2,035 research outputs found

    Development of Telephone-based e-Learning Portal

    Get PDF
    The proliferation of mobile phones in Nigeria, particularly among the student community, has continued to inspire the development and delivery of e-Learning applications. Most of the existing web-based e-Learning applications do not support nomadic voice-based learning (i.e. learning on the move through voice), and consequently do not provide a speedy access to information or enquiries on demand. Internet access is required to get every bit of information from most school portal system, which is not directly available to everyone. Lack of provision for voice in the existing web applications excludes support for people with limited capabilities such as the visually impaired and physical disabilities. In this paper, we present a design and development of a prototype telephone-based e-Learning portal that will be used for course registration and examination. This study is part of an ongoing e-Learning project involving the following modules: enrollment, course registration and examination, enquiries/information, messaging/collaboration, e-Learning and library. The prototype application was developed using VoiceXML for the voice user interface(VUI), PHP for database queries, Apache as the middle-ware and MySQL database as back-end. A unified modelling language (UML) was used to model and design the application. The proposed e-Learning system will compliment the web-based system in other to meet the needs of students with a range of disabilities such as visual impairment, repetitive strain injury, etc, that make reading and writing difficult. It also makes multiple platforms available to all users as well as boosting access to education for the physically challenged, particularly the sight impaired in the developing countries of the world. In institutions where students are not allowed to use mobile phones or where cost is an issue, then the alternative is the use of PC-phone

    Real Laboratories for Distance Education

    Get PDF
    Providing distance laboratory-based courses is becoming critical for distance technical education. In this work, we describe remote laboratories in digital system courses. While the hardware is based on widely used programmable logic, the Internet interfaces include those for remote development, testing and debugging as well as the cooperative work environment. Special attention has been paid to the objectivity of evaluating the remote cooperative work. The web tools for project progress evaluation, self- and group- assessment and the automated hardware support are being developed. Previous work consisted mainly of providing simulated environments or prefabricated circuits. The productivity and accessibility of these tools was greatly enhanced by using off-the-shelf hardware, software and networking elements

    Remote Laboratory for E-Learning of Systems on Chip and Their Applications to Nuclear and Scientific Instrumentation

    Get PDF
    Configuring and setting up a remote access laboratory for an advanced online school on fully programmable System-on-Chip (SoC) proved to be an outstanding challenge. The school, jointly organized by the International Centre for Theoretical Physics (ICTP) and the International Atomic Energy Agency (IAEA), focused on SoC and its applications to nuclear and scientific instrumentation and was mainly addressed to physicists, computer scientists and engineers from developing countries. The use of e-learning tools, which some of them adopted and others developed, allowed the school participants to directly access both integrated development environment software and programmable SoC platforms. This facilitated the follow-up of all proposed exercises and the final project. During the four weeks of the training activity, we faced and overcame different technology and communication challenges, whose solutions we describe in detail together with dedicated tools and design methodology. We finally present a summary of the gained experience and an assessment of the results we achieved, addressed to those who foresee to organize similar initiatives using e-learning for advanced training with remote access to SoC platforms

    E-Learning

    Get PDF
    E-learning enables students to pace their studies according to their needs, making learning accessible to (1) people who do not have enough free time for studying - they can program their lessons according to their available schedule; (2) those far from a school (geographical issues), or the ones unable to attend classes due to some physical or medical restriction. Therefore, cultural, geographical and physical obstructions can be removed, making it possible for students to select their path and time for the learning course. Students are then allowed to choose the main objectives they are suitable to fulfill. This book regards E-learning challenges, opening a way to understand and discuss questions related to long-distance and lifelong learning, E-learning for people with special needs and, lastly, presenting case study about the relationship between the quality of interaction and the quality of learning achieved in experiences of E-learning formation

    The MINERν\nuA Data Acquisition System and Infrastructure

    Full text link
    MINERν\nuA (Main INjector ExpeRiment ν\nu-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERν\nuA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERν\nuA data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.Comment: 34 pages, 16 figure

    Innovative Remote Smart Home for Immersive Engagement

    Get PDF
    An openly accessible, remotely operated smart home will be demonstrated as a tool for students to learn about residential energy usage and environmental impacts. Specifically, the demonstration unit provides classrooms an engaging experience that teaches students about energy efficiency technologies and how their behavior will have an impact on energy usage and the environment. It is expected that as students become aware of and understand how various energy efficiency technologies work barriers to their adoption will be lowered. The use of a web accessible, remote laboratory dramatically reduces lab setup time and equipment cost/space requirements for educators. Special attention is given to the web based interface to ensure the system is easy to use and requires only a standard web browser in order to operate. The interface also includes a video link so the user can feel that they are working with real hardware in real time and not using a simulation or virtual facility. An associated website provides a self-scheduling tool to provide access to the system and a resource for related background information on smart grid and residential energy efficiency technologies. In addition, supporting instructional materials that coincide with NGSS standards are available via download

    Online Laboratory Course using Low Tech Supplies to Introduce Digital Logic Design Concepts

    Get PDF
    This paper describes a Digital Logic Design Laboratory Course developed to engage students with hardware systems within an online setting. This is a junior level core course for students from Computer Science (CS), Computer Engineering (CE) and Electrical Engineering (EE). Hence, the laboratories are designed to provide the hands-on experience of breadboarding, testing and debugging essential to CE and EE while accommodating CS students with no prior hardware experience. Commercially available low-cost electronic trainers (portable workstations) are loaned to the students in addition to basic electronic components. To ensure a strong foundation in debugging, prior to utilizing these workstations, students are introduced to the concepts of design, build, test and debug through everyday stationary supplies and educational toys like Snap Circuits. Results from students\u27 surveys regarding their perception of such an introduction as well as their eventual confidence in breadboarding digital logic systems is discussed. The lab structure in context of the course objectives and its implementation in an online classroom is presented. Some of the student work is included for demonstration

    Overview of modern teaching equipment that supports distant learning

    Get PDF
    Laboratory is a key element of engineering and applied sciences educational systems. With the development of Internet and connecting IT technologies, the appearance of remote laboratories was inevitable. Virtual laboratories are also available; they place the experiment in a simulated environment. However, this writing focuses on remote experiments not virtual ones. From the students’ point of view, it is a great help not only for those enrolling in distant or online courses but also for those studying in a more traditional way. With the spread of smart, portable devices capable of connection to the internet, students can expand or restructure time spent on studying. This is a huge help to them and also allows them to individually divide their time up, to learn how to self-study. This independent approach can prepare them for working environments. It offers flexibility and convenience to the students. From the universities’ point of view, it helps reduce maintenance costs and universities can share experiments which also helps the not so well-resourced educational facilities

    Collaborative development of remote electronics laboratories in the ELVIS ilab

    Get PDF
    Remote laboratories represent a significant value to engineering curricula in a variety of cases. Whether it is a complement to a hands-on experience or a substitute when a traditional lab is not feasible, remote laboratories can be a valuable educational resource. Since 1998, the MIT iLab Project has worked to increase the quality and availability of remote laboratories. Using the iLab Shared Architecture, developers of new labs can leverage a set of generic support functions and then share those labs easily and with minimal administrative cost. More recently, the iLab Project, in partnership with Obafemi Awolowo University in Nigeria, Makerere University in Uganda and the University of Dar-es-Salaam in Tanzania and in coordination with the Maricopa Advanced Technology Education Center (MATEC), has focused on building iLabs around the National Instruments Educational Laboratory Virtual Instrumentation Suite (ELVIS) platform. The ELVIS is a low-cost, small-footprint unit that contains most of the common test instruments found in a typical electrical engineering lab. By coupling the ELVIS with iLabs, a variety of remote electronics laboratories can be built and shared around the world. Using this common hardware/software platform, participants in the iLab Project at different levels of the educational spectrum have developed experiments that meet their individual curricular needs and are able to host them for use by other peer institutions. Not only does this increase the variety of ELVISbased iLabs, but it also spurs the creation of teams that can then build other, more diverse iLabs and substantively participate in project-wide collaborative development efforts. Through such coordinated efforts, iLabs can provide rich practical experiences for studentsMaricopa County Community College District. Maricopa Advanced Technology Education CenterCarnegie Corporation of New YorkMicrosoft CorporationNational Science Foundation (U.S.) (award 0702735)Singapore-MIT Alliance for Research and Technology Cente
    • …
    corecore