5,960 research outputs found

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios

    Full text link
    [EN] The combination of broadcast and broadband (hybrid) technologies for delivering TV related media contents can bring fascinating opportunities. It is motivated by the large amount and diversity of media contents, together with the ubiquity and multiple connectivity capabilities of modern consumption devices. This paper presents an end-to-end platform for the preparation, delivery, and synchronized consumption of related hybrid (broadcast/broadband) media contents on a single device and/or on multiple close-by devices (i.e., a multi-device scenario). It is compatible with the latest version of the Hybrid Broadcast Broadband TV (HbbTV) standard (version 2.0.1). Additionally, it provides adaptive and efficient solutions for key issues not specified in that standard, but that are necessary to successfully deploy hybrid and multidevice media services. Moreover, apart from MPEG-DASH and HTML5, which are the broadband technologies adopted by HbbTV, the platform also provides support for using HTTP Live Streaming and Real-time Transport Protocol and its companion RTP Control Protocol broadband technologies. The presented platform can provide support for many hybrid media services. In this paper, in order to evaluate it, the use case of multi-device and multi-view TV service has been selected. The results of both objective and subjective assessments have been very satisfactory, in terms of performance (stability, smooth playout, delays, and sync accuracy), usability of the platform, usefulness of its functionalities, and the awaken interest in these kinds of platforms.This work was supported in part by the "Fondo Europeo de Desarrollo Regional" and in part by the Spanish Ministry of Economy and Competitiveness through R&D&I Support Program under Grant TEC2013-45492-R.Boronat, F.; Marfil-Reguero, D.; Montagud, M.; Pastor Castillo, FJ. (2017). HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios. IEEE Transactions on Broadcasting. 1-26. https://doi.org/10.1109/TBC.2017.2781124S12

    Minimizing the impact of delay on live SVC-based HTTP adaptive streaming services

    Get PDF
    HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for Over-The-Top video streaming services. Video content is temporally split into segments which are offered at multiple qualities to the clients. These clients autonomously select the quality layer matching the current state of the network through a quality selection heuristic. Recently, academia and industry have begun evaluating the feasibility of adopting layered video coding for HAS. Instead of downloading one file for a certain quality level, scalable video streaming requires downloading several interdependent layers to obtain the same quality. This implies that the base layer is always downloaded and is available for playout, even when throughput fluctuates and enhancement layers can not be downloaded in time. This layered video approach can help in providing better service quality assurance for video streaming. However, adopting scalable video coding for HAS also leads to other issues, since requesting multiple files over HTTP leads to an increased impact of the end-to-end delay and thus on the service provided to the client. This is even worse in a Live TV scenario where the drift on the live signal should be minimized, requiring smaller segment and buffer sizes. In this paper, we characterize the impact of delay on several measurement-based heuristics. Furthermore, we propose several ways to overcome the end-to-end delay issues, such as parallel and pipelined downloading of segment layers, to provide a higher quality for the video service

    Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications

    Full text link
    [EN] Newer social multimedia applications, such as Social TV or networked multi-player games, enable independent groups (or clusters) of users to interact among themselves and share services within the context of simultaneous media content consumption. In such scenarios, concurrently synchronized playout points must be ensured so as not to degrade the user experience on such interaction. We refer to this process as Inter-Destination Multimedia Synchronization (IDMS). This paper presents the design, implementation and evaluation of an evolved version of an RTCP-based IDMS approach, including an Adaptive Media Playout (AMP) scheme that aims to dynamically and smoothly adjust the playout timing of each one of the geographically distributed consumers in a specific cluster if an allowable asynchrony threshold between their playout states is exceeded. For that purpose, we previously had also to develop a full implementation of RTP/RTCP protocols for NS-2, in which we included the IDMS approach as an optional functionality. Simulation results prove the feasibility of such IDMS and AMP proposals, by adopting several dynamic master reference selection policies, to maintain an overall synchronization status (within allowable limits) in each cluster of participants, while minimizing the occurrence of long-term playout discontinuities (such as skips/pauses) which are subjectively more annoying and less tolerable to users than small variations in the media playout rate.This work has been financed, partially, by Universitat Politecnica de Valencia (UPV), under its R&D Support Program in PAID-05-11-002-331 Project and in PAID-01-10. Authors also would like to thank the anonymous reviewers that helped to significantly improve the quality of the paper with their constructive comments.Montagud, M.; Boronat, F. (2012). Enhanced adaptive RTCP-based inter-destination multimedia synchronization approach for distributed applications. Computer Networks. 56(12):2912-2933. https://doi.org/10.1016/j.comnet.2012.05.00329122933561

    The Entanglement: Volumetric Music Performances in a Virtual Metaverse Environment

    Get PDF
    Telematic music performances are an established performance practice in contemporary music. Performing music pieces with geographically distributed musicians is both a technological challenge and an artistic one. These challenges and the resulting possibilities can lead to innovative aesthetic realizations. This paper presents the implementation and realization of “The Entanglement,” a telematic concert performance in a metaverse environment. The system is realized using web-based frameworks to implement a platform-independent online multi-user environment with volumetric, three- dimensional, streaming of audio and video. This allows live performance of this improvisation piece based on an algorithmic quantum computer composition within a freely explorational virtual environment. We describe the development and realization of the piece and metaverse environment, as well as its artistic and conceptual contextualization
    • …
    corecore