
A Web-Based Framework for Fast Synchronization
of Live Video Players

Dries Pauwels∗, Jeroen van der Hooft∗, Stefano Petrangeli∗, Tim Wauters∗, Danny De Vleeschauwer†,
and Filip De Turck∗

∗Ghent University - iMinds, Department of Information Technology, Technologiepark 15, B-9052 Ghent, Belgium
†Nokia - Bell Labs, Copernicuslaan 50, B-2018 Antwerp, Belgium

E-mail: dries.pauwels@intec.ugent.be

Abstract—The increased popularity of social media and mobile
devices has radically changed the way people consume multime-
dia content online. As an example, users can experience the same
event (e.g. a sports event or a concert) together using social media,
even if they are not in the same physical location. Moreover,
the introduction of the HTTP Adaptive Streaming principle has
made it possible to deliver video over the best-effort Internet with
consistent quality, even for mobile devices. One of the challenges
within this context is the synchronization of multimedia playback
among geographically distributed clients. To solve this issue, we
propose a Web-based framework which allows to synchronize
the playback of different clients. We also present a novel hybrid
approach for adaptive streaming to allow fast synchronization
among different clients, which relies on HTTP/2’s server push
feature in combination with sub-second video segments.

In this paper, we detail the proposed framework and provide
a comprehensive analysis of its performance. Experiments show
that the novel hybrid approach can reduce synchronization
time with 19.4% compared to standard adaptive streaming
over HTTP/1.1 when bandwidth is limited to 2.5 Mb/s and an
RTT of 150 ms. The gain increases even more when a higher
throughput is available. The obtained results entail that the
proposed framework can provide quality of experience for all
users watching online video together.

Index Terms—Video Synchronization, Inter-Destination Mul-
timedia Synchronization, HTTP Adaptive Streaming, MPEG-
DASH, HTTP/2, HTML5

I. INTRODUCTION

Multimedia applications have become more and more im-
portant, with video traffic accounting for 70% of the consumer
Internet traffic today. By 2020, this quota is even expected to
increase to 82% [1]. HTTP Adaptive Streaming (HAS) is the
most used technology to stream video over the best-effort In-
ternet. In HAS, video content is temporally split into segments
and encoded at several quality representations. At the start of
a video session, the client requests the Media Presentation
Description (MPD) of the video, which describes the various
spatial, temporal and quality dimensions of the content as
well as the different representations. The client is equipped
with a rate adaptation heuristic, which allows it to adapt to
varying network conditions during the playback by requesting
segments at a different quality. When the available bandwidth
drops for instance, the client can select a lower quality level
in order to prevent buffer starvation and consequently avoid a
freeze in the video playout.

Meanwhile, the popularity of smart-TVs, smartphones and
tablets has changed the way multimedia content is enjoyed.
As an example, a current trend is for people to watch
multimedia content together although not necessarily in the

Fig. 1: Synchronization problem when two users watch the
same content in different locations

same physical location. Imagine a group of friends following
the same football match on different devices in different
locations as shown in Figure 1. If we assume that they are
communicating over voice or text chat and one of them can
see a goal before the others, this results in a bad Quality of
Experience (QoE). One of the challenges within this context is
therefore the synchronization of multimedia playback among
these geographically distributed clients, which is referred to as
Inter-Destination Multimedia Synchronization (IDMS). Geerts
et al. have shown that users communicating via voice or text
chat start to notice differences above 500 ms in delay in
synchronization [2].

Most of the devices which are currently connected to the
Internet, share a common characteristic, i.e. they are equipped
with a web browser. Recent browsers use HTML5 for the
playback of media. With this technology, it becomes possible
to embed media in web pages without the need of plug-ins
(such as Flash). Instead, an HTMLVideoElement is introduced,
which can be extended with a useful API. The DASH-IF
Reference Player1, a JavaScript implementation of the MPEG-
DASH standard, uses the HTMLVideoElement for playing
HAS streams in a browser.

In order to solve the issue of IDMS, we introduce a browser-
based framework to enable the synchronization of different
HAS clients. This approach enables clients to synchronize the
playback of both Video On Demand (VOD) and live streams.
The clients streaming the same video are grouped into a
synchronization group. Among these clients, one is chosen
to be the master client. All clients will start the playout of the
video at the same position as the master client.

1https://github.com/Dash-Industry-Forum/dash.js/

In order to reduce the start-up delay and the synchronization
time among different clients, we propose a hybrid solution
that uses different segment durations for different quality
representations. Particularly, the lowest quality level of the
video is provided in a super-short segments version. With
super-short segments, we define segments with a segment
duration shorter then one second. When a client needs to
synchronize its playout with the reference signal (e.g. at start-
up or after a freeze or pause), the lowest quality in the super-
short segments version is requested.

Another important aspect of the proposed framework is that
the clients automatically adjust their playback rate in order to
reach synchronization with the playback position of the master.
We introduce an Adaptive Media Playout (AMP) algorithm
that aims to smoothly increase the playback rate of the video
to avoid a video freeze while minimizing the time needed to
synchronize the video playout. This way, the use of the AMP
principle allows to maximize the users’ QoE.

The remainder of this paper is structured as follows. Section
II gives an overview of the related work on IDMS, AMP, HAS
over HTTP/2 and dynamic segment duration in HAS. The
proposed framework is presented in Section III. An evaluation
of the framework is discussed in Section IV, while Section V
concludes the paper.

II. RELATED WORK

A. Inter-Destination Multimedia Synchronization
Most of the previous solutions for IDMS use the Real-

time Transport Protocol (RTP) in combination with the Real-
time Transport Control Protocol (RTCP) to achieve synchro-
nization [3]. Nowadays, the HAS principle is preferred over
RTP for the delivery of multimedia content over the best-
effort Internet [4]. With pull-based solutions such as HAS, the
mechanisms for synchronization can be moved to the client-
side, which reduces the complexity and increases scalability
of the video delivery and synchronization systems.

Jung et al. introduced a Web-Based IDMS framework for
MPEG-DASH in which one client is selected to be the
synchronization manager of the synchronization group [5].
This synchronization manager notifies the playback position
to the other clients. The disadvantage of this approach is that
the synchronization accuracy depends on the network delay
of the synchronization interface. Another difference with our
framework is that the playback of the clients in the same
synchronization group, is started when all the clients are able
to start their playback. Also, when a client experiences a
freeze, every client in the synchronization group is paused.
Rainer et al. proposed a self-organized distributed framework
for adaptive media streaming [6]. The MPD-file is extended
with information about the other clients in the synchronization.
With this information, the clients are able to negotiate a
common playback position to which they synchronize. Com-
pared to this distributed control scheme, we use a master-slave
approach, where the slaves in the synchronization group use
the playback position of the master as an anchor point. By
introducing a Synchronization Server, the clients do not have to
be aware of each other. This reduces the amount of connections
needed to achieve synchronization among the clients compared
to a purely peer-to-peer approach.

B. Adaptive Media Playout
Adaptive Media Playout (AMP) was originally used to

avoid buffer underflows and overflows. AMP allows the client
to buffer less data and, thus, introduces less delay to reach
a given playback reliability [7], [8]. Instead of skipping or
pausing the content to achieve a certain synchronization point,
Montagud and Boronat proposed to use AMP to acquire
an overall synchronization between distributed clients [9].
Recently, an AMP algorithm was introduced that takes the
visual and acoustic features of the content into account so that
the probability of a user noticing the change in the playback
rate is low [10]. This algorithm assumes that the clients can
easily subtract the visual and acoustic features from the content
that is being played, which cannot be taken for granted. In
Section-III-D we introduce an AMP-algorithm that takes into
account the current buffer filling level and an estimation of
the segment download time to minimize the synchronization
time and avoid video freezes.

C. HAS over HTTP/2
In February 2015, the new HTTP/2 standard was published

as an IETF RFC [11]. HTTP/2 is based on Google’s SPDY
protocol, whose main goal was to improve the loading time
of web pages [12]. HTTP/2 includes new features such as
request-response multiplexing, header compression and server
push to improve the performance of standard HTTP. Mueller
et al. were the first to investigate HTTP/2 in a video streaming
scenario [13]. The existing standard HTTP layer is replaced
with SPDY. They show that, due to the overhead that gets
introduced due to Secure Socket Layer (SSL) and the framing
of SPDY, the benefits of using header compression, a persistent
connection and pipelining are almost completely neglected.
Wei et al. explored how new HTTP/2 features can be used
to improve HAS [14]. By using the server push feature in
HTTP/2, they are able to avoid the request explosion problem
while lowering latency by reducing the segment duration.
A disadvantage to this approach is that, when the client
switches to a new quality, there are still segments being pushed
at the previous quality. Fablet et al. introduced DASH fast
start, which lowers the startup delay of a DASH video [15].
Huysegems et al. presented ten novel HTTP/2-based methods
to improve the QoE of HAS [16]. Recently, van der Hooft et
al. introduced an HTTP/2 push-based approach for Scalable
Video Coding (SVC) adaptive streaming where only the base
layer of the SVC-encoded video is pushed from server to
client [17]. This solution allows to eliminate one RTT cycle
for every video segment, which has a significant impact on
the user’s QoE. However, a limited amount of quality repre-
sentations can be used because of SVC’s encoding overhead.

D. Dynamic Segment Duration in HAS
In standard HAS, the client reacts to varying network condi-

tions by changing the requested video quality. More recently,
the use of variable segment duration for HAS has emerged.
By using dynamic segment duration instead of fixed segment
duration, Yun and Chung show that a seamless playback can
be provided while reducing the buffering delay [18].

By using super-short segments, a lower start-up delay and a
lower synchronization time for the clients can be achieved.

Fig. 2: The architecture of the proposed framework

Super-short segments however introduce an encoding over-
head. In HAS, every segment starts with an Instantaneous
Decoding Refresh (IDR) frame in order to be decoded inde-
pendently of other segments. For video coding standards such
as H.264 Advanced Video Coding (AVC) and H.265 High
Efficiency Video Coding (HEVC), the encoding efficiency of
an IDR frame is significantly lower than the efficiency of
frames composed of P or B slices. As a result, a higher
bit rate is needed to reach the same visual quality as for
longer segments. To overcome this issue, Consequently, in
order to reduce the encoding overhead, super-short segment
are only used for the lowest quality representation. As most
rate adaptation heuristics start streaming at the lowest quality,
this choice allows to reduce the start-up and synchronization
time, while maintaining the overhead limited.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

Our proposed framework consists of four essential com-
ponents, discussed in four subsections below. As shown in
Figure 2, each client first needs to synchronize its local time to
common wallclock. This clock synchronization is discussed in
Section III-A. Next, the client joins a synchronization group to
synchronize a video session as explained in Section III-B. The
amount of time it takes the clients to synchronize to a reference
signal strongly depends on the method used to deliver the
video. In Section III-C, we therefore present a hybrid method
using HTTP/2 which enables clients to synchronize faster with
the master. Finally, as part of the playback synchronization, a
new AMP logic is described in Section III-D, which aims
to carry out the process of adjusting the media playback
rate at the clients to further reduce synchronization times.
Figure 3 and 4 show the messages that are exchanged at the
beginning of a video session, right after the web page (where
the video is embedded in), is loaded until the video playback
is synchronized.

A. Clock Synchronization
In order for the clients to synchronize their playback,

they first have to share a common wallclock. Although the
internal clock of most devices connected to the Internet are
synchronized by using the Network Time Protocol (NTP),
accurate clock synchronization cannot be guaranteed due to
clock drift or a firewall blocking the service. Arntzen and
Borch propose a new programming model for precisely timed
Web applications [19]. Timing objects located at the clients
are synchronized with a timing object hosted online by a

Fig. 3: Sequence diagram of the messages between a client
and the Synchronization Server

specialized service. This concept is based on the Media
State Vector (MSV), a multi-device timing mechanism which
allows timed operations across Web pages hosted by different
devices [20]. An important condition for the synchronization
is that the clock values are increased with a constant rate.
For this reason, the used clock has to be independent of the
system time, which might be adjusted manually or skewed by
software like NTP. Apart from the system clock, the clients
keep a timer, the High Resolution Timer (HRT) API 2, which
is included in the major Web browsers and is not skewed when
the system time changes. It is the position of this timer that
will be synchronized with the servers timer.

B. Group Synchronization
A synchronization group consists of clients whose playback

has to be synchronized to a given synchronization point. The
way that the clients are divided in synchronization group can
be expanded to multiple use cases, where group selection is (1)
performed by the clients, setting a group id in the query of the
web page, (2) handled by the Synchronization Server based on
the played content, or (3) done by the Synchronization Server
based on the clients’ geographical locations. Among the clients
in a synchronization group, one client is selected to be the
master client to whom the other clients, so called slave clients,

2http://w3c.github.io/hr-time/

will synchronize. In all cases described above, the client who
joins the synchronization group first is selected as the master.
The master’s only task is to provide a reference signal to the
Synchronization Server for clients who will join the group
in the future. As such, when a master leaves a group, this
does not affect other clients in the group. Clients belonging
to the same synchronization group communicate directly to
a Synchronization Server. The exchanged messages between
a slave client and the Synchronization Server are illustrated
Figure 3. When a new client wants to join a synchronization
group, it sends a join group-message to the Synchronization
Server consisting of a group id. The server answers with a
role group-message indicating whether the client is a master
or a slave in the synchronization group. In the former case,
the client can start the video session without synchronization.
As soon as the master has started its video playout, it sends
a sync reference-message to the Synchronization Server. This
message contains the index number of the first segment the
master played and the timestamp indicating when the playout
started. Both the timestamp and the index are used as a
reference signal for the entire synchronization group. In case
the client is a slave, the Synchronization Server also returns a
role group-message, which now includes the reference index
and the reference timestamp of the master client. For ease
of use, we assume that the address of the Synchronization
Server is known by the clients. In future work, the address
could be stored within the MPD. The playback synchronization
is handled by the slave clients themselves. Based on the
reference index and timestamp of the master, the slave clients
calculate which segment the master is currently playing. The
first segment a slave client requests to the HAS media server,
is then the next segment the master is going to play. If the
slave client receives this segment before the master has started
the playback of the segment, the client waits and starts the
playback of the segment at the same moment as the master.
If the segment is received after the master has started playing
it, then the slaves apply a new AMP logic to increase the
playback rate and reach synchronization with the master. This
logic is explained in Section III-D.

C. Video Delivery
Traditionally, HTTP/1.1 is used to deliver video segments

from a HAS media server to a client. As an alternative to
achieve faster synchronization, we propose a hybrid approach
which relies on HTTP/2’s server push feature, in combination
with super-short video segments.

In order for a client to start the playback of a video, the
video buffer filling level has to exceed a certain threshold.
The time it takes for a slave client to synchronize to the
reference signal therefore strongly depends on the amount of
time it takes for the first segments to be fetched. Using a short
segment duration can strongly reduce the synchronization
time, since short segments can be downloaded faster. A lower
segment duration however results in a significant increase of
the number of HTTP GET requests, which would in turn in-
crease the load on both the network and the HAS server. Also,
this approach is susceptible to large RTTs: because segments
are requested sequentially, an RTT is lost between subsequent
transfers. By using the push feature of the HTTP/2 protocol,

Fig. 4: Sequence diagram of the messages between a client,
the Client Proxy and the HAS Server

the HAS client can request multiple segments at once to avoid
lost RTT cycles between subsequent retrievals, resulting in
a lower start-up delay [16]. In the proposed approach, the
lowest video quality representation is provided with super-
short video segments. Because every segment has to start with
an IDR frame in order to be decoded independently from
other segments, the encoding efficiency of an IDR frame is
significantly lower when using short segments compared to
longer segments. As a result, a higher bit rate is needed to
reach the same visual quality as for longer segments. This is
why we chose to only use super-short segments for the lowest
video quality.

There are however some issues related to server push
feature. The Web clients are not aware of the segments that
are already pushed by the HAS server, which can cause the
client to request a segment that is being pushed by the server
but not yet received, leading to waist of bandwidth. That
is why, similar to work by Fablet et al., we place a Client
Proxy between the client and the HAS server that is able to
cache the pushed segments [15]. The Client Proxy is also
able to hang a request from the client for a pushed request
that did not arrive yet and forward it when it does arrive. As
soon as the client knows the index of the first segment to be
played , it sends a request for the MPD to the Client Proxy
indicating to start pushing segments starting from that index,
over HTTP/1.1. The Client Proxy forwards this request as a
push request to the HAS server over HTTP/2. Also mentioned
in this request is the amount of segments k that the server
needs to push to the Client Proxy. In order to switch to a larger
segment duration when the pushed segments have arrived, the
end time of the last segment should be the start time of a
large segment. Therefore, the amount of segments to push is
calculated as k + δ. where k is a fixed amount of segments
and δ is the amount of short segments needed to complete
a long segment. The MPD, the initialization segment of the
lowest quality representation and the first k + δ super-short
segments are pushed from the HAS server to the Client Proxy

Fig. 5: Experimental setup

using HTTP/2 push [21]. This way, the client is able to start its
playback faster and consequently reduce the synchronization
time. Once the first k+ δ segments are fetched, the client can
request the following segment with a longer segment duration.

D. AMP Logic

When a slave client is not in sync with the master, either
at the start of a video session or when a freeze or a pause
occurred, the client increases the playout rate to synchronize
with the master. As an initial proposition, the playout rate is
then doubled in order to both reduce the synchronization time,
and avoid depleting the video player buffer. In order to prevent
a buffer starvation after or during fast playout, we introduce
a buffer panic threshold Btr. If the buffer level at time t is
B(t) and the difference in time with the master at time t is
∆T (t), we define the following condition:

B(t) > Btr + 2 ∗ ∆T (t) (1)

If this condition is met, we double the playout rate to reach
synchronization. If the condition is not met, we wait until the
next segment is fetched and check condition (1) again.

IV. EVALUATION AND DISCUSSION

A. Experimental Setup

In our evaluation, a part of a football match is used. The
video sequence has a total length of 620 seconds with a
frame rate of 24 FPS. It is encoded in variable bitrate with
H.264/AVC using five different quality representations, with
nominal bit rates of 700, 1200, 1800, 2900 and 4600 kb/s for
segments with a segment duration of 2000 ms. The video is
provided with a segment duration of both 500 and 2000 ms.
The average encoding overhead for 500 ms segments is 17.5%.
With our hybrid approach, the lowest quality representation
is segmented with both 500 ms and 2000 ms, the other
representations use segments of 2000 ms. Our experiments are
performed on the iMinds iLab.t Virtual Wall platform3. The
Virtual Wall facilities consist of 100 nodes (dual processor,
dual core servers) interconnected via a non-blocking 1.5 Tb/s
VLAN Ethernet switch. The network topology is shown in
Figure 5. It consists of twenty clients streaming video from a
HAS Server. The clients are connected with a Synchronization
Server to enable the synchronization of their video playback.
On link LCS , the bandwidth is limited to 1 Gb/s and the RTT

3http://ilabt.iminds.be/iminds-virtualwall-overview

is fixed to 50 ms. The bandwidth on link LCH is limited to 100
Mb/s and several values of the RTT are tested. On links LHM

and LHS , the bandwidth is equally limited to several values
of throughput to evaluate the performance of the proposed
framework in different network scenarios.

The clients are implemented on top of the DASH-IF Refer-
ence Player, a JavaScript implementation of the MPEG-DASH
standard4. This code has been extended to implement the pro-
posed synchronization framework. WebSocket functionality5

was added to the clients in order to communicate with the Syn-
chronization Server. Clients run the web page where the video
is embedded on a Google Chrome browser (v50.0.2661.75)
in headless mode. The Client Proxy is implemented on top
of NodeJS6. For HTTP/2, a NodeJS implementation is used7.
The Client Proxy acts as an HTTP/1.1 server towards each
client and an HTTP/2 client towards the HAS server.

The HAS media server is based on the Jetty web server8

and was extended to provide support for HTTP/2. When the
server receives a push request, k consecutive segments are
pushed to the client over HTTP/2. The HAS media server
also stores the web page on which the video is embedded. The
Synchronization Server is a Jetty-based WebSocket server. It
selects a synchronization group for a new client depending on
the URL of the MPD, which is composed in the join group-
message. Hence, clients which request the same MPD, belong
to the same synchronization group.

The external timing object to synchronize the clocks of
the clients (cf. Section 3-A) is written in Python and the
communication with the video clients is carried out over the
WebSocket protocol. The external timing object is co-located
with the Synchronization Server.

B. Evaluation Metrics
We compare the performance of the proposed HTTP/2-

based approach with HTTP/1.1. First, we compare the syn-
chronization time, defined as the time between the loading
of the web page and the moment at which the slave client
is synchronized with the master client, expressed in seconds.
Second, the average video quality, expressed in a number
between 0 and 4. We also evaluate the impact of the proposed
approaches on the synchronization accuracy. Finally, we com-
pare the impact of different values of k on the synchronization
time. The considered video trace is streamed five times for
every configuration. The results are shown using the averages
of the twenty slave clients and the 95% confidence intervals.

C. Evaluation Results
Figure 6a shows the impact of the RTT on the synchro-

nization time using HTTP/1.1 with a segment duration of 500
ms and 2000 ms and our HTTP/2 hybrid approach where the
value of k is set to 8 segments. The buffer panic threshold is
set to 0.5 s for all approaches. The synchronization time is
similar for HTTP/1.1 with a segment duration of 500 ms and
HTTP/2, when the RTT is negligible. In this case, there is no

4http://mpeg.chiariglione.org/standards/mpeg-dash
5https://websocket.org/
6https://nodejs.org
7https://github.com/molnarg/node-http2
8https://webtide.com

TABLE I: A summary for the different approaches, comparing the results for an RTT of 150 ms, bandwidth of 2.5 Mb/s and
a buffer panic threshold of 0.5 s.

HTTP Segment duration [ms] Startup time [s] Synchronization time [s] Accuracy [s] Average video quality

HTTP/1.1 2000 2.11 ± 0.03 2.78 ± 0.12 0.011 ± 0.001 1.95 ± 0.00
HTTP/1.1 500 2.02 ± 0.02 5.31 ± 0.24 0.010 ± 0.001 1.40 ± 0.00
HTTP/2 k=8 hybrid 1.66 ± 0.03 2.24 ± 0.11 0.009 ± 0.002 1.95 ± 0.00

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150

S
y
n
ch

ro
n
iz

at
io

n
 t

im
e

[s
]

Round-trip time [ms]

HTTP/1.1 2000 ms

HTTP/1.1 500 ms

HTTP/2 k=8

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5

S
y
n
ch

ro
n
iz

at
io

n
 t

im
e

[s
]

Bandwidth [Mb/s]

150 ms RTT HTTP/1.1

150 ms RTT HTTP/2 k=8

 0 ms RTT HTTP/1.1

 0 ms RTT HTTP/2 k=8

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.5 1 2 4

S
y
n
ch

ro
n
iz

at
io

n
 t

im
e

[s
]

Buffer panic threshold [s]

HTTP/2 k=4

HTTP/2 k=8

HTTP/2 k=12

HTTP/2 k=16

(c)

Fig. 6: Impact of the RTT, bandwidth and buffer panic threshold on the synchronization time. Unless the values are variable,
the bandwidth is fixed to 2.5 Mb/s, the RTT is 150 ms and the segment duration is 2000 ms.

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

A
v
er

ag
e

v
id

eo
 q

u
al

it
y

Round-trip time [ms]

HTTP/1.1 2000 ms

HTTP/2 k=8

HTTP/1.1 500 ms

Fig. 7: Impact of the RTT on the average video quality, for
HTTP/1.1 with a segment duration of 500 ms and 2000 ms
and HTTP/2. The bandwidth is fixed to 2.5 Mb/s.

difference between pushing and pulling the segments. When
the RTT increases, this will influence the startup time. As a
result, it will take more time for the client’s buffer filling level
to meet condition (1) and thus increase its playout rate.

Figure 6b shows the impact of an increasing bandwidth
on the client’s synchronization time, for both a negligible
RTT and an RTT of 150 ms comparing HTTP/1.1 with a
segment duration of 2000 ms and our HTTP/2 approach.
Both for a negligible RTT and an RTT of 150 ms, our
HTTP/2 is able to synchronize its video playout faster. Because
the encoding overhead associated with super-short segments
has a higher impact when the available bandwidth is small,
the difference between the two methods increases with an
increasing bandwidth. In Figure 6c, the impact of an increasing
buffer panic threshold is shown for HTTP/2 where different
values of k are evaluated. For a panic threshold of 0.5 s,
the synchronization time is higher for k equals 4 segments,
because the condition for the client to increase its playout rate
will not yet be met after the first four segments are loaded.
For an increasing buffer panic threshold, more segments need

to be loaded to meet this condition. That is why higher values
for k have a lower synchronization time.

In Figure 7, finally, the impact of the RTT on the average
video quality is shown. When the RTT increases, the average
video quality for HTTP/1.1 with a segment duration of 500
ms is significantly lower compared to the other methods.
Using HTTP/2, the average quality is 1.95 for an RTT of 300
ms. Bandwidth utilization is significantly higher in this case
because the first k+δ segments are pushed by the HAS server.
With this approach, the average video quality is more or less
similar to HTTP/1.1 with a segment duration of 2000 ms.

A summary is shown in Table I for all approaches with
a bandwidth of 2.5 Mb/s, an RTT of 150 ms and a panic
threshold of 0.5 s. We conclude that the different approaches
do not have an impact on the synchronization accuracy, which
has an average value of 10 ms. If we compare the startup
time for HTTP/1.1 with a segment duration of 500 ms and
HTTP/2, a reduction of 21.3% is observed. This means that
the HTTP/2-based client is able to start the playout of the
video faster and thus reach synchronization faster.

V. CONCLUSION

In this paper, we propose a Web-based framework which en-
ables HAS clients to synchronize their playback. Furthermore,
we present a novel hybrid approach for adaptive streaming to
allow fast synchronization, which relies on HTTP/2’s server
push in combination with super-short video segments. With the
HTTP/2 approach, we are able to lower the synchronization
time up to 19.4% when bandwidth is limited to 2.5 Mb/s and
an RTT of 150 ms, with a reduced start-up time of 21.3%.

VI. ACKNOWLEDGMENTS

The research was performed partially within the ICON
SHIFT-TV project (under grant agreement no. 140684). Jeroen
van der Hooft is funded by grant of the Agency for Innovation
by Science and Technology in Flanders (IWT).

REFERENCES

[1] Cisco Systems, “Cisco Visual Networking Index:
Forecast and Methodology, 2015-2020,” 2016. [Online].
Available: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-
481360.html

[2] D. Geerts, I. Vaishnavi, R. Mekuria, O. Van Deventer, and P. Cesar,
“Are We In Sync?: Synchronization Requirements for Watching Online
Video Together.” Proceedings of the 2011 Annual Conference on Human
Factors in Computing Systems, pp. 311–314, 2011.

[3] M. Montagud, “Inter-Destination Multimedia Synchronization:
Schemes, Use Cases and Standardization,” Multimedia Systems, no.
November 2012, 2012.

[4] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-
gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2014.

[5] V. Jung, S. Pham, and S. Kaiser, “A Web-Based Media Synchronization
Framework for MPEG-DASH,” 2014 IEEE International Conference on
Multimedia and Expo Workshops, ICMEW 2014, pp. 1–2, 2014.

[6] B. Rainer and C. Timmerer, “Self-Organized Inter-Destination Multime-
dia Synchronization For Adaptive Media Streaming,” Proceedings of the
ACM International Conference on Multimedia - MM ’14, pp. 327–336,
2014.

[7] M. Kalman, E. Steinbach, and B. Girod, “Adaptive Media Playout
for Low-Delay Video Streaming over Error-Prone Channels,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 14,
no. 6, pp. 841–851, 2004.

[8] Y. F. Su, Y. H. Yang, M. T. Lu, and H. H. Chen, “Smooth Control of
Adaptive Media Playout for Video Streaming,” IEEE Transactions on
Multimedia, vol. 11, no. 7, pp. 1331–1339, 2009.

[9] M. Montagud and F. Boronat, “On The Use of Adaptive Media Playout
for Inter-Destination Synchronization,” IEEE Communications Letters,
vol. 15, no. 8, pp. 863–865, 2011.

[10] B. Rainer and C. Timmerer, “Adaptive Media Playout for Inter-
Destination Media Synchronization,” in 2013 Fifth International Work-
shop on Quality of Multimedia Experience (QoMEX), 2013, pp. 44–45.

[11] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” RFC 7540, 11 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7540.txt

[12] Google, “SPDY: An Experimental Protocol for a Faster Web,” Tech.
Rep., 2009. [Online]. Available: https://www.chromium.org/spdy/spdy-
whitepaper

[13] C. Mueller, S. Lederer, C. Timmerer, and H. Hellwagner, “Dynamic
Adaptive Streaming over HTTP/2.0,” 2013 IEEE International Confer-
ence on Multimedia and Expo (ICME), pp. 1–6, 2013.

[14] S. Wei and V. Swaminathan, “Cost Effective Video Streaming Using
Server Push over HTTP 2.0,” in 2014 IEEE 16th International Workshop
on Multimedia Signal Processing (MMSP), 2014, pp. 1–5.

[15] Y. Fablet, E. Nassor, J. Taquet, R. De, and T. Lambert, “DASH Fast
Start Using HTTP/2,” in NOSSDAV’15, 2015, pp. 25–30.

[16] R. Huysegems, J. van der Hooft, T. Bostoen, P. R. Alface, S. Petrangeli,
T. Wauters, and F. De Turck, “HTTP/2-Based Methods to Improve the
Live Experience of Adaptive Streaming,” MM ’15 Proceedings of the
23rd ACM international conference on Multimedia, pp. 541–550, 2015.

[17] J. van der Hooft, S. Petrangeli, N. Bouten, T. Wauters, R. Huysegems,
T. Bostoen, and F. De Turck, “An HTTP/2 Push-Based Approach for
SVC Adaptive Streaming,” in NOMS 2016, 2016, pp. 104–111.

[18] D. Yun, “Dynamic Segment Duration Control for Live Streaming
Over HTTP,” in International Conference on Information Networking
(ICOIN), Kota Kinabalu, 2016, pp. 206–210.

[19] I. M. Arntzen and N. T. Borch, “Data-Independent Sequencing with the
Timing Object,” in MMSys16, Klagenfurt, Austria, 2016.

[20] I. M. Arntzen, N. T. Borch, and C. P. Needham, “The Media State
Vector,” Proceedings of the 5th Workshop on Mobile Video - MoVid
’13, p. 61, 2013.

[21] S. Wei and V. Swaminathan, “Low Latency Live Video Streaming over
HTTP 2.0,” NOSSDAV’14, pp. 1–5, 2014.

