimal parameters of the two-step algorithm applied in the MNIST dataset. ε1 and ε2
denote the values of ε used in the first and second step respectively, as explained in Subsection 9.2.2.

The parameter values of λ, ε1 and ε2 are gathered in Table 9.3.2, and follow the reasoning
discussed in Subsection 9.3.2. This choice of parameters in our finite-volume scheme in Subsec-
tion 9.2.1 leads to an effective image inpainting algorithm capable of restoring images with damage
of varied nature as shown in Figure 9.3.2 and Figure 9.3.3. Further details about the selection of
λ, ε1 and ε2 are provided in Section 9.A, where a sensitivity analysis is provided in order to justify
the parameter choices in Table 9.3.2. The next step is to integrate this image inpainting algorithm
within a pattern recognition framework for the MNIST dataset.

9.3.3 Pattern recognition for inpainted images

We now apply the neural network described in Subsection 9.2.3 to predict labels of damaged images
with and without image inpainting, with the aim of quantifying the improvement of accuracy
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Damaged rows Damaged Inpainted Damaged pixels Damaged Inpainted

8 30%

10 40%

12 50%

14 60%

16 70%

18 80%

Figure 9.3.3: Examples of image inpainting for random damage in whole horizontal rows and in
individual pixels. The column entitled “Damaged rows” marks the number of rows randomly
selected for damage in the 28 × 28 images. The column entitled “Damaged pixels” marks the
percentage of randomly damaged pixels over the whole image. For higher levels of damage intensity
the inpaintings lose more information.

following the application of the CH filter. This study is completed for the different types and
intensities of the noise depicted in Subsection 9.3.2.

We begin by adding the types of damage in Subsection 9.3.2 to the 10,000 samples of the
MNIST test dataset. The next step is to apply the CH filter and two-step method to each one
of them, while also saving copies of the test images with the damage. Eventually, for each type
of damage we get two batches of 10,000 images: one still with the damage, and another one with
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image inpainting applied. Given that the neural network of Subsection 9.2.3 is already trained
with the 60,000 samples of the MNIST training dataset, we can directly compute the accuracy of
each of the two batches. This way we are able to assess the improvement in accuracy thanks to
applying image inpainting to restore the damage.

Here for the validation we just employ the accuracy metric, which is defined as follows

Accuracy ≡ Number of correct predictions

Number of total predictions
.

There are however many other metrics apart from the accuracy one that play a vital role in other
classification problems: recall, precision, F1 score, true positive rate and so on. Here we believe that
the accuracy metric is enough to draw conclusions about how the image inpainting is improving the
predictions with respect to the damage images. This is due to the fact that the MNIST dataset is a
balanced dataset, where there is generally no preference between false positives and false negatives.

The measure of improvement between the batch of samples with image inpainting and the
damaged ones without it is computed as

Improvement ≡ Accuracywith CH filter −Accuracywithout CH filter

Accuracywithout CH filter

, (9.16)

and it basically represents the percentage of improvement that results from adding the CH filter
to the prediction process.

The results for all the types of damage under consideration are displayed in Table 9.3.3, Ta-
ble 9.3.4 and Table 9.3.5. In Table 9.3.3 we gather the prediction accuracies for the four customized
damages displayed in Figure 9.3.2, as well as the prediction accuracy for the unmodified MNIST
test set, which for our neural network architecture is 0.97. We observe that for the types of more
intense customized damage B and C the accuracy prediction for the damaged images without
CH filter drops to 0.71 and 0.64, respectively. By applying the filter we find that the accuracy
predictions can significantly escalate to 0.93 and 0.82, leading to improvements of 31% and 28%
respectively. The other two types of customized damage A and D are not as pervasive as B and
C, and as a result the accuracy predictions are high even without applying the CH filter.

Customized damage Without CH filter With CH filter Improvement

A 0.84 0.96 14%
B 0.71 0.93 31%
C 0.64 0.82 28%
D 0.90 0.96 7%

Initial test images - 0.97 -

Table 9.3.3: Accuracy for the test dataset of MNIST without and with the CH filter, for the
customized damage in Figure 9.3.2. The improvement is computed following (9.16).

In Table 9.3.4 and Table 9.3.5 we test the accuracies for random damage with various levels of
intensities. The objective here is to analyse how the CH filter responds when the damage occupies
more and more space in the images, both for the case of rows or pixels, as displayed in Figure 9.3.3.
In Table 9.3.4 we show the accuracies for a range of damaged rows between 6 and 26, bearing in
mind that the dimensions of the MNIST images are 28× 28. We observe that for low numbers of
damaged rows the accuracy prediction even without the CH filter is high and it does not improve
significantly by adding the filter. But then the improvement surges until reaching a maximum value
of 47% for 16 random damaged rows, where the prediction without CH filter is 0.55 and with CH
filter 0.81. From larger numbers of damaged rows the accuracies drastically drop due to the large

131



Chapter 9. An application of the Cahn-Hilliard equation in image inpainting

amount of information lost, and not even the image inpainting process is able to achieve decent
accuracies. In the limit of damaged number of rows tending to 28 we observe that the accuracies
are close to the ones of a dummy classifier with one out of ten chances of rightly guessing the label.
In this limit there is no difference between adding the CH filter or not, and it turns out that the
improvements are even negative.

Damaged rows Without CH filter With CH filter Improvement

6 0.89 0.96 8%
8 0.82 0.93 13%
10 0.73 0.91 25%
12 0.66 0.87 32%
14 0.6 0.87 45%
16 0.55 0.81 47%
18 0.47 0.68 45%
20 0.40 0.48 20%
22 0.39 0.45 15%
24 0.33 0.26 -21%
26 0.20 0.12 -40%

Table 9.3.4: Accuracy for the test dataset of MNIST without and with the CH filter, for the case
of random damage in rows. The improvement is computed following (9.16).

We observe a similar pattern for the case of random damaged pixels in Table 9.3.5 we observe
a similar pattern. For low percentages of damaged pixels the improvement of adding the CH filter
is negligible and the accuracies with and without the filter are quite high. As we increase the
percentage of damaged pixels the improvement escalates until it reaches 45% for a scenario with
80% of the pixels randomly damaged. For this case the accuracy prediction without the filter is just
0.55, but thanks to the filter it significantly increases to a decent value of 0.8. For larger percentage
of pixels the improvement and accuracies drop, and in the limit towards 100% of damaged pixels
we get close to the accuracy of a dummy classifier. This is due to the large loss of information that
the original images have suffered.

Damaged pixels Without CH filter With CH filter Improvement

30% 0.93 0.93 0%
40% 0.96 0.96 0%
50% 0.91 0.95 4%
60% 0.8 0.94 18%
70% 0.75 0.93 24%
80% 0.55 0.8 45%
90% 0.39 0.46 18%
92% 0.32 0.37 16%
94% 0.33 0.34 3%
96% 0.20 0.23 15%

Table 9.3.5: Accuracy for the test dataset of MNIST without and with the CH filter, for the case
of random damage in pixels. The improvement is computed following (9.16).

In Figure 9.3.4 we depict some specific examples for which the label is only predicted correctly
after applying the CH filter to the damaged image. These are just some particular samples out
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of the 10,000 images contained in the test dataset of MNIST, and for some of them the opposite
effect can occur: that the label is correctly predicted for the damaged image but following the
inpainting process it is predicted incorrectly. This only occurs for really severe damages, where
there is no difference between adding the CH filter or not and the accuracies are close to the ones
of a dummy classifier guessing randomly. However, we have shown in Table 9.3.4 and Table 9.3.5
that overall the CH filter increases the global accuracy for images with low to moderate damage,
and consequently we expect that scenarios such as the ones displayed in Figure 9.3.4 are much
more common than the opposite ones.

In Figure 9.3.4 we also appreciate that some greyscale pixels remain in the inpainted image
after applying the modified CH filter. This is due to the fact that the finite-volume scheme has
not run for long enough to turn those intensities into the stable white (φ = −1) or black (φ = 1)
phase field. This is prone to happening for images with high levels of damage, and one should try
to let the simulation run for as long as possible to avoid possible misclassification issues due to
those greyscale regions.

Initial Image True label Damaged image PD Inpainted image PI

4 6 4

0 8 0

5 4 5

Figure 9.3.4: Particular examples of label predictions for MNIST samples with various types of
damage: customized damage C, random damage in 16 rows and random damage in 70% of pixels.
The label of the damaged image is wrongly predicted, while the label for the inpainted image
is correctly predicted. PD and PI represent the label predictions of the damaged and inpainted
images, respectively.
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Appendix

9.A Sensitivity analysis of the parameters ε1, ε2 and λ

Adequately tuning the two values of ε1, ε2 and λ, is vital to complete a successful image inpainting.
These values have to be chosen empirically and depend on the dataset and type of damage. Here
we provide further details about finding an adequate combination of these parameters for images
of MNIST.

On the one hand, the parameter ε is related to the interphase thickness of the solution of the
modified CH equation in (9.1). The larger the ε, the more diffused the resulting image. However,
a large ε allows for a large-scale topological reconnection of shapes, which is convenient when the
damage breaks a connected colour phase. The strategy proposed in [33] and followed here, consists
of employing a two-stage methodology where a large ε is employed first (denoted as ε1), followed
by a smaller ε (denoted as ε2) in order to sharpen the final image. In Figure 9.A.1 we depict some
of the image-inpainted images resulting from various combinations of ε1 and ε2. The original image
with damage is shown in Figure 9.A.1a, and the optimal combination of ε1 and ε2 following the
values in Table 9.3.2 is depicted in Figure 9.A.1b. For this example the optimal parameters are
ε1 = 1.5 and ε2 = 0.5, and depend on the mesh size that in this case is ∆x = ∆y = 1. A larger mesh
size requires a larger value of ε to produce the same outcome, implying that both parameters are
interconnected and have to be of the same order. In order to evaluate the impact of ε1 and ε2 we
run two experiments: in the first one we choose both of them with the small value of ε1 = ε2 = 0.5,
and in the second one both parameters take the large value ε1 = ε2 = 1.5. The outcome with the
small value is depicted in Figure 9.A.1c, and clearly there is not an efficient large-scale topological
reconnection of the white regions, resulting in some damage left in the image. The outcome with
the large value is depicted in Figure 9.A.1d, and the drawback here is that the image is too diffused
in comparison to the optimal combination in Figure 9.A.1b.

On the other hand, the parameter λ in the finite-volume scheme in (9.6) ensures that the
undamaged pixels are not modified during the image inpainting. The choice of λ has to be suf-
ficiently large to counterbalance the fluxes of the scheme and act as a penalty term that keeps
the undamaged pixels invariant. However, λ cannot be too large since otherwise the finite-volume
scheme becomes a singularly perturbed problem, and the convergence of the implicit scheme is
deteriorated. The value of λ is related to the time step ∆t, and greater values of λ are possible
if ∆t is refined. In our case, with the choice of ∆t = 0.1, our finite-volume scheme does not yield
any result and breaks down during the simulation for values of λ /∈ [1, 10000]. To evaluate the
impact of λ we run three experiments: in the first one we choose the really small value λ = 0.01,
in the second the small λ = 0.1 and in the third the large value λ = 10000. The outcomes with
the two small values are depicted in Figure 9.A.1e and Figure 9.A.1f, and we observe that the
undamaged pixels have been altered and the overall appearance is not clean. The outcome with
the large value is depicted in Figure 9.A.1g, and the image is comparable to the optimal one in
Figure 9.A.1b. There is a threshold-λ value above which there is no convergence of the implicit
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finite-volume scheme. For the particular image we found this threshold can be approximated by
λ = 10000.

(a) Original image
with damage

(b) ε1 = 1.5, ε2 = 0.5
and λ = 1000

(c) ε1 = 0.5, ε2 = 0.5
and λ = 1000

(d) ε1 = 1.5, ε2 = 1.5
and λ = 1000

(e) ε1 = 1.5, ε2 = 0.5
and λ = 0.01

(f) ε1 = 1.5, ε2 = 0.5
and λ = 0.1

(g) ε1 = 1.5, ε2 = 0.5
and λ = 10000

Figure 9.A.1: Sensitivity analysis for different values of ε1, ε2 and λ. (A): original image with
damage; (B): optimal choice of parameters; (C): short value of ε1 and ε2; (D): large value of ε1 and
ε2; (E): really small value of λ; (F): small value of λ; (G): large value of λ.
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CHAPTER 10

Introduction to fluctuating hydrodynamics

The study of fluid dynamics encounters major challenges due to the inherently multiscale nature
of fluids. Not surprisingly, fluid dynamics has been one of the main arenas of activity for numerical
analysis and fluids are commonly studied via numerical simulations, either at molecular scale,
by using molecular dynamics (MD) or Monte Carlo (MC) simulations; or at macro scale, by
utilising deterministic models based on the conservation of fundamental quantities, namely mass,
momentum and energy. While atomistic simulations take into account thermal fluctuations, they
come with an important drawback, the enormous computational cost of having to resolve at least
three degrees of freedom per particle. Despite drastic improvements in computational power over
the last few decades, atomistic simulations are only applicable for small fluid volumes. There are
also other challenges with such techniques, e.g. the use of a proper thermostat when running
non-equilibrium simulations at constant temperature [242]. On the contrary, the convenience of
partial differential equations (PDEs), such as continuity and Navier-Stokes, is enormous as they
are amenable to both analytical and numerical scrutiny, with numerical simulations being less
computationally expensive than MD-MC. However, continuous models based upon PDEs cannot
account for the stochastic nature observed in real systems. Fortunately, there is still an approach
which lives at the crossroad of mesoscale, namely fluctuating hydrodynamics (FH). Firstly proposed
by Landau and Lifshitz [187], FH is formulated in terms of stochastic PDEs which aim at extending
Navier-Stokes equations to include thermal fluctuations. FH can then be used to simulate systems
undergoing energy-barrier crossing transitions, such as nucleation, which are impossible to describe
within the mean-field approximation.

However, the FH formulation by Landau and Lifshitz [187] is phenomenological: they simply
included additive stochastic flux terms in the Navier-Stokes equations – we shall refer to these
equations as the Landau-Lifshitz-Navier-Stokes (LLNS) equations. A remarkable effort has been
made ever since trying to connect FH with MD from first principles [38, 81, 109, 126, 133, 176,
208]. Some of the most widely known attempts to formalise such a connection are the works of
Kawasaki [176] and Dean [109]. Theirs provide a formal derivation of the stochastic time-evolution
equation for the ”density” field of a system of Brownian particles. Nevertheless, their derivation
ends up with a time-evolution equation for the microscopic density field, which is nothing but a
re-writing of the Brownian equations by using Itô’s lemma. For this reason, the Dean-Kawasaki
equation has been actively criticised and seen more as a toy model whose derivation does not
represent a proper proof of the FH equation. Indeed this model cannot be employed to describe
macroscopic quantities, such as density and momentum fields which are obtained by ensemble
averaging the corresponding microscopic quantities [7], and thus remains disconnected from the

137



Chapter 10. Introduction to fluctuating hydrodynamics

original Landau-Lifshitz theory. And it is this disconnection that has led to the misconception
that the Dean-Kawasaki model describes the evolution of macroscopic observables.

In a recent work [123], a bottom-up derivation of the FH for a system of Brownian particles has
been posed. It provided a new first-principle formulation of the governing equations for macroscopic
observables in the framework of classical dynamic density functional theory (DDFT). It is worth
mentioning that the field of DDFT has gained a lot of traction since the first phenomenological
derivations proposed in [115, 127]. Several rigorous derivations have been put forward including
effects such as inertia, hydrodynamic interactions and orientation of particles. These derivations
have been proposed both for the overdamped and inertial regimes, and we refer the reader to [6,
121, 148, 149, 202] for more details.

In particular, the formulation proposed in [123] allows for a rigorous and systematic derivation
of FH but also fluctuating DDFT (FDDFT) which includes the effects of thermal fluctuations
on the mean-field DDFT. In that work, it is also shown how the classical DDFT is the most-
likely realisation of FDDFT, thus providing closure to a long standing debate in the classical DFT
community about the inclusion of fluctuations in DFT. Also, the derivation in [123] stays in tune
with the original intuitive treatment of Landau and Lifshitz and at the same time alleviates the
misconceptions with the Dean-Kawasaki model. As a remark, it should be noticed that LLNS
equations describe a full system of particles, while FDDFT governs the time-evolution of density
and momentum fields of subcomponents of a system, e.g. of colloidal particles in a bath. Because
of the momentum exchange between colloidal and bath particles, the total momentum in FDDFT
for colloidal particles is not conserved, being affected by thermal fluctuations and friction exerted
by the bath. Let us also note here that both classical DFT and DDFT, embedded with either
exact or approximated models for the density-dependent Helmholtz free-energy functional [207],
have been shown to be rather powerful in the study of complex systems at the nano and microscale
[119, 147, 148]. Recent advances in DFT and DDFT have extended its applicability to a wide
spectrum of applications from nucleation of colloids and macromolecules [124, 201, 204] to fluids
in confined geometries [146, 219, 291] and wetting phenomena [220, 290, 295]. But also highly
non-uniform systems such as dense liquid droplets and solid clusters [200].

The FDDFT framework in [123], derived for the general case of arbitrarily shaped and ther-
malized particle, consists of two stochastic PDEs for the number density ρ (known also as particles
state probability function) and velocity u fields:





∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −ρ∇δF [ρ]

δρ
− γρu−

√
kBTγρW(x, t).

(10.1)

where F [ρ] is the density-dependent free-energy functional, γ is a friction parameter describing the
interactions between the particles and the bath, kB is the Boltzmann constant, T is the temperature
and W is a vector of Gaussian stochastic processes delta-correlated in space and time, i.e.

〈W(x, t)〉 = 0,

〈W(x, t),W(x′, t′)〉 = 2δ(t− t′)δ(x− x′). (10.2)

The mass of the particles is taken to be unitary. In the strong damping limit (γ → ∞), the high
friction between the particles and the bath causes the characteristic time scale of the momentum
dynamics to be much shorter than the density one [123, 149]. Thus, as a first approximation, the
contributions of the terms ∇ · (ρu⊗ u) and ∂t (ρu) can be neglected. As a result, one obtains the
stochastic time-evolution equation for the density field, referred to as overdamped FDDFT [123,
185]:

∂tρ = ∇ ·
(
ρ∇δF [ρ]

δρ

)
+∇ ·

(√
kBTρW(x, t)

)
. (10.3)
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Equation (10.3) may be seen as a stochastic version of the gradient-flow equation previously studied,
for instance, in [68, 273]. As we later discuss in further detail, (10.3) reduces to the stochastic
diffusion equation [178] when considering a system of non-interacting particles (ideal gas), whose
free energy would be F [ρ] =

∫
ρ (log ρ− 1) dr. However, the presence of a more general functional

F [ρ] allows in principle to introduce non-linear diffusion, external force fields and interparticle
interactions. It is also worth mentioning that (10.3) is not well-posed due to the high irregularity
originated in the stochastic fluxes and the multiplicity of the noise. This difficulty is typically
overcome by introducing some sort of regularization, such as a finite-volume interpretation as
employed here and in previous works [120]. One also needs to be careful about the cell size choice
and possible nonphysical effects such as negative densities, which may arise from the Gaussian
processes.

Previous numerical methodologies for FH have been focused on the LLNS equations for the
density and momentum, and the energy equation for the temperature if the systems are non-
isothermal. In comparison, the overdamped FDDFT allows us to obtain the density field solving a
single equation with stochastic fluxes for isothermal systems. One of the first works on this regard
is by Garcia et al. [139], where a simple finite-difference scheme to treat the numerical fluxes
of the SPDE is constructed. Further works by Bell et al. [26, 27] provide an explicit Eulerian
discretization of the LLNS equations combined with a third-order Runge-Kutta method with the
objective of adequately reproducing the fluctuations in density, energy and momentum. Donev
and co-workers [120] exploited the structure factor (equilibrium fluctuation spectrum) to construct
finite-volume schemes to solve the LLNS which then allows one to study the accuracy for a given
discretization at long wavelengths.

They also proposed a Petrov-Galerkin finite-element discretization of non-linear stochastic dif-
fusion equations embedded with prototypical free-energy functionals, such as the Ginzburg-Landau
free energy [270]. However, in order to obtain analytical forms of the structure factors used to as-
sess the performance of the scheme, the study focused on systems at equilibrium (i.e. without
density discontinuities), at supercritical temperatures (to avoid phase transition phenomena), and
without any external potential. Similarly, methods to solve FH via staggered grids have been
constructed [19]. Other works have proposed numerical schemes based on temporal integrators
that are implicit-explicit predictor-corrector [111] or two-level leapfrog [145]. Additionally, hybrid
schemes have been developed to couple LLNS with MD [107, 108, 110] or with MC [118, 277]
simulations of complex fluid systems. Moreover, the LLNS have also been solved to tackle reactive
multi-species fluid mixtures [35]. Further works have developed numerical schemes for particu-
lar applications of the overdamped FDDFT in (10.3). Specifically, [9, 178] developed numerical
methods for reaction-diffusion equations obtained by adding appropriate reaction terms to (10.3)
equipped with the ideal-gas free-energy functional.

The works just mentioned have contributed to a better understanding of the effects of thermal
fluctuations in complex fluid systems. Nevertheless, an efficient and systematic numerical method-
ology to solve (10.1) and (10.3) equipped with a general free-energy functional has not yet been
developed. Such a methodology would allow for the simulation and scrutiny of a wide range of non-
equilibrium phenomena which can be studied within the framework of FDDFT. Relevant examples
of these physical phenomena include dynamic evolution of confined systems and energy-barrier
crossing transitions, such as nucleation.

10.1 Contribution to numerical schemes for overdamped fluctu-
ating hydrodynamics

In this work we introduce a finite-volume method to solve general stochastic gradient-flow equations
with the structure of (10.3) for FDDFT. The main advantages of finite-volume schemes are the
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conservation of the total mass of the system and the flexibility to simulate complex geometries.
The main contributions of this work can be summarized as follows:

• To provide a space discretization scheme able to deal with fluctuations at discontinuous
density profiles. We discretize the deterministic fluxes based on a hybrid approach which
takes advantage of both central and upwind schemes.

• To overcome the commonplace challenge of preserving non-negative densities in the presence
of noise, by adopting a Brownian bridge technique. Despite previous approaches employing
artificial limiters [178], our technique ensures density positivity without altering the Gaussian
distribution of the stochastic field.

• To develop a methodology to simulate a family of free-energy functionals, modelling different
physical systems. First, we study temporal and spatial correlations, and the structure factor
of ideal gas at equilibrium, comparing the results of our finite-volume solver with both MD
and theoretical results. Then, we examine the out-of-equilibrium evolution of an ideal gas in
a double-well external potential. Subsequently, we simulate homogeneous nucleation kinetics
of a fluid consisting of particles interacting through a Lennard-Jones (LJ)-like potential.
Providing initial uniform densities corresponding to metastable vapour conditions, we study
the phase-transition of the system and compare the results with the mean-field phase diagram.

• To implement and test families of implicit-explicit Euler and Milsten time integrators, to-
gether with a weak second-order Runge-Kutta scheme.

• To gain insights into the free-energy decay for stochastic gradient-flow equations (see for
instance Figs. 8(d) and 10(b)). The decay of free energy is an important feature of determin-
istic gradient-flow equations. However, in stochastic gradient-flow equations, the free-energy
decay is guaranteed only in the weak noise limit.

Chapter 11 is devoted to this contribution. In its introduction we present the model equation
to simulate and outline its main properties. In Section 11.1, we discuss the numerical method-
ology of our finite-volume scheme, including the discretization of deterministic and stochastic
fluxes, time integrators, adaptive time step to preserve density positivity and boundary conditions.
Subsequently, several applications to illustrate the validity of our methodology are presented in
Section 11.2. Firstly, in Subsection 11.2.1 we begin by validating the numerical scheme for the
case of an ideal-gas free energy, due to the extensive analytical results available for this particular
choice of free energy. Then, in Subsection 11.2.2 we simulate an ideal gas under a double-well
external potential. Finally, in Subsection 11.2.3 we apply our numerical scheme to a homogeneous
vapour-liquid transition of a Lennard-Jones fluid.
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CHAPTER 11

Finite-volume schemes for overdamped fluctuating

hydrodynamics

The contents of this chapter are based on the publication [243], done in collaboration with Antonio
Russo, Miguel A. Durán-Olivencia, Peter Yatsyshin, José A. Carrillo and Serafim Kalliadasis:

[243] A. Russo, S. P. Perez, M. A. Durán-Olivencia, P. Yatsyshin, J. A. Carrillo, and S. Kalli-
adasis. “A finite-volume method for fluctuating dynamical density functional theory”. In:
Journal of Computational Physics (2020), p. 109796.

Our starting point is the following general SPDE based on the overdamped FDDFT in (10.3),

∂tρ = ∇ ·
(
ρ∇δF [ρ]

δρ

)
+∇ ·

(√
ρ/βW(x, t)

)
. (11.1)

where F [ρ] denotes the free energy of the system given by

F [ρ] =

∫

Rd
Π(ρ)dx+

∫

Rd
V (x)ρ(x)dx+

1

2

∫

Rd
K (W (x) ? ρ(x)) ρ(x)dx, (11.2)

with Π(ρ) describing the dependency of the free energy F [ρ] on the local density field ρ(x), V (x)
accounting for the effects of external potentials, K denoting a function depending on the con-
volution of ρ(x) with the symmetric kernel W (x) accounting for the interparticle potential. For
simplicity, we introduce the constant β, defined as β = (kBT )−1.

The mean-field limit of (11.1) in which no stochastic flux is present has received a great deal of
attention in the context of gradient flows. As discussed in [123], the most likely path, in the weak

noise limit, minimizes the Lagrangian defined as L = ‖∂tρ−∇ ·
(
ρ∇ δF [ρ]

δρ

)
‖(σσ∗)−1 , where σ is the

operator acting on the noise W(x, t). Thus, the most-likely solution 〈ρ〉 satisfies

∂t〈ρ〉 = ∇ ·
(
〈ρ〉∇δF [〈ρ〉]

δ〈ρ〉

)
. (11.3)

Equation (11.3) is a generalized diffusion equation, which results in the heat equation if an ideal
gas free energy is selected. It has been widely employed not only in the framework of DDFT [148,

141



Chapter 11. Finite-volume schemes for overdamped fluctuating hydrodynamics

149, 291], but also to model thin-liquid films stochastic dynamics[122]. It has the structure of a
gradient flow in the Wasserstein metric [224, 273] with applications in a variety of contexts such
as granular media [68], materials science and biological swarming [21, 68, 240]. The fundamental
property of (11.3) is that the free energy (11.2) is minimized following the decay rate [67, 68, 70]

d

dt
F [〈ρ〉] = −

∫

Rd
〈ρ〉
∣∣∣∣
δF [〈ρ〉]
δ〈ρ〉

∣∣∣∣
2

dx, (11.4)

where the variation of the free energy F [ρ] with respect to the density ρ in the case of (11.2)
satisfies

δF [ρ]

δρ
= f ′(ρ) + V (x) +K ∗ (g′(K ∗ ρ)ρ) + g(K ∗ ρ). (11.5)

The decay rate in (11.4) is not satisfied by the stochastic gradient flow in (11.1), where occasional
free-energy increase can take place during the dynamical evolution. It is precisely these jumps that
allow the system to overcome energy barriers leading to phenomena such as phase transitions.

Another quantity of interest in SPDEs of the form (11.1) is the structure factor [120, 178],
which represents an important measure of the stochastic properties of the system and it can be
experimentally obtained. It is formally defined as the variance of the Fourier transform of the
density fluctuations, and we provide its derivation in Appendix 11.A. It is a valuable quantity not
only to study the stability of the numerical integrator, but also to compare different schemes.

11.1 Numerical scheme

The one-dimensional (1D) version of (11.1) can be written as

∂tρ = ∂xFd(ρ) + ∂xFs(ρ,W), (11.6)

where Fd and Fs denote the deterministic and stochastic fluxes, respectively,

Fd = ρ∂x
δF [ρ]

δρ
, Fs =

√
ρ/βW. (11.7)

The finite-volume formulation of (11.6) is obtained by dividing the domain into grid cells Ci =
[xi− 1

2
, xi+ 1

2
], each one assumed to have the same length ∆x = xi+1/2 − xi−1/2, and then approxi-

mating in each of them the cell average of ρ defined as

ρi(t) =
1

∆x

∫ xi+1/2

xi−1/2

ρ(x, t)dx. (11.8)

Subsequently, one has to integrate (11.6) spatially over each cell and apply the Gauss divergence
theorem, leading eventually to the semi-discrete equation for the temporal evolution of the cell
average density,

dρi
dt

=
Fd,i+1/2 − Fd,i−1/2

∆x
+
Fs,i+1/2 − Fs,i−1/2

∆x
, (11.9)

where Fd,i+1/2 and Fs,i+1/2 denote the deterministic and stochastic fluxes (11.7) evaluated at the
boundary xi+1/2. The separation of the physical flux into deterministic and stochastic parts has
been effectively applied in previous studies [27, 120], noting though that some of them consider a
single flux combining the deterministic and stochastic terms [213]. Here we treat them separately.
We now proceed to develop in detail the methodology of our finite-volume scheme.
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11.1.1 Deterministic flux

The deterministic flux is evaluated by employing a hybrid method which adopts a central or upwind
approximation depending on the relative local total variation of the density. This is a classical
technique in deterministic fluid dynamics to construct high-resolution and oscillation-free schemes
[265]. On the one hand, central high-order and non-diffusive schemes are applied wherever smooth
gradients of the density are found. On the other hand, a diffusive upwind scheme is employed in
those regions of the domain with density gradients, in order to prevent the spurious oscillations
from central high-order schemes.

Previous works in the field of FH [27, 120, 178] approximate the deterministic flux with a simple
second-order central difference approach, even though high-order differences are also proposed but
not implemented [120]. Our motivation to adopt a hybrid approach is precisely aimed to avoid
possible spurious oscillations. The previous literature is mainly focused on FH with f ′(ρ) = log ρ
in (11.5), resulting in a deterministic flux of the form ∂xFd(ρ) = ∂xxρ. The treatment of this
Laplacian with a central approximation works well for the cases presented in the literature, but as
it is shown later in Figure 11.1.1, it can cause spurious oscillations for some solutions.

In the case of (11.6), the stochastic flux leads to non-smooth density. The proposed gradient
scheme then compares the local gradient in the density with the neighbouring gradients. When
the local gradient is large when compared to the neighbours’, an upwind approximation is cho-
sen. If not, the central approximation prevails. As a result, our proposed hybrid scheme for the
deterministic flux satisfies

Fd,i+1/2 =
(
1− φ(ri+1/2)

)
F cd,i+1/2 + φ(ri+1/2)F ud,i+1/2, (11.10)

where φ(ri+1/2) is a flux limiter with a threshold parameter k, defined as

φ(ri+1/2) =

{
0, if ri+1/2 ≤ k,
1, if ri+1/2 > k,

and ri+1/2 is a quotient measuring the relative local variation of the density,

ri+1/2 =
|ρi+1 − ρi|∑i+w

l=i−w |ρl+1 − ρl|
, (11.11)

with w indicating the number of neighbouring cell used to compute the total variation. A value
w = 5 is employed in the numerical experiments of this work, since it gives a good compromise
between conservation of local information and effects of the fluctuations.

The threshold parameter k plays a key role and has to be carefully selected. When k is small,
the diffusive upwind scheme is chosen more frequently, leading to diffusive behaviour which affects
the structure factor and the correlations. On the contrary, when k is large, the central scheme
will be predominant, and spurious oscillations may be created. Figure 11.1.1 provides a numerical
example to choose an adequate value for k.

Firstly, Figures 11.1.1a and 11.1.1b are obtained by simulating (11.6) with a free energy sat-
isfying δF/δρ = log ρ + 0.1x. The initial density profile has two discontinuities as shown in
Figure 11.1.1a. Under these conditions, the numerical solution evolves as a diffusive travelling
wave, but the two discontinuities in the initial density trigger spurious oscillations. The oscilla-
tions diminish by reducing k (for k = 0, which corresponds to only upwind flux, the diffusion
eliminates the oscillations). However, a low value of k critically dampens the variance, due to the
diffusive nature of the upwind flux, as it is noticed from Figure 11.1.1b.

Secondly, Figure 11.1.1c is obtained from simulating (11.6) with a free energy satisfying δF/δρ =
log ρ and starting from an equilibrium density profile. For this case, the theoretical value of the
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structure factor is known and is given by (11.78), meaning that the dampening behaviour of the
upwind scheme could be directly evaluated from Figure 11.1.1c. We notice again how the upwind
scheme dampens the statistical properties of the system due to the numerical diffusion. As a result,
an intermediate value of k needs to be taken in order to find a balance between both numerical
flaws. The compromising value is chosen to be k = 3.
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Figure 11.1.1: (a) Mean density and (b) standard deviation for a moving and diffusing initial
step function evolving according to (11.6), with δF/δρ = log ρ + u0x and u0 = 0.1. Additionally,
we report the structure factor of a uniform system in (c). IC: initial condition, CA: central
approximation (k = ∞), UW: upwind approximation (k = 0). Further values of k are depicted
to evaluate the spurious oscillations in the density and the artificial fluctuation dampening in
case of both inhomogeneous (a-b) and homogeneous (c) systems. In what follows, we adopt a
scheme with k = 3, since it gives the compromise between accuracy in the sharp density profile
and the fluctuations amplitude. We note that the stochastic term ∂xFs(ρ,W) is included in these
simulations and is discretized according to (11.24).

After selecting the adequate value of k, we proceed to the detailed construction of the central
and upwind deterministic fluxes in (11.10):

a) Upwind approximation of the deterministic flux: it is constructed as proposed in [55], where
a first- and second-order finite-volume method for nonlinear equations with gradient-flow
structure is constructed. The equations treated in [55] have the form (11.6) without the
white noise W. The authors propose to firstly reconstruct the density profile in each cell
Ci as a constant profile for the first-order scheme, or as a linear profile for the second-order
scheme,

ρ̃i(x) =

{
ρi, x ∈ Ci, for the first-order scheme,

ρi + (ρx)i (x− xi), x ∈ Ci, for the second-order scheme,
(11.12)

so that the east and the west density values ρEi and ρWi at the cell interfaces xi+ 1
2

and xi− 1
2
,

respectively, are approximated as

ρEi = ρi +
∆x

2
(ρx)i ,

ρWi = ρi −
∆x

2
(ρx)i .

(11.13)

The numerical derivatives (ρx)i at every cell Ci are computed by means of an adaptive pro-
cedure which ensures that the point values (11.13) are second-order and non-negative. This
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procedure initially takes centred approximations of the form (ρx)i = (ρi+1 − ρi−1) /(2∆x).
If it then happens that ρEi < 0 or ρWi < 0, the scheme employs a minmod limiter which
ensures that the reconstructed values are non-negative as long as the cell averages ρi are
non-negative,

(ρx)i = minmod

(
θ
ρi+1 − ρi

∆x
,
ρi+1 − ρi−1

2∆x
, θ
ρi − ρi−1

∆x

)
, (11.14)

where

minmod (z1, z2, . . .) =





min (z1, z2, . . .) , if zi > 0 ∀i,
max (z1, z2, . . .) , if zi < 0 ∀i,
0, otherwise.

The parameter θ controls the numerical viscosity and it is taken to be θ = 2, as in [55].

After completing the density reconstruction, the deterministic flux F ud,i+1/2 is evaluated with
an upwind scheme as

F ud,i+1/2 = u+
i+1/2 ρ

E
i + u−i+1/2 ρ

W
i+1, (11.15)

where ui+1/2 are discrete values computed from the central difference

ui+1/2 = −

(
δF
δρ

)

i+1

−
(
δF
δρ

)

i

∆x
. (11.16)

The upwind formulation of the deterministic flux (11.15) is then accomplished by taking

u+
i+1/2 = max

(
ui+1/2, 0

)
and u−i+1/2 = min

(
ui+1/2, 0

)
. (11.17)

Finally, the discrete variation of the free energy with respect to the density

(
δF
δρ

)

i

is com-

puted from (11.5), in the case g(s) = s, as
(
δF
δρ

)

i

= ∆x
∑

i

K(xi − xi)ρi + F (ρi) + V (xi). (11.18)

For general nonlinearities g(s) a similar treatment is performed.

b) Central approximation for the deterministic flux: this is the main strategy to treat the FH
deterministic flux in the literature [27, 120, 178]. In our case, given the generality of the free
energy in (11.2), we propose to evaluate the central deterministic flux as

F cd,i+1/2 = ui+1/2 ρi+1/2, (11.19)

where ui+1/2 is computed as in (11.16), with the discrete variation of the free energy satisfying
(11.18), and ρi+1/2 is taken as the averaged from the adjacent cells,

ρi+1/2 =
ρi + ρi+1

2
. (11.20)

Classical hybrid schemes employ a high-order approximation for the central approximation
of the deterministic flux. For this work, however, we just consider the low-order differences
(11.16) and (11.20), given that the presence of the stochastic flux limits the spatial order of
accuracy. Previous works in the literature also propose this low-order central differences [27,
120, 178].
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11.1.2 Stochastic flux

The evaluation of the stochastic flux (11.7) must be done carefully since the divergence of the white
noise W cannot be evaluated pointwise in time and space. This problem is typically overcome
by evaluating the noise in the cell by means of a spatiotemporal average, following [120] and
subsequently employed by Donev and collaborators in [18, 35, 178] ,

Wi =
1

∆x∆t

∫ t+∆t

t

∫ x
i+ 1

2

x
i− 1

2

W(x, t)dx dt, (11.21)

which, by the definition of the white noise, is equal to a normal distribution with zero mean and
variance (∆x∆t)−1, so that

Wi = N (0, 1)/
√

∆x∆t. (11.22)

Several approximations for the stochastic flux have been put forward in the literature [27, 178].
They rely on computing the stochastic flux directly at the interfaces using a random number
generator, and we refer the reader to [120] for more details about this approach. In this work,
however, we aim to employ the spatiotemporal cell average in (11.21) to compute the stochastic
fluxes at the interfaces. We are inspired by the literature on numerical methods for hyperbolic
problems where it is common to evaluate fluxes in a central or upwind fashion. Of course, here
we are not aiming to achieve a higher accuracy at the interface, given that the cell averages are
sampled from a distribution. We test the following four different approximations for the stochastic
flux, which are compared in Section 11.2:

(a) Forward approximation of the form

Fs,i+1/2 =

(√
ρ

β
W
)

i+1/2

=

√
ρi
β
Wi. (11.23)

(b) Linear approximation of the form

Fs,i+1/2 =

(√
ρ

β
W
)

i+1/2

=

√
ρi+1/2

β
Wi+1/2, (11.24)

where

ρi+1/2 =
ρi + ρi+1

2
, Wi+1/2 =

Wi +Wi+1

2
. (11.25)

(c) Parabolic approximation of the form

Fs,i+1/2 =

(√
ρ

β
W
)

i+1/2

=

√
ρi+1/2

β
Wi+1/2, (11.26)

where
ρi+1/2 = α1 (ρi−1 + ρi+2) + α2 (ρi + ρi+1) ,

Wi+1/2 = α1 (Wi−1 +Wi+2) + α2 (Wi +Wi+1) ,

α1 = (1−
√

3)/4, α2 = (1 +
√

3)/4.

(11.27)

The coefficients α1 and α2 are selected as in [27], with the objective of preserving both the
average and the variance in each time step.
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(d) Upwind approximation, where Wi is taken as the stochastic velocity, so that a similar ex-
pression to the deterministic flux in (11.15) is taken,

Fs,i+1/2 =

(√
ρ

β
W
)

i+1/2

=

√
ρEi
β
W+
i+1/2 +

√
ρWi+1

β
W−i+1/2, (11.28)

where

W+
i+1/2 = max

(
Wi+1/2, 0

)
, W−i+1/2 = min

(
Wi+1/2, 0

)
, (11.29)

and Wi+1/2 = (Wi +Wi+1)/2. The east and west density values ρEi and ρWi are computed
as in the deterministic flux, either with a first- or second-order reconstruction (11.13).

11.1.3 Stochastic time integrators

The derivation of the temporal integrators to advance in time the semidiscrete equation (11.9) is
accomplished by the equation

dρ(t) = µ(ρ(t)) dt+ σ(ρ(t))W dt, (11.30)

where the vectors ρ(t) and W contain the cell averages defined in (11.8) and (11.21), respectively,
so that ρ(t) = (ρ1(t), ρ2(t), . . . , ρn(t)) and W(t) = (W1(t),W2(t), . . . ,Wn(t)). The vector µ(ρ(t))
and the matrix σ(ρ(t)) depend on the density cell averages ρ(t) and their structures vary depending
on the choice of the deterministic and stochastic fluxes, respectively.

From (11.30) we employ Itô’s lemma to approximate the two functions µ(ρ(t)) and σ(ρ(t)).
After integrating in time then we obtain the Taylor expansion of the stochastic process. Truncating
this expansion with an error O(∆t1/2) and integrating between t and t + ∆t, one can derive the
following family of implicit-explicit Euler-Maruyama integrators [182], whose component-wise form
satisfies

ρi(t+ ∆t) = ρi(t) + [(1− θ)µi(ρ(t)) + θ µi(ρ(t+ ∆t))] ∆t+
n∑

k=1

σik(ρ(t))W k(t)∆t. (11.31)

The parameter θ allows us to have an explicit (θ = 0), implicit (θ = 1) or semi-implicit (θ =
0.5) temporal integrator. Euler-Maruyama is the highest order integrator for which no multiple
stochastic integrals have to be computed, but it has only 0.5 strong order of convergence.

Keeping in the expansion all the terms up to O(∆t), one obtains a derivative-free family
of implicit-explicit Milstein integrators with strong order 1.0 and weak order 0.5 [182]. The
component-wise version of this scheme is

ρi(t+ ∆t) =ρi(t) + [(1− θ)µi(ρ(t)) + θ µi(ρ(t+ ∆t))] ∆t+
n∑

k=1

σik(ρ(t))W k(t)∆t

+
1√
∆t

n∑

l,m=1

[σim(Υl(t))− σil(ρ(t))] Il,m(t),

(11.32)

where the l-th row of the matrix Υ is defined as

Υl(t) = ρ(t) + µ(ρ(t))∆t+ σl(ρ(t))
√

∆t, (11.33)
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and multiple stochastic integrals Il,m(t) =
∫ t+∆t
t W lWmdt, whereWl andWm are two white noises.

These integrals do not have a simple analytical solution, thus are approximated as a function of
the white noise cells average in (11.21) as [203]:

Il,m(t) =





1
2

[(
W

l
)2
− 1

]
∆t if l = m,

∆t
2 W

l
W

m
+
√
kp∆t(ϕlW

m − ϕmW l
)

+
∑p

r=1
1

2πr

[
ζlr(
√

2 W
m√

∆t+ ηm)− ζmr(
√

2 W
l√

∆t+ ηl)
]

otherwise,

(11.34)

where ϕl, ζlr and ηm are pairwise independent variables with distribution N (0,∆t) and kp is given
by

kp =
1

12
− 1

2π2

p∑

1

1

r2
. (11.35)

The value p determines the accuracy of the multiple stochastic integral approximation and subse-
quently the accuracy of the scheme. A value of p = k/∆t for some constant k is enough to preserve
the accuracy of the scheme [182].

Stochastic time integration schemes of higher strong order have also been proposed in the
literature [182]. However, these schemes are very computationally expensive due to the presence
of high-order multiple stochastic integrals to be solved. Moreover, in many physical applications,
the convergence in probability, also called weak convergence, is more relevant than the strong
convergence. For this reason, a last time integration scheme we will study the following explicit
weak order 2.0 Runge-Kutta scheme:

ρ̃i(t+ ∆t) = ρi(t) +
1

2
[µi(Υ(t)) + µi(ρ(t))] ∆t+ Φ(t),

ρi(t+ ∆t) = ρi(t) +
1

2
[µi(ρ̃(t+ ∆t)) + µi(ρ(t))] ∆t+ Φ(t),

(11.36)

where the vector Φ(t) has components:

Φi(t) =
1

4

n∑

l=1

[σli(Λl+(t)) + σli(Λl−(t)) + 2σli(ρ(t))]W
l
(t)
√

∆t

+
1

4

n∑

l=1

n∑

r=1,r 6=l
[σli(Ξr+(t)) + σli(Λr−(t))− 2σli(ρ(t))]W

l
(t)

+
1

4

n∑

l=1

[σli(Λl+(t))− σli(Λl−(t))]

[(
W

l
(t)
)2
− 1

]√
∆t

+
1

4

n∑

l=1

n∑

r=1,r 6=l
[σli(Ξr+(t))− σli(Ξr−(t))]

[
W

l
(t)W

r
(t) + Vr,i

]√
∆t,

(11.37)

and the supporting values:

Υ = ρ(t) + µ(ρ(t))∆t+

n∑

i=1

σi(ρ(t))∆Wi(t), (11.38)

Λl± = ρ(t) + µ(ρ(t))∆t± σl(ρ(t))
√

∆t, (11.39)

Ξl± = ρ(t)± σl(ρ(t))
√

∆t. (11.40)
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The random matrix V is defined as:

Vr,i(t) =





±1 with p = 1
2 if r < i,

−1 if r = i,

−Vi,r(t) if r > i,

(11.41)

where p indicates the probability. It has to be emphasised that such a scheme does not involve the
computation of multiple stochastic integrals, thus its strong order of convergence is expected to be
at most 1.0.

11.1.3.1 Weak and strong order of convergence for temporal integrators

The order of convergence can be measured in the strong and weak sense, for which the strong
and weak errors are respectively defined for a particular time τ and a group of trajectories Γ =
{γ1, γ2, . . . , γm} as

εs = 〈|ργ(τ)− ργexact(τ)|〉γ ∈Γ and εw =
∣∣∣〈ργ(τ)〉γ ∈Γ − 〈ρ

γ
exact(τ)〉γ ∈Γ

∣∣∣ , (11.42)

where ργ(τ) refers to the numerical density cell averages at time τ following trajectory γ, ργexact(τ)
denotes the exact or reference solution which is considered to be the true solution of the stochastic
equation, the ensemble average 〈·〉 is taken over the trajectories γ ∈ Γ, and the norm |·| is taken
to be the standard L1-norm.

In Figure 11.1.2 we evaluate the strong and weak errors for the described stochastic integrators.
They are obtained by simulating equation (11.30) in the simplified case of geometric Brownian
motion, for which µ(ρ(t)) = −ρ(t) and σ(ρ(t)) = 0.5ρ(t), thus eliminating the spatial derivatives.
As a result, the temporal evolution of the density for a cell j, which is independent from the rest
of cells, follows

dρi(t) = −ρidt+ 0.5ρiWidt, (11.43)

with the cell averaged white noiseWi defined as in (11.21). For the simulation we selected ρi(0) = 1.
Geometric Brownian motion is useful to compute the strong and weak errors since the exact solution
in analytically known [222].

The results in Figures 11.1.2a and 11.1.2b depict the strong and weak order of convergence for
the temporal integrators. Concerning the former, as expected the Euler-Maruyama presents an
order of 0.5, while Milstein an order of 1.0. Runge-Kutta is expected to have a strong order of at
least 0.5, and in the plot it approaches a value of 1.0.

With respect to the weak order, the whole families of Euler-Maruyama and Milstein solvers
are expected to have an order of 1.0, while the Runge-Kutta an order of 2.0. Such theoretical
predictions are respected for all schemes, with the exception of the semi-implicit methods which
outperforms, giving an order between 1.0 and 2.0.

In Figure 11.1.2c we plot the CPU time against the total number of cells n for each of the
temporal integrators. The Euler-Maruyama accounts for O(n) computations, the Milstein for
O(n2), and the Runge-Kutta for O(n3). However, for n < 100 we get a lower CPU time for
Runge-Kutta, if compared with all the other integrators except for the explicit Euler-Maruyama.

11.1.4 Positivity of the density through an adaptive time step

A natural constraint for physical systems is the positivity of the density field, and the numerical
solution is expected to satisfy such a requirement. Numerical schemes with the property of pre-
serving the positivity of the density have been developed in the literature, specially in the context
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Figure 11.1.2: Strong (a) and weak (b) errors convergence for geometric Brownian motion. In (c)
we report the CPU time for each time integration schemes as a function of the number of cells n.
EM: Euler-Maruyama, MI: Milstein, RK: Runge-Kutta. Explicit (θ = 0), semi-implicit (θ = 0.5)
and implicit (θ = 1).

of deterministic conservation law PDEs [34, 55]. The strategy is usually to derive a Courant-
Friedrichs-Lewy (CFL) condition which imposes a constraint for the maximum ∆t so that the
density always remains non-negative.

For particular discretizations of the numerical fluxes (11.7) it is also possible to derive a CFL
condition for the SPDE in (11.1). This CFL condition depends on the Gaussian distributions from
the white noise (11.22), as well as on the density profile. Following the derivation provided in [55]
for a deterministic gradient-flow equation, we proceed to provide an example of the CFL derivation
when the upwind discretizations (11.15) and (11.28) for the deterministic and stochastic fluxes,
respectively, are employed.

Lemma 11.1.1. Consider the SPDE (11.1) with initial data ρ0(x) > 0, together with the semi-
discrete finite-volume scheme (11.9) with the upwind discretizations for the deterministic (11.15)-
(11.18) and stochastic (11.22), (11.28) fluxes. Assume that the SPDE is temporally discretized
with a deterministic Euler forward method. Then, the computed cell averages satisfy ρi ≥ 0, ∀j,
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provided that the following two CFL conditions for ∆t hold:

1

2
− λ1u

+
i+ 1

2

− λ2G+
i+ 1

2

/
√
ρEi β ≥ 0,

1

2
− λ1u

−
i− 1

2

− λ2G−i− 1
2

/
√
ρWi β ≥ 0, (11.44)

where

λ1 :=
∆t

∆x
, λ2 :=

√
∆t

∆x
, Gi =W i

√
∆x∆t = N (0, 1), (11.45)

and G+
i+1/2, G−i+1/2 are constructed as in (11.29), so that

G+
i+1/2 = max

(
Gi+1/2, 0

)
, G−i+1/2 = min

(
Gi+1/2, 0

)
. (11.46)

Proof. Assume that for a given time t the computed solution for the density is known and positive:
ρi(t) ≥ 0, ∀j. The new cell averages following a forward Euler temporal scheme in the finite-volume
formulation (11.9) satisfy

ρi(t+ ∆t) = ρi(t)−∆t

[
Fd,i+1/2 − Fd,i−1/2

∆x
+
Fs,i+1/2 − Fs,i−1/2

∆x

]
. (11.47)

Substituting the deterministic and stochastic fluxes for their upwinded discretizations (11.15) and
(11.28), respectively, and by employing the notation specified in (11.45), it follows

ρi(t+ ∆t) =
1

2
(ρEi + ρWi )− λ1

[
u+
i+ 1

2

ρEi + u−
i+ 1

2

ρWi+1 − u+
i− 1

2

ρEi−1 − u−i− 1
2

ρWi

]

− λ2

[
G+
i+ 1

2

√
ρEi /β + G−

i+ 1
2

√
ρWi+1/β − G+

i− 1
2

√
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(11.48)

Due to the fact that the reconstructed point values for the density ρEi−1, ρEi+1, ρWi and ρWi+1 are
non-negative, and bearing in mind that u+

i− 1
2

, G+
i− 1

2

≤ 0 and u−
i+ 1

2

, G−
i+ 1

2

≥ 0 due to (11.17) and

(11.46), it follows ρi(t+ ∆t) ≥ 0, ∀j, provided that the CFL conditions (11.44) hold.

The CFL conditions in (11.44) ensure that the density remains non-negative at all times,
independently of the values produced by the normal distributions of the white noise spatio-temporal
average (11.22). In the case of a rare event in which the Gaussian distribution produces low-
probability values located at the tails of the distribution, ∆t would be adapted accordingly to
ensure the positivity. However, this adaptive time step strategy entails two main disadvantages.
First, it requires at each time step the solution of a second-order equation (in 1D) or a two-
parameter equation in multi-dimensional problems. Second, since the time-step size is dependent
on the random number at each step, higher (or lower) ∆t may be favoured by some random
numbers, thus not guaranteeing that the correct Brownian path is followed [136].

Previous works in the literature have already addressed the issue of positivity by means of
varied approaches. In the context of FH, the authors of [178] have effectively opted for introducing
cutting functions based on smoothed Heavisides which prevent the density from becoming negative.
The main drawbacks of this strategy are 1) despite reducing the chances of having negative density
values, positive densities are not guaranteed, and 2) it affects the density distribution.

A further alternative to preserve positivity lays in the concept of Brownian trees, which were
firstly introduced in [136] in order to address the numerical resolution of stochastic differential
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equations with variable time steps. The key idea here is that it is vital to respect the Brownian
path that is formed after evaluating the normal distributions (11.22). This means that upon
advancing our simulation from time t a certain ∆t1 and realising that the density in one of the
nodes j has become negative we cannot just simply repeat the time step with a shorter ∆t2 < ∆t1
in order to maintain positivity. The values of the normal distributions after the first trial of
advancing ∆t1 have to be respected if the Brownian path is to be preserved. In addition, those
values of the normal distributions at t + ∆t1 have to be employed when computing the values at
t+ ∆t2, even if the jump from t to t+ ∆t1 has produced negative densities.

The solution to effectively take the statistical information at t+∆t into account when repeating
the time step is the so-called Brownian bridge [203, 262]. It allows the computation ofWi in (11.21)
at an intermediate time step t+ ∆t/2 by means of the formula

Wi

(
t+

∆t

2

)
−Wi(t) =

Wi (t+ ∆t)−Wi (t)

2
+N

(
0,

∆t

4

)
. (11.49)

As a result, our tactic consists in initially selecting an adequately small ∆t. Then, if after some
time the density becomes negative, ∆t is halved to compute the intermediate time step from
the Brownian bridge (11.49). If that intermediate state leads to further negative densities, the
Brownian bridge is applied as many times as needed. The information at t + ∆t is saved to
be employed once all the intermediate time steps with non-negative densities are computed. A
pseudocode to implement the Brownian bridge is written in Algorithm 1. As a remark, the adequate
choice of a small initial ∆t for the simulation is essential to reduce the number of Brownian bridges
to a minimum. A compromise is of course needed, since an extremely small ∆t does not lead to
negative densities but requires a high computational cost for the simulation.

Algorithm 1: Algorithm adopted to overcome the issue of negative density. It is based
on an adaptive timestep combined with the Brownian bridge technique, that allows to
preserve the properties of the probability distribution underlying the stochastic process.

Input: ρ(t)
Output: ρ(t + ∆t)

1 NegativeDensity=True;
2 ∆t = ∆t0;
3 partitions = 0;
4 while (NegativeDensity==True) do
5 NegativeDensity=False;
6 ρtmp = ρ;

7 for i← 0 to 2partitions do
8 compute Brownian bridge;
9 update ρtmp;

10 if (any(ρtmp) < 0) then
11 NegativeDensity=True;
12 end

13 end
14 ∆t← ∆t/2 ;
15 partitions← partitions + 1;

16 end
17 ρ(t + ∆t)← ρtmp;
18 return ρ(t + ∆t);

11.1.5 Boundary conditions

In this section we analyse the implementation of boundary conditions for the cases of periodic,
confined and open systems. For systems with a periodic boundary, it is sufficient to impose

ρ0 = ρN . (11.50)

For no-flux conditions, the boundary conditions to impose on the fluxes are

Fi±1/2 = 0 for i = 0, N. (11.51)

Open systems in thermal and chemical equilibrium with a reservoir can be represented by a µV T
ensemble with constant grand potential Ω[ρ] = F [ρ]−µ

∫
ρdx, where F [ρ] = F [ρ]+

∫
V (x) ρdx with
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F [ρ] being the Helmholtz free-energy functional, V (x) the external potential acting on the system
and µ the chemical potential. Using the fact that the functional derivative of Ω with respect to ρ
is null in equilibrium, we obtain δF [ρ]/δρ = µ. Since the system is assumed to be in contact with
a reservoir at temperature Tres and chemical potential µres, the corresponding boundary condition
applied to compute the velocities ui+1/2 at the boundaries in (11.16) is

(
δF
δρ

)

0

=

(
δF
δρ

)

N

= µres, (11.52)

with µres being the chemical potential of the reservoir. From the value of µres one can compute
the density by solving (11.5) for a fixed value of δF/δρ. This implies that the values of ρ0, ρN and
any additional ghost node are imposed from (11.52) for all times. Depending on the particular
choice of free energy in (11.2), it may be possible to converge to different density profiles depending
on the initial condition for the iterative algorithm to solve (11.5). This open boundary condition
imposes a positive or negative flux of mass through the boundary, and as a result the total mass
is not conserved in time.

11.2 Numerical validation and applications

In this section we provide tests of the numerical schemes developed in Section 11.1. Initially, in
Subsection 11.2.1 we conduct a simulation with a purely-diffusive ideal-gas free energy with noise
and without external fields or interparticle potentials. There are several theoretical results for such
systems [27, 178] allowing us to benchmark the statistical correlation and the structure factor from
our numerical schemes. Further validation of the schemes will be offered via comparison with our
own MD simulations. The results of these tests show that the Runge-Kutta temporal integrator
(11.36) and the linear approximation of the stochastic flux (11.24)-(11.25) accomplish the best
accuracy and efficiency to simulate our SPDE (11.6). This choice is maintained in the examples
that follow.

Secondly, we provide a simulation for an ideal gas with a local confining external potential
V (x), in order to test the mean and variance of the density, the spatial correlation and the decay
of the discrete free energy in time.

The simulations of ideal gases are also compared with results from MD simulations using the
software LAMMPS [237]. Details of such simulations are explained in Appendix 11.B.

11.2.1 Ideal-gas system in equilibrium

Consider the SPDE in (11.1) without any external or interaction potential (V (x) = W (x) = 0)
and applied to the classical ideal-gas free energy

F [ρ] = β−1

∫
ρ (ln(ρ)− 1) dx, (11.53)

leading to a diffusive equation with multiplicative noise of the form

∂tρ = ∆ρ/β + ∇ ·
[√

ρ/βW(x, ρ)
]
. (11.54)

The initial density profile is taken as the equilibrium one, with a constant value in all cells of
ρi = 0.5 and a total number of particles of N = 1000 for the MD simulation. The mean density
profile ρ at any time, taken as the mean of the density ensemble averages at every cell, is expected
to remain as ρ ≈ 0.5 throughout the simulation due to the equilibrium state. The number of cells
in the domain is n = 40, the cell size is ∆x = 50 and the time step is computed as ∆t = 0.1∆x2
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(selected as in [178]), the number of trajectories is 100, and the number of time steps is 2000, unless
otherwise stated. The boundary conditions are periodic and the parameter β is fixed at β = 1.

The objective is to evaluate how the different numerical methods perform by focusing on four
different statistical properties at equilibrium: variance, spatial correlation, time correlation and
structural factor. These tests are usually employed in the literature for the validation of stochastic
numerical schemes for FH [27, 178, 275]. The advantage of testing these properties at equilibrium
is that their exact theoretical values are known and can be used for comparison purposes. Density
fluctuations of a system with fixed volume V can be computed as 〈δρ2〉 = ρ2〈δN2〉/N2, where N
and 〈δN2〉 denote average and variance of the number of particles in V , respectively. As shown in
[187], the variance is given by:

〈δN2〉 = −T N̄
2

V 2

(
∂V

∂p

)

T

(11.55)

where T and p are the temperature and pressure of the system, respectively. Employing the equa-
tion of state (in reduced units) for an ideal gas, pV = NT , we obtain 〈δN2〉 = N . In the case of
infinite systems, the fluctuations of an ideal gas are spatially uncorrelated, namely 〈δρi(t)δρi(t)〉 =
〈δρ2〉δKij . However, for finite systems the constraint on conservation of mass introduces correlations

[27]. Expressing the space correlations of density fluctuations as 〈δρi(t)δρi(t)〉 = AδKij +B, conser-
vation of mass dictates

∑
i〈δρi(t)δρi(t)〉 = 0, which corresponds to the constraint B = −A/n, with

n being the total number of cells. Moreover, in the limit n 7→ ∞ the fluctuations for an infinite
system have to be recovered, thus A = 〈δρ2〉. It follows that the spacial correlation for the closed
system can be expressed as:

〈δρi(t)δρi(t)〉 = 〈δρ2〉
(
δKij −

1

n

)
. (11.56)

The expression for the variance allows us also to obtain a quick estimation of the minimum
cell size for which, due to thermal fluctuations, negative density values are likely to occur. The
expected value of the density fluctuations for an ideal gas can be expressed through its standard
deviation

√
〈δρ2〉 =

√
ρ/∆V . Thus, with a confidence of 99.7%, the maximum values of the density

fluctuations will be
√
〈δρ2〉 |max∼ 3

√
ρ

∆V . It follows that the noise fluctuations give negative

density values with a probability higher than 0.3% when the following condition is verified:

3

√
ρ

∆V
& ρ or, equivalently ∆V .

3√
ρ

(11.57)

In Subsubsection 11.2.1.5 we offer a discussion on the accuracy and efficiency of the temporal
integrator and spatial discretization, using the results from the four tests and the computational
cost. The justified choices, which are the Runge-Kutta temporal integrator (11.36) and linear
approximation of the stochastic flux (11.24)-(11.25), are employed during the four tests, in the
sense that the Runge-Kutta temporal integrator is employed when evaluating the different spatial
discretizations, and the linear approximation of the stochastic flux is employed when evaluating
the temporal integrators.

11.2.1.1 Standard deviation

For this test we aim to evaluate how the standard deviation of the density varies depending on the
number of particles per cell Nc. We keep the total length and the total number of particles in the
domain as constant, and we only vary the number of particles per cell by enlarging or shortening the
cell size ∆x. Consequently this analysis helps to elucidate how changing the finite-volume lattice
size affects the numerical statistical properties . The mean density of the profile is ρ = N/(n∆x).
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As shown above, the theoretical standard deviation of the diffusion SPDE (11.54) applied in
finite systems in equilibrium satisfies

√
〈δρ2〉theory =

〈ρ〉√
Nc

√
1− 1

n
. (11.58)

As a remark, in spite of the fact that
√
〈δρ2〉theory holds for all Nc, previous studies [120, 275] have

pointed out that there should be a minimum of 5-10 particles per cell to recover the microscopic
statistical properties by means of FH. This occurs because with such low number of particles per
cell the particle fluctuations are not accurately modelled with the multiplicative noise in (11.54).

The results of this study are displayed in Figure 11.2.1, depicting a comparison of the temporal
schemes (a) and spatial discretizations (b) against the theoretical standard deviation (11.58) and
the one computed from MD. It is evident from both plots that all schemes approximate correctly
the standard deviation for Nc > 5. Below this number of particles per cell, the standard deviations
deviate from the expected ones. This result chimes in with the minimum number of 5-10 particles
per cell necessary to recover the statistical properties in FH.

There are no remarkable differences between the temporal integrators or spatial discretizations
for the stochastic flux.
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Figure 11.2.1: Standard deviation
√
〈δρ2〉 as a function of the number of particles per cell Nc

(or, equivalently, as a function of the cell size given that total volume and density of the system
are kept constant throughout the simulations), for an ideal gas in equilibrium. (a) Temporal
integrators. EM: Euler-Maruyama, MI: Milstein, RK: Runge-Kutta, MD: Molecular dynamics.
Explicit (θ = 0), semi-implicit (θ = 0.5) and implicit (θ = 1). (b) Spatial discretizations of the
stochastic flux. FO: Forward (11.23), UW: Upwind (11.28)-(11.29), LI: Linear (11.24)-(11.25), PR:
Parabolic (11.26)-(11.27), Theory: 11.58.

11.2.1.2 Time correlations

The objective of this test is to measure the time correlation of the density in one specific cell of
the domain. The normalized time correlation function is defined as

CT (t) =
〈δρi(t)δρi(0)〉
〈δρi(0)δρi(0)〉 , (11.59)
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where δρi(t) = ρi(t)− ρ. The time correlation function expected to decay in time for any process
in equilibrium, including the diffusion equation (11.54). Previous studies [27] have compared the
numerical results with the Fourier transform of the time correlation (11.59), which is denoted as
the spectral density and for which there are explicit expressions available. In spite of this, these
exact expressions for the spectral density do not take into account the finite-size effects in the
numerical simulations, leading to a lack of agreement in the results [27].

We have then decided to compare the results obtained from the numerical schemes in Sec-
tion 11.1 with MD simulations only, which indeed take into account the finite-size effects. The
results are displayed in Figure 11.2.2. For all schemes we evidence a clear decay in time of the time
correlation. Concerning the temporal integrators, the explicit ones (θ = 0) tend to be closer to
the MD simulations initially, while the implicit ones (θ = 1) provide a better approximation in the
long-time regimes. With respect to the spatial discretizations for the stochastic flux, the upwind
one deviates the most from MD, while the rest of them behave similarly.
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Figure 11.2.2: Temporal decay of the normalized time correlation CT , defined as in (11.59), for
an ideal-gas system in equilibrium (a) Temporal integrators. EM: Euler-Maruyama, MI: Milstein,
RK: Runge-Kutta, MD: Molecular dynamics. Explicit (θ = 0), semi-implicit (θ = 0.5) and implicit
(θ = 1). (b) Spatial discretizations of the stochastic flux. FO: Forward (11.23), UW: Upwind
(11.28)-(11.29), LI: Linear (11.24)-(11.25), PR: Parabolic (11.26)-(11.27).

11.2.1.3 Spatial correlations

This test seeks to evaluate whether the proposed numerical schemes in Section 11.1 satisfy the
exact spatial correlation for finite-size systems derived above:

〈δρi(t)δρj(t)〉 =
〈ρ〉
∆x

(
δij −

1

n

)
. (11.60)

Contrary to the infinite-domain case where there are no spatial correlations between adjacent cells,
for the finite-size case there is an extra term 1/n which decreases as the number of cells n increases.

The results of this test are depicted in Figure 11.2.3, with the normalized spatial correlation

CS(t) =
〈δρi(t)δρi(t)〉
〈δρi(0)δρi(0)〉 (11.61)
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with δρi(t) = ρi(t) − ρ, plotted for each of the numerical schemes, the MD simulations and the
exact expression (11.60). The main conclusion is that most of the temporal integrators and spa-
tial discretizations approximate adequately the theoretical expression (11.60), as it is depicted in
Figure 11.2.3. The fully explicit and implicit Euler-Maruyama and Milstein slightly deviate with
respect to the theoretical spatial correlation in the cells adjacent to the central cell, while the
semi-implicit schemes perform correctly.
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Figure 11.2.3: Normalized spatial correlation (11.61) for an ideal-gas system in equilibrium. (a)
Temporal integrators. EM: Euler-Maruyama, MI: Milstein, RK: Runge-Kutta, MD: Molecular
dynamics. Explicit (θ = 0), semi-implicit (θ = 0.5) and implicit (θ = 1). (b) Spatial discretizations
of the stochastic flux. FO: Forward (11.23), UW: Upwind (11.28)-(11.29), LI: Linear (11.24)-
(11.25), PR: Parabolic (11.26)-(11.27).

11.2.1.4 Structure factor

This test evaluates how the structure factor S at equilibrium is approximated by the temporal and
spatial discretizations. Even though its general form satisfies (11.77), its theoretical expression
for an ideal gas without external potential is given by (11.78), so that for the current numerical
simulation with β = 1 it follows that S/ 〈ρ〉 = 1.

The discrete structure factor is computed from (11.71)-(11.72). First the discrete spatial Fourier
transform of the density satisfies:

ρ̂(λ) =
1

n

∑

j

ρje
−iλxj . (11.62)

Subsequently, the structure factor follows from

S(λ) =
〈δρ̂(λ) δρ̂∗(λ)〉

n∆x
, (11.63)

where δρ̂(λ) = ρ̂(λ)− 〈ρ̂(λ)〉 and ρ̂∗ denotes the complex conjugate of ρ̂.
The results of this test for the structure factor at equilibrium are depicted in Figure 11.2.4. The

theoretical value of the structure factor, along with the performed MD simulations, allows us to
judge whether the temporal integrators and spatial discretizations perform accurately. On the one
hand, from Figure 11.2.4a it is evident how the explicit Euler-Maruyama and Milstein temporal
integrators overestimate the structure factor for large λ, while their implicit versions underestimate
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it for large λ too. The semi-implicit schemes and the Runge-Kutta behave correctly, and the small
damping in the numerical structure factor for all λ is due to the choice of the hybrid deterministic
flux, as it was explained from Figure 11.1.1. On the other hand, from the spatial discretizations
of the stochastic flux there is a clear deviation when applying the upwind form. In addition, the
forward discretization seems to slightly oscillate for lower λ. The rest of discretizations approximate
the theoretical value correctly, with the small damping already mentioned.
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Figure 11.2.4: Structure factor (11.63) for an ideal-gas system in equilibrium. (a) Temporal
integrators. EM: Euler-Maruyama, MI: Milstein, RK: Runge-Kutta, MD: Molecular dynamics.
Explicit (θ = 0), semi-implicit (θ = 0.5) and implicit (θ = 1). (b) Spatial discretizations of the
stochastic flux. FO: Forward (11.23), UW: Upwind (11.28)-(11.29), LI: Linear (11.24)-(11.25), PR:
Parabolic (11.26)-(11.27).

11.2.1.5 Temporal integrators and spatial discretization of the stochastic flux

With respect to the temporal integrators, both the fully explicit and implicit Euler-Maruyama
and Milstein present certain deviations in the time correlation (Figure 11.2.2), spatial correlation
(Figure 11.2.3) and structure factor (Figure 11.2.4). Their semi-implicit versions and the Runge-
Kutta behave similarly in all tests, and approximate adequately the theoretical and MD results.
Their relative costs are compared by means of Figure 11.1.2. While the cost of the Runge-Kutta
escalates with order O(n3), the cost of the semi-implicit Euler-Maruyama and Milstein has an order
of O(n2). However, due to the different constant coefficient in the cost, the plot clearly shows that
for n < 100 the Runge-Kutta cost is lower than that of semi-implicit schemes, while for n > 100 it
is higher.

The Milstein scheme, which guarantees a higher strong order convergence, was tested because
in previous works it performed well in conjunction with adaptive time-step algorithms based on
Brownian trees [203]. However, from the simulation results, we observed that the higher computa-
tional cost of this numerical method did not lead to a increased accuracy compared to the implicit
Euler-Maruyama and to the weak Runge-Kutta schemes. Because of these reasons and together
with the fact that in the simulations of this work n < 100, we select the Runge-Kutta temporal
integrator.

Concerning the spatial discretization of the stochastic flux, the upwind choice does not approxi-
mate well the time correlation and structure factor, while the forward approximation presents some
deviation in the structure factor for small λ. Hence the best choices are the linear and parabolic
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approximations, which behave similarly in all test cases. We select the linear approximation due
to its lower cost since it only depends on the density and white noise cell averages of two cells and
not four.

11.2.2 Ideal-gas system out of equilibrium

For this example we consider a free energy which includes the effects of a double-well external
potential, so that

F [ρ] =

∫
ρ/β (ln(ρ)− 1) dx+

∫
V (x)ρ dx, (11.64)

and the shape of the external potential satisfies

V (x) = 5

[(
x

n∆x/2

)4

−
(

x

n∆x/2

)2
]
. (11.65)

Numerical simulations for deterministic gradient-flow equations with the free energies of the form
(11.64)-(11.65) have already been provided in [55]. Here the objective is to evaluate how the nu-
merical scheme in Section 11.1 for the FDDFT (11.6) with the free energy (11.64)-(11.65) performs
by comparing with MD simulations. We also include a comparison with the corresponding deter-
ministic DDFT, which is obtained in the mean-field limit (the most-likely path of FDDFT as noted
in the Introduction).

The simulation is performed in a mesh where the number of cells is n = 40, each of them with
width ∆x = 5. The time steps are ∆t = 1 and the number of time steps is nt = 2000. The
ensemble averages are computed from a number of trajectories of ntraj = 1000. We select β = 1.
The MD simulation is performed by simulating N = 200 particles, while the deterministic DDFT
simulation applies the numerical scheme in [55] for gradient-flow equations.

The results are depicted in Figure 11.2.5. Figure 11.2.5a displays the ensemble average of the
density profile at different times. The three simulations provide similar results and we can conclude
that the three approaches are comparable when evaluating the ensemble average profile. Concern-
ing the standard deviation results in Figure 11.2.5b, we find that FDDFT matches with MD and
the theoretical results in (11.58), while DDFT, being deterministic, presents zero standard devia-
tion. As already mentioned, the FDDFT values of the standard deviation are slightly lower than
the MD and theoretical ones due to the choice of the deterministic flux in a similar fashion to Fig-
ures 11.1.1 and 11.2.1. Figure 11.2.5c shows the spatial correlation computed as in (11.60)-(11.61),
with the MD and FDDFT results approximating correctly the finite-size theoretical expression in
(11.60). DDFT does not have any spatial correlation due to the lack of fluctuations. Finally, in
11.2.5d the temporal evolution of the free-energy functional depending on the ensemble average
density is plotted. For the DDFT case one can appreciate that there is decay at all times, while
for MD and FDDFT there are short increases of the free energy triggered by the fluctuations, in
spite of the fact that during the evolution there is a general decay in the free energy.

11.2.3 Homogeneous nucleation in Lennard-Jones systems

The importance of fluctuations during phase transitions is crucial when considering the homoge-
neous vapour-liquid transition of a Lennard-Jones (LJ) fluid. Within the framework of DFT, the
fluid density profiles of a 1D open system exchanging particles with a reservoir at constant tem-
perature and chemical potential µ, can be obtained from an unconstrained numerical minimization
of the grand free-energy functional

Ω[ρ(x)] = F [ρ(x)] +

∫
(V (x)− µ) ρ(x) dx.
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Figure 11.2.5: Time evolution of mean density (a) and density standard deviation (b) fields
computed with FDDFT, DDFT and MD simulations. A comparison in terms of steady state spatial
correlations is reported in (c). In (d), we report the decrease in time of the energy functional of
the mean density.

In general, F [ρ(x)] is not analytically obtainable from first principles, except in few cases, i.e. ideal
gases and hard-sphere fluids. In the remaining cases, F [ρ(x)] is either numerically obtained from
atomistic simulations or is approximated by means of perturbation expansions around a known
free energy [207]. Similarly to previous works on DFT [291, 295], we approximate F [ρ(x)] of an
LJ fluid according to the first-order Barker-Henderson perturbation theory expansion around the
hard-sphere fluid free energy [22], namely as

F [ρ(x)] =

∫
{fID[ρ(x)] + ρ(x)fHS(ρ(x))} dx+

1

2

∫ ∫
ρ(x)ρ(x′)W (x, x′) dx dx′, (11.66)

where fID, fHS and W (x, x′) denote ideal-gas, hard-sphere repulsive interactions and LJ attractive
contributions, respectively. The free energy of an ideal gas is given by

fID[ρ(x)] = kBTρ
(
ln(λ3ρ)− 1

)
,
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Figure 11.2.6: (a) Bulk phase diagram for the discretized LJ system. (b) Grand free-energy
landscape as function of the system density for some supersaturation ratios adopted in this study.
(c) Example of free-energy landscape for systems with a non-uniform density field, with two varying
densities ρ̃1 and ρ̃2. The dotted black line denotes the curve corresponding to bulk uniform systems.

where λ is the thermal de Broglie wavelength. The hard-sphere free-energy density fHS is obtained
from the Carnahan-Starling equation of state for the hard sphere fluid, which reads [53]

fHS(ρ(x)) = kBT

(
4η − 3η2

(1− η)2

)
, with η =

π

6
ρσ3

where σ is the hard-sphere diameter set to unity in this work. Finally, the LJ (attractive) contri-
butions are taken into account by the following expression:

W (x, x′) =

{
−1.2 π ε if | x− x′ |≤ 1,

π ε
(
0.8 | x− x′ |−10 −2 | x− x′ |−4

)
otherwise,

derived by integrating along y and z the 12-6 LJ potential [295].
In order to analyse the vapour-to-liquid (first-order) phase transitions, we first compute the

coexisting density profiles. The coexisting values of vapour and liquid density (binodal line) are
denoted as ρv and ρl respectively, and are obtained by solving the following system of equations:





∂Ω
∂ρ

∣∣∣
ρv

= ∂Ω
∂ρ

∣∣∣
ρl

= 0,

Ω [ρv]− Ω [ρl] = 0.
(11.67)

The metastable regions are delimited by the binodal and spinodal lines. The spinodal lines corre-
spond to the inflection points of the grand free energy, hence are evaluated by solving:

∂2Ω

∂ρ2

∣∣∣∣
ρv

=
∂2Ω

∂ρ2

∣∣∣∣
ρl

= 0. (11.68)

Finally, the bulk critical point is given by the intersection between binodal and spinodal lines, and
it is thus computed as

∂Ω

∂ρ

∣∣∣∣
ρc,Tc

=
∂2Ω

∂ρ2

∣∣∣∣
ρc,Tc

= 0. (11.69)

In Figure 11.2.6a we report the bulk phase diagram obtained from the discretized grand free energy
of LJ fluid. Solid curves depict the binodal, i.e. the locus of liquid-gas coexistence, while dashed
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s = 1.4

s = 1.8

s = 2.2

Figure 11.2.7: Homogeneous nucleation of a vapour LJ system in metastable conditions with
supersaturation ratio s. Left column: the mean-field evolution. Right column: a single realization
of the stochastic dynamics.

curves depict the spinodal, i.e. the boundary between the metastable and the unstable regions.
The black circle designates the bulk critical point at ρc ∼ 0.3 and Tc ∼ 1.35.

If we denote with ρv the vapour coexistence density at a given temperature, the supersaturation
ratio is defined as s = ρ/ρv. We will study the nucleation of vapour systems with identical
temperatures, but different initial supersaturation ratios. Figure 11.2.6b depicts the free-energy
landscape as a function of the bulk density for such systems. At coexistence s = 1, two stable
basins are present, which means that the system has equal probability of being in one of the
two. Increasing the supersaturation ratio enhances the stability of the liquid phase, thus leaving
the vapour density in a metastable condition. Also, the energy barrier that the system has to
overcome to pass from the vapour to the liquid phase decreases with s, until it becomes null at
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Figure 11.2.8: (a) reports the evolution in time of the average system density for the supersaturation
ratios adopted in this study. (b) shows the time-evolution of the system free energy for the
supersaturation ratios adopted in this study. (c) the nucleation growth rate is plotted against the
free-energy barrier.

a supersaturation corresponding to the spinodal line. In such condition only one minimum of the
grand free energy exists.

During a phase transition, the system will move from the initial uniform-density state to the
final uniform-density state, while during the transition between the two states the density is non-
uniform. This means that the bulk grand-free energy in Figure 11.2.6b, being only valid for
uniform densities, describes the system in the initial and final stages only, but it does not provide
information on the transition path. The grand free energy for non-uniform systems is in general a
function of each cell density, i.e. it is an n-dimensional manifold. To give a representative example
of this, in Figure 11.2.6c we report our LJ grand-free energy for a non uniform system, constrained
to have only two varying densities ρ̃1 =

{
ρ1 = · · · = ρn/2

}
and ρ̃2 =

{
ρn/2+1 = · · · = ρn

}
. The

bulk free energy is then recovered for ρ̃1 = ρ̃2 (dotted black line).
Single trajectories of the vapour-to-liquid phase transition at different supersaturation ratios,

are reported in Figure 11.2.7. For comparison purposes, we perform simulations of the FDDFT
and its mean-field (deterministic) counterpart. In order for the transition to occur, the system
grand free energy has to overcome an energy barrier. Such passage requires a local injection of
energy, thus it is triggered by fluctuations. As a consequence, the mean-field approach fails to
describe the transition. Moreover, as expected by looking at the energy barrier in Figure 11.2.6,
the transition is favoured by higher supersaturation ratios.

In addition to the presence of fluctuations, the phase transition is allowed due to the open
boundary conditions imposed on the system. These boundary conditions are described in Subsec-
tion 11.1.5, and model the exchange of particles with a reservoir at constant temperature Tres and
chemical potential µres. The mass of the system can then increase (or decrease), thus permitting
the transition from the lower-density minima in Figure 11.2.6b to the higher-density ones. How-
ever, it is important to remark that these boundary conditions do not simply add (or remove) mass
to the system. The imposed chemical potential at the boundary, µres, can be iteratively solved to
obtain the value of the density that satisfies it. We choose µres so that this iterative algorithm may
converge to one of the two minima in Figure 11.2.6b, depending on the initial conditions for the
iteration. For the two simulations in Figure 11.2.7 we always select to converge to the lower-density
minimum in Figure 11.2.6b. This is why, with identical boundary conditions, the mean-field de-
terministic simulation in Figure 11.2.7 remains at the lower-density minima in Figure 11.2.6b and
conserves the mass. On the contrary, the FDDFT simulation in Figure 11.2.7 is able to increase
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the mass thanks to the constant density at the boundary, which allows a continuous exchange of
particles.

The trend observed in Figure 11.2.7 is quantitatively analysed in Figure 11.2.8, where we report
an ensemble average of 10 nucleation trajectories for each supersaturation ratio. Figure 11.2.8a
shows the average density increase as a function of time. The initial and final average system
densities are consistent with the vapour and liquid bulk densities predicted by the grand-free
energy analysis.

The free energy evaluated at each time as function of the average density is reported in Fig-
ure 11.2.8b. The initial free-energy value, corresponding to the vapour metastable basin, evolves
in time in order to the reach the more stable liquid basin, as predicted by Figure 11.2.6b. It is
interesting that the passage between the two basins implies a slight increase in the free energy due
to the energy barrier overcome by the density field fluctuations.

Evidently, the average density kinetics is characterized by three main stages: 1) an initial
latency period, 2) a growth period and, 3) an asymptotic relaxation towards a plateau, corre-
sponding to the liquid-phase density. This dynamics is consistent with the multi-stage nucleation
pathway experimentally observed and theoretically studied in the phase-transition research commu-
nity [124]. The growth period exhibits a linear-like trend, with slopes representing the nucleation
growth rate J . As reported in the plot in Figure 11.2.8c, an Arrhenius-like relation (as is the case
with thermally activated processes) is observed between J and the grand-free energy barrier ∆F ,
i.e.

J ∼ K exp−∆F
T
, (11.70)

where J is the growth rate K in the limit of a zero-energy barrier. It is worth noticing that the
pre-exponential factor K in reality is not a constant, but can be often approximated as constant
over limited supersaturation regions [203, 204].

Finally, we remark that the finite-volume scheme is able to accurately simulate processes where
the number of particles per cell is greater than 5, as showed in Subsubsection 11.2.1.1. For any
process that involves smaller scales one has to rely on MD simulations. This could be relevant for
processes, such as nucleation, which may require capturing system features down almost to particle
scales at initiation.
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Appendix

11.A Structure factor

The structure factor is a quantity of interest in many fields, including FH [120] as noted earlier and
capillary wave theory [227, 228]. As shown in previous works [120, 178], the structure factor repre-
sents an important measure of the stochastic properties of the system and it can be experimentally
obtained. Thus, the structure factor is a valuable quantity not only to study the stability of the
numerical integrator, but also to compare different schemes, as it will be shown in Section 11.1.
Here we derive an expression of the structure factor from the linearized FDDFT. If we consider a
periodic domain of volume V , the spatial Fourier transform of the density is given by

ρ̂λ =
1

V

∫

V
ρ(x, t)e−iλ·xdx. (11.71)

The structure factor is defined as the variance of the Fourier transform of the density fluctuations,

S(λ) = V 〈δρ̂λδρ̂∗λ〉, (11.72)

where δρ̂λ = ρ̂λ − 〈ρ̂λ〉, and ρ̂∗λ denotes the complex conjugate of ρ̂λ.
For uniform systems, (11.1) can be formally linearized around its most-likely solution 〈ρ〉 by

means of the Central Limit Theorem, giving

∂tρ = ∇ ·
(
ρ∇δF [ρ]

δρ

)
+
√
〈ρ〉/β∇ ·W(x, t). (11.73)

Taking the Fourier transform of the difference between (11.73) and (11.3), one obtains

∂t δρ̂(λ) = iλ ·
{
T
(
ρ∇δF [ρ]

δρ

)
− T

(
〈ρ〉∇δF [〈ρ〉]

δ〈ρ〉

)}
+ iλ ·

√
〈ρ〉/βŴ(λ). (11.74)

where T denotes the Fourier transform. If the free-energy functional terms in the Fourier space
can be expanded at first order around their mean value as

T
(
ρ∇δF [ρ]

δρ

)
∼ T

(
〈ρ〉∇δF [〈ρ〉]

δ〈ρ〉

)
+
∂T
[
ρ∇ δF [ρ]

δρ

]

∂ρ̂λ
δρ̂λ +O(δρ̂λ), (11.75)

then (11.74) yields

∂t δρ̂λ = iλ ·
∂T
[
ρ∇ δF [ρ]

δρ

]

∂ρ̂λ
δρ̂λ + iλ ·

√
〈ρ〉/βŴ(λ). (11.76)
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Since the above equation has the form of an Ornstein-Uhlenbeck process, the structure factor can
be computed as its variance:

S(λ) =
2
(
iλ
√
〈ρ〉/β

)2

2iλ
∂T
[
ρ∇ δF[ρ]

δρ

]
∂ρ̂λ

=
iλ〈ρ〉/β

∂T
[
ρ∇ δF[ρ]

δρ

]
∂ρ̂λ

(11.77)

For example, in the case of an ideal gas without external potential, δF [ρ]
δρ = log ρ, the structure

factor is given by the well-known expression [178]:

S(λ) =
iλ〈ρ〉/β
∂T [ρ∇ log ρ]

∂ρ̂λ

=
iλ〈ρ〉/β
∂T [∇ρ]
∂ρ̂λ

=
iλ〈ρ〉/β
∂[iλρ̂]
∂ρ̂(λ)

= 〈ρ〉/β. (11.78)

11.B Details of molecular-dynamic simulations

MD simulations are performed using the Large-Scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) [237]. Particle positions and velocities are integrated in time using the velocity-
Verlet algorithm, with a time-step of dt = 0.001τ . The system is simulated at constant temperature
and volume, so that particle coordinates are consistent with the canonical ensemble (NVT). Specif-
ically, the temperature T = 1 is kept constant during the simulations using a Langevin thermostat.
All the physical quantities are expressed in reduced units, i.e. they are nondimensionalized with the
fundamental quantities σ, ε and m, representing distance, energy and mass, respectively. Further,
without loss of generality, σ, ε, m and the Boltzmann constant kB are set equal to unity.

As discussed extensively in [242], a macroscopic field X(r, t) can be extracted from particle
coordinates as X(r, t) =

∑
i χiφ(xi(t) − x), where χi is the quantity of interest for particle i at

position ri at time t, and φ is a kernel function (commonly a piecewise constant, Gaussian, or
polynomial function). In this work, we adopt a piecewise constant function defined as:

φ(y) =

{
1

∆x for ‖y‖ < ∆x/2,

0 otherwise ,
(11.79)

where ∆x is the width of each bin. In each comparison, ∆x for MD simulations is taken to be
the same with that for the discretized FDDFT. Using the above, the instantaneous macroscopic
density profile for a single trajectory is computed as:

ρ(x, t) =
∑

i

miφ(xi(t)− x), (11.80)

where mi is the mass of the particle i.

11.B.1 Equilibrium simulations

MD simulations of ideal gas fluids in equilibrium are performed using a fixed number of particles
(1, 000) in a 1D domain of length 2, 000 (in reduced units) with periodic boundary conditions. The
system is equilibrated and then a run of 2×107 time steps is performed, during which fluid particle
positions and velocities are stored every 104 time steps for analysis. The process is repeated 103

times to generate independent trajectories.
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Figure 11.C.1: Standard deviation
√
〈δρ2〉 as a function of the normalized initial time step

∆t0/(∆x)2 for an ideal gas in equilibrium. Temporal integrators. EM: Euler-Maruyama, MI:
Milstein, RK: Runge-Kutta, MD: Molecular dynamics. Explicit (θ = 0), semi-implicit (θ = 0.5)
and implicit (θ = 1), Theory: (11.58).

11.B.2 Non-equilibrium simulations

MD simulations of ideal gas fluids in non-equilibrium conditions are performed using a fixed number
of particles (200) in a 1D domain of length 200 (in reduced units) with periodic boundary conditions,
under an external potential:

V (x) = 5

[( x

200

)4
−
( x

200

)2
]
. (11.81)

A run of 2 × 106 time steps is performed, during which fluid particle positions and velocities are
stored every 103 time steps for analysis. The process is repeated 103 times with different (random)
initial conditions to generate independent trajectories and gather statistics.

11.C Time-integrator stability analysis

Both stability and accuracy of the different time-integrators are relevant, given that large time-steps
are required in many applications (for instance, for transitions occurring over long time-scales). In
the main text, we focused on the accuracy of the schemes comparing finite-volume schemes, MD
and theoretical results. Here we analyse the stability of the different time integrators with respect
to the time-step size.

Specifically, in Figure 11.C.1 we report a comparison of the fluctuations’ standard deviation
obtained from selected time integrators and the MD-theoretical results for varying time step sizes
∆t0. Because of the adaptive time step adopted in the simulations, the actual time step may not be
constant throughout the simulations, and in fact it may be lower than ∆t0. The system considered
here is the same ideal-gas system (with average density ρ̄ = 0.5) used for the analyses in the main
text. The cell size adopted is ∆x = 50, corresponding to a number of particles per cell, Nc = 25.
We do not report the results for the Milstein schemes, as in several tests we did not observe
any relevant difference between the Milstein scheme and the Euler-Maruyama one as far as the
mean, variance and correlations are concerned. Figure 11.C.1 shows that the semi-implicit scheme
outperforms both explicit and implicit schemes at high ∆t0/ (∆x)2, becoming the time-integrator
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of choice for computations requiring large time steps. Moreover, the explicit Runge-Kutta scheme
shows enhanced stability compared to both implicit and explicit Euler-Maruyama.
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CHAPTER 12

Finite-volume schemes for the system of fluctuating

hydrodynamics

The fluctuating-hydrodynamic system studied here corresponds to the fluctuating DDFT frame-
work derived in [123], for the general case of arbitrarily shaped and thermalized particles. It
consists of two stochastic PDEs for the density ρ and velocity u fields:





∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −ρ∇δF [ρ]

δρ
− γρu−

√
kBTγρW(x, t).

(12.1)

The free energy functional F [ρ] contains the pressure P (ρ) and generic potential terms H(x, ρ),
and can be decomposed as

−ρ∇δF
δρ

= −∇P (ρ)− ρ∇H(x, ρ).

The potential terms H(x, ρ) involve an external field V (x) and an interaction potential W (x)
convoluted with the density ρ, satisfying

H(x, ρ) = V (x) +W (x) ? ρ.

Accordingly, the free-energy functional has the form

F [ρ] =

∫

Rd
Π(ρ)dx+

∫

Rd
V (x)ρ(x)dx+

1

2

∫

Rd

∫

Rd
W (x− y)ρ(x)ρ(y)dxdy, (12.2)

where ρΠ′′(ρ) = P ′(ρ).
With respect to the additive noise term, kB is the Boltzmann constant, T the temperature, γ

the linear damping and W is a vector of Gaussian stochastic processes delta-correlated in space
and time, i.e.

〈W(x, t)〉 = 0,

〈W(x, t),W(x′, t′)〉 = 2δ(t− t′)δ(x− x′). (12.3)

The one-dimensional (1D) version of the fluctuating hydrodynamic system in (12.1) can be
written as

∂tU + ∂xF (U) = SH(U,H) + SD(x, U) + SW(x, U), (12.4)

with

U =

(
ρ
ρu

)
, F (U) =

(
ρu

ρu2 + P (ρ)

)
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and

SH(U,H) =

(
0

−ρ∂xH

)
, SD(x, U) =

(
0
−γρu

)
, SW(x, U) =

(
0

−√kBTγρW(x, t)

)
,

where U are the unknown variables, F (U) the fluxes, and SH(U,H), SD(x, U) and SW(x, U) are
the sources related to forces with potential H, damping terms and noise respectively.

The well-balanced first-order finite-volume scheme of the deterministic 1D system (12.4) is
detailed in Chapter 5, and its high-order versions in Chapter 6. The objective here is to design
a numerical scheme for the system of fluctuating hydrodynamics (12.4), by means of combining
the first-order scheme in Chapter 5 with the noise discretization for the stochastic gradient flow
equations in Chapter 11.

The finite-volume formulation of (12.4) is obtained by dividing the domain into grid cells
Ci = [xi− 1

2
, xi+ 1

2
], centred at xi and assumed to have the same length ∆x = xi+1/2 − xi−1/2, and

then approximating in each of them the cell average of ρ and u defined as

ρi(t) =
1

∆x

∫ xi+1/2

xi−1/2

ρ(x, t)dx, ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

u(x, t)dx. (12.5)

These cell averages are approximated with the mid-point rule, which satisfies second-order accuracy,

ρi(t) = ρ(xi, t) +O(∆x2), ui(t) = u(xi, t) +O(∆x2). (12.6)

Subsequently, one has to integrate (12.4) spatially over each cell and apply the Gauss divergence
theorem, leading to the semi-discrete equation for the temporal evolution of the cell averages,

dUi
dt

= −
Fi+ 1

2
− Fi− 1

2

∆xi
+ SH,i + SD,i + SW,i, (12.7)

where the cell average of U in the cell
[
xi− 1

2
, xi+ 1

2

]
is denoted as

Ui =

(
ρi
ρiui

)
,

Fi+ 1
2

is an approximation of the flux F (U) at the point xi+ 1
2
, and SH,i, SD,i and SW,i are

cell-average approximations of the source terms SH(x, U), SD(x, U) and SW(x, U) in the cell[
xi− 1

2
, xi+ 1

2

]
.

12.1 First-order well-balanced scheme for fluxes and potential
sources

The first-order well-balanced scheme proposed in Chapter 5 allows to preserve the discrete version
of the steady states for the deterministic system (12.4),

(
δF
δρ

)

i

= Π′(ρi) +Hi = CΓ in each ΛΓ,Γ ∈ N , (12.8)

where ΛΓ, Γ ∈ N, denotes the possible infinite sequence indexed by Γ of subsets ΛΓ of subsequent
indices i ∈ Z where ρi > 0 and ui = 0, and CΓ the corresponding constant in that connected
component of the discrete support.
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The flux approximations Fi+ 1
2

are evaluated by means of a numerical flux depending on the

interface values U±
i+ 1

2

,

Fi+ 1
2

= F

(
U−
i+ 1

2

, U+
i+ 1

2

)
, where U±

i+ 1
2

=

(
ρ±
i+ 1

2

ρ±
i+ 1

2

u±
i+ 1

2

)
. (12.9)

The numerical fluxes employed in Chapter 5 are the Lax-Friedrich flux and the kinetic flux in [236].
For more details about these numerical fluxes we refer the reader to Appendix 5.A.

The interface values U±
i+ 1

2

are reconstructed from Ui and Ui+1 by taking into account the steady

state relation in (12.8),

Π′
(
ρ−
i+ 1

2

)
+Hi+ 1

2
= Π′ (ρi) +Hi,

Π′
(
ρ+
i+ 1

2

)
+Hi+ 1

2
= Π′ (ρi+1) +Hi+1,

with the discretization of the potential H(x, ρ) satisfying

Hi = Vi +
∑

j

∆xjWijρj ,

where Vi = V (xi) and Wij = W (xi − xj) in case the potential is smooth or choosing Wij as an
average value of W on the interval centred at xi − xj of length ∆xj in case of general locally
integrable potentials W . The term Hi+ 1

2
is evaluated to preserve consistency and stability, so that

Hi+ 1
2

= max (Hi, Hi+1) . (12.10)

Then, by denoting as ξ(s) the inverse function of Π′(s) for s > 0, it follows that the interface
values U±

i+ 1
2

are computed as

ρ−
i+ 1

2

= ξ
(

Π′ (ρi) +Hi −Hi+ 1
2

)
+
, u−

i+ 1
2

= ui,

ρ+
i+ 1

2

= ξ
(

Π′ (ρi+1) +Hi+1 −Hi+ 1
2

)
+
, u+

i+ 1
2

= ui+1.
(12.11)

The source term SH,i is chosen to satisfy the well-balanced property of the deterministic version
of system (12.4),

SH,i =
1

∆xi




0

P

(
ρ−
i+ 1

2

)
− P

(
ρ+
i− 1

2

)

 . (12.12)

The damping source term is simply approximated as

SD,i =

(
0

−γρiui

)
. (12.13)

12.2 Spatiotemporal average for the noise source

The cell-average evaluation of the noise term W(x, t) is done via an spatiotemporal average, as
proposed in [120] and applied later in our work of stochatic gradient flow equations in Chapter 11:

Wi =
1

∆x∆t

∫ t+∆t

t

∫ x
i+ 1

2

x
i− 1

2

W(x, t)dx dt, (12.14)
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which, by definition of the white noise (12.3), is equal to a normal distribution with zero mean and
variance (∆x∆t)−1,

Wi = N (0, 1)/
√

∆x∆t. (12.15)

Note that ∆t refers to the time step empoyed in the temporal discretization of the semi-discrete
scheme (12.7).

It follows that the souce term SW,i satisfies

SW,i =

(
0

−√kBTγρi Wi

)
. (12.16)

12.3 Temporal discretization

A myriad of stochastic temporal integrators can be applied to the semi-discrete scheme in (12.7).
In our work on stochastic gradient flows in Chapter 11, we tested Euler-Maruyama, Milstein
and Runge-Kutta-type integrators with the objective of analyzing their influence in the statistical
properties of the numerical solution. Here we simply employ an explicit Euler-Maruyama integrator
to the semi-discrete scheme in (12.7). By denoting as Un+1

i and Uni as the cell averages of density
and velocity at time t = (n+ 1)∆t and t = n∆t, respectively, and ∆t the time step, it follows that
the semi-discrete scheme (12.7) becomes

Un+1
i = Uni −∆t

(
Fi+ 1

2
(Uni )− Fi− 1

2
(Uni )

∆xi
+ SH,i(U

n
i ) + SD,i(U

n
i ) + SW,i(U

n
i )

)
, (12.17)

where, for the explicit scheme employed here, all the fluxes and sources at the right-hand side
depend on Uni and not on Un+1

i .

Remark 12.3.1 (Positivity of the density). It can be shown that for the discrete system (12.17) the
density remains positive at all times, as long as the CFL condition of the numerical flux is satisfied.
The proof is the same as for the first-order well-balanced scheme in Chapter 5, given that the noise
term does not affect the density equation and the interface values ρ−

i+ 1
2

and ρ+
i− 1

2

are computed

identically following (12.11).

12.4 Numerical tests

We test the numerical scheme for two particular choices of the free energy satisfying . Both have
a pressure of the form P (ρ) = ρm, with m ≥ 1. In Example 12.4.1 we select m = 1 so that the
pressure satisfies the ideal-gas relation P (ρ) = ρ, and the density does not develop vacuum regions
during the temporal evolution. For this case the employed numerical flux is the versatile local
Lax-Friedrich flux. In Example 12.4.2 we select m = 2 , and since m > 1 then vacuum regions
with ρ = 0 are generated. This implies that the hyperbolicity of the system (12.1) is lost in those
regions, and the local Lax-Friedrich scheme fails. In this case a kinetic solver based on [236] is
employed to handle the vacuum regions. Both free energies also include an external potential of the
form V (x) = x2

2 and no interaction potential W (x). The time step ∆t is chosen to satisfy the CFL
conditions of the corresponding numerical fluxes, and more details are available in Appendix 5.A.
The constants satisfy kB = T = γ = 1. The number of cells per simulation is 50.

The ensemble averages and variances in every cell for density, momentum, variation of the free
energy, total energy and free energy are computed from 1000 trajectories. The discrete version of
the variation of the free energy satisfies,

(
δF
δρ

)

i

= Π′(ρi) + Vi +
∑

j

∆xjWij , where ρΠ′′(ρ) = P ′(ρ), (12.18)
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while the discrete total energy E∆ and discrete free energy F∆ are

E∆ =
∑

i

∆xi
2
ρiu

2
i + F∆ and F∆ =

∑

i

∆xi [Π (ρi) + Viρi] +
1

2

∑

i,j

∆xi∆xjWijρiρj . (12.19)

For comparison we also plot the temporal evolution of the deterministic system, solved with
the well-balanced first-order finite-volume scheme proposed in Chapter 5.

Example 12.4.1 (Ideal-gas pressure and attractive potential). In this example the pressure

satisfies P (ρ) = ρ and there is an external potential of the form V (x) = x2

2 . As a result, the relation
holding in the deterministic steady state is

δF
δρ

= Π′(ρ) +H = ln(ρ) +
x2

2
= constant on supp(ρ) and u = 0. (12.20)

The steady state for the deterministic system, for an initial mass M0, explicitly satisfies

ρ∞ = M0
e−x

2/2

∫
R e
−x2/2dx

. (12.21)

The initial conditions applied in the simulation are

ρ(x, t = 0) = M0
0.2 + 5 cos

(
πx
10

)
∫
R
(
0.2 + 5 cos

(
πx
10

))
dx
, ρu(x, t = 0) = −0.05 sin

(πx
10

)
, x ∈ [−5, 5],

(12.22)
with M0 equals to 1 so that the total mass is unitary.

Figure 12.4.1 depicts the temporal evolution of the system from t = 0 to t = 15. Let’s compare
the solutions of the deterministic and fluctuating simulations. On the one hand, at t = 15 the
deterministic system has already reached its stationary state (12.21), and we can see that at t = 15
there is no momentum in Figure 12.4.1c. There is also a constant variation of the free energy in
Figure 12.4.1e, in agreement with (12.20). Furthermore, the total energy and free energy match
(due to the abcense of kinetic energy in the steady state) and have reached a plateau, as shown in
Figure 12.4.1f.

On the other hand, the evolution of the fluctuating simulation presents some important dif-
ferences. From Figure 12.4.1f we notice that both free and total energy seem to have reached a
plateau. However, there is a gap between them because there is still kinetic energy in the system,
and contrary to the deterministic case it cannot be fully dissipated because of the noise. We ob-
serve that in Figure 12.4.1c there is indeed momentum at t = 15, and the density ensemble average
is not the same as the deterministic steady state in Figure 12.4.1a. The variation of the free energy
is also not constant at t = 15, as shown in Figure 12.4.1e. We also plot the variances of the density
and momentum in Figures 12.4.1b and 12.4.1d. In conclusion, the noise prevents the system from
reaching a steady state.

Example 12.4.2 (Pressure proportional to square of density and attractive potential).
For this example the pressure satisfies P (ρ) = ρ2 and there is an external potential of the form

V (x) = x2

2 . The choice of P (ρ) = ρ2 implies that regions of vacuum where ρ = 0 appear in the
evolution and steady solution of the system.

For the fluctuating simulation we find that the time step required by the CFL was extremely
low, due to the presence of cells with close to vacuum density. As a result, it is not possible to
advance the simulation by taking the exact CFL condition required by the kinetic solver. However,
as shown in Chapter 11 and references therein, the fluctuations are not modelled correctly when
the number of particles per cell is lower that 5-10 particles. This implies that the noise source
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(a) Density ensemble average (b) Density variance

(c) Momentum ensemble average (d) Momentum variance

(e) Variation of the free energy ensemble
average

(f) Total energy and free energy ensemble
average

Figure 12.4.1: Temporal evolution of Example 12.4.1.

term produces numerical artifacts in cells with close to vacuum densities. Due to that we decide to
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turn off fluctuations for the cells whose density satisfies ρi < 10−4. This modification allows us to
effectively run the fluctuating simulation, and agrees with the fact that in cells with density close
to vacuum there are no enough particles to produce fluctuations.

The steady state for the deterministic system with an initial mass of M0 satisfies

ρ∞(x) =




−1

4

(
x+ 3

√
3M0

)(
x− 3

√
3M0

)
for x ∈

[
− 3
√

3M0,
3
√

3M0

]
,

0 otherwise.
(12.23)

The initial conditions applied in the simulation are

ρ(x, t = 0) = M0
0.1 + e−x

2

∫
R
(
0.1 + e−x2

)
dx
, ρu(x, t = 0) = −0.2 sin

(πx
10

)
, x ∈ [−5, 5],

with M0 being the mass of the system and equal to 1.
Figure 12.4.2 depicts the temporal evolution of the system from t = 0 to t = 15. Similar

remarks to the ones in Example 12.4.1 apply here. We observe that the deterministic simulation
has reached a stady state at t = 15, and in Figure 12.4.2f the total and free energies match and
have reached a plateau. There is no momentum at t = 15 in Figure 12.4.2c and the steady state
density profile in Figure 12.4.2a is (12.23).

On the contrary, for the fluctuating simulation there is still kinetic energy at t = 15, and in
Figure 12.4.2f we see that there is a gap between total and free energy. In Figure 12.4.2c we
observe that the momentum is not zero, and in Figure 12.4.2a the density profile is different from
the deterministic steady state.
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(a) Density ensemble average (b) Density variance

(c) Momentum ensemble average (d) Momentum variance

(e) Variation of the free energy ensemble
average

(f) Total energy and free energy ensemble
average

Figure 12.4.2: Temporal evolution of Example 12.4.2.
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CHAPTER 13

Conclusions and future perspectives

In this chapter we summarize the contributions of this thesis and point out several open questions
for future research.

13.1 First- and second-order well-balanced schemes

We have introduced first- and second-order accurate finite volume schemes for a large family of
hydrodynamic equations with general free energy, positivity preserving and free energy decaying
properties. These hydrodynamic models with damping naturally arise in dynamic density func-
tional theories and the accurate computation of their stable steady states is crucial to understand
their phase transitions and stability properties. The models possess a common variational structure
based on the physical free energy functional from statistical mechanics. The numerical schemes
proposed capture very well steady states and their equilibration dynamics due to the crucial free
energy decaying property resulting into well-balanced schemes. The schemes were validated in well-
known test cases and the chosen numerical experiments corroborate these conclusions for intricate
phase transitions and complicated free energies.

There are also several new avenues of possible future directions. Indeed, we believe the com-
putational framework and associated methodologies presented here can be useful for the study of
bifurcations and phase transitions for systems where the free energy is known from experiments
only, either physical or in-silico ones, and then our framework can be adopted in a “data-driven”
approach. Of particular extension would also be extension to multi-dimensional problems. Two-
dimensional problems in particular would be of direct relevance to surface diffusion and therefore
to technological processes in materials science and catalysis. We shall examine these and related
problems in future studies.

13.2 High-order well-balanced schemes

We propose high-order well-balanced finite-volume schemes for a broad class of hydrodynamic
systems with attractive-repulsive interaction forces and linear and nonlinear damping. Our schemes
are suitable for free energies containing convolutions of an interaction potential with the density,
which are essential for applications such as the Keller-Segel model, more general Euler-Poisson
systems, or dynamic-density functional theory. Our schemes are also equipped with a nonnegative-
density reconstruction which allows for vacuum regions during the simulation. We provide several
prototypical examples from relevant applications, such as shallow-water equations with irregular
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topographies, alignment in collective behaviour, and interactive free energies modelling biological
or astrophysical systems.

Our work lays the foundations for the construction of well-balanced high-order schemes that
may satisfy further fundamental properties of our hyperbolic system, such as the discrete versions of
the energy dissipation and entropy identity, or even the well-balanced property for the challenging
moving steady states. Developing schemes, amongst the class of positivity-preserving high-order
schemes introduced in the present work, satisfying also the entropy stability and energy dissipating
properties, is a challenging open question. Our simulations in Chapter 6 satisfy the discrete energy
dissipation in practice, even if we are not able to prove it for our finite-volume scheme.

13.3 Finite-volume scheme for the Cahn-Hilliard equation

We have introduced finite-volume schemes for the Cahn-Hilliard equation that unconditionally
and discretely satisfy the boundedness of the phase field and the free-energy dissipation. The
scheme maintains these two fundamental properties for general potentials including the double-
well and logarithmic, wetting conditions as well as more general wall free energies, and degenerate
mobilities of the type vanishing when φ = ±1. In contrast to previous works, the scheme is
not restricted to only particular choices of the free energy potential such as the logarithmic one.
In addition, for the case of the double-well potential we do not rely on truncated potentials.
Furthermore, the scheme is efficiently extended to higher-dimensional configurations due its flexible
and cost-saving dimensional-splitting nature thanks to an upwind and finite-volume formulation.
The computational cost can be further reduced with a straightforward parallelization resulting
from the dimensional-splitting approach. The numerical schemes are validated and tested in a
variety of prototypical configurations with different numbers of dimensions and a rich variety of
contact angles between droplets and substrates.

One of the challenges is how to increase the order of accuracy of the scheme. The satisfaction
of these unconditional properties imposes a trade-off in the order of our scheme, which in this work
is limited to first-order accuracy. Previous works [15, 55] have proposed finite-volume schemes of
at least second order that prove similar properties but at the cost of depending on a CFL condition
to be satisfied.

13.4 An application of the Cahn-Hilliard equation in image in-
painting

We have quantified the prediction improvement of employing a CH image inpainting filter to restore
damaged images which are then passed into a neural network. We combined a finite-volume scheme
with a neural network for pattern recognition to develop an integrated algorithm summing up the
process of adding damage to the images and then predicting their label. Our results for the
MNIST dataset suggest that, in general, the accuracy is improved for a wide range of low to
moderate damages, while for some particular cases we reach improvements of up to 50%. We also
provide the image inpainting outcome of multiple damage scenarios and the benefits of adding the
CH filter to predict the label of the image are easily visible.

We believe that our results employing the MNIST dataset lay the foundations towards the
application of image inpainting in more complex datasets. Here we have demonstrated the benefit
of combining the fields of image inpainting with machine learning, and we believe that many
applications can take advantage of it. For instance there are applications such as medical images
from MRI or satellite observations where there is typically some inherent noise or damage involved
and where there may be potential to employ tools from machine learning as was done here.
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MNIST is one of the most well-known and convenient benchmark datasets. It is possible that
applying our methodology to increasingly complex datasets might bring about new challenges. At
the same time we have relied on two main assumptions about the damage and the images: the first
one is that the images are binary, leading to the standard CH potential that has only two wells
(i.e. one for each of the two colours); the second one is that the damage is not blind, meaning that
the location of the damage is known. Performing image inpainting without these two assumptions
becomes substantially more involved as already pointed out in [45, 88, 281]. We will be exploring
these and related questions in future works.

13.5 Finite-volume schemes for fluctuating hydrodynamics

We have developed an efficient and robust finite-volume numerical scheme for solving stochastic
gradient-flow equations. The scheme was exemplified with FDDFT and allows us to scrutinise the
effects of thermal fluctuations on complex phenomena such as phase transitions. Unlike previous
numerical methodologies only applicable to a limited range of free energies (e.g. ideal-gas free
energies such as in Refs [178, 275]), our proposed scheme deals effectively with general free-energy
functionals including external fields or interacting potentials.

Our numerical methodology essentially comprises: a hybrid space discretization based on cen-
tral and upwind schemes, for both deterministic and stochastic fluxes; a family of implicit-explicit
Euler and Milsten time integrators, together with a weak second-order Runge-Kutta scheme; an
adaptive time-step scheme, based on the Brownian bridge technique, which ensures the non-
negativity of the density; appropriate boundary conditions. What is more, the hybrid approach
provides an optimal compromise between statistical properties of the stochastic field and spurious
oscillations. Additionally, the adaptive time-step feature of the scheme represents an alterna-
tive approach to preserving density positivity without including artificial limiters as in previous
schemes.

The scheme is validated by means of several numerical applications. First, we study the vari-
ance, temporal and spatial correlations, and structure factor of an ideal gas at equilibrium, com-
paring the results of the finite-volume solver with theoretical results from the literature and our
own MD simulations. In agreement with previous works, we find that a minimum number of
5 − 10 particles per cell is required in order for FDDFT to match atomistic simulation results.
We the examine the out-of-equilibrium evolution of an ideal gas in a double-well external poten-
tial. Our stochastic solver accurately reproduces local mean density, local density fluctuations and
spatial correlations obtained from MD simulations. It should also be noted that for the deter-
ministic case/DDFT where thermal fluctuations are not included, the results are consistent with
both FDDFT and MD. Finally, we simulate homogeneous nucleation kinetics of a fluid consisting
of particles interacting through an LJ-like potential. Our results for the phase diagram match
the theoretical results and serve so as to illustrate the crucial role of fluctuations to surmount
free-energy barriers. As expected, an exponential law is observed for the nucleation growth rate as
function of the metastable free-energy barrier.

An open research question is the design of finite-volume schemes for the fluctuating-hydrodynamic
system derived in [123], for the general case of arbitrarily shaped and thermalized particles. It con-
sists of two stochastic PDEs for the density ρ and velocity u fields:





∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −ρ∇δF [ρ]

δρ
− γρu−

√
kBTγρW(x, t).

(13.1)

One of the challenges is how to adapt the numerical flux so that it preserves the statistical properties
of the solution. In the case of the overdamped system in Chapter 11, an upwind numerical flux
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introduces numerical diffusivity and dampens both the variance and the structural factor of the
solution. As a result, we designed a hybrid scheme that combines a non-dissipative central scheme
and an upwind scheme. For the case of the fluctuating-hydrodynamic system, it turns out that
the versatile Lax-Friedrichs flux employed in Part II dampens again both the variance and the
structural factor of the density and momentum. This time, however, relying on central numerical
fluxes may not work as well for hyperbolic systems, due to for example their lack of numerical
diffusion and the impossibility of proving a CFL condition. A challenging avenue for future work
is to study how to modify the Lax-Friedrichs numerical flux so that it preserves the statistical
properties of the solution.

Another open research area emerges when the density-momentum system in (13.1) is extended
to include the equation for the energy e:





∂tρ+∇ · (ρu) = 0,

∂t(ρu)+∇·(ρu⊗ u+ P )= ∇ ·
(√

2T η(x, t)
)
,

∂te+∇ · (u (e+ P )) = ∇ · (k∇T ) +∇ ·
(√

2T 2 ζ(x, t)
)
,

(13.2)

where P denotes the pressure, T the temperature and k the thermal conductivity. The noise terms
η(x, t) and ζ(x, t) are vectors of Gaussian stochastic processes delta-correlated in space and time,
i.e.

〈η(x, t)〉 = 0,

〈η(x, t),η(x′, t′)〉 = 2δ(t− t′)δ(x− x′). (13.3)

The total energy density satisfies

e =
1

2
ρ|u|2 + ρU(ρ, θ). (13.4)

The specific internal energy U(ρ, T ) is defined through a suitable Equation of State (EoS), which
is determined by the Helmholtz free energy f(ρ, T ). The internal energy is then derived from
U = f + Ts, with the entropy defined as s = −∂f/∂T and the pressure as P = ρ2∂f/∂ρ. The
Helmholtz free energy plays an analogous role as the free energy F [ρ] in the overdamped and
density-momentum systems of this thesis: by adequately tuning it one can model a wide range of
applications. However, this stochastic system is still not well understood even from the analytical
point of view, and as a result the design of numerical schemes may be challenging due to the lack
of analytical properties to be numerically mimicked.

13.6 Finite-volume schemes for challenging free energies

Most of the numerical simulations in this thesis are performed over free energies that satisfy the
general form

F [ρ] =

∫

Rd
Π(ρ)dx+

∫

Rd
V (x)ρ(x)dx+

1

2

∫

Rd

∫

Rd
W (x− y)ρ(x)ρ(y)dxdy, (13.5)

where
ρΠ′′(ρ) = P ′(ρ). (13.6)

There are however more challenging free energies that will be really interesting to explore in future
work. For instance, more complex free energies arise in applications related to (D)DFT [121, 147],
see [70] for other related free energies and properties. These free energies have the form

F [ρ] =

∫

Rd
Π(ρ)dx+

∫

Rd
V (x)ρ(x)dx+

1

2

∫

Rd
K (W (x) ? ρ(x)) ρ(x)dx, (13.7)
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where K is a function depending on the convolution of ρ(x) with the kernel W (x). Its variation
with respect to the density satisfies

δF
δρ

= Π′(ρ) + V (x) +
1

2
K (W (x) ? ρ) +

1

2
K ′ (W (x) ? ρ) (W (x) ? ρ) . (13.8)

Classical (D)DFT is a theoretical framework provided by nonequilibrium statistical mechanics
but has increasingly become a widely-employed method for the computational scrutiny of the mi-
croscopic structure of both uniform and non-uniform fluids [121, 147, 202, 293, 294]. The starting
point in (D)DFT is a functional F [ρ] for the fluid’s free energy which encodes all microscopic
information such as the ideal-gas part, short-range repulsive effects induced by molecular pack-
ing, attractive interactions and external fields. This functional can be exactly derived only for
a limited number of applications, for instance the one-dimensional hard rod system from Percus
[230]. However, in general it has to be approximated by making appropriate assumptions, as e.g.
in the so-called fundamental-measure theory of Rosenfeld [241]. These assumptions are usually
validated by carrying out appropriate test simulations (e.g. of the underlying stochastic dynamics)
to compare e.g. the DDFT system with the approximate free-energy functional to the microscopic
reference system [148].

In Chapter 5 we show that our well-balanced scheme can be applied to one of the simplest
physical free-energy functionals employed in (D)DFT: the hard rods system in one dimension.
There are however more sophisticated choices of free energy, such as the fundamental-measure
theory of Rosenfeld [241], for which it would be interesting to design robust numerical schemes for
the dynamical evolution.

Another area of promising research arises when considering free energies for which Π(ρ) is
nonconvex. This implies that Π′(ρ) may not have an inverse function for positive densities ρ,
which was a requirement when designing most of the numerical schemes in this thesis. An example
of such free energy is the van der Waals EoS, where the pressure satisfies

P =
8ρT

3− ρ − 3ρ2. (13.9)

For this kind of free energies the eigenvalues are complex, leading to systems that are elliptic
instead of hyperbolic. This renders invalid many of the usual strategies in computational fluid
dynamics, such as numerical fluxes or characteristic decompositions. The challenge here would
be to adapt the schemes presented in this thesis to these nonconvex free energy. An original first
strategy is proposed in [255], where the authors put forward a technique that allows to keep the
eigenvalues real and distinct, based on modifying the numerical flux of simple overdamped density
equations.

13.7 Data-driven approaches to free-energy systems

In the last years machine learning has gained much traction in areas such as autonomous vehicles,
computer vision, recommender systems or natural language processing. However, for scientific
computing the application of machine learning has been less explored, although recently there has
been a surge of interest. Some potential areas of research that build from the tools in this thesis
are:

• Data-driven approaches [292] that, given data on collective motion of classical particles,
characterise the set of free energies which can describe that particle system.

• Neural ODEs [85] that act as a black-box differential equation solver and are able to trade
numerical precision for speed.
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• Parameter calibration in agent-based models [205], where the parameters of a certain interac-
tion law or free energy are learned via Gaussian process regression model implemented with
Bayesian optimization.

• Physics-informed neural networks (PINNs) [239] are trained to solve supervised learning tasks
while respecting any given laws of physics described by general nonlinear PDEs.
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[5] F. Aràndiga, A. Baeza, A. Belda, and P. Mulet. “Analysis of WENO schemes for full and
global accuracy”. In: SIAM Journal on Numerical Analysis 49.2 (2011), pp. 893–915.

[6] A. J. Archer. “Dynamical density functional theory for molecular and colloidal fluids: A
microscopic approach to fluid mechanics”. In: J. Chem. Phys 130.1 (2009), p. 014509.

[7] A. J. Archer and M. Rauscher. “Dynamical density functional theory for interacting Brow-
nian particles: stochastic or deterministic?” In: J. Phys. A 37.40 (2004), pp. 9325–9333.

[8] A. C. Aristotelous, O. Karakashian, and S. M. Wise. “A mixed discontinuous Galerkin,
convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear
multigrid solver”. In: Discrete & Continuous Dynamical Systems-B 18.9 (2013), p. 2211.

[9] P. J. Atzberger. “Spatially adaptive stochastic numerical methods for intrinsic fluctuations
in reaction–diffusion systems”. In: J. Comput. Phys. 229.9 (2010), pp. 3474–3501.

[10] E Audusse, C Chalons, and P Ung. “A very simple well-balanced positive and entropy-
satisfying scheme for the shallow-water equations”. In: Commun. Math. Sci 13.5 (2015),
pp. 1317–1332.

[11] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. t. Perthame. “A fast and stable
well-balanced scheme with hydrostatic reconstruction for shallow water flows”. In: SIAM J.
Sci. Comput. 25.6 (2004), pp. 2050–2065.

[12] E. Audusse and M.-O. Bristeau. “A well-balanced positivity preserving “second-order”
scheme for shallow water flows on unstructured meshes”. In: J. Comput. Phys. 206.1 (2005),
pp. 311–333.

[13] B. Aymard, U. Vaes, M. Pradas, and S. Kalliadasis. “A linear, second-order, energy stable,
fully adaptive finite element method for phase-field modelling of wetting phenomena”. In:
Journal of Computational Physics: X 2 (2019), p. 100010.

[14] R. Bailo, J. A. Carrillo, and J. Hu. “Bound-Preserving Finite-Volume Schemes for Conti-
nuity Equations with Saturation”. In: to be submitted (2021).

[15] R. Bailo, J. A. Carrillo, and J. Hu. “Fully Discrete Positivity-Preserving and Energy-
Dissipating Schemes for Aggregation-Diffusion Equations with a Gradient Flow Structure”.
In: Commun. Math. Sci. 18.5 (2020), pp. 1259–1303.

[16] R. Bailo, J. A. Carrillo, S. Kalliadasis, and S. P. Perez. “Unconditional bound-preserving
and energy-dissipating finite-volume schemes for the Cahn-Hilliard equation”. In: arXiv
preprint arXiv:2105.05351 (2021).

[17] R. Bailo, J. A. Carrillo, H. Murakawa, and M. Schmidtchen. “Convergence of a Fully Discrete
and Energy-Dissipating Finite-Volume Scheme for Aggregation-Diffusion Equations”. In:
arXiv: 2002.10821 (M3AS, to appear) (2020).

[18] K. Balakrishnan, A. L. Garcia, A. Donev, and J. B. Bell. “Fluctuating hydrodynamics of
multispecies nonreactive mixtures”. In: Phys. Rev. E 89.1 (2014), p. 013017.

185



[19] F. Balboa, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S.
Peskin. “Staggered schemes for fluctuating hydrodynamics”. In: Multiscale Model. Sim. 10.4
(2012), pp. 1369–1408.
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