301 research outputs found

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks

    Joint Subcarrier Pairing and Power Allocation for OFDM Transmission with Decode-and-Forward Relaying

    Full text link
    In this paper, a point-to-point Orthogonal Frequency Division Multiplexing (OFDM) system with a decode-and-forward (DF) relay is considered. The transmission consists of two hops. The source transmits in the first hop, and the relay transmits in the second hop. Each hop occupies one time slot. The relay is half-duplex, and capable of decoding the message on a particular subcarrier in one time slot, and re-encoding and forwarding it on a different subcarrier in the next time slot. Thus each message is transmitted on a pair of subcarriers in two hops. It is assumed that the destination is capable of combining the signals from the source and the relay pertaining to the same message. The goal is to maximize the weighted sum rate of the system by jointly optimizing subcarrier pairing and power allocation on each subcarrier in each hop. The weighting of the rates is to take into account the fact that different subcarriers may carry signals for different services. Both total and individual power constraints for the source and the relay are investigated. For the situations where the relay does not transmit on some subcarriers because doing so does not improve the weighted sum rate, we further allow the source to transmit new messages on these idle subcarriers. To the best of our knowledge, such a joint optimization inclusive of the destination combining has not been discussed in the literature. The problem is first formulated as a mixed integer programming problem. It is then transformed to a convex optimization problem by continuous relaxation, and solved in the dual domain. Based on the optimization results, algorithms to achieve feasible solutions are also proposed. Simulation results show that the proposed algorithms almost achieve the optimal weighted sum rate, and outperform the existing methods in various channel conditions.Comment: 33 pages, 11 figure

    Highly Efficient Resource Allocation Techniques in 5G for NOMA-based Massive MIMO and Relaying Systems

    Get PDF
    The explosive proliferation of smart devices in the 5-th generation (5G) network expects 1,000-fold capacity enhancement, leading to the urgent need of highly resource-efficient technologies. Non-orthogonal multiple access (NOMA), a promising spectral efficient technology for 5G to serve multiple users concurrently, can be combined with massive multiple input multiple output (MIMO) and relaying technology, to achieve highly efficient communications. Hence, this thesis studies the design and resource allocation of NOMA-based massive MIMO and relaying systems. Due to hardware constraints and channel condition variation, the first topic of the thesis develops efficient antenna selection and user scheduling algorithms for sum rate maximization in two MIMO-NOMA scenarios. In the single-band scenario, the proposed algorithm improves antenna search efficiency by limiting the candidate antennas to those are beneficial to the relevant users. In the multi-band scenario, the proposed algorithm selects the antennas and users with the highest contribution total channel gain. Numerical results show that our proposed algorithms achieve similar performance to other algorithms with reduced complexity. The second part of the thesis proposes the relaying and power allocation scheme for the NOMA-assisted relaying system to serve multiple cell-edge users. The relay node decodes its own message from the source NOMA signal and transmits the remaining part of signal to cell-edge users. The power allocation scheme is developed by minimizing the system outage probability. To further evaluate the system performance, the ergodic capacity is approximated by analyzing the interference at cell-edge users. Numerical results proves the performance improvement of the proposed system over conventional orthogonal multiple access mechanism

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure
    corecore