418 research outputs found

    Deciphering the functional organization of molecular networks via graphlets-based methods and network embedding techniques

    Full text link
    [eng] Advances in capturing technologies have yielded a massive production of large-scale molecular data that describe different aspects of cellular functioning. These data are often modeled as networks, in which nodes are molecular entities, and the edges connecting them represent their relationships. These networks are a valuable source of biological information, but they need to be untangled by new algorithms to reveal the information hidden in their wiring patterns. State-of-the-art approaches for deciphering these complex networks are based on graphlets and network embeddings. This thesis focuses on the development of novel algorithms to overcome the limitations of the current graphlet and network embedding methodologies in the field of biology. Graphlets are a powerful tool for characterizing the local wiring patterns of molecular networks. However, current graphlet-based methods are mostly applicable to unweighted networks, whereas real-world molecular networks may have weighted edges that represent the probability of an interaction occurring in the cell. This probabilistic information is commonly discarded when applying thresholds to generate unweighted networks, which may lead to information loss. To address this challenge, we introduce probabilistic graphlets, a novel approach that can capture the local wiring patterns of weighted networks and uncover hidden probabilistic relationships between molecular entities. We use probabilistic graphlets to generalize the graphlet methods and apply these to the probabilistic representation of real-world molecular interactions. We show that probabilistic graphlets robustly un- cover relevant biological information from the molecular networks. Furthermore, we demonstrate that probabilistic graphlets exhibit a higher sensitivity to identifying condition-specific functions compared to their unweighted counterparts. Network embedding algorithms learn a low-dimensional vectorial representation for each gene in the network while preserving the structural information of the molecular network. Current, available embedding approaches strictly focus on clustering the genes’ embedding vectors and interpreting such clusters to reveal the hidden information of the biological networks. Thus, we investigate new perspectives and methods that go beyond gene-centric approaches. First, we shift the exploration of the embedding space’s functional organization from the genes to their functions. We introduce the Functional Mapping Matrix and apply it to investigate the changes in the organization of cancer and control network embedding spaces from a functional perspective. We demonstrate that our methodology identifies novel cancer-related functions and genes that the currently available methods for gene-centric analyses cannot identify. Finally, we go even further and switch the perspective from the organization of the embedded entities (genes and functions) in the embedding space to the space itself. We annotate axes of the network embedding spaces of six species with both, functional annotations and genes. We demonstrate that the embedding space axes represent coherent cellular functions and offer a functional fingerprint of the cell’s functional organization. Moreover, we show that the analysis of the axes reveals new functional evolutionary connections between species

    Facial Mimicry and the Processing of Facial Emotional Expressions

    Get PDF
    In social interactions, facial expressions make a major contribution to our daily communication as they can transmit internal states like motivations and feelings of our conspecifics. In the last decades, research has revealed that facial mimicry plays a pivotal role in the accurate perception and interpretation of facial expressions. Embodied simulation theories claim that facial expressions are automatically mimicked, thereby producing a facial feedback signal, which in turn activates a corresponding state in the motor, somatosensory, affective and reward system of the observer. This activation - in turn - facilitates the processing of the observed emotional expression and hence supports the understanding of its meaning. Research on the influence of facial mimicry on the perception of emotional expressions is, to a large extent, driven by facial mimicry manipulation studies. Especially the classical facial mimicry manipulation method introduced by Strack, Martin, and Stepper (1988) has become a popular and established method. Here participants have to hold a pen in different positions with the mouth inducing a smiling or a frowning expression. The present thesis assessed the influence of facial mimicry on cognitive processes by means of this classical facial mimicry manipulation method. In three projects, I investigated the impact of (1) facial mimicry on the automatic processing of facial emotional expressions, (2) facial mimicry on the working memory for emotional expressions, and (3) facial mimicry manipulation on an impaired processing of emotional expressions in patients with Parkinson’s disease (PD). In a first project, the impact of facial mimicry manipulation was measured by electrophysiological recordings of the expression related mismatch negativity to unattended happy and sad faces. The findings reveal that the automatic processing of facial emotional expressions is systematically influenced by facial mimicry. In the second project, I assessed the behavioral performance during a facial emotional working memory task while the mimicry of participants was manipulated. Findings of this project highlight that working memory for emotional expressions is influenced by facial mimicry. Finally, in the third project, I investigated the link between the reduced facial mimicry in PD patients and their impaired ability to recognize emotional expressions. For this purpose, I compared the data of PD and healthy individuals during the performance of an emotional change detection task while undergoing facial mimicry manipulation. Although healthy participants show a typical pattern of facial mimicry manipulation influence, PD patients do not profit of the applied manipulation. The results of the present thesis demonstrate that facial mimicry is an indispensable part in our daily social interaction as it affects the processing of emotions on a perceptual as well as a cognitive level. I showed that facial mimicry influences the automatic processing of - as well as the working memory for - observed facial emotional expressions. Furthermore, the empirical evidence of the third project suggests that not only facial mimicry is reduced in patients with PD but rather that the whole process of facial feedback processing is impaired in those individuals. These results demonstrate the applicability of the classical facial mimicry manipulation method and further highlight the importance of research on the influence of facial mimicry on cognitive processing as our ability to understand the emotional expressions of our conspecifics and thus our social interaction depends on an intact facial mimicry processing

    Charging water load prediction with a multilayer perceptron for an efficient facility management and maintenance of thermal-energy-storage air-conditioning

    Get PDF
    This research addresses the challenges in Thermal-Energy-Storage-Air-Conditioning (TES-AC) systems by developing a machine learning model for predicting the necessary water volume for chilling. TES-AC technology, utilizing thermal energy storage tanks, offers substantial benefits such as reduced chiller operation, cost savings, and lower carbon emissions. However, determining the optimal chilled water volume poses challenges. The primary objective is to design a machine learning model leveraging Multilayer Perceptron (MLP) for predicting water load, incorporating input variables like weather forecasts, day of the week, and occupancy data. The study validates the impact of weather data on chilled water volume, demonstrating its efficacy in prediction. The MLP-based model is fine-tuned through hyperparameter optimization, achieving a remarkable accuracy of 93.4%. The model provides specific water volume ranges, minimizing errors and aiding facility managers in informed decision-making to minimize disruptions. Technical significance lies in the model's flexibility, allowing retraining for diverse TES-AC plants without requiring specific sensor inputs. This adaptability promotes widespread TES-AC adoption, contributing to environmentally friendly practices in building construction. The integration of the model into facility management software enhances predictive capabilities while offering common features, ensuring seamless incorporation into existing systems. The research aligns with Sustainable Development Goals, particularly Goals 11, 12, and 13, emphasizing sustainable cities, responsible consumption, and climate action. By focusing on technical problem-solving, addressing challenges, and emphasizing the social significance through Sustainable Development Goals, this research provides a comprehensive solution to enhance TES-AC efficiency, thereby contributing to greener and more sustainable urban environments

    RFD-ECNet: Extreme Underwater Image Compression with Reference to Feature Dictionar

    Full text link
    Thriving underwater applications demand efficient extreme compression technology to realize the transmission of underwater images (UWIs) in very narrow underwater bandwidth. However, existing image compression methods achieve inferior performance on UWIs because they do not consider the characteristics of UWIs: (1) Multifarious underwater styles of color shift and distance-dependent clarity, caused by the unique underwater physical imaging; (2) Massive redundancy between different UWIs, caused by the fact that different UWIs contain several common ocean objects, which have plenty of similarities in structures and semantics. To remove redundancy among UWIs, we first construct an exhaustive underwater multi-scale feature dictionary to provide coarse-to-fine reference features for UWI compression. Subsequently, an extreme UWI compression network with reference to the feature dictionary (RFD-ECNet) is creatively proposed, which utilizes feature match and reference feature variant to significantly remove redundancy among UWIs. To align the multifarious underwater styles and improve the accuracy of feature match, an underwater style normalized block (USNB) is proposed, which utilizes underwater physical priors extracted from the underwater physical imaging model to normalize the underwater styles of dictionary features toward the input. Moreover, a reference feature variant module (RFVM) is designed to adaptively morph the reference features, improving the similarity between the reference and input features. Experimental results on four UWI datasets show that our RFD-ECNet is the first work that achieves a significant BD-rate saving of 31% over the most advanced VVC

    Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature

    Full text link
    [ES] El futuro de la imagen médica está ligado a la inteligencia artificial. El análisis manual de imágenes médicas es hoy en día una tarea ardua, propensa a errores y a menudo inasequible para los humanos, que ha llamado la atención de la comunidad de Aprendizaje Automático (AA). La Imagen por Resonancia Magnética (IRM) nos proporciona una rica variedad de representaciones de la morfología y el comportamiento de lesiones inaccesibles sin una intervención invasiva arriesgada. Sin embargo, explotar la potente pero a menudo latente información contenida en la IRM es una tarea muy complicada, que requiere técnicas de análisis computacional inteligente. Los tumores del sistema nervioso central son una de las enfermedades más críticas estudiadas a través de IRM. Específicamente, el glioblastoma representa un gran desafío, ya que, hasta la fecha, continua siendo un cáncer letal que carece de una terapia satisfactoria. Del conjunto de características que hacen del glioblastoma un tumor tan agresivo, un aspecto particular que ha sido ampliamente estudiado es su heterogeneidad vascular. La fuerte proliferación vascular del glioblastoma, así como su robusta angiogénesis han sido consideradas responsables de la alta letalidad de esta neoplasia. Esta tesis se centra en la investigación y desarrollo del método Hemodynamic Tissue Signature (HTS): un método de AA no supervisado para describir la heterogeneidad vascular de los glioblastomas mediante el análisis de perfusión por IRM. El método HTS se basa en el concepto de hábitat, que se define como una subregión de la lesión con un perfil de IRM que describe un comportamiento fisiológico concreto. El método HTS delinea cuatro hábitats en el glioblastoma: el hábitat HAT, como la región más perfundida del tumor con captación de contraste; el hábitat LAT, como la región del tumor con un perfil angiogénico más bajo; el hábitat IPE, como la región adyacente al tumor con índices de perfusión elevados; y el hábitat VPE, como el edema restante de la lesión con el perfil de perfusión más bajo. La investigación y desarrollo de este método ha originado una serie de contribuciones enmarcadas en esta tesis. Primero, para verificar la fiabilidad de los métodos de AA no supervisados en la extracción de patrones de IRM, se realizó una comparativa para la tarea de segmentación de gliomas de grado alto. Segundo, se propuso un algoritmo de AA no supervisado dentro de la familia de los Spatially Varying Finite Mixture Models. El algoritmo propone una densidad a priori basada en un Markov Random Field combinado con la función probabilística Non-Local Means, para codificar la idea de que píxeles vecinos tienden a pertenecer al mismo objeto. Tercero, se presenta el método HTS para describir la heterogeneidad vascular del glioblastoma. El método se ha aplicado a casos reales en una cohorte local de un solo centro y en una cohorte internacional de más de 180 pacientes de 7 centros europeos. Se llevó a cabo una evaluación exhaustiva del método para medir el potencial pronóstico de los hábitats HTS. Finalmente, la tecnología desarrollada en la tesis se ha integrado en la plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofrece dos servicios: 1) segmentación de tejidos de glioblastoma, y 2) evaluación de la heterogeneidad vascular del tumor mediante el método HTS. Los resultados de esta tesis han sido publicados en diez contribuciones científicas, incluyendo revistas y conferencias de alto impacto en las áreas de Informática Médica, Estadística y Probabilidad, Radiología y Medicina Nuclear y Aprendizaje Automático. También se emitió una patente industrial registrada en España, Europa y EEUU. Finalmente, las ideas originales concebidas en esta tesis dieron lugar a la creación de ONCOANALYTICS CDX, una empresa enmarcada en el modelo de negocio de los companion diagnostics de compuestos farmacéuticos.[EN] The future of medical imaging is linked to Artificial Intelligence (AI). The manual analysis of medical images is nowadays an arduous, error-prone and often unaffordable task for humans, which has caught the attention of the Machine Learning (ML) community. Magnetic Resonance Imaging (MRI) provides us with a wide variety of rich representations of the morphology and behavior of lesions completely inaccessible without a risky invasive intervention. Nevertheless, harnessing the powerful but often latent information contained in MRI acquisitions is a very complicated task, which requires computational intelligent analysis techniques. Central nervous system tumors are one of the most critical diseases studied through MRI. Specifically, glioblastoma represents a major challenge, as it remains a lethal cancer that, to date, lacks a satisfactory therapy. Of the entire set of characteristics that make glioblastoma so aggressive, a particular aspect that has been widely studied is its vascular heterogeneity. The strong vascular proliferation of glioblastomas, as well as their robust angiogenesis and extensive microvasculature heterogeneity have been claimed responsible for the high lethality of the neoplasm. This thesis focuses on the research and development of the Hemodynamic Tissue Signature (HTS) method: an unsupervised ML approach to describe the vascular heterogeneity of glioblastomas by means of perfusion MRI analysis. The HTS builds on the concept of habitats. A habitat is defined as a sub-region of the lesion with a particular MRI profile describing a specific physiological behavior. The HTS method delineates four habitats within the glioblastoma: the HAT habitat, as the most perfused region of the enhancing tumor; the LAT habitat, as the region of the enhancing tumor with a lower angiogenic profile; the potentially IPE habitat, as the non-enhancing region adjacent to the tumor with elevated perfusion indexes; and the VPE habitat, as the remaining edema of the lesion with the lowest perfusion profile. The research and development of the HTS method has generated a number of contributions to this thesis. First, in order to verify that unsupervised learning methods are reliable to extract MRI patterns to describe the heterogeneity of a lesion, a comparison among several unsupervised learning methods was conducted for the task of high grade glioma segmentation. Second, a Bayesian unsupervised learning algorithm from the family of Spatially Varying Finite Mixture Models is proposed. The algorithm integrates a Markov Random Field prior density weighted by the probabilistic Non-Local Means function, to codify the idea that neighboring pixels tend to belong to the same semantic object. Third, the HTS method to describe the vascular heterogeneity of glioblastomas is presented. The HTS method has been applied to real cases, both in a local single-center cohort of patients, and in an international retrospective cohort of more than 180 patients from 7 European centers. A comprehensive evaluation of the method was conducted to measure the prognostic potential of the HTS habitats. Finally, the technology developed in this thesis has been integrated into an online open-access platform for its academic use. The ONCOhabitats platform is hosted at https://www.oncohabitats.upv.es, and provides two main services: 1) glioblastoma tissue segmentation, and 2) vascular heterogeneity assessment of glioblastomas by means of the HTS method. The results of this thesis have been published in ten scientific contributions, including top-ranked journals and conferences in the areas of Medical Informatics, Statistics and Probability, Radiology & Nuclear Medicine and Machine Learning. An industrial patent registered in Spain, Europe and EEUU was also issued. Finally, the original ideas conceived in this thesis led to the foundation of ONCOANALYTICS CDX, a company framed into the business model of companion diagnostics for pharmaceutical compounds.[CA] El futur de la imatge mèdica està lligat a la intel·ligència artificial. L'anàlisi manual d'imatges mèdiques és hui dia una tasca àrdua, propensa a errors i sovint inassequible per als humans, que ha cridat l'atenció de la comunitat d'Aprenentatge Automàtic (AA). La Imatge per Ressonància Magnètica (IRM) ens proporciona una àmplia varietat de representacions de la morfologia i el comportament de lesions inaccessibles sense una intervenció invasiva arriscada. Tanmateix, explotar la potent però sovint latent informació continguda a les adquisicions de IRM esdevé una tasca molt complicada, que requereix tècniques d'anàlisi computacional intel·ligent. Els tumors del sistema nerviós central són una de les malalties més crítiques estudiades a través de IRM. Específicament, el glioblastoma representa un gran repte, ja que, fins hui, continua siguent un càncer letal que manca d'una teràpia satisfactòria. Del conjunt de característiques que fan del glioblastoma un tumor tan agressiu, un aspecte particular que ha sigut àmpliament estudiat és la seua heterogeneïtat vascular. La forta proliferació vascular dels glioblastomes, així com la seua robusta angiogènesi han sigut considerades responsables de l'alta letalitat d'aquesta neoplàsia. Aquesta tesi es centra en la recerca i desenvolupament del mètode Hemodynamic Tissue Signature (HTS): un mètode d'AA no supervisat per descriure l'heterogeneïtat vascular dels glioblastomas mitjançant l'anàlisi de perfusió per IRM. El mètode HTS es basa en el concepte d'hàbitat, que es defineix com una subregió de la lesió amb un perfil particular d'IRM, que descriu un comportament fisiològic concret. El mètode HTS delinea quatre hàbitats dins del glioblastoma: l'hàbitat HAT, com la regió més perfosa del tumor amb captació de contrast; l'hàbitat LAT, com la regió del tumor amb un perfil angiogènic més baix; l'hàbitat IPE, com la regió adjacent al tumor amb índexs de perfusió elevats, i l'hàbitat VPE, com l'edema restant de la lesió amb el perfil de perfusió més baix. La recerca i desenvolupament del mètode HTS ha originat una sèrie de contribucions emmarcades a aquesta tesi. Primer, per verificar la fiabilitat dels mètodes d'AA no supervisats en l'extracció de patrons d'IRM, es va realitzar una comparativa en la tasca de segmentació de gliomes de grau alt. Segon, s'ha proposat un algorisme d'AA no supervisat dintre de la família dels Spatially Varying Finite Mixture Models. L'algorisme proposa un densitat a priori basada en un Markov Random Field combinat amb la funció probabilística Non-Local Means, per a codificar la idea que els píxels veïns tendeixen a pertànyer al mateix objecte semàntic. Tercer, es presenta el mètode HTS per descriure l'heterogeneïtat vascular dels glioblastomas. El mètode HTS s'ha aplicat a casos reals en una cohort local d'un sol centre i en una cohort internacional de més de 180 pacients de 7 centres europeus. Es va dur a terme una avaluació exhaustiva del mètode per mesurar el potencial pronòstic dels hàbitats HTS. Finalment, la tecnologia desenvolupada en aquesta tesi s'ha integrat en una plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofereix dos serveis: 1) segmentació dels teixits del glioblastoma, i 2) avaluació de l'heterogeneïtat vascular dels glioblastomes mitjançant el mètode HTS. Els resultats d'aquesta tesi han sigut publicats en deu contribucions científiques, incloent revistes i conferències de primer nivell a les àrees d'Informàtica Mèdica, Estadística i Probabilitat, Radiologia i Medicina Nuclear i Aprenentatge Automàtic. També es va emetre una patent industrial registrada a Espanya, Europa i els EEUU. Finalment, les idees originals concebudes en aquesta tesi van donar lloc a la creació d'ONCOANALYTICS CDX, una empresa emmarcada en el model de negoci dels companion diagnostics de compostos farmacèutics.En este sentido quiero agradecer a las diferentes instituciones y estructuras de financiación de investigación que han contribuido al desarrollo de esta tesis. En especial quiero agradecer a la Universitat Politècnica de València, donde he desarrollado toda mi carrera acadèmica y científica, así como al Ministerio de Ciencia e Innovación, al Ministerio de Economía y Competitividad, a la Comisión Europea, al EIT Health Programme y a la fundación Caixa ImpulseJuan Albarracín, J. (2020). Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149560TESI

    HandMap:Robust Hand Pose Estimation via Intermediate Dense Guidance Map Supervision

    Get PDF
    This work presents a novel hand pose estimation framework via intermediate dense guidance map supervision. By leveraging the advantage of predicting heat maps of hand joints in detection-based methods, we propose to use dense feature maps through intermediate supervision in a regression-based framework that is not limited to the resolution of the heat map. Our dense feature maps are delicately designed to encode the hand geometry and the spatial relation between local joint and global hand. The proposed framework significantly improves the state-of-the-art in both 2D and 3D on the recent benchmark datasets

    Brain and Human Body Modeling 2020

    Get PDF
    ​This open access book describes modern applications of computational human modeling in an effort to advance neurology, cancer treatment, and radio-frequency studies including regulatory, safety, and wireless communication fields. Readers working on any application that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest models and techniques available to assess a given technology’s safety and efficacy in a timely and efficient manner. Describes computational human body phantom construction and application; Explains new practices in computational human body modeling for electromagnetic safety and exposure evaluations; Includes a survey of modern applications for which computational human phantoms are critical
    corecore