6,261 research outputs found

    Increasing Resiliency to Natural Hazards—A Strategic Plan for the Multi-Hazards Demonstration Project in Southern California

    Get PDF
    The U.S. Geological Survey (USGS) is initiating a new project designed to improve resiliency to natural hazards in southern California through the application of science to community decision making and emergency response. The Multi-Hazards Demonstration Project will assist the region’s communities to reduce their risk from natural hazards by directing new and existing research towards the community’s needs, improving monitoring technology, producing innovative products, and improving dissemination of the results. The natural hazards to be investigated in this project include coastal erosion, earthquakes, floods, landslides, tsunamis, and wildfires. Americans are more at risk from natural hazards now than at any other time in our Nation’s history. Southern California, in particular, has one of the Nation’s highest potentials for extreme catastrophic losses due to natural hazards, with estimates of expected losses exceeding $3 billion per year. These losses can only be reduced through the decisions of the southern California community itself. To be effective, these decisions must be guided by the best information about hazards, risk, and the cost-effectiveness of mitigation technologies. The USGS will work with collaborators to set the direction of the research and to create multi-hazard risk frameworks where communities can apply the results of scientific research to their decision-making processes. Partners include state, county, city, and public-lands government agencies, public and private utilities, companies with a significant impact and presence in southern California, academic researchers, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), and local emergency response agencies. Prior to the writing of this strategic plan document, three strategic planning workshops were held in February and March 2006 at the USGS office in Pasadena to explore potential relationships. The goal of these planning sessions was to determine the external organizations’ needs for mitigation efforts before potential natural hazard events, and response efforts during and after the event. On the basis of input from workshop participants, four priority areas were identified for future research to address. They are (1) helping decision makers design planning scenarios, (2) improving upon the mapping of multiple hazards in urban areas, (3) providing real-time information from monitoring networks, and (4) integrating information in a risk and decision-making analysis. Towards this end, short-term and out-year goals have been outlined with the priorities in mind. First-year goals are (1) to engage the user community to establish the structures and processes for communications and interactions, (2) to develop a program to create scenarios of anticipated disasters, beginning in the first year with a scenario of a southern San Andreas earthquake that triggers secondary hazards, (3) to compile existing datasets of geospatial data, and (4) to target research efforts to support more complete and robust products in future years. Both the first-year and out-year goals have been formulated around a working-group structure that builds on existing research strengths within the USGS. The project is intended to demonstrate how developments in methodology and products can lead to improvement in our management of natural hazards in an urban environment for application across the Nation

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Post-Fire Sedimentation and the Risk to Sierra Nevada Water Supply

    Get PDF
    In California, the Sierra Nevada region is crucial for the state’s water supply. Unfortunately, forested areas in important Sierra Nevada watersheds are being increasingly threatened by the growing risk of large, severe wildfires and in turn so are the water supplies that they support. This paper addresses how these large fires facilitate sediment transport by removing soil’s vegetative and organic matter layers, changing soil properties, and inducing soil water repellency. Erosion and sedimentation are inevitable post-fire processes, and the predicted increase in large, severe fires and subsequent sedimentation are putting California’s water supply at risk. The risks these fires pose include degraded water quality, threats to infrastructure, and reductions in reservoir capacity. The region has evidence of post-fire sedimentation and documented sediment-laden flooding and debris flows, but there are huge data gaps in baseline data and very limited post-fire sediment monitoring. This paper also evaluates how post-fire forest management influences sediment transport. Studies have shown that different erosion control measures have varying levels of effectiveness, but more studies should be employed to better evaluate theses measures and new erosion control strategies should be developed. Salvage logging is a common post-fire practice and has the potential to enhance sediment transport through soil disturbance and greater reductions in ground cover. Post-fire sedimentation will continue to threaten important Sierra Nevada watersheds, and a greater emphasis needs to be placed on sediment monitoring and more effective forest management both before and after a fire

    Community wildfire protection plan for Flagstaff and surrounding communities in the Coconino and Kaibab National Forests of Coconino County, Arizona

    Get PDF
    Community protection and preparedness is a critical step toward mitigating immediate fire hazards and restoring adjacent wildlands. A combination of fuel management, FireWise standards, and appropriate fire-use and/or suppression response across ownerships within-and-adjacent to at-risk communities will reduce threats to life and property, protect values-at-risk, and create a safe context for the use of fire in subsequent forest ecosystem restoration efforts. This plan outlines actions needed to prepare and equip the greater Flagstaff community to live and thrive within our fire-adapted ponderosa pine forests

    Joining the dots: hydrology, freshwater ecosystem values and adaptation options

    Get PDF
    AbstractThe objective of this research was to investigate and test the necessary steps in developing an adaptation planning framework for freshwater biodiversity. We used Tasmania as a test case to demonstrate how downscaled climate model outputs could be integrated with spatially resolved hydrological models and freshwater biodiversity data. This enabled us to scope adaptation actions at local, regional and state scales for Tasmania, and to explore how priorities might be set.To achieve this integration we quantified how different climate change scenarios could affect the risks to biodiversity and ecosystem values (‘biodiversity assets’) in freshwaters, the scope and types of adaptation actions, and assessed the strengths and weaknesses of the policy and planning instruments in responding to climate change.We concluded that downscaled climate modelling, linked with modelling of catchment and hydrological processes, refines projections for climate-driven risks to aquatic environments. Spatial and temporal hazards and risks can now be compared at a variety of scales, as well as comparisons between biodiversity assets (e.g. relative risk to riparian vegetation v. in-stream biota). Uncertainties can be identified and built into adaptation processes. Notwithstanding this progress, we identified a number of issues that need to be addressed in order to increase confidence in this process.The main issues for improved and timely modelling are: frameworks for using and downscaling outputs from improved global climate models as they become available; better data on thermal tolerances of freshwater biota; and, improved methods for predicting key water temperature variables from air temperature and other biophysical predictors. Improvements are also needed in updating and maintaining high quality biodiversity data sets, and better spatially explicit information on the contributions of groundwater to surface waters and rates of recharge.The list of adaptation options available is extensive, but the key challenge is to organise these options so that stakeholders are not overwhelmed. Scenario modelling that incorporates explicit tools for comparing costs, benefits, feasibility and social acceptability should help with setting priorities but require further development.A review of current Australian policies revealed a variety of responses driven by both water reform and climate change agendas. Many agencies are actively revising their policies to accommodate adaptation. However, we note that much of the reform of the water sector in the last 10–15 years has aimed to improve certainty for non-environmental water uses. Under the National Water Initiative, governments have agreed that entitlement holders should bear the risks of reduced volumes or reliability of their water allocations as a result of changes in climate. The key opportunity for adaptive uptake of climate adaptations is by developing and periodically reviewing water management planning tools. Pathways need to be developed for integrating the traditional evolution of planning and policy with the needs for climate change adaptation for aquatic ecosystems. Formal mechanisms for the uptake of knowledge about identified risks into policy and legislative instruments remain under-developed. An even bigger challenge is to integrate multiple adaptation strategies (sometimes at different scales) to achieve specific adaptation objectives within regions or catchments—especially where a mix of water management and non-water management is required

    Climate change and disaster impact reduction

    Get PDF
    Based on papers presented at the 'UK - South Asia Young Scientists and Practitioners Seminar on Climate Change and Disaster Impact Reduction' held at Kathmandu, Nepal on 5-6 June, 2008
    • 

    corecore