4,308 research outputs found

    A Layered Software Architecture for the Management of a Manufacturing Company

    Get PDF
    In this paper we describe a layered software architecture in the management of a manufactur-ing company that intensively uses computer technology. Application tools, new and legacy, after the updating, operate in a context of an open web oriented architecture. The software architecture enables the integration and interoperability among all tools that support business processes. Manufacturing Executive System and Text Mining tools are excellent interfaces, the former both for internal production and management processes and the latter for external processes coming from the market. In this way, it is possible to implement, a computer integrated factory, flexible and agile, that immediately responds to customer requirements.ICT, Service Oriented Architecture, Web Services, Computer-Integrated Factory, Application Software

    Towards the integration of enterprise software: The business manufacturing intelligence

    Get PDF
    Nowadays, the Information Communication Technology has pervaded literally the companies. In the company circulates an huge amount of information but too much information doesn’t provide any added value. The overload of information exceeds individual processing capacity and slowdowns decision making operations. We must transform the enormous quantity of information in useful knowledge taking in consideration that information becomes obsolete quickly in condition of dynamic market. Companies process this information by specific software for managing, efficiently and effectively, the business processes. In this paper we analyse the myriad of acronyms of software that is used in enterprises with the changes that occurred over the time, from production to decision making until to convergence in an intelligent modular enterprise software, that we named Business Manufacturing Intelligence (BMI), that will manage and support the enterprise in the futurebusiness manufacturing intelligence, enterprise resource planning; business intelligence; management software; automation software; decision making software

    The development and deployment of Common Data Elements for tissue banks for translational research in cancer – An emerging standard based approach for the Mesothelioma Virtual Tissue Bank

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in genomics, proteomics, and the increasing demands for biomarker validation studies have catalyzed changes in the landscape of cancer research, fueling the development of tissue banks for translational research. A result of this transformation is the need for sufficient quantities of clinically annotated and well-characterized biospecimens to support the growing needs of the cancer research community. Clinical annotation allows samples to be better matched to the research question at hand and ensures that experimental results are better understood and can be verified. To facilitate and standardize such annotation in bio-repositories, we have combined three accepted and complementary sets of data standards: the College of American Pathologists (CAP) Cancer Checklists, the protocols recommended by the Association of Directors of Anatomic and Surgical Pathology (ADASP) for pathology data, and the North American Association of Central Cancer Registry (NAACCR) elements for epidemiology, therapy and follow-up data. Combining these approaches creates a set of International Standards Organization (ISO) – compliant Common Data Elements (CDEs) for the mesothelioma tissue banking initiative supported by the National Institute for Occupational Safety and Health (NIOSH) of the Center for Disease Control and Prevention (CDC).</p> <p>Methods</p> <p>The purpose of the project is to develop a core set of data elements for annotating mesothelioma specimens, following standards established by the CAP checklist, ADASP cancer protocols, and the NAACCR elements. We have associated these elements with modeling architecture to enhance both syntactic and semantic interoperability. The system has a Java-based multi-tiered architecture based on Unified Modeling Language (UML).</p> <p>Results</p> <p>Common Data Elements were developed using controlled vocabulary, ontology and semantic modeling methodology. The CDEs for each case are of different types: demographic, epidemiologic data, clinical history, pathology data including block level annotation, and follow-up data including treatment, recurrence and vital status. The end result of such an effort would eventually provide an increased sample set to the researchers, and makes the system interoperable between institutions.</p> <p>Conclusion</p> <p>The CAP, ADASP and the NAACCR elements represent widely established data elements that are utilized in many cancer centers. Herein, we have shown these representations can be combined and formalized to create a core set of annotations for banked mesothelioma specimens. Because these data elements are collected as part of the normal workflow of a medical center, data sets developed on the basis of these elements can be easily implemented and maintained.</p

    The transregional innovation processes - the key challenge for the trans borders regions

    Get PDF
    The competitiveness of regions it is strong linked with innovation dynamics. This dynamics requires the involvement of different actors of the territory, namely, the set of actors with capacity and power to influence the territorial activities: the governance system. Thus, the vigorous attitude and participation of the firms and of institutional associative actors on innovation pressure the innovative performance of the territory. Hence, the aim of this paper is analyse the process of innovation in a transterritorial view and illustrate a perspective of innovation that reflect the better performance innovative of the territory depends of different characteristics of the milieu and evaluate the important conditions for dynamics of innovation. We use the results of survey applied to a vast set of firms and institutional/associative actors for distinguish profiles of involvement in innovation activities and for analyse and perceive which attributes or variables of territory are related with the best performance on innovation. The study looks at five sub regions of the transborder region of central region Portuguese and Spanish: Raia Central Ibérica (three Portuguese and two Spanish).

    BMC Cancer

    Get PDF
    BackgroundRecent advances in genomics, proteomics, and the increasing demands for biomarker validation studies have catalyzed changes in the landscape of cancer research, fueling the development of tissue banks for translational research. A result of this transformation is the need for sufficient quantities of clinically annotated and well-characterized biospecimens to support the growing needs of the cancer research community. Clinical annotation allows samples to be better matched to the research question at hand and ensures that experimental results are better understood and can be verified. To facilitate and standardize such annotation in bio-repositories, we have combined three accepted and complementary sets of data standards: the College of American Pathologists (CAP) Cancer Checklists, the protocols recommended by the Association of Directors of Anatomic and Surgical Pathology (ADASP) for pathology data, and the North American Association of Central Cancer Registry (NAACCR) elements for epidemiology, therapy and follow-up data. Combining these approaches creates a set of International Standards Organization (ISO) \ue2\u20ac\u201c compliant Common Data Elements (CDEs) for the mesothelioma tissue banking initiative supported by the National Institute for Occupational Safety and Health (NIOSH) of the Center for Disease Control and Prevention (CDC).MethodsThe purpose of the project is to develop a core set of data elements for annotating mesothelioma specimens, following standards established by the CAP checklist, ADASP cancer protocols, and the NAACCR elements. We have associated these elements with modeling architecture to enhance both syntactic and semantic interoperability. The system has a Java-based multi-tiered architecture based on Unified Modeling Language (UML).ResultsCommon Data Elements were developed using controlled vocabulary, ontology and semantic modeling methodology. The CDEs for each case are of different types: demographic, epidemiologic data, clinical history, pathology data including block level annotation, and follow-up data including treatment, recurrence and vital status. The end result of such an effort would eventually provide an increased sample set to the researchers, and makes the system interoperable between institutions.ConclusionThe CAP, ADASP and the NAACCR elements represent widely established data elements that are utilized in many cancer centers. Herein, we have shown these representations can be combined and formalized to create a core set of annotations for banked mesothelioma specimens. Because these data elements are collected as part of the normal workflow of a medical center, data sets developed on the basis of these elements can be easily implemented and maintained.1U19OH009077-01/OH/NIOSH CDC HHS/United StatesUL1 TR000005/TR/NCATS NIH HHS/United State

    Research on Multi-specialty Coordination, Multi-discipline and Multifunction Integration Oriented Modeling and Simulation Innovation Technology

    Get PDF
    AbstractThe paper mainly covers the connotations, the functions and the key techniques of the Aircraft Digital Cooperative Robust Integration Optimization Performance Simulation Technology. The Performance Simulation Airplane Integration Design Platform, which has been established by the Performance Simulation Airplane construction analysis, a series of Standard Specification Establishing, the key modules development and a series of the supporting work implementation. It can be customized and be extended, and it is easy to be demonstrated. The platform contains the engineering database including the Performance Simulation Airplane model, simulation process data, simulation results data, and so on. It also provides the closed development process from the initial design to the optimized design, and end to the final detail design. It carries out the configuration selection and performance analysis for the airplane various configurations under the product development requirements in the entire process. It is applicable for the cooperative simulation analysis about the General Configuration research, the Aerodynamic design, the Structure design, the Strength design and some system specialties. This technique system has brought revolutionary changes to the traditional technological concept and Architecture, and it has been proved that the design period of the product is shortened by more than 25%, and the simulation test period is also shortened by more than 25%

    A knowledge representation model to support concurrent engineering team working

    Get PDF
    This thesis demonstrates that a knowledge representation model can provide considerable support to concurrent engineering teams, by providing a sound basis for creation of necessary software applications. This is achieved by demonstrating that use of the knowledge representation model facilitates the capture, interpretation and implementation of important aspects of the multiple, diverse types of expertise which are essential to the successful working of concurrent engineering project teams. The varieties of expertise which can be modelled as instances of the knowledge representation model range from specialist applications, which support particular aspects of design, by assisting human designers with highly focused skills and knowledge sets, to applications which specialise in management or coordination of team activities. It is shown that both these types of expertise are essential for effective working of a concurrent engineering team. Examination of the requirements of concurrent engineering team working indicate that no single artificial intelligence paradigm can provide a satisfactory basis for the whole range of possible solutions which may be provided by intelligent software applications. Hence techniques, architectures and environments to support design and development of hybrid software expertise are required, and the knowledge representation model introduced in this research is such an architecture. The versatility of the knowledge representation model is demonstrated through the design and implementation of a variety of software applications

    Process improvement in a virtual organization focused on product development using collaborative environments

    Get PDF
    Collaborative Engineering Environments (CEE) have become really important in Virtual Organizations (VO) because they enable the coordination and collaboration among engineering groups, supported by tools and methodologies that enable intellectual capital sharing and engineering activities in real time, among organizations regardless of their locations -- A platform that integrates and facilitates the operation in Virtual Organizations focused in manufactured product development, is an important tool that supports a rapid respond to customers, and improve the communication among its members -- This paper present a way to improve business process in a VO based on the development and use of a CEE -- The methodology presented in this paper was implemented in a real manufacturing VO, improving the product transfer process: the coordinators of each business opportunity easily manage VO information, and VO partners were totally involved during the proces
    corecore