

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Knowledge Representation Model to Support

Concurrent Engineering Team Working

by

Jennifer Anne Harding

A Doctoral Thesis

submitted in partial fulfilment of the requirements

for the award of

The Degree of Doctor of Philosophy of the Loughborough University of

Technology

January, 1996

C "I jA Harding, 1996. cl

To my mother
for the 3rd

picture

Acknowledgments

This work has been carried out at Loughborough University as part of the MOSES
(Model Oriented Simultaneous Engineering Systems) research project, which has
examined the role of information models to influence the next generation of computer
aided engineering (CAE) software systems. The research was funded by EPSRC under
grant GR/H 24273, Exploiting Product and Manufacturing Models in Simultaneous
Engineering.

Very many people have directly and indirectly supported this research, and I would like
to thank everyone involved with the MOSES project and other research projects in
both LIO and the Penthouse Suite for sharing their lives with me through the pleasures
and traumas of the last three years.

Naturally there are also some special thanks to make. Arturo Molina, for your
friendship and technical knowledge. I was so pleased for you when your research was
successfully completed, but I've missed your computing knowledge since you returned
to Mexico! Vicente Borja, I will always be indebted to you for helping me to produce
the manufacturing element of the software demonstrations, but more importantly, I
value the friendship of you and your family.

I"Cleith Popplewell, who has really made an uncertain ambition attainable. You have
truly given me continuous support and understanding - thank you for always listening
and hearing. Your technical experience and perception have also greatly enhanced the
creativity of this work. But most importantly, its been fun working with you!

Martin Scott, for your very valuable industrial knowledge and experiences. Also for
your even more valuable help proof-reading and structuring this thesis -I couldn't
have coped without you! Whether I fail or succeed you and my mother are always
there for me, thank you both.

Finally, I wish to thank someone whose influence on this work goes back over 20
years. I'm not sure when the ambition to write this book was actually born, but it goes
back a long time, and at times has seemed highly unlikely to ever be fulfilled! It
therefore seems fitting that in writing this I remember the man who actually first set me
on the path to achieving it. So, thank you Mr Thomas, you cared for a 15 year old girl
who really didn't want to leave school, and made sure that she did not leave
mathematics as well.

Abstract

This thesis demonstrates that a knowledge representation model can provide

considerable support to concurrent engineering teams, by providing a sound basis for

creation of necessary software applications. This is achieved by demonstrating that use

of the knowledge representation model facilitates the capture, interpretation and

implementation of important aspects of the multiple, diverse types of expertise which

are essential to the successful working of concurrent engineering project teams.

The varieties of expertise which can be modelled as instances of the knowledge

representation model range from specialist applications, which support particular

aspects of design, by assisting human designers with highly focused skills and

knowledge sets, to applications which specialise in management or coordination of

team activities. It is shown that both these types of expertise are essential for effective

working of a concurrent engineering team.

Examination of the requirements of concurrent engineering team working indicate that

no single artificial intelligence paradigm can provide a satisfactory basis for the whole

range of possible solutions which may be provided by intelligent software applications.

Hence techniques, architectures and environments to support design and development

of hybrid software expertise are required, and the knowledge representation model

introduced in this research is such an architecture. The versatility of the knowledge

representation model is demonstrated through the design and implementation of a

variety of software applications.

Contents

Acknowledgments

Abstract

Section
1 An Introduction

2 Aims, practices and problems related to Concurrent Engineering
team working

3 Requirements from Information Technology Systems to support
Concurrent Engineering team working

3.1 Concurrent Engineering team work as a form of Co-operative
Working

3.2 Requirements from Future CAE Systems
3.3 Challenges to be met by Future CAE Systems
3.3.1 Distribution
3.3.2 Autonomy
3.3.3 Heterogeneity

4 Information Technology Solutions and Architectures
4.1 Related Software Systems, Environments and Architectures
4.1.1 ABE("A Better Environment") DARPA Strategic Computing

Initiative
4.1.2 ARCHON Project, Architecture for Cooperative Heterogeneous

ON-line systems
4.1.3 DEKLARE, Design Knowledge Acquisition and Redesign

Environment
4.1.4 EUROCOOP, IT Support for Distributed Cooperative Work
4.1.5 GNOSIS (Intelligent Manufacturing Systems)
4.1.6 IDEA (ESPRIT)
4.1.7 IMAGINE (ESPRIT)
4.1.8 ITE, Southampton University
4.1.9 KIWIS (ESPRIT)
4.1.10 Knowledge-Based Engineering Systems Research Laboratory
4.1.11 MFK (Design for X)
4.1.12 PACT (The Palo Alto Collaborative Testbed)
4.1.13 PECOS (ESPRIT)
4.1.14 SCHEMEBUILDER & IDEAS
4.1.15 SHARE

4.1.16 STRETCH (ESPRIT)
4.1.17 TEMPORA (ESPRIT)
4.2 The MOSES Architecture for Future CAE Systems
4.2.1 The Product Model
4.2.2 The Manufacturing Model
4.2.3 Strategist Applications
4.2.4 Integration Environment
4.2.5 Engineering Moderator

5 The Knowledge Representation Model Concept
5.1 Modelling Diverse Types of Software Expertise
5.2 The Production System Metaphor
5.3 Instantiation of the Knowledge Representation Model

6 Design and Implementation of Instances of the Knowledge
Representation Model

6.1 Implementation of the Knowledge Representation Model
6.2 Design and Implementation of Instances of the Knowledge

Representation Model
6.2.1 A Shaft Design for Function Expert
6.2.2 An Engineering Moderator
6.2.2.1 Knowledge Acquisition Module
6.2.2.2 Design Moderation Module
6.2.2.3 Design Agent Modules
6.3 Extensions of the Knowledge Representation Model

Conclusions

References

Glossary of Terms

Figures
2.1 Relative strengths and weaknesses of humans and computers

(Oh, 1993)

3.1 Synchronous and Asynchronous Decision Making

3.2 Members of a Project Team are often also members of Functional
Teams. Each Team can benefit from an individual's membership
of the other. �

3.3 Speed of transition depends upon
rate of exchange of information.
Culture (Scott 1994)

3.4 Support Requirement Matrix

'New Work' required and the
Models, Infrastructure and

3.5 Project Team Members need to be aware of other Team Members'
Views and Knowledge

3.6 Addition of a new agent to the system requires less changes if a
Managing Agent stores knowledge of the expertise existing within
the CE team rather than all existing agents storing their own
mental models

4.1 MOSES Research Concept

5.1 A Representation of Investigated types of Software Expertise
using Booch Object Oriented Design Graphical Notation

5.2 A Representation of Software Expertise Using Booch Object
Oriented Design Graphical Notation

5.3 A Representation of Knowledge captured within Rule and
Ruleset Classes, using Booch Object Oriented Design Graphical
Notation

5.4 A Representation of the Expression Class, which is the parent
class for a wide range of similarly behaving object classes,
using Booch Object Oriented Graphical Notation

5.5 A Representation of the Simple_Action Class, which is the
parent class for a wide range of similarly behaving object classes,
using Booch Object Oriented Graphical Notation

5.6 Three types of information can be stored within working memory
objects.

6.1 Database Browser showing 5 subclasses (derived types) of the
parent class, working memory

6.2 A rule object needs to communicate with an associated condition
object and an associated resulting action object. The details of
the types and structure of these associated objects may remain
hidden from the rule object.

6.3 Database Browser showing one to one, bi-directional associations
between objects of rule class and objects of both condition and
resulting action classes

6.4 A compound condition consists of a simple condition and a
condition

6.5a Database Browser showing an implementation of the Condition
class and Simple Condition class

6.5b Database Browser showing an implementation of the Condition
class and Compound Condition class

6.6 Database Browser showing a selection of the subclasses of simple
resulting action class.

6.7 Instances of the Product Model, Manufacturing Model and
Knowledge Representation Model can exist within the same
federated object oriented database.

6.8 Database Browser showing sections of the Shaft Design for
Function Expert's working memory, which was implemented as
a subclass of working memory class.

6.9 A Representation of Engineering Moderator Expertise Using
Booch Object Oriented Design Graphical Notation

6.10 A Representation of EM's Knowledge Acquisition Module
Expertise Using Booch Object Oriented Design Graphical
Notation

6.11 Database Browser showing the Moderator Working Memory
database, which contains the Working Memory objects for all the
Expert Module Components of the Engineering Moderator.

6.12 A Representation of the knowledge stored by the EM relating to
design agent expertise existing within or interacting with the CAE
system.

6.13 Database Browser showing the relationships between the EM's
Design Expert element of the Design Moderation working
memory and Mod Agent Values working memories.

6.14 Database Browser showing the instance of a Mod Agent Values
Working Memory containing knowledge of the Manufacturing
Strategist design agent.

Appendices

Data Definitions for Knowledge Representation Model as
implemented in DecObject DB

Tables showing implemented Sub-Classes of Expression
and Simple Resulting Action

1. An Introduction

The purpose of this thesis is to demonstrate that a knowledge representation model

(KRM) can provide considerable support to concurrent engineering (CE) teams, by

providing a sound basis for creation of necessary software applications. This is

achieved by demonstrating that use of the KRM facilitates the capture,

interpretation and implementation of important aspects of the multiple, diverse

types of expertise which are essential to the successful working of CE project

teams. Varieties of expertise which can be modelled as instances of the KRM range

from specialist applications which support human designers with highly focused

skills and knowledge sets, to applications which specialise in management or

coordination of team activities. Thus it will be shown through exploration of the

KRM concept and structure, consolidated by several examples of implementations

of software instances of the KRM, that the KRM can successfully support CE

project teams by facilitating the capture and implementation of the range of

software expertise which is essential for effective working of a CE team.

In most situations, the problem must be examined before a solution may be

obtained, therefore, initially an examination is made of the team activities which

must be supported. In order to do this, consideration is first given to the aims,

practices and problems related to CE team working. These issues are explored in

chapter 2. Then in chapter 3, ways in which information technology based systems

can provide solutions, and thereby support CE team working are considered.

Analysis of the findings of chapters 2 and 3 indicates that various types of intelligent

support are required within Computer Aided Engineering (CAE) systems in order

to provide comprehensive support for CE team working. Existing and proposed

software solutions and architectures which may provide some support for CE team

I

working are considered in chapter 4. The strengths and weaknesses of these

solutions are discussed.

Examination of the identified requirements and proposed solutions indicate that

there are various areas in which intelligent software solutions may support and

empower the CE team, without restricting their modes of working. These include

design strategists or design suggesters, which can work with the user and offer

support to him through innovative aspects of the design. More self-reliant,

automated, artificial intelligence solutions may be appropriate for repetitive, well-
defined aspects of the design. Intelligent support may also be provided for

coordination, integration and communication activities. The depth and breadth of

these examples indicate that no single artificial intelligence paradigm can provide a

satisfactory basis for such wide-ranging requirements. Hence techniques,

architectures and environments to support design and development of hybrid

software expertise are required, and the KRM introduced in this research is such an

architecture. The KRM which facilitates the design and implementation of hybrid

software experts is proposed in chapter 5.

In chapter 6, examples of diverse types of software expertise which have been

designed and implemented as instances of the KRM, using case studies, are given.

The diversity of knowledge structures and expert functions within these examples

demonstrates the value and flexibility of the KRM. This has been proved further

through case study demonstrations involving implementations of the example

software experts. Further details of the software implementations are given in

appendix 1, and appendix 11.

The meaning of particular terms can vary in different papers, therefore, a glossary of

terms has been included at the end of this publication, to clarify the meaning of key

2

words and phrases which are of importance throughout this thesis. For example,

throughout this work the terms data, information and knowledge should be

considered to have distinct meanings. Data relates simply to words or numbers, the

meaning of which may vary and is dependent upon the context in which the data is

used. Information is data which is structured or titled in some way so that it has a

particular meaning. Knowledge is information with added detail relating to how it

may be used or applied. Thus, in terms of a value line, data is at one end (being

least valuable), and knowledge at the other (being most valuable), with information

somewhere between.

3

2. Aims, practices and problems related to Concurrent Engineering
team working

Most manufacturing industries work under great pressures to produce their

products more efficiently and cheaply in order to perform effectively in a highly

competitive market place. In recent years an increasing number of manufacturing

organisations have introduced policies and working methods intended to promote

the adoption of Concurrent Engineering (CE) principles. The philosophy of CE

advocates the design of the 'right' product in the first instance by consideration, at

the design stage, of all aspects of the product life cycle, from conception through

disposal. The main objectives behind these policies are the reduction of product
life-cycle costs and product development time scales whilst improving product

quality. (Winner et al, 1988), (Nevins & Whitney, 1991), (Parsaei & Sullivan,

1993). Thus CE means that concerns from downstream of the product life-cycle,

like manufacturing, are taken into account much earlier on at the conceptual design

stage, and CE also implies that a multi-disciplinary approach to design is adopted

(Oh, 1993).
4

Organisations have approached the implementation of CE philosophy in many ways.

Issues, such as organisation and work force structure, team working, supplier

status, communication and cooperation with customers, etc., have all been tackled.

Process improvement techniques, such as statistical process control, Kanban

systems, and total quality management strategies, which aim at continuous

improvement within processes, are often adopted. Indeed CE is a multi-faceted

philosophy for which no single approach can produce all the promised benefits.

Many of the approaches which have been advanced for attainment of CE are

complimentary in nature, and a thorough comparison of approaches to CE can be

found in Dowlatshahi, 1994. CE is a philosophy, not a technology, and some of the

4

principles it advocates have been practised by different organisations, in different

ways, for many years (Jo et al, 1993)

This chapter examines key elements of CE which need to be supported by

Computer Aided Engineering (CAE) Systems, and ways in which this may be

achieved will be discussed in chapter 3. Essentially, CE is a creative process for the

design and development of new products. A creative process can only thrive within

an organisation if the organizational culture supports and nurtures it. (Majaro,

1992). Organizational culture has been defined by Schein (1984) as 'the pattern of

basic assumptions that a given group has invented, discovered or developed in

learning to cope with its problems of external adaptation and internal integration

and that have worked well enough to be considered valid and therefore to be taught

to new members as the correct way to perceive, think and feel in relation to those

problems. '

CE enables creative solutions to problems to be achieved through a clear

articulation of the problem and/or goal, using a bank of relevant information. The

steps of the process which require experience or expertise, and new thinking, are

essentially human processes, and are a manifestation of an individual personality and

behavioural responses. These personal traits are influenced strongly by the context

of operation (team, management structure and organisational systems), but have a

dependency upon data and the way in which information is presented. Thus

communication is an important, if not critical ingredient for project success (Pinto

& Slevin, 1987). Communication is required to reduce uncertainty. Task

uncertainty has been defined by Galbraith (1973) as the difference between (1) the

amount of information that must be processed in order to accomplish a task and (2)

the amount of information the system (e. g. the project team) already possesses.

The greater the uncertainty, the greater the information processing needs of the

5

group. Communication is dependent upon the way information is presented, and

two key aspects of this are media richness and media selection (Stork & Sapienza,

1992). Routine problems with a low level of ambiguity may be handled using lean

media, such as memoranda, and group email messages, which are impersonal, and

allow only limited feedback. Non-routine problems, which have a high level of

ambiguity need to be handled using rich media, such as face-to-face communication,

video conferencing or telephone conversations, as these provide immediate

feedback, have multiple cues about meaning and allow the message to have a

personal focus. Hence CE, which is the outcome of projects for which CE

processes have been used is a strongly interdependent mixture of hard and soft
issues.

The main factors relating to CE may be categorised into three areas, firstly there are

the hard issues, the environments and systems within which people work i. e. the

organisational and management structures, processes and techniques introduced to

facilitate the introduction and maintenance of CE principles. Secondly there are the

soft issues, the factors relating to how people work, to their individual behaviour

and the interactions between CE team members. Organizational culture, as defined

above, provides the relationship between these hard and soft issues. (Ekvall, 1991)

Finally there are information technology issues, which relate to tools and support

systems which can be provided to satisfy requirements identified though

consideration of both of the above mentioned factors. Good information

technology provision establishes a infra-structure within which both hard and soft

issued may coexist and when necessary be resolved.

Accurate, easily accessible information and knowledge are arguably the most

valuable asset of any business. Indeed they are fundamental to the attainment of CE

objectives, since consideration can only be given to all aspects of the product life-

6

cycle during design, if both suitable information, and the knowledge of how to use

that information, exist to support that activity. Information technology provides the

mechanism by which the clear articulation of problem and goal may be achieved

between individuals, team and organisation. To fully facilitate CE team working a

CAE system of the future, as part of a company's information technology system,

must provide support for both the hard and soft elements of the CE principles.

One key area in the successful implementation of CE principles is that of

Information Management. Accurate, up to date information must be readily

available to product design team members to enable them to make correct

decisions. One view of 'concurrent design' is literally simultaneous design in the

sense of many designers working on the same design at the same time (Londono et

al 1989), which requires many designers to access and modify the same design

database (Whitney, 1990). Effective use of information technology becomes

increasingly important as design teams which are distributed over multiple sites

become more common, and this in turn places increased demands upon CAE

systems which are required to support such design teams. The requirements of CE

team members are very varied, for example, they may simply require quick, simple

means of communication between themselves, or alternatively, they may require

access to complex analysis software systems. The creative process of design must

also be progressed in some manner, i. e. the concurrency aspect of design must be

managed or even driven, to ensure positive coordination of the available expertise

within the CE team is achieved. The CE philosophy enables creative solutions to be

produced and information technology can provide the infra-structure through which

access to the necessary bank of knowledge and information is gained.

Innovative design is essentially a human process, and therefore no single automated

system will solve all design problems, but integrated, cooperating systems may

7

serve to keep human designers informed, involved and committed to each others'

activities as these bear on their own primary fields of interest.

HUMAN COMPUTER

- permanent external memory
support

flexible op consistency maintenance
possess common sense information structuring

CD creative and intuitive powerful retrieval capabilities
bouts of inspiration visualisation support

U) simulation
modelling

- mental and memory capacity
constraint

U) 9 slips of skills and attention lack common sense CI)
CD * memory lapses not creative
C: succumb to work pressure does not know when to break
le knowledge decay the rules
CU insufficient knowledge with

limited discipline breadth, i. e.
unable to know it all

Figure 2.1 Relative Strengths and Weaknesses of Humans and Computers

(Oh, 1993)

In an automated system approach, problem-solving is almost completely performed

by the computer, i. e. the computer assumes control of the design activity proper,

8

whereas if a cooperative problem solving approach is adopted, the computer and

human share the problem-solving tasks in a kind of synergistic relationship. In

order to determine delegation of responsibilities of both the computer and the

human designer, it has been considered helpful to list out the strengths and

weaknesses of each, see figure 2.1 (Oh, 1993). The belief that the appropriate

approach to computer-based design tools is for the computer to provide decision

support and allow the human designer to apply the judgement, is shared by

Bracewell et al (1994).

Many types of expertise will be involved at different stages of the product design

and development, and historically the information and knowledge used and

generated has been stored in various forms and in different locations. This

distribution of information restricts information sharing and leads to problems of

information duplication and information inconsistency. Thus an information-

integrated system is required, i. e. one in which the primary mechanism for achieving

system integration is information (Mayer & Painter, 199 1).

Significant challenges must be met by management and workforce to initiate and

maintain effective CE team working in any environment. It is commonly felt that

the multi-discipline project team should be formed at the start of the design process

(Corbett et al, 1991), and it is helpful if teams can remain together and develop

throughout the project. Unfortunately this is just not practical when any individual

team member may be a member of several different teams (Scott, 1994). Also the

complexity and magnitude of these challenges increases enormously when team

members are widely distributed both geographically and culturally. Therefore, in

this research consideration will be given to the requirements and challenges to be

satisfied by future CAE systems in order to support design teams which use CE

9

techniques in the context of modern, changing, multi-site or global enterprises. In

this context, the author defines CE as being:

'An holistic methodology for the coordination of distributed,

heterogeneous expertise to achieve cost-effective, market-driven products in

minimum time scales'.

To effectively work within such a context future CAE systems require elements
beyond those available in existing systems. They particularly require elements to

actively promote concurrent working. The need for human integrators to Raise

between functional groups or program managers (mediators) to coordinate the

activities of cross-functional teams has long been recognised as crucial in achieving

reductions in product design time and costs (Dean and Susman, 1989). The duties,

responsibilities and interdependencies of these individuals become much more

complex when the CE team is widely distributed and particular team members may

be members of several CE teams. It is therefore proposed that future CAE systems

must also provide support for these integrating and coordinating activities, and that

the support required goes beyond the provision of an integration environment to

enable different software packages to work together. These support requirements

will be examined in detail in chapter 3.

The discussion in this chapter highlights the multi-facetted aspects of CE. Various

types of expertise must be combined and work together in a successful

implementation of the CE philosophy. Such expertise falls into two categories,

specialists with highly focused skills and managers whose role is to co-ordinate the

activities of specialists and promote concurrency in working. Ways of supporting

both these categories of expertise will be explored throughout this thesis.

10

3. Requirements from Information Technology Systems to support
Concurrent Engineering team working

3.1 Concurrent Engineering team work as a form of co-operative working

Chapter 2 highlighted the important role which future CAE systems, as part of

industry's information technology networks, have in promoting and enabling CE

philosophy to fulfill its promised potential in improving product design and

development. The primary function of the CAE system should be to support the

human designer, not to attempt to replace him with automated artificial

intelligence systems. Part of the role, i. e. through maintaining information and

knowledge bases, and facilitating the sharing of a common consistent copy of

these, can be clearly identified. CAE systems must however do more if they are

to actively facilitate CE team working. They must provide support for the

diverse types of expertise which enable the various, difficult issues relating to

both the hard and soft aspects of CE team working to be handled and controlled.

Historically such expertise has existed in the guise of human experts, both

specialists and managers, most likely supported by pieces of application

software, taking various forms (Moynihan 1993) which can range from

applications supporting simple data processing activities, through decision

support systems, using complex algorithms, to expert systems. In this work an

expert system is considered to be any computer system which demonstrates

expert performance in a given domain.

Thus human experts with knowledge of the specific problem domain may be

supported by software expertise, and there is a requirement from future CAE

systems that they must easily integrate with many types of software expertise, so

II

that the user should not be unduly restricted in his methods of working. A

human expert, interacting with the CAE system, by means of a software

application which may demonstrate an associated form of artificial expertise, will

be referred to in this work as an agent. The purpose of collaborative

human/computer problem solving systems is to attain a level of decision quality

superior to the level attainable by either the human or computer alone. (Hale et

al, 199 1)

d

Asynchronous
Design

Froduct
Desigii
Data

Synchronous
Design

Figure 3.1: Synchronous and Asynchronous Decision Making

In this chapter, several types of expertise which are essential for effective CE

team working are identified, and these will be considered in detail below. When

these are read, it should be remembered that CE team members have 2 basic

modes of working, either asynchronously, when individual members can continue

with their own area of design, and safely make decisions without reference to

agents with different types of design expertise, or synchronously, when some

12

negotiation is required between design agents, as a current aspect of the design

may impinge upon the domains of several design experts, (figure 3.1). The real

difficulty lies in deciding when the changes between synchronous and

asynchronous activity should be made, particularly when the design team is

highly distributed. This will be discussed further later in this chapter, and in

chapter 4.

CE team working is a form of collaborative or co-operative working, and

therefore some insight into the requirements which a software system to support

CE team working must exhibit may be obtained by examining software systems

to support other types of co-operative working. In particular the observations of

Halasz (1988), and his reflections on the issues to be faced by the next

generation of hypermedia systems have proved to be valuable. He observes that

any system to support co-operative working must promote two types of activity,

i. e. mutual intelligibility and active participation. The first of these is commonly

accepted, although stated in many different terms. In basic terms, mutual

intelligibility is taken to mean the existence of a common understanding. If two

agents are to successfully communicate together, they must be able to

understand each other. This may be achieved in many ways, e. g. by a common

language and/or culture, effective translations, or use of common sources of

information which may be individually accessed and comprehended by each. The

task of actively promoting participation of all team members is an important part

of the duties of an effective project manager, and these duties become more

difficult to carry out effectively when the team is widely distributed. Yet the

need for the software system to actively promote participation of human

13

designers is not conunonly considered, or explicitly dealt with within proposed

software system architectures. Individual agents must be actively encouraged to

interact with other team members whenever this is most effective for the team

activities and attainment of team goals. Often individual agents are very wining

to make such switches between asynchronous and synchronous working, but

may be unaware when such a switch should be made, particularly when team

members seldom, if ever meet, and their disciplines are very different. Therefore

some sort of management activity may be required to actively promote

participation in a change of working mode.

Bobrow (1991) also considers issues of interactions. He examines systems

consisting of active agents, which may be human or programmed machines,

communicating among themselves and interacting with the world to solve

multiple goals. He claims there are three dimensions of interaction which must

be considered. The first dimension is communication i. e. there must be some

common ground of mutual understanding. The second dimension is

coordination, which is necessary both to share resources, and to jointly commit

to future action. The third dimension is integration i. e. to be useful, agents must

fit in with the current work practices of both people and other computer systems.

These views, although expressed in different terms, relate closely to the previous

observations made in this thesis. Mutual intelligibility and mutual understanding

are clearly similar requirements, and the dimension of integration appears to be

closely allied to the view that creative process can only thrive if it fits into an

organizational culture which supports and nurtures it.

14

3.2 Requirements from Future CAE Systems

The distribution of CE team members is considered to be critical when

examining the support which must be provided by CAE Systems. Each

individual team member must be helped to apply his particular expertise to

design the best possible product but he also needs to be aware of when or how

design decisions he makes could affect the views or aims of other members of

the CE team, or of how his decisions may be affected by the overall product

strategy, and the work of other product CE teams within the organisation.

These are very taxing demands to place on an individual whose working location

is remote from parts of the organisation, and may even be in a different time

zone from other members of his CE team. Each team member therefore requires

the best possible support which can be provided from computer-based design

tools. The support required from the CAE system is multi-faceted, and for this

reason examination has been made of the types of support required, at different

levels, and dimensions, in an attempt to simplify the necessary analysis. Clearly

the breakdown can be made in a variety of ways, but the following has proved to

be useful in better understanding the requirements from future CAE systems.

The author believes that CAE systems of the future must be able to provide

support on at least three levels: at an organisational level, at a team level and at

an individual level. Support at the organisational level covers the satisfaction of

the requirements of the organisation within which the team operates. This could

include interactions and information exchange between different design teams, or

between individual team members and other members of their particular

discipline group (figure 3.2). It could also include provision of information to

support senior management strategic decision making.

15

Support at the team level covers the satisfaction of any requirements imposed by

team working methods, for example, any activities which will assist the team to

work as a single, effective, efficient entity. This could include promotion and

maintenance of a common view of the team's objectives, and encouragement of

exchange of knowledge and comprehension between team members.

Project Team

0

0 ..
e

%ý 0- ý

0

Functional Team

Figure 3.2: Members of a Project Team are often also members of
Functional Teams. Each Team can benefit from an individual's
membership of the other.

Support at the individual level requires the CAE system to be sufficiently flexible

to provide assistance for all members of the design team, irrespective of their

role within the team. The CE product design and process development team will

.«
»ýM. «»e

00

16

be multi -disciplinary, its members representing many functions, including design,

manufacturing, marketing, finance, production and senior management. The

CAE system should therefore contain applications and software experts to

support the diverse disciplines of each individual member of the team.

Satisfaction of requirements at these three levels places diverse and even

contradictory demands upon the CAE system. The remainder of this chapter

explores a range of these requirements, and considers the problems they impose.

These findings are then consolidated throughout chapter 4, initially in section 4.1

where examination is made of existing information technology solutions and then

in section 4.2 suggestions are made as to how the requirements might be

satisfied by a proposed architecture for CAE systems of the future.

INFORMATION FLO WS CHANGE
THROUGH THE PRO CESH

ita in
ation

IDEAS

Figure 3.3: Speed of transition depends upon 'New Work' required and
the rate of exchange of information. Models, Infrastructure and Culture

(Scott, 1994)

17

Why is it necessary to examine the environment within which the CAE system

operates? Why are the demands placed upon the CAE system so diverse? An

enterprise which has adopted the CE philosophy is clearly a multi-agent system,
(Sycara, 1990) (Bobrow, 1991) and considered from the three levels described

above, can in fact be considered as several different types of multi-agent system.
Problems may occur in the design since individual agents may have different

mental models of the design, and they may not 'speak the same language'.

(Sycara, 1990). So, during the design process, many views of the product must

evolve into a common view or vision, through the passage and exchange of
information, see figure 3.3, (Scott, 1994).

The multiple multi-agent systems could be broken down as multiple design

teams, or as multiple functional groups within the organisation, or as individuals,

each with a different design perspective within a particular design team. Bird

(1993) believes that multi-agent systems should be characterised in at least three

dimensions, i. e. distribution, heterogeneity, and autonomy. These are the same

three orthogonal dimensions which Sheth & Larson (1990) use to classify and

define multiple database systems, and federated database systems. The

integration of expertise within multi-disciplinary project design teams has

previously been characterised in these dimensions by Harding & Popplewell

(1994)(1). However, in order to appreciate the diversity of support demanded

from future CAE systems, it is helpful to consider how the system might be

characterised in these dimensions, at each of the levels: organisational, team and

individual. A breakdown can be achieved by considering the three levels and the

three dimensions as the rows and columns of a three by three matrix, (figure

3.4). The breakdown in this matrix is not exhaustive, but it does highlight

problems which must be tackled by the CAE system, and help to identify

18

priorities in the requirements which the CAE architecture must satisfy. An

example breakdown is given in the following section.

Levels

"-

E

Organisational Team Individual

Reduce remoteness
Move information and promote Make information

Distribution between multiple exchange of available to

sites information between individuals

team members at
different physical
locations

Support Individuals
Support Support Project to perform different

Heterogeneity Organisations Teams to achieve jobs
to achieve different different goals
missions

Support team
Discourage members to work a,, Support individual's

Autonomy multiple individuals, or as a preferred manner
individual stores group, and of working
of information transitions between

these two types of
working

Figure 3.4: Support Requirement Matrix

19

3.3 Challenges to be met by Future CAE Systems

CAE systems should support human designers to make the best, innovative use

of their expert skills possible. This section explores the challenges which need to

be met by future CAE systems in order for them to support distributed CE team

working, viewed in the context of individual, team and organisational levels

described above. The section has been included to provide a requirements

context against which the proposed architectures, described in chapter 4, can be

evaluated. No existing CAE architecture has been identified which can meet all

the challenges identified, especially relating to the requirements of coordination

and promoting concurrent working. A thorough review of the capabilities of

current and proposed computer aided simultaneous engineering systems and

architectures can be found in Molina et al, 1995.

3.3.1 Distribution

Consideration must be given to distribution relating to both human and

computing issues. Discussion on distributed computing generally places

emphasis at a level that is closely related to physical connection of different

processors, secure transmission of data among them and the corresponding

operating system problems of scheduling different processors. Yet distributed

problem solving, i. e. the decomposition and coordination of computation in a

distributed system are better viewed at a higher level of abstraction, and

Chandrasekaran (1981) identifies good reasons for distribution, including

controlling the complexity of computation, changes are easier to make to

modular systems, and the fact that it is good research strategy to look for

decompositions of a complex problem.

If distribution is considered at the three levels defined in the previous section,

the following points must be examined. The enterprise, and indeed the

20

project team may be distributed over many sites, even across many countries.

For example, software modelling experts may be located in Britain,

electronics experts sited in the United States and the production facilities

established in the Far East. At the organisational level, there are many

reasons why such distribution may be advantageous: for example, costs

related to production in different areas may vary considerably, or particular

centres of excellence may have developed over time. The enterprise win

therefore require information of many forms to be exchanged between

different discipline groups, or project teams located at multiple sites. The

sites will need to be linked by networking of various types, and the CAE

architecture must include an integration environment to support

communications between sites. Thus the CAE system must run across

networks, probably with different applications running on different software

platforms and working in different software environments.

At the team level, distribution causes different problems. The team members

must feel they are working as a single unit, with a common goal, even though

they may be widely distributed. Regular team meetings and discussions are an

accepted way of promoting exchanges of views and ideas. Within large scale,

widely distributed teams such regular face to face meetings become very

expensive both in terms of time and money. Electronic methods of promoting

communication and cooperation between team members should therefore be

explored in the search for viable altematives, and these methods should be

harnessed to the CAE system wherever possible. If co-location of team

members is impossible on a regular basis, virtual co-location (Douglas &

Brown, 1993) may be an acceptable altemative solution. Indeed it is arguable

that virtual co-location provides a better solution, since it facilitates use of

21

extended knowledge networks (Scott, 1994), see figure 3.2, through
functional teams.

Radial
Extent of
Knowledge

a) Traditional Spread of Expertise -Little shared
Inter-disciplinary expertise

b) Required Spread of Expertise - Greater shared
understanding within multi-discipline team

Figure 3.5: Project Team Members need to be aware of other Team
Members' Views and Knowledge

Hypermedia/Multimedia systems can meet many of the challenges faced in

establishing a virtual working environment, and they provide valuable support

22

by reducing feelings of remoteness and isolation between co-operating team

members who are working at a distance (Ishii & Miyake, 1991). However,

additional elements are required to actively promote information and
knowledge exchange between team members. For example a means of

notifying users of important actions being taken by others, and ways of

supporting the social interactions which are important in team working,
(Halasz, 1988). The need for exchange of information to be actively

encouraged exists whether people are located in the same office or thousands

of miles apart. This problem may be tackled by the inclusion of a

management or coordinating agent, as will be shown in chapter 4.

Human knowledge is inherently distributed, (i. e. each person has their own
knowledge store), so at the individual level, problems of distribution can be

partially satisfied by exchange of knowledge between individuals using the

network and communication channels previously discussed. This distribution

of knowledge between individuals can also be supported by provision of

expert systems and other application programs which support individuals with

particular types of expert knowledge. Indeed there are good reasons for

encouraging distribution at this level since it is generally easier and cheaper to

develop and maintain many small knowledge bases rather than one large one,

and parallel processing can be better exploited. (Rich & Knight, 1991).

This identifies an apparent contradiction in the requirements from the CAE at

the team level, and at the individual level, since at a team level, there is a

requirement for each team member to have an awareness of other members of

the team, figure 3.5, yet at the individual level, small distributed sources of
knowledge are encouraged.

23

Figure 3.6: Addition of a new agent to the system requires less changes if
a Managing Agent stores Knowledge of the expertise existing within the
CE team rather than all existing agents storing their own mental models

24

Adler et al (1992) also identified this requirement for individual elements of

the system to be aware of other expertise within the system, as they state, 'if

an agent determines that it needs to cooperate with one or more of the other

agents in the framework, then it might be necessary for the agent to possess

and employ a model of the behavior of each agent it wants to communicate

with'. Thus there becomes a need to increase individuals' awareness of the

location and content of these knowledge sources, without forcing individuals

to store an increasing amount of knowledge about other individuals within the

team. This is significant, since it is not feasible within any but the smallest

system for any individual to store the whole sum of expertise required to

design all aspects of the product.

it may however be possible for a management or co-ordination expert to

store knowledge of all the knowledge which is available to the team.

Additional benefits result from this solution when new agents are added to the

system. This is demonstrated in figure 3.6, where the first image shows that

when each agent stores models of every agent with which it might

communicate, the addition of a new agent causes changes to be made to many

other agents within the system. The alternative solution, shown in the second

image of figure 3.6, indicates that when a coordination agent stores

knowledge of all the agents within the system, addition of a new agent only

causes changes to be made to the coordination agent.

3.3.2 Autonomy

At the organisational level, some level of autonomy will be required due to

legal and financial requirements of particular countries. It is believed that

generally autonomy should be restricted when it comes to information

availability and exchange since many problems can arise when the same

25

information is not available to all interested parties (naturally it is accepted

that politically sensitive information may need restricted access). Duplication

of information in separate 'empires' should be discouraged.

At the team level there remains the requirement to reduce individuals' private

stores of information, as there is a high risk of inconsistency within multiple

stores of information, and this can be achieved by use of common information

models. However, there is an additional type of autonomy which must be

allowed and supported, team members must be allowed to work separately,

or as a team, whichever best suits the current stage of product design. Any

CAE system to support CE design must support both synchronous and

asynchronous decision making within the team, and most importantly, the

switching between the two modes of working. This is a very complex

requirement to satisfy, and aspects related to this will be considered further

when examining the architecture proposed in section 4.2, since this

architecture includes proposals relating to a managing or coordinating agent,

which directly supports transition between asynchronous and synchronous

working.

At the individual level, team members should also be able to use whatever

individual software applications they believe will best assist their work.

Inevitably individual's views of which packages or applications are best able

to satisfy their needs may change over a period of time, as new versions or

software become available. Thus, the CAE support system can therefore

never be 'complete', there must always be the potential for additional,

probably third party, software applications and experts to be added. This

requirement naturally adds complexity to any 'manager' or 'co-ordination'

elements of the CAE system

26

Individual areas of expertise, which may include both human experts and their

related software systems, will have their preferred software environments, and

any CAE system which truly supports concurrent engineering must enable

such environments to be linked and permit communications across the

platforms. This is a further challenge to be met by the integration

environment part of a CAE architecture.

The separation of organisational, team and individual levels for autonomy can
be considered in the following terms. At each level there will be a different

goal, and goal congruency (Feltham & Xie, 1994) (Roth & Ricks, 19994)

(Schoemaker, 1993) (Vancouver & Schmitt, 1991) is a driving requirement,

so autonomy must be restricted to a level which allows this to be achieved.
For example at the organisation level the quest for goal congruency will take

into account resource scheduling, since resources must be shared between

different teams, products or groups. So autonomy must be restricted to the

extent that no individual group controls usage of a particular resource to the

detriment of all others. At the team level the output from the team must

satisfy the perspectives of all members of the team, so individuals must not be

allowed to 'do their own thing' to the extent that information is hidden from

other team members. However, at the individual level team members must be

allowed to adopt a pure approach to the design in the sense that the

individuals consider only aspects of the design of direct interest to themselves.

This permits the greatest exploitation of individual expertise, but must be

supported by a mechanism for identifying potential conflicts between the

interests of different individuals.

27

3.3.3 Heterogeneity

Heterogeneity can be considered at the different levels in the following terms:

organisations have particular missions, teams have particular goals and
individuals have particular specialities. The CAE system must support (even

encourage) differences in approach and style to the extent that jobs, goals and

missions can be successfully executed. Once again there may be conflict
between the requirements at the different levels, since an organisation's

mission may require its project teams to achieve overall wider market share,

not cannibalizing each other's market. Whereas at team level, the primary

requirement may be to design and produce a product that can stand up well in

the market against any competition.

Individual heterogeneity can be supported by Design for 'X' applications

(Meyer, 1993), which can provide support for individual design perspectives,

and these may be specialist or expert software applications. The writer also

believes it is important to maintain purity of design perspectives to prevent

trade-offs being made too soon and resulting in sub-optimal solutions.

At the team level, the differences between individual perspectives remains

important, but individuals need to be aware of each other's different views

and knowledge see figure 3.5, and where this different knowledge can be

accessed. In a true team, there is a high degree of overlap of knowledge and

learnt competence, and the CAE system should support and facilitate this

learning/sharing process. The CAE system can support this by prompting

users when someone else n-fight be interested in the addition or change they

have made to a design.

28

The CAE system should in no way restrict methods of working, as to do so

may stifle innovation. This suggests that a high level of autonomy (and

indeed heterogeneity) should be granted to the human and software agents

concerned. However, the most current details of the design and the views

and knowledge of individual team members should ideally be available to all

team members. A common source of consistent, accurate information is

therefore required since concealment, misunderstanding or simply lack of

availability of information can lead to sub-optimal team performance,
duplication of effort, and faults in the design. This issue may be addressed by

the inclusion of information models, to provide data for applications working

within the system. The importance of product and other information models
is becoming widely accepted (Krause, 1993). It is believed that exchange of

information and knowledge can only be achieved if some form of common
language, which implies a common understanding of terms, exists between the

participating agents (Bobrow, 1991). Since negotiation requires a common

language in which the negotiations can be couched (Adler et al 1992).

However, the shared or common language may be unique to the team (Scott,

1994). The need for individual agents to co-operate in this way will thus

require the autonomy of the individuals to be restricted. Hence, there is an

apparent conflict in the level of autonomy which should be allowed both to

team members using the CAE system and software components existing

within the system. Such conflict is inevitable, yet it is considered possible for

the CAE system to balance the permitted levels of autonomy whilst still

providing high levels of support, as will be shown in section 4.2.

The heterogeneity of both human team members and software components of

the system is an important and powerful aspect of the CAE system.
Representatives of the different functions which contribute members to the

29

project team will each have different perspectives on the emerging product

design. Creating a design which satisfies the criteria of any one of these

perspectives may well be a complicated process requiring compromises to be

made in the satisfaction of multiple design criteria. Thus, satisfying the

criteria of multiple design perspectives will inevitably require many 'trade-offs'

to be made. Great care must be taken in deciding when the compromises

should be made. A predefined path for problem solutions should not be

imposed upon designers by the system. If the compromises are made too

early, for example, at the component design stage, a less good design may be

achieved at the assembly level.

The importance of heterogeneity therefore cannot be over emphasised. The

software expertise to assist a particular design perspective should be kept as

pure as possible, and be unadulterated by the design values of different

perspectives. This can be achieved by supporting individual areas of expertise

with specialist strategist applications whose design criteria are concentrated

on one specific area of design. However, satisfaction of this requirement does

not mean that designers should work in 'splendid isolation', oblivious to all but

one view of the product. This is clearly unacceptable, and totally against the

advocated CE philosophy. It would inevitably result in problems with the

design not being detected until late in the product life cycle by which time

they are expensive or even impossible to correct. This requirement for highly

focused design perspectives, without isolationism, places increased pressure

on any co-ordination agent element of the CAE support system, requiring it

to promote communication and co-operation within the team, at appropriate

times. Elements of the CAE system should not restrict the innovation of

human designers by leading them down a predetermined design path and

dictating solutions to them. As previously stated, the CAE system is there to

30

support the human designer, not to attempt to replace him by an automated

design process. The designer should rather be offered possible or alternative

solutions, and given advance warnings of potential design problems whenever

possible. There is, therefore, a need for a flexible, versatile means of

detecting when the requirements of one design perspective are being infringed

by decisions made from a different design perspective. However, the

detection of possible problems is not adequate in itself, the system must also

be flexible in how and when such conflicts of interest are reconciled. That is,

some design compromises may need to be made as soon as conflicting

interests are detected, whereas in other cases, it may be better to flag the

problem for reconciliation some time in the future.

31

4. Information Technology Solutions and Architectures

4.1 Related Software Systems, Environments and Architectures
Various software system, architectures or environments relevant and of value for

CAE systems have been proposed. The following discussions will show that

whilst several of these make valuable contributions towards satisfying some of

the requirements demanded of future CAE systems, none of them fully satisfy the

requirements established in chapter 3. Indeed, it has been claimed that although
intelligent computer support addresses many different tasks, all of these tasks

belong to that part of the design space in which the design (the product) is

known, as a concept, as a possible list of standard components, or in more detail

(Blessing, 1991).

In the following sections, each architecture or system is considered individually

so their particular strengths or weaknesses, in the current context, may best be

explored

4.1.1 ABE ("A Better Environment")
DARPA Strategic Computing Initiative

This research is not into a CAE system directly, but it does include important

integration environment issues. The ABE software system provides an

environment for combinable frameworks and associated analysis tools for

building intelligent systems. Hayes-Roth et al (1991) state that they sought

ways to modularize and standardize knowledge-processing components so

that system integrators could access and exploit them. Thus their goal was to

create technologies and methodologies for building cooperative, intelligent

systems with modular heterogeneous components. Their work has focused

on ways to import existing modules, regardless of implementation, and to

32

treat them as if they were native to the ABE environment. This is achieved by

'wrapping' each module with interface code to make it appear to have been

created originally as an ABE module. An aim of this research was to shield

software developers and designers from platform changes, and they achieved

this by adopting the concept of a virtual machine, whose key properties can
be described independent of platform. These key properties are basically the

services of a distributed operating system, whose principal services include

process creation, initialization, execution, termination and message passing
between processes.

As previously implied, this research is of value in the current context solely
for integration, and communication issues related to automated systems, as it

provides a mechanism whereby a variety of separate, heterogeneous software

elements may be linked.

4.1.2 ARCHON PROJECT (ESPRIT P-2256)
Architecture for Cooperative Heterogeneous ON-line sYstems

This research examines a general purpose architecture which can be used to

facilitate cooperative problem solving in industrial applications, using multi-

agent systems. (Wittig et al, 1995) (Jennings, 1995). Agents in the

ARCHON project appear to be purely software experts, particularly pre-

existing expert systems dealing with different aspects of decision making of a

given complex environment.

This research is of value in the current context solely for integration, and

communication issues, mainly related to automated systems and legacy

systems. It provides an architecture within which pre-existing software

solutions may be loosely coupled and cooperate in a mutually beneficial way.

33

The human operator is also treated as an active problem solving member of

the system, but the main focus of the research appears to be on the software

expert elements.

4.1.3 DEKLARE (ESPRIT)
Design Knowledge Acquisition and Redesign Environment

This research attempts to define a system which can encapsulate the design

guidelines and standard of a company. The developed framework will allow

existing CAD tools and inference engines with design databases to be

combined in order to provide an interactive design advisory system for

interactive redesign. In many aspects this systems is the antithesis of a system

to satisfy the requirements identified in the previous chapters, since it

apparently tackles the issues of ensuring cooperation by allowing definition of

a pre-defined design project path.

4.1.4 EUROCOOP (ESPRIT)
IT Support for Distributed Cooperative Work

The application area for this project is essentially that of project management

for bridge and tunnel construction industries. However, the research does

address many of the issues related to the requirements of concurrent

engineering team working as identified in the earlier chapters. The approach

allows for the integration of existing computing components and new tools,

with the intention that they should be able to interoperate with each other.

The need to share information is accepted, and this appears to be achieved

and promoted through using hypermedia to link documents and databases.

Significant use is made of hypermedia, particularly as a means of facilitating

both individual and group working. The research also addresses the need to

support both synchronous and asynchronous working, and implicitly touches

on the switching from one type of activity to the other. This is done by

34

notifying users of deadlines, expected actions, and warning them of emerging
difficulties. Regrettably, it has not yet been possible to obtain details of how

the 'emerging difficulties' are identified.

4.1.5 GNOSIS (Intelligent Manufacturing Systems)

The application area for this research was enabling technologies for design

and manufacture, with a main joint demonstration working from functional

design to STEP based manufacturing. A commitment to information sharing

and product modelling (Gu & Chan, 1995) is implicit in the research through

the use of standards such as STEP (Wu et al, 1992).

Areas of software expertise to support designers were also considered, for

example MCOES (Manufacturing Cell Operator's Expert System) which aims

to shorten the production lead time and improve the quality of design and

manufacturing of one of a kind and small batch products. Integration and

coordination issues were researched through the Mediator element of the

project. The Mediator architecture enables users to collaborate

synchronously or asynchronously through processes running anywhere on the

network (Gaines & Norrie). Many of the software systems may have been

developed separately, without any coordination facilities, and the Mediator

architecture enables them to interact, using a range of generic and proprietary

knowledge and data interchange formats. Thus the Mediator software needs

to know a lot about the applications, whilst the applications need to know

virtually nothing about Mediator. The visual language used in the system may

be used as a 'wrapper' to existing applications, or as an embedded component

for other, new applications.

35

This research clearly addresses most of the issues and requirements identified

earlier in this thesis, but does not include elements to prompt or support the

user through changes from asynchronous to synchronous working, although
both of these modes of working are supported individually.

4.1.6 IDEA (ESPRIT)

Research into an intelligent object oriented database system, tested in the

application area of biochemical structures and managing system. Basically a
database system with explanation facilities which can support multiple
language paradigms and parallelism. This research is of value in the current

context solely for information exchange and sharing issues.

4.1.7 IMAGINE (ESPRIT)

This research aims to provide a sophisticated environment to support
interaction and cooperation within a multi-agent system. In this research the

definition of agent is very similar to the definition used in this thesis. The

application area of this work was urban traffic control and airport catering

and workflow management. Exchange of information and knowledge is

implicit in the research, and software expertise to support human experts are

clearly considered. The main interest of this research in the current context is

for issues relating to coordination and integration. Human agents may be

supported by this environment through different modes of working, but there

is no support provided to the user to initiate changes between different modes

of working.

4.1.8 ITE (EPSRC Grant GR/H 43038) Southampton University

This research explored the potential of an open model for hypermedia as an

operational interface with an advanced manufacturing environment. It has

36

provided an environment for the implementation of large-scale hypermedia

information systems for industrial applications. The main areas considered in

the research were maintenance of machinery, fault finding activities and

operator training. Integration of a knowledge based system (KBS) with the

hypermedia system enables the user to input symptoms of the fault, which are

then evaluated so the user is provided with details of possible causes. The

KBS is loosely coupled with the hypermedia system, and communications are

achieved by message passing. (Heath et al, 1994) (Crowder et al, 1995).

This research has clearly not produced a design tool or environment as such,

since that was not its objective, but the techniques adopted are considered to

be valuable and transferable, for example when considering methods of

heightening individual's awareness of other design perspectives. It therefore

provides valuable mechanisms for transfer or sharing of information and

possibly knowledge (since it is arguable that a video clip showing how

something is done is transferring knowledge rather than information).

However, the motivation for agent interaction with the system is appears to

be their own desires or requirements, i. e. there is no coordination or

management activity to promote individual agents' active participation with

the system.

4.1.9 KIWIS (ESPRIT)

This research provides an integrated knowledge-representation language and

programming environment for distributed databases and knowledge bases.

Thus, in the present context the research is relevant for integration issues

related to distributed databases.

37

4.1.10 KNOWLEDGE-BASED ENGINEERING SYSTEMS RESEARCH
LAB

The research from this laboratory covers a wide range of projects covering

technologies for the next generation of computer-aided engineering systems

and computer tools to improve engineering practice. The report from the
laboratory (Lu, 1992), identifies one of the fundamental challenges of CE as
being that product development practices have changed from being

centralized to being distributed. Within this research they see that CE

requires the four challenges of integration (of complementary engineering

expertise), cooperation (of multiple competing perspective), communication
(of upstream and downstream concerns) and coordination (of group problem-

solving activities) to be simultaneously satisfied.

Individual projects from this laboratory which are particularly relevant are

IDEEA, which provides a way of integrating Al techniques (frame-based

representation, constraint-based language, rule-based reasoning, truth-

maintenance systems and object oriented composite values) through a

blackboard structure. This would enable software expertise to be developed

to support the human designers. INDEED which uses object oriented

database technologies to provides consistent and persistent storage of

information, for use by multiple designers. It effectively supports information

sharing and both synchronous and asynchronous modes of working, but does

not provide support to initiate or actively promote changes in mode of

working.

The SWIEFT (System Workbench for Integrating and Facilitating Teams)

project provides the integration environment, covering three types of
integration functions, namely, knowledge, tool and team integration.

38

Knowledge integration is achieved by supporting combinations of Al

representations of knowledge (as in IDEEA). Tool integration permits users

to access different computer tools and to handle the heterogeneous

data/knowledge required and generated by these tools. Lawley (1992) claims
SWIFT achieves team integration by facilitating group communication and by

coordinating team activities, however, it is not clear that group interactions

are actively promoted as there is no mention of either a management or

coordination agent, or of heightening individual agents awareness of other

users of the system.

4.1.11 MFK (Design for X)

This research appears to be at an early stage, although it is claimed that a

partly realized prototype has been produced (Meerkamm, 1994). The system

contains a product model (component model) which facilitates information

sharing within the system. Support for individual aspects of the design is

provided- through design modules (software experts) which provide support

for different design for X activities, for example designing for stress,

designing for production, design for environment/recycling. However, all the

knowledge for these different activities appears to be captured in one

structured knowledge base, and this would limit the use of different artificial

intelligence paradigms, and most likely prohibit inclusion of existing systems

of software expertise. Also, the designer has the full responsibility for

deciding which of these tools to use at any stage of the design, thus there is

apparently no mechanism for coordinating team activities.

4.1.12 PACT (The Palo Alto Collaborative Testbed)

This research examines a concurrent engineering infrastructure which

encompasses multiple sites, subsystems and discipline. It served as a testbed

39

for emerging data-exchange standards such as PDES/Step (Product Data

Exchange Using Step/Standard for the Exchange of Product Model Data).

They consider information sharing by means of a design model to represent

the evolving design, and this makes use of shared design-domain ontologies
(that is, sets of agreed-upon terms and formally described meanings).
Literature on this project (Cutkosky et al, 1993) claims that the design model
forms a basis for knowledge sharing among diverse systems, but it is not clear

that their research makes the same distinction between knowledge and
information which has been defined in this thesis. Also, in their work, agents

are defined as programs that encapsulate engineering tools.

Interaction and integration of (pact) agents is achieved through facilitators

which translate tool specific knowledge into and out of a standard knowledge

interchange language (KIF). Thus interactions are between facilitators and

agents, or between pairs of facilitators, but not directly between agents.
However, there are significant problems associated with attempting to define

a standard knowledge interchange language at present, and these are

effectively discussed by Ginsberg, (1991).

PACT covers many of the requirements from future CAE systems wen, both

in terms of integration and support of individual areas of expertise, through

inclusion of software expertise, in the guise of systems such as Next-Cut,

which supports product and process design of mechanical assemblies.

However the PACT system does not appear to include any element to

stimulate active participation of human designers in the design process.

40

4.1.13 PECOS (ESPRIT)

Basically an investigation of models for Computer Supported Cooperative

Work (CSCW), and as such it is of interest since CSCW greatly supports

cooperative working (of which CE is a form) by making it easier for team

members to work together even though they may be many miles apart. It can

also be argued that as working together is easy, people are more likely to

want to do it - hence it promotes collaborative working. However, this is a

passive rather than active promotion of group participation.

4.1.14 SCHEMEBUILDER & IDEAS (Lancaster Engineering Design Centre)

A package of software tools supporting the conceptual and embodiment

stages of mechatronic and mechanical systems design. IDEAS stands for

Intelligent DEsign-Assistant Systems, which are aimed at providing better

support for augmenting and empowering the designer rather than replacing

him. Since this research focuses on systems where the computer provides

augmentative support to the human designer, rather than the 'expert systems'

approach where the computer tries to perform the design with as little human

intervention as possible (Oh, 1993), these systems are apparently conceptually

near to the beliefs stated earlier in this thesis, i. e. that innovative design is

essentially a human process and therefore best supported by integrated,

cooperating systems, rather than fully automated systems.

The combined systems developed in this research satisfy many of the

requirements identified in earlier chapters of this thesis, including support of

human design expertise and integration of activities. They include software

design agents of various types, each of which exhibits particular

characteristics, as suggested by their names. For example Design Experts can

fully automate tedious, routine or repetitive parts of the design, whilst Design

41

Suggesters offer the human design agent solutions to parts of the design and
Design Critics may evaluate parts of the design from particular design

perspectives. Integration of activities is achieved through use of shared
databases, and Design facilitators which may be used to view the design-in-

the-large situation, i. e. from multiple different perspectives, and to help with

the data translation between one tool and another - the mapping mechanism
for translation from one schema definition to another may be achieved by

object 'wrappers' (Bracewell et al, 1994). In the Schemebuilder environment,

cross-disciplinary component descriptions in the form of bond graphs are used

to satisfy the requirement of a common language.

Once again, these systems potentially provide excellent support for designers

working alone, or consciously looking at alternative design perspectives, but

there does not appear to be any support to actively promote changes in

working mode, when necessary.

4.1.15 STRETCH (ESPRIT)

This research examines the design and implementation of a system to support

the representation and manipulation of large knowledge bases. Their database

approach supports non-traditional data structures and provides a multi-

paradigm programming environment including rule-based language and object

oriented language. Thus it provides an environment which could support a

diverse range of software expertise, but does not examine specific examples

of such expertise.

4.1.16 SHARE

Described by Toye et al, the top level architecture of SHARE is a set of

agents interacting as peers over the Internet, where each agent can represent

42

one or more of the following: a designer, his personal CAD tools, a database

or other information service, a computational service that supports

engineering, or the engineering process. This project potentially makes a

significant contribution to supporting the soft elements of team interactions,

trying to help the team reach the 'shared understanding' of the domain, the

requirements, the artifact, the design process itself and the commitments it

entails, i. e. the view is similar to that expressed by Scott (1994) in figure 3.3.

The project promotes computer use in all communication-documentation

activities, and encourages as much information as possible to be captured

electronically. Such information ranges from email messages, to movie mail,

to output from processing programs. This research also makes use of the

knowledge sharing interfaces developed in the PACT research discussed

above.

4.1.17 TEMPORA (ESPRIT)

This research combines a relational database with rule-based reasoning. The

main interest of this work in the present context is that they add a temporal

dimension to the relational model, making clear that two types of temporal

information must be recorded, i. e. event time, which is the time over which

we know (or think) a piece of information holds in the universe of discourse,

and transaction time, which is the time over which the information holds in

the information system. (McBrien et al, 1992). This research is therefore

primarily of value when considering the information and knowledge content

which must be exchanged or shared within the system, specifically when

considering the changing value of particular knowledge sets at different stages

of the product design.

43

The systems discussed in this section all satisfy some of the identified needs of

CE, but none adequately address the issue of promoting concurrency in working.
Greater support is needed to raise awareness of when design decisions may

affect other team members' activities, and of when a change between

synchronous and asynchronous working should be made. Elements of the

MOSES system, which is described in the next section, do address this issue.

This research contributes to the MOSES research.

44

4.2 The MOSES Architecture for Future CAE Systems

The MOSES architecture (figure 4.1) is based on the use of 2 information

models, a Product Model and a Manufacturing Model, which can be accessed by

an open set of application programs, via an integration environment.

Figure 4.1: MOSES Research Concept

The information models are implemented as object oriented databases. The open

set of application programs may contain any application program which may be

used by a CE team member during the course of the product design. Such

applications may include CAD (computer aided design) and FEA (finite element

45

analysis) packages, mathematical modellers, expert systems and any other

application program, any or all of which may interrogate, add, modify or delete

information within the product model database. Interactions between the

information models and the applications are enabled through the integration

environment. Any modifications to the product model are monitored by a

specialist coordinator application called the Engineering Moderator, which is

described in detail in section 4.2.5.

The main elements of the MOSES CAE architecture are now each examined in

turn.

4.2.1 The Product Model

A product model is a representation of a product in a computer, and should

contain adequate information about the product to satisfy the product

information needs of all the applications within the CAE System. When My

populated it should contain all information relating to the product from

conception through to disposal. The product model is a source and repository of

information for many applications, and as such allows information to be shared

between the many users and software components of the CAE System. It

therefore helps to promote a common understanding of the product design,

whilst not restricting the individuality of the human or software agents which are

involved in the design process.

46

The structure of information which may be stored within a product model is

called a product data model. Thus a populated product model, for a particular

product, is an instance of a product data model.

The importance of product models is increasingly accepted by research groups

and industry (Krause, 1993). The product model adopted by the MOSES

project is based on considerable research experience gained through this and

previous project work at Leeds University. (Shaw et al, 1989). Significant

recent work has been in the areas of specification modelling (McKay, 1993),

(Erens et al, 1993) and assembly modelling (Henson et al, 1993), (Baxter et al,

1994).

Autonomy is not actively restricted by the use of information models but in order

to use the CAE System to its best advantage all agents must actively participate

in information sharing, by utilising the common product model database. If

agents create their own individual databases of information relating to aspects of

the product, problems may be stored up for other agents who have been unaware

of decisions taken. Thus any additions or changes to information relating to the

product, as made by any application from the open set of application programs

described above, should be stored immediately in the product model rather than

being developed in private databases or files, since all agents should be allowed

the opportunity to access the most recent product information available.

47

4.2.2 The Manufacturing Model

A manufacturing model is used to describe available manufacturing processes,

resources and strategies. Its purpose is to provide a consistent source of

manufacturing information for applications. This model has the potential to

contain information which is valuable to many different parts of the enterprise as

a whole as well as to individual project team members. Thus it may be accessed

by many different types of application, with purposes ranging from the

formulation of improved business strategies to real time production control. The

model developed during the MOSES project has four levels based on a de-facto

standard (i. e. Factory, Shop, Cell, Station). By acting as a single source of

information on available manufacturing capabilities and status it helps to promote

a common understanding of the manufacturing enterprise without placing undue

restrictions on the autonomy and heterogeneity of the agents who wish to use

this information. (Ellis et al, 1993), (Molina et al, 1994), (Al-Ashaab & Young,

1992), (Al-Ashaab & Young, 1994).

4.2.3 Strategist Applications

Strategist applications are specialist expert applications which assist users of the

CAE system to evaluate, modify and extend the product design using criteria

which are closely allied to particular design perspectives, i. e. they form part of

the open set of applications described at the beginning of this section. Ideally

they offer the designer more than Computer-Aided Design (CAD) tools, which

are valuable design aides, but which are generally used long after the major

design decisions are settled. CAD tools do not generally support the engineer at

a much earlier stage in the design process, i. e. at the conceptual design stage,

48

when engineers make the major and more expensive decisions (Oh 1993). A

design agent, as referred to in this work, is most commonly a strategist

an lication, in combination with the human designer. rp

It is necessary to consider many different perspectives on the product in order to

achieve a good product design which satisfies aH the requirements demanded

from the product throughout its entire life cycle. Each design perspective has its

own design criteria, rules and heuristics to which the product design should

conform. Examples of design perspectives are: design for manufacture, design

for assembly (Boothroyd & Dewhurst, 1987), design for disposal, design for

human factors (Tayyari, 1993). Such perspectives will be termed 'Design for X

or'DFX' hereafter since the list is endless (Meyer, 1993).

Within the MOSES project, effort is focused on two example DFX perspectives,

these being design for manufacture and design for function, and various

applications have been researched in these areas. A manufacturing strategist,

under development, may assist users in design for manufacture activities, using

information from the manufacturing model, and product model. Additionally,

work has been carried out into how these models can support strategic policy

making at the enterprise level (Molina et al, 1994). Consideration has been given

to design for manufacture specifically relating to injection moulding by Al-

Ashaab (1993) and Lee (1995). The capture of information and knowledge

through reverse engineering of components is currently under examination by

Boda (1995). An application to support cost and delivery estimation for cranes

has also been designed and implemented (McKay et al, 1995(2)).

49

Work has also been carried out on a design for function expert, specifically

looking at shaft design for electric motors and generators (Sadler, 1994). This

research resulted in the implementation of a rule-based expert which uses and

produces product model information. The resulting expert is examined in detail

in section 6.2.1, as this has been used as an example instance of a software

expert, and was designed and instantiated using the knowledge representation

model which is the focus of this thesis.

As explained earlier, care must be taken that the design criteria knowledge

incorporated in such design environments is kept as pure, in the sense that it

must provide expert support for a particular design perspective, as possible with

respect to the requirements of the particular perspective. This is necessary in

order that the best possible support may be provided to the designer for their

area of expertise. The requirements for coordination of expertise and raising

awareness of other design perspectives are separate issues and must be

supported by other elements of the CAE architecture. The author does not

believe it is appropriate (or possibly even feasible) to achieve a fully automated

system for the resolution of design conflicts which may arise when the multitude

of Design for 'X' perspectives are considered simultaneously. This view is also

shared by other authors (Bahler et al, 1994). A better solution is to provide

designers with CAE support through partially automated systems, which can also

raise their awareness of other decisions being taken relating to the design, and

thereby empower the human designers to anticipate and resolve design problems

as soon as they appear. For this reason information generated by Design for 'X'

50

applications should be added to the product model as soon as possible, to ensure

that the strategists are actively sharing product information.

4.2.4 Integration Environment

A MOSES CAE system consists of many elements, including models and

applications. An integration environment is required to enable these elements to

work together even though they may be distributed over many computing

platfonns, probably located at several sites.

The integration environment must satisfy the requirements of each individual

element, so that the models may store and maintain the information accurately,

and the applications may each perform their particular functions, and access

information as required. It must also provide support for interactions and

communication between applications. This may require the provision and

support of translators or wrappers to enable communications as necessary

between agents in the system and to allow information to be exchanged. As

previously stated, the CAE system can never be considered to be complete, since

there is always the possibility that additional, possibly third party software may

be needed to provide particular support for certain users of the system.

Commercial systems, such as Digital's Object Broker, are already available to

support integration by assisting in the exchange of information between

applications. There is also considerable research effort currently focusing on

integration issues, as can be seen by the review of related software systems and

environments given in section 4.1.

51

The need for a common language, or understanding of terms to facilitate the

exchange of knowledge and to resolve conflicts of views, has already been

mentioned, when considering Halasz's identified requirement for mutual

intelligibility. However, when considering the integration environment, problems

exist in two main areas. Firstly, elements of the software systems and networks

must be able to communicate together, and secondly, the network user (human)

must understand the systems particular interfaces. According to Manola (1995)

interoperability is the ambitious goal which needs to be attained by software

systems and networks. He states that two or more systems are interoperable if

they can interact to execute tasks jointly, and intelligent interoperability requires

interaction among information systems, some of which may be intelligent and

capable of functioning as intelligent agents. Such systems may be called

knowledge-based integrated information systems (KBIIS) and they involve

integrating any heterogeneous information sources, including heterogeneous

distributed databases, knowledge-based systems involving heterogeneous

knowledge representations and conventional application programs and their

associated processors. Manola also states that the full range of KBHS

requirements are only beginning to be addressed by researchers.

It has also been acknowledged that the achievement of agreement of common

meaning between experts from different disciplines, can be very difficult to

obtain (Cutkosky et al, 1993). Regrettably there would seem to be no easy

route to obtaining this common understanding of terms between experts of

different disciplines, but the shared language does only need to cover an

52

intersection of expert interests. Providing agreement on terms or translation of

terms can be achieved between experts working with specific product types, or

in particular industries, advances can be made, as in principle the language can

evolve from a few core concepts (Gruber et al, 1992). Information sharing,

through common, integrated information models can significantly reduce

translation requirements.

4.2.5 Engineering Moderator

The necessity to stimulate active participation of all team members, and the need

to raise the awareness of each individual team member to the concerns and aims

of other experts from different disciplines have already been mentioned many

times in this work. These activities have also been identified as being part of the

duties of a management of coordinating agent. Also, the review of related

software systems in section 4.1 indicated that existing and proposed software

solutions do not currently provide support for these activities.

Within the MOSES architecture, the Engineering Moderator (EM) is a specialist

manager or coordinating program whose role is to drive concurrency within the

MOSES system. The previously described elements can provide excellent

support for individual team members or groups working from particular design

perspectives. The task undertaken by the EM is however rather different: it has

been included specifically to promote communication and negotiation by the

active exchange of information and knowledge between team members with

different areas of expertise. However, it is NOT an engineering arbitrator, as it

is not included to automatically generate compromise solutions to design

problems. It is included to raise the awareness of human designers within the CE

53

team of how their decisions may affect, or be affected by actions of other team

members. In this way, it stimulates communications between CE team members

and thereby supports and empowers the human designer. As previously shown,

this is a vital element of any CAE system in a CE environment, indeed it has been

claimed that communication is a critical ingredient for project success (Bobrow,

1991).

The rationale behind the inclusion of the EM has been indicated in this thesis by

examination of the need for a management/coordination agent, further treatment

of this subject may be found in Harding & Popplewell (1994)(1). The EM's role
is as a driver of concurrency within the CAE system which it does by using
knowledge of the expertise which exists in the form of agents which may interact

with the CAE system. Clearly this knowledge must vary over time, since the

expertise which is available to, or relevant to, a product design will vary as the

design evolves. Also the structuring of the knowledge within the EM is critical

as the larger the team is, and the more diverse the expertise exhibited by team

members, the more complex the knowledge which the EM needs to store and use

becomes. However it must be stressed that the role of the EM is not to solve the

design problems itself, its mission is rather to raise the awareness of individual

team members when a particular problem may exist which should be resolved.

Details of the design and implemented structure of the EM are given in section

6.2.2, since it has been used as an example of a sophisticated form of software

expertise which can be modelled using the KRM. The complexity of the EM has

provided an excellent test of the flexibility of the KRM.

54

5. The Knowledge Representation Model Concept

5.1. Modelling Diverse Types of Software Expertise

The expertise within the concurrent engineering project environment comes from

many disciplines, and it has been shown in the previous chapters that the skills

required to meld the individual specialists into an effective proactive CE design

team are very diverse. To really provide support for such CE team working, a
CAE system must provide support for all elements of these skill sets, and

therefore address all the requirements identified in chapter 3. It is believed that

this may be achieved by basing future CAE systems on the MOSES architecture

proposed in section 4.2. However, this only partially addresses the problem,

since ways must still be found of implementing instances of CAE systems based

on this architecture, and this includes the implementation of many diverse types

of software expertise, such as the strategist applications described in section
4.2.3. The knowledge required by an expert should be captured in whatever way
best suits the expert's requirements, since the best approach depends on specifics

of the problem (Knaus & Jay, 1990). Also, there are deep differences among the

approaches taken to knowledge representation, which lead to the belief that

attempts to automatically translate between one knowledge representation

scheme and another are premature, and that attempts in this direction will

inevitably constrain future knowledge representation efforts (Ginsberg, 1991).

Therefore care has been taken to identify techniques for modelling knowledge

which do not restrict the ways in which knowledge is captured, and represented.

An approach to doing this, based on a knowledge representation model, KRM,

will now be proposed.

55

Software experts may be developed to support many different aspects of human

expertise, and these range from applications to support highly focused, specialist,

computational work, to applications which specialise in the management or

coordination of team activities. During the course of this research several
different types of software expertise have been examined, designed and
developed, these include: a Shaft Design for Function Expert (Harding &

Popplewell, 1995), a Manufacturing Strategist (Ellis et al, 1994), a Cost and

Delivery Expert (McKay et al, 1995), and an Engineering Moderator (Harding &

Popplewell, 1994(l) & 1994(2)). Examination of these particular, individual, and

diverse types of expertise has led to an understanding of the fundamental

similarities of their concepts, i. e. the generic aspects of how the requirements

from such expert applications may be satisfied and modelled have emerged.

A comprehension of the similarities between the studied forms of software

expertise has been fundamental to the modelling of knowledge to be applied and

stored within the CAE system. Identification of a method of modelling the

expert knowledge is considered to be of value in the creation of software

expertise, since experience has shown that it is much easier to write well-

structured and re-usable code to solve well defined problems than to solve

experimental, research problems. When dealing with complex systems of a type

not worked on before, a natural and productive approach to solving the problem

is to make a quick model of the system, analyse it, and then refine the solution

based on the ever-increasing understanding to the problem which is being gained.

This approach has been called the round-trip gestalt design method (Rational

Rose, 1993). Initially, adoption of this approach enabled a model for the capture

of software expertise to evolve through progressive experimentation with views

56

of a diverse range of knowledge within the concurrent engineering project zn
environment.

EXPERTISE

O.. n Cornca-fmm
O.. n

SO FrWARE E3CMT

HUMAN OGIMT

13-A Is-A/
C'OST-ANT)-DFLTVFRY

ls_A

loLkNUFACrURING-STRATECUST

Cantains

SHAYr-DESIG, N-F-XPERT

Contains

r-1'4UJIN=MILNU-. fVIVLJL: KA L UK

contalm

cc nta=
O.. n

KNOWLET)GS-ACQUTSMON-MODUL

--1

PROCESS-STRATEGIST

DESTGN-MODERA77ON MODULE
7

Is-A

DESIGN-AGENT-MODULE
Is-A

EXPERT-MODULE

Figure 5.1: A Representation of Investigated types of soffivare expertise
using Booch Object Oriented Design Graphical Notation.

An object oriented approach has been taken for the modelling since 'defining a

system in terms of objects facilitates the construction of software components

that closely parallel the application domain, thus assisting in system design and

57

understandability' and 'using classes and inheritance provides a simple and

expressive model for the relationship of various parts of the system's definition

and assists in making components reusable or extensible in system construction'

(Manola, 1990). Therefore the views obtained throuah experimentation have

been examined using Booch Object Oriented Design methodology.

SOFrWARE-F. 'OERT

IAL-COMPOW4-of

EXPERT
Hm a O-n -MODULE Has L-a

; KNOWIJDGE
-BASE WORKING MEMORY Hzs-a,, //

Ln WFERMýCE-ENGINB
wa

TemponcrilyJS RULE_SET

PRODUCTJIVORMATION

I/C.

CaDlaiDA

O-U
.

D.
-a PRODUCT-. AIODEL

ox

O. J,
RULE

cm

cAmtsins O.. a
UgER O-J2 JNFORMAIION liANUFACTURING-MODEL

MANUFACrMNGJNFORMA7ION

Figure 5.2: A Representation of Software Expertise Using Booch Object
Oriented Design Graphical Notation

58

Using the Booch approach, a representation of software expertise was developed

and this view is expressed in figures 5.1 and 5.2, which show the relationship of

classes, using Booch notation, so that the clouds are object classes and the lines

are relationships between classes, where single lines with arrows illustrate

inheritance, and the double lines illustrate other associations between classes.

Figure 5.1 shows that expertise can come from human experts and/or from

software expert applications (most commonly coming from a combination of

both - referred to as agents in this research).

The particular types of software expertise which have been investigated during

the research fell into two broad categories,

1. Applications to support highly focused, specialist work, and these were

exemplified by the Shaft Design for Function Expert, the Cost and Delivery

Expert, and the Manufacturing Strategist.

2. Applications to support management or coordination of team working

activities, and these were exemplified by the Engineering Moderator.

Detailed examination of the role of the EM showed that this should be a

sophisticated, highly modular, single application which included knowledge of zn
various types and hence the EM was visualised as consisting of several

individual yet related modules of expertise.

Details of how these particular forms of software expertise were eventually

instantiated using the KRM are given in chapter 6. The remainder of this chapter

59

is devoted to defining the KRM concept itself which emerged through

expefimentation with such design agents. Z: p

5.2. The Production System Metaphor

The KRM concept enables software expertise to be represented by one or more

expert modules. This concept is captured in Figure 5.2, which represents the
highest level representation of the KRM, modelled using Booch's graphical

notation. In this figure it can be seen that each object of the expert-module class
is associated with objects of three other classes, i. e. one or more
knowledge-base objects, one or more working-memory objects, and an
inference engine object. In performing an object class breakdown for the class

expert-module, the terminology of standard expert systems, in particular of

production systems, (Jackson, 1990) has been adopted. This has been done for

good reason, but with some caution, since misunderstanding of the metaphor

may result in the model being undervalued.

The names of the three related classes, working memory, knowledge base and

inference engine, have been used as it is believed they are sufficiently well

known terms for some level of understanding of the primary functions of these

objects to be immediately gained by any casual reader who has had some prior

contact with expert systems. For example part of the behaviour of a working

memory object enables it to hold the data and intermediate results that make up

the current state of the problem, and this agrees well with a standard definition

of working memory within a production system (Jackson, 1990). Similarly, part

of the behaviour of objects belonging to the knowledge base class enables

knowledge to be added, changed or removed from the knowledge base without

any changes being made to objects of the other two classes. However, it must

be remembered that in this work the names relate to classes of objects, so

60

instances of these classes have state, behaviour and identity (Booch, 1991), and

therefore they provide all the flexibility and power of object oriented systems.

By making use of inheritance structures and polymorphism, it has been possible
for the similarity of behaviour of certain classes of objects to be exploited even

though the implementations of particular classes of objects is significantly
different. This point is central to the concepts of this work.

Each expert module is associated with one or more knowledge base objects, an
inference engine object and one or more working memory objects. Details of

actual instances of these objects, as created to support instances of individual

software experts which have been designed and implemented as examples of the

KRM, are given in chapter 6. However the current working definitions of these

classes of objects are as follow: -

Knowledge base object - contains knowledge of a particular type, or related to

a specific type of expertise or domain. In embodiments of the KRM, instances of
knowledge base objects are normally object oriented databases within the same

federated database. Knowledue within a knowledue base ob ect database is Z: ý Z: '
j

captured in a miscellany of associated objects, and through their interactive

behaviour, as described below. The class hierarchies for these objects are also

based on production rules, as can be seen by the rule-set and rule classes in

figure 5.2. However, knowledge expressed in other artificial intelligence

paradigms (e. g. neural networks) may be embedded within the objects in such an

object oriented database. Thus the production system metaphor does not

constrain the ways in which expertise is represented.

Inference engine object - carries out the processing of knowledge from one or

more knowledge base objects. The inference engine object provides the

61

software expertise with the ability to apply and use its knowledge. In the initial

implementations of the KRM this type of object has been represented by

program code or function code rather than as true objects. However, this need

not be the case, as the functionality required from their processing could be

captured within the behaviour of object classes.

Working memory object - this is a store of variable information, which is

possibly only of temporary value, to be used in association with the expert's

domain knowledge, possibly to facilitate the processing of that knowledge. In

particular, as demonstrated in figure 5.2, such information could originate from

product or manufacturing models, be input by the user, or be generated through

the expert's activity. The working-memory class has been implemented as a

parent class for a hierarchy of domain specific working memory objects.

The production system metaphor is continued to allow storage of knowledge

associated with any particular knowledge base object, through the definition of

ruleset and rule objects. Figure 5.3 shows the breakdown of these classes

leading eventually to two key classes, expression (each instance of which is

associated with a simple condition object) and simple-action. These are parent

classes for a wide variety of objects, see figures 5.4 and 5.5, which are similar to

the extent that they all demonstrate a specific type or aspect of behaviour.

Any expression object must be able to pass messages to other objects

(particularly objects of class sImple-condition) to state whether the expression is

currently in a true or false state. So, for example, an object of the class

user-input-response-expression is in a true state if a user has answered yes to a

particular question, and is in a false state if the user's answer was no.

Altematively an object of the class object-exists-in-pm-expression is in a true

62

state if an object of a specified type can be found in the product model, and is in

a false state is no such object exists in the product model.

RULE-SET

RULE
Tcm

CONDMON

13-A

RESULMIZO-AMON

SDV97LZ-CONDMON CmKainjLa

COMPOUNID-ACnON
Cocuuns

-A" CnrLRN-ý
UDCPR13SSION:

'rn "W

COMPOUND-CONI)MON

- ------ I_Jfl

Figure 5.3: A Representation of Knowledge, captured within Rule and
Ruleset Classes, using Booch Object Oriented Design Graphical Notation

Similarly, any simple-action object must be able to execute, in order to carry out

some task or tasks. For example, an object of the send-message-to-user class

can display a predefined message in a window on the user's computer screen.

Altematively, an object of the class fire-a-rule-set, can initiate the processing of

63

a further set of knowledge. The diversity of activities which can be incorporated

into valid instances of these classes demonstrates the strenz(:; th, flexibility and

potential of the KRM.

,
=RESSION: "

USER-E'4PUT-RESPONSE

Is-a

Is-a
Is-a

Is-a

OBJECT-OUSTS-IN-PM Is a

CONfPARISON-OF__QUANTITEES

ANY-OTHER-TEST

MATCHED-OUTPUT-FRONI-NEURAL-NETWORK

Figure 5.4: A Representation of the Expression Class, which is a parent
class for a wide range of similarly behaving object classes, using Booch
Object Oriented Notation

64

SIWLE-ACTION

/

FIRE-A-RULE SET

SEND-- ývESSAGE-TQ-USER

GEILJNPU'llý, FROM-USER

DO-ANYrHNG-, ELSE

GEr-RF-SULT-FROU-NEURAL-NErWORK

Is-a

ADD-JNFORMATION-T'Q-PM ls_a

GETJNr-ORMAnOM-jaOM-PM

Figure 5.5: A Representation of the Simple_Action Class, which is the
parent class for a wide range of similarly behaving object classes, using
Booch Object Oriented Graphical Notation.

Working memory objects all exhibit behaviour which enables them to be

accessed or updated by the inference engine objects. The variable contents (or

attributes) of a particular working memory object class will depend upon the

type of expertise which is being modelled, but the fundamental aspects of

65

behaviour (implemented as methods for the objects) remain common to all

working memory objects. Hence the instance of the working memory class for

any expert embodiment based on the KRM wi. 11 be an instance of a sub-type of

the working-memory base class. In this way polymorphism. can be used to

enable instances of the working memory object to take many forms, depending

upon the type of expert module it is associated with, without changes being

made to the processing behaviour of the related inference engine object, or the

contents of the associated knowledge base objects Thus additional sub-types or

classes of working memory object can be developed as and when required,

without requiring changes to be made to the knowledge base object classes, or
inference engine software. Indeed it is possible for a knowledge base object to

hold the knowledge required to create additional sub-classes of working memory

to order, however the technical limitations of the current object oriented
database system employed throughout this work has rendered the

implementation of this capability of the model impractical at present.

Initially, working memory was conceived as a transitory class, since it was
believed that values of its attributes would only have temporary worth. However

research has established there are worthwhile benefits to be gained if working

memory is modelled as a set of persistent classes. The concretization of working

memory as persistent objects in the object oriented database has enabled both

temporary information and longer-term information, which is of value between

different runs of the expert application to be stored. This latter type of expert

information is especially valuable in implementations of sophisticated forms of

expertise, such as the Engineering Moderator, the concept of which was

described in section 4.2.5, and the implementation of which will be described in

section 6.2-2. Figure 5.6 shows that the information which can be stored in

66

working memory, for example the working memory of the EM, falls into three

categones.

Persistent lnformafi'-oý
Used for each

invnr,!:)tinn nf PAA on
WaWe, % Location

r ry Temporary va

Used betwf
invocation.,

Figure 5.6: Three types of information can be stored within working
memory objects

5.3. Instantiation of the Knowledge Representation Model b
Having established the conceptual basis upon which a variety of types of

software expertise rrught be designed, it became necessary to instantiate the 1. --
KRM to enable particular instances of software expertise to be implemented.

The requirement, and indeed necessity, for information and knowledge to be

freely available and shared between all team members was clearly established in

chapters 2 and I Hence it is believed that any instance of the KRM should

facilitate the sharing of captured knowledge between team members. As

67

explained in section 4.2, the MOSES concept of future CAE systems envisages

that information may be shared through the use of product and manufacturing

models, which are instantiated as object oriented databases. It is believed that

the sharing of knowledge may be facilitated in a similar manner. The

concretization of the KRM was therefore achieved through the definition of the

previously described class structures in object oriented database schemas. This

enabled diverse forms software expertise to be captured in a commercially

supported object oriented database system.

The full data definitions in the implementation are large and have therefore been

split across 4 schemas for efficiency. The main classes associated with the KRM

knowledge base class are structured together, with some general purpose

subclasses of expression and action classes in rules. ddl. Additional subclasses of

expression and action classes are to be found in mod-rules. ddl. The classes

associated with the KRM working memory class are grouped together in

working-memory. ddl, and mod-working-memory. ddl. Details of all these data

definition schemas may be found in appendix I of this thesis.

The varied knowledge which is utilised by the software experts which have been

implemented as instances of the KRM, has been captured using many different

sub-classes of expression and action classes. Details of some 25 examples of

expressions, and some 30 examples of actions, which have been implemented

during this research may be found in the tables included in appendix Il.

Achieving a working version of the KRM has required substantial amounts of

software development, both for the data definitions mentioned above and for

associated implementations of class methods and application code. This is

partially due to the fact that there is no SQL for the object oriented database

68

system used, hence all code had to be purpose written to enable objects to be

created, queried, modified and deleted. This was achieved by implementing

several methods for each of the classes whose definitions are included in

appendix 1. Also, in addition to the implementation of the software experts
described in chapter 6, support applications to populate and modify the database

with both product model information and knowledge for software experts have

also been written. Without these methods and support applications the example

software experts detailed in the next chapter could not have been implemented.

In the implementation of the KRM, the essential associations and relationships
between classes were captured using inheritance and class attributes. The

essential behaviour of objects of particular classes was captured through the

class methods. In this way the knowledge for any software expert could be

captured by creating instances of these persistent object classes in object oriented

databases, within the same federated database. Additional subclasses of

working-memory, expression and simple-action classes may be implemented at

any time without affecting the structure or overall operation of the implemented

KRM. The KRM has been tested through the instantiation of several software

experts in this way, as will now be shown.

69

6. Design and Implementation of Instances of the Knowledge
Representation Model

Expertise may be founded on a wide diversity of knowledge, originating from many

different disciplines, it was therefore considered essential that the results of the

research project did not restrict the user in the types of support systems,

applications or artificial intelligence techniques which may be utilised. These views

naturally influenced the conceptual desi, -,, n of the KRM. For example, production

rule techniques, neural networks, genetic algorithms, any other knowledge support,

or any numerical analysis software should be available to experts using a CAE

system utilising the KRM, if they so wish. Since it is believed that an information

technology system should support the human user, not coerce or restrict his desired

or optimum method of working. The flexibility of the KRM permits the

representation and utilisation of knowledge which exists in a variety of forms. The

use and reuse of such knowledge by many different applications, and hence the Z: I

sharing of knowledge and information between members of the CE team, is further

simplified by the storage of knowledge as persistent objects within an object

oriented database, which may be freely accessed by any number of varied

applications.

6.1 Implementation of the Knowledge Representation Model.

Several instantiations of the KRM have been implemented using purpose written

C++ code and DecObject DB, which is an object oriented database system, (a

version of Objectivity). The essential information content and structure of classes

of objects, and the relationships or associations between them, (excluding

inheritance, which is discussed separately here as it is dealt with explicitly during

data definition), have been captured through the attributes for object classes.

The Knowledge base objects have been implemented as database objects, which 4ý

70

contain ruleset, rule, condition, expression and action objects. Both condition

and action objects can be either simple or compound, as described below.

A hierarchy of working memory objects has been implemented, where the

working memory for any particular expert module is captured either as a single

subclass of the working memory base class, or more commonly as a set of

associated subclasses of the working memory class. Figure 6.1 shows a screen
dump of a window generated by the ooToolManager application (one of the

software tools provided with DecObject DB), which allows the database to be

browsed, to show either the types (class structures) or the instance data within

the database. In this image, the type (class) working-memory is being examined.
The derived types in the box on the right hand side are sub-classes of the

working memory class. Some of these sub-classes will be described in further

detail later in this chapter, as they relate to particular software experts which

have been instantiated as instances of the KRM. Future implementations of the

KRM should enable a software expert to be designed and implemented with the

knowledge to be able to extend this hierarchy at will, by creating additional

subclasses of working memory. This would facilitate creation of additional

software expertise within the CAE system whenever required.

As previously mentioned, in the current implementations, the inference engine

objects can be identified as particular functions in the C++ code. However, in

future versions of the KRM, inference engine classes should be implemented,

their behaviour being modelled on the functionality of existing experimental

code. The limitations and complexities of the current third party software

systems employed have restricted the software implementations to some extent,

since any additions or modifications to the database schema require significant

71

amounts of extra source code to be written, leading to considerable re-

compilation and linking of code.

The use of an object oriented database system to capture instances of the KRM

has proved to be very successful and powerful, although implementations have

not been without problems. The technology adopted was immature, and

consequently considerable artifice had to be employed during software design,

and large quantities of subsidiary code written, in order to satisfactorily test the

KRM concept, and produce the required results. As the technology matures and

the problems experienced with the database software during this research are

cured, the full potential of the KRM should be attainable based on object

oriented database systems.

However, considerable advances have been made whilst implementing

demonstrable examples of the KRM, these include, for example, successfully

capturing the behaviour of the various classes of objects which are fundamental

to achieving a valid implementation of the KRM concept. This has been

achieved by using, the object oriented database system to store persistent

instances of the objects thus enabling their behaviour to be held within class

methods. For example, a basic aspect of the behaviour of a condition object is

that it must know how to test whether their current state is true or false, and

how to pass this infori-nation on to other associated, interested objects (e. g. to a

rule object).

There are many different types of conditions, which can be implemented as either

simple or compound conditions, each of which is associated with any of a variety

of instances of sub-classes of the expression class (25 implemented versions of

72

expression are detailed in table 1, appendix IT). But however different any two

conditions may appear they must exhibit this same aspect of behaviour.

FZ) DEC Object/D6 - Browse Types

mýý File Edit Browse Search Viev/ Help

7"pPes Den ved
WI PRINT

-
NIESSAGE_ACTION

_I Wl READ
-

INTO
-

MEIVIORY_, -, CTIGb
WI USER INPUT RES P Cý N E-E. '*)'PRE'ý
WC, RKHCLDIIqG_TC--CL
WORKING MEMORY
WORKPIECE
YAIYIA"-AKI
actual assembly
actual component
actual part
actual product

DESIGN E., C PERTW NI
DES11-714 lyl r, D ERA T 10 1\1 1A
KINIC-VILHEDGE zýCQU W 1A

-X-- SDFF
-
V/CRK1NG_T,, 4EI%, ICR'j7

STR,..,, T VIORKING ý., IENIOR'Y-

I WORKING MEMORY I

cIaS3 WORKlNG MEMORY: iooObjjý'

ooHandle(nextVers[prtvVtrs

ooHaauUe(rooOb--J]) prevVers iiextVtrs[]

oo Handle (I oo Gene 0-b-il) gencObj - 3ilVtrs[]: version(copy)

ooHandle(fooGt, ne0bjI) defai2tToGe2itObj <- defmdtVtTs

ooHajidle(If-ooO-b-JI) de, &3tives[] .:: -> dexivedFrcin(]

ooHajidle() dehvedFroin(] - d. t. nvatives[]

ooHancUe(jooN-IapE=Iem) inapEleins(prcp(delete)

ooHajidletý, ooClieckOutliifoObjj) checý. outliifo[] alitckout

Figure 6.1: Database Browser showing 5 subclasses (derived types) of
parent class working memory

73

When this is achieved a rule object only needs to know it is communicating with

a condition object - it does not need to know anything about what type of

condition it is associated with, or any details of the processing of expression

objects which is being done at the request of the condition in order to test its self

truth.

CONDMON

coubdno-A

SIMFLE-CONL)nl6N
Contains a ---ý I-

CO&MOLTND_CONDMUN RvalLULEft

E DURESSION

RULE

Executes

RESULTING-ACMN

DO-ANYTHINGJELSE

PERE-. AN(Yn IIU(-RLIX

ADD-FEATURE

WRIFE-NIESSACIE
-, -, CREAMCONMM3N-T

GHTYALUE

L

T'
ýOT=

M

USIER_fNMT_RESP6N, SE

q Frr

PART

QUAXTTT"Y_COhfPARLSON

Figure 6.2: A rule object needs to communicate with an associated

condition object and an associated resulting action object. The details of

the types and structure of these associated objects may remain hidden from

the rule object.

74

1-17-1 DEC Object/DO - Browse Types

READ INTO MEMORY ACTION
REDUCTION ADAPTOR
REQUESTED ACTION
RESOURCE STRATEGY

ESULTING ACTION RS
ROBOT

RULE-SET
RULE_c, ET_ELEIYIENT
SCHEDULING STRATEGY
SDFFE lAEMORY EOUALS SPECIFI

RULE

class RULE: 'wObj fý

ooHwidle() ncxtVexs[] <-> prevVex3

ooHa. ndle(! oo0bi) prevVeis - neý. Vers[

ooHajidle(jooG-, mioObjj) geiieObj - allVeis[] : versionf
,
cc

,
py)

ooHandle(fooGene0bil) defaWtToGemeObj - deýfaiýtVM

ooHandle() derlvabve-s[]- dehvedFrom[]

ooHandle() derivedFrom[]- dehý, 7atives[]

oo Handle (IfooNlap Elei-nj) inapEleins[]: prcp(delete)

oo Handle(jooCheckOut Info Obj) checioutLifo[] - checkout

char des cxiption[lCO]

ooHajidle(f-CONDITIONI) tht_condibon - tht_nýe : prop(delete)

oo Handle(I RESULTING ACTIONI) the_resWt - tlie_rule: prop(de! ete)

ooHandle(ý, RULE SET ELEINIE nýe_element - flie_nýc: prop(delete)

char compIttoti_ins[10C]
i. TitJ2 ha-s&ed

Figure 6-3: Database Browser, showing one to one, bidirectional
associations between objects of rule class and objects of both condition and
resulting action classes.

Figure 6.2 shows that a rule object simply needs to communicate with a z: I
condition object and a reSUItIng action object, details of the types and structure

75

Types DL-i7wV Twes

of these associated object classes can remain hidden from the rule object. The

implementation of these one to one relationships can be seen in figure 6.3, which

shows a screen dump from the database browser.

In figure 6.3, in the bottom box it can be seen that there is a one to one, bi-

directional association between objects of the rule class and objects of both the

condition class and the resulting action class. That is, the class RULE, which is

being displayed has various attributes, which are listed in the bottom box, the

type of each attribute is shown at the start of each line. The keyword ooHandle,

indicates an attribute which is an association with a persistent object within the

database. The names in boxes following ooHandle indicate the class of the

associated object and the name following this is the identifier for the attribute.

Thus, an object of the class RULE is associated with an object of the class

CONDITION, and access can be made to the CONDITION object, using the

attribute identifier, the_condifion. The symbol ý-4 indicates a bi-directional

association can be set, thus the RULE object can be accessed via the

CONDITION object, and the CONDITION object can be accessed via the

RULE object. This may be compared with the conceptual design of the classes

shown in Figure 5.3, since the association has been implemented to represent the

relationship that a RULE tests a CONDITION, (and the corresponding

relationship that a CONDITION may be tested by a RULE.

A compound condition object is associated with a simple condition object and

another condition object, which may be of either type (figure 6.4). Part of its

behaviour therefore includes the capability of determining its self truth value,

based on combining the truth values of these associated conditions, using either Zýý
AND or OR. Once again, this Booch representation of the conceptual class

structure design may be compared with the implementation of the associations, z: I

76

and inheritance within these class structures as seen in the screen dumps of the
database browser shown in figures 6.5a and 6.5b.

CONDMON

SROIZ-CONDMON

..
LrKPR=ON,

Figure 6.4: A compound condition consists of a simple condition and a
condition

The behaviour of an object of the simple resulting action class includes the ability

to execute, i. e. to carry out a set of instructions or duties. There are many

different types of actions, which range between something as simple as printing

out a message to the user, to performing complex sets of calculations related to

the design of a specific product. Details of the 30 implemented subclasses of

simple resulting action can be found in table 2, Appendix 11. A compound action

is similarly executed by sequen6ally performing the actions of its associated

simple action and another action. Thus, the order in which the associations were

ong, inally made may well be significant, since actions are not necessarily

commutative, so this had to be taken into account when implementing

77

CONVO"D-CONDMON

constructors for the classes. Figure 6.6 shows a variety of the sub-classes of the

simple-resulting-action class which have been captured in the database.

Q6

66J
cm

S

. i! >1 3'L
z E CO

ýnlli
<ý.

mill Lul

>1

V)I

cull
:-Q.

z 0

.p0

z
0
0

0
0

LL.
LLI

z0t
"I E)

LL, z P4 LLI E- Lij 0-

-k
= ýn =) ý-ý -1

L'31

<zz
(73

W
z0 LLJ - LU (D

"uP; E-. C4 0 ý- E--
IIIII

zzr: 1 ýý <I
LLJ UJ Z -J P4

ID 7- 7- >z
00 'D 0 LLI . 0, Co C3. o. . 3ý CL. Cl. LL. I-- >

-j

000 (D 0 (D 0 (D CD
u r) Uu C) C) U rl) C)

(ZD

0 LU
Cý. -J

C) >-
-Z; < CD ýý

,
(D

, Ui Ui 0.

94 &- F- E--

E- p4
< LLJ LLJ

CL.
() E-- ZZ9 p4 p4 M
>Zw

(D 00m CD
g4 LL1 < Uj

Ci- Ci. 5 E-- >
-i

Z<
ZZ0< Ci

(D 0 (D 0 (D g74 94 p4
c) u C, Z) uuGu

_Z,
t

CL

CL

1 LL.

- -
v

äv L
Z >

>
ý > Z >

A
j -

:D ,
-3 -Z

Z
v A

v'

Z
0 LL1

C- CD - 4) m 2 E U CD v-

:2 1ü lýý 2 -b ý - 5 oö
U
-0

>
m M

LL.

10 ý)
E

-
CD 4) 'm -2 Z

-.
Z

- > - > > , CD

1-- -

c

" f f 2 2w -Z 22 w

Z
m

08
2j J:)

CL

Z Z -; ý7 -; Z' Z
-

Z ou

-2, b IL,

A

>
Z z

, -

CL

.u >

> b = 2 0 's -0 ýý 9 c:

-, - > >

- ,
e
>

ýu
>

-

'
=

g- M
2 ý ý - 7ý "' -ý 27-

= Kl !
2

Z 9 9 -
Z x CD

Figure 6.5a: Database Browser showing an implementation of the
Condition class & Simple Condition class

78

=I r77

0

44

F-7,

3:
aj

ca 71; ý W
V)l

xi

L

LLI

ý-- 11 F-:; 71
IF

Tý

>1

vi t-

L. u

z

CD

U
LLI

ul

ME2
z 0
E--
U

LL. z E-

z

I

z

-7 o CD

E-
F-

zz LLJ CZ1
-1

< LU
9 -1 LLJ LLJ E zz " = 0,

ýizzr, == 0> z
000 CD 0 ; 2 Pý LIJ <
93. CL. CL. In. A. U. E-- > -j 2: 2: : E: MM :2 zzZ (D

01) 00* 8 8 0000

3C ýýu 188 ý, cýuu: k i

z

z 121 0
z F- I 0 001
r: 1

I-i
Z

C) LLJ

U

.....

LLI

Z
L)

CD CD < LLI w
zo

w2 T= P4 E- U
pr, E- E- <

LLJ LLI
<C z tn z
LL] 0 LLJ CD

r4 i--
LLJ

4
LLJ

zz P
= v2 ==
CD oZ LU LLJ 00 P4 L12 <L LJ E- E- a. CL Lx- > _3 Z< :EMX zzzo< Lu LJ 00 0 (D 00 P4 r4 P4

Z

CD
u

0-

EL
0

,5 CD»
c)

v

t

CL CL
Z 1 U. 2 CL

"v- l I
t 1)

>
52 (3

> 5 -u
CL

ýý
0

-ý
r.
- - ä Z

A

, Z
CD A 4-. v

0 v -ig
Z

1

CD > > Z

= Z

Z
rk. 0 0 -0 m 1

) a- i s 23 CD
L)

, 3 , v
e e Z m ?! ZL W

C,
- 'ý: -Z

i z- -7 Z 17 -7 -7 -v Z 0. a -w

, -- x = -- x = - = = ý- ä= -4 x 0 Z t

b
A

CL

V
Ll-

,

-

2

C)
>

'. 5 CL o
z 0

CL

A a

ID
U I u " '10

c

>

CD 0 u

v .0
:9 9 :9 1 9 1 :9 E

0 Q 0 0 0 0 0 0v0

Figure 6.5b: Database Browser showing an implementation of Condition
Class and Compound Condition class

79

L DEC Object/Do - Browse Types -D

Defiwd
SHELL

-
MILL_ARBOR

S . -IHC, P
SHOP FLOOR CONTROL STR, ý TE,
SIDE FACEMILL ARBOR
S .. JIDE_LOCK T

HOLDER
S .. 'IMPLE-CONDITION

SLOT
SLOT DEF
SLOT-SPEC

SOLID

ACTIVATE-OTHER_PROCESS-AC
ADD_DE. SjIGN_EXPERT_KNOWLE
ADD_D lIvIEN. "i 10 1ý_ACTIO N
ADD KNOWLEDGE ACTION
ADD_INTEVI_DESIGlq_EXPERT_AC
CHANG E-FEA TURE_TYPE_ACTI(
CHOOSE-A_CALCULATION_ACT
CREATE-BAS. I C-FEATURE_A CTI
CREA T E-S PECI FI ED_C 0 IVI P ON EN
CREATE-SPECIFIED_DEFINITM
EXECUTE INTAls., IED FUNCTION P

SIMPLE_RESULTII\IG_ACTIOI\l
Iclass) SIN-IPLE_RESULTING_ACTION: j, RESULTING ACTIONI ýI

ooHmidle() nex-tVers[] -: -:; - I)revVm

ooHaiuUe() prevve-rs < -:: - lleýxtvers []

oo Handle (jý oO Gene 0) geneubj a-UVers[,. lersion(copy)

ooHandle(, 'oo-Gene0bjj) dtfaWtToGene,, --, bj <-: - defaidtVers

ooHajidle() dtit-, -, atý, -Tts de. &edFrom[

ooHwidle() de. riVtd. Froin[-: -- dtrývatives[

ooHwidle(ký'o--o-N--I-ap-E-1--eiiij) rnapEleins[prcp(delete)

oo Handle oo Clieckatt II -Lf 00bj 1) checRoutlnfo[] <- cherzkout

ooHandle() the, nýe <-> die,
_re-sWt:

prop(delete)
char resift_mes s: -agt[100]

Figure 6-6: Database Browser showing a selection of sub-classes of simple
resulting, action class

SO

It is during the evaluation of expression truth status or execution of a simple

resulting action that a variety of u-tificial intelligence paradigms ma be utilised, tý -y
and thus activation of necessary code can be initiated through the methods for

Zý
these classes. The object oriented database system can be interfaced using C++

code, thus potentially the whole power and flexibility of that language is

available to the user.

6.2 Design and Implementation of Instances of the Knowledge Representation
Model

Several examples of software agents were examined and implemented during the

research associated with the MOSES project.

MDM
Defines the

PDN/l
Defines the

Structure Structure

Figure 6.7: Instances of the Product Model, Manufacturing Model and
Knowledge Representation Model can exist within the same federated

object oriented database.

The following two examples have already been implemented as instances of the

KRM, and details of their implementations have been chosen for inclusion here

81

KRM Derines the Structure

as they represent very different types of software expertise and hence they have

provided significant tests of the KRM.

The inclusion of details of these software agei-its demonstrates that
implementation of specific software experts is facilitated by their embodiment as
instances of the KRM. Thus the KRM is truly a model, in the same sense as a
product data model, which may be instanced as product models for particular

products (i. e. computer representations of specific products) (McKay et al
1995(l)) and a manufacturing model, instances of which store information

relating to resources, processes and strategies of a manUfacturing company
(Molina et al 1994). Indeed instances of these infon-nation models and the KR-M

may be stored in the same federated data base, figure 6.7.

In the following two sections, details are given of two different types of

expertise, both of which have been implemented as examples of the KRM.

6.2.1 A Shaft Design for Function Expert

The first instance of the KRM to be developed was a shaft design for function

expert (SDFFE), and this falls in the category of applications to support

highly focused, specialist work. The SDFFE was developed as an example of

a design for function expert to be used in case study demonstrations provided

by industrial collaborators. The prototype SDFFE was required to provide

advice to support design for function activities, its specific domain being

spinning shafts which are intended to be components for mechanical and

electrical machines. Since it was intended to be a prototype example of a

design for function expert, the SDFFE's design perspective was kept pure,

focusing only on designing shafts with respect to their function, and taking no

account of cost or manufacturing issues. L-

82

The design of shafts was primarily considered to be a form of variant design,

and the initial implementation of the expert concentrated on taking a design

from the conceptual stage through the embodiment stage. The knowledge

was developed during a MSc project, and was based on a combination of the

researchers' own experience, the content of various design text books, and

advice from experienced design engineers at a collaborating company (Sadler,

1994). The approach taken to defining the knowledge content was initially to 11: 1 4n
establish the general functionality of shafts and the role their constituent

geometric features play. Using this approach, once the need for a shaft was I
established, the shaft was considered to have four basic requirements:

* It must have the ability to rotate freely

9 It must locate in space both axially and radially

It must transmit energy and therefore include areas for both energy input

and energy output

* It must not fail as a result of its usual use

The knowledge required by the SDFFE to enable it to provide advice to the :n
designer, related to these requirements, was developed as a set of production

rules. These rules provided recommendations for a set of functional,

geometric features which could be included on the shaft to satisfy the above

functional requirements. Rules were also developed to record the designer's

decisions within a product model database. The designer may wish to base

his design decisions on information contained within the product

specification. He may also wish to make an initial selection of material for the

shaft, and perform basic calculations based on physical values related to his

83

chosen material. Thus, initially knowledge was acquired for the expert in the

form of rules of a type similar to the following example: -

If the duty required from the shaft is not heavy, then a keyway is

recommended as the functional feature for transmitting torque to or from the

shaft.

The rules were structured into rulesets related to different stages of the

design, and different sections of the shaft. Details of the specification

requirements, available materials and of the geometry of the shaft were stored

in a product model database. Hence sub-classes of expression were

implemented to enable the truth of conditions relating to current contents of

the product model database to be tested, and sub-classes of simple resulting

action were implemented to enable details of the created design to be added

to the database, or subsequently changed.

The SDFFE was then successfully implemented using a single expert module,

whose single knowledge base (an object oriented database) held

approximately 250 rule objects and their associated condition, expression and

action objects. The SDFFE's working memory was comprised of several

sections, relating to the main section of the shaft, two bearing journals, a shaft 4ý J

extension section, specification requirements and details of the material

chosen for the shaft construction. Hence the SDFFE's memory was

implemented as a sub-class of the working memory base class, with

associated classes relating to the various functional sections of the shaft. The

implemented solution for this class structure hierarchy within the database can

be seen in figure 6.8. Further details of the functionality and implementation

of the SDFFE may be found in Harding & Popplewell, 1995. Z:)

84

I IT) DEC Object/DO - Browse TVpes

m: ý2 File Edit Browse Search View Help

-]A --4

LL-17ved Tolpes
SDFFE MEMORY EQUALS_SPECIFIED
SDFFE MEMORY GREATER T HA NSi
SDFFE ME MORY-L ESS_TH A N_SP ECI Fý
SDFF BEARING JOURNAL
SDFF FEATURE
'-'D FF_I\, l AT ERI A L_VA LU ES
SD FF_S HA FT_REQ U IREIyI EN TS

'ECTION SDFF
-

SHAFT_S
SDFF SPEC VALUES

SHANK TYPE INSERT HOLDER

SDFF_W0RK1r, JG_MEM0RY

class SDFF WORKING MEMORY: ! WýUJýKJNG NIEMOký"]

ooHandle(neytvers[pre"'Vers
ooHandle(prevVers - iiextVm[
ooHandle(gtrieObj - a]Vtrs(versioti(copy)

ooHandle(defziiýItVers

ooHandle(dexivatives[dezivedFrom(]

ooHandle(derivedFrom[] - dexi, ý3tivcs[]
oo Handle (I ooN-lap Elem]) mapElems[prop(delete)

r-- - oo Handle (too CýIoek Out I rifo Obj) chtckoutIrifo[checkout
elxarDB_Name[100]
char Shaft Nwne[100]
char Comp_Nwne[100]
ooHwidle([SDFF =g A prop(delete) :ý BEARING JOURNAL be

uuHandle(JSDFF BEýRING JOURNAL bear-ýig_B <-x-rn2: prop(delete)
-- -- -1) slic -§t 6N oft extemicri <->, j, -m": prop(deiete) ool-fandle(ISI)FF SHAFf Cýf I

ooHandle(ISDFF SHAFT SffýýTlbNl) slizift -,, vm4: prop(delete)
J) sptc_requiruntrits -c-, win5: prop(delete) ooHandle(fSDFF SPEý VALLTE S

0 Handle([-SDFFN-1ATERIAL VALUESI) rnateziad dttails - -vm-, 6: prop(delete)

ool-landle(ITENIP V7ýLUES temp_vz, 1s ,,,, i-n7, prop(delete)
0

chal machine-Name[100]
float, 12 dynaanic-forcts
float32 min rad

File Edit Browse Search View Hel
IP

L Il
ý

B k

SDFFE MEMORY EQUALS_SPECIFIED
- SDFFE MEMORY GREATER

-
THAN_SP

SDFFE
-

ME MORY-L ESS_TH A N-SP EC IF'
SDFF BEARING JOURNAL
SDFF FEATURE
SD FF_I\, l AT ERI A L_VA LU ES
SD FF

-SHA
FT_RE QU IRE IlvI EN TS

SDFF
-

SHAFT_SECTION
SDFF SPEC VALUES
MiUmMoF4,31ortlMo
SHANK TYPE INSERT HOLDER

Figure 6.8: Database Browser showing sections of the Shaft Design for
Function Expert's Working Memory class, which was implemented as a
subclass of Working Memory base class.

85

6.2.2 An Engineering Moderator

The Engineering Moderator (EM) is a specialist software agent whose role

within the CAE system is to coordinate expertise and actively promote

concurrency in the system, as described in section 4.2.5. This is done by

raising CE team members' awareness of when design decisions are taken

which may be significant to other team specialists. One of the prime functions

of the EM is to raise awareness between team members of when a change znp

should be made between asynchronous and synchronous working. In order to 1.
achieve this, the EM requires knowledge about the expertise which exists

within or interacts with the CAE system. The EM has been successfully
implemented as an instance of the KRM.

The EM is a complex form of software expertise, since it must utilise

knowledge of various types, knowledge of how to perform its duties,

knowledge of the expertise which exists within the CAE system, and

knowledge of how to update its knowledge, (i. e. it must be adaptive). It is an tý zn
example of an application to support management or coordination of team

working activities. Since it is a software expert, it has been defined as an

instance of the Knowledge Representation Model (KRM). The definition

includes the details of several distinct expert modules. The EM has been

designed in a modular form, and its knowledge distributed, in order to control

the complexity of this agent as far as possible, and because as Chandrasekaran

(1981) states, 'distribution is a natural attribute of evolutionary systems', and

the EM must evolve and adapt as design agents, or their knowledge, change.

The Engineering Moderator has two primary modes of working,

e Knowledge Acquisition Mode - this is the working mode in which the

engoineenng moderator can update its knowledgye relating to particular design
I 1ý t: p

86

agents which may operate within the CAE system, i. e. actual software experts

such as the SDFFE, or human expertise as considered during a case study
involving cost and delivery knowledge (McKay, 1995(b)). Details of

additional or new desig-
,n expertise can also be added to the EM when it is

operating in this mode. The EM may be run in this mode, by choice, at any

time.

* Design Moderation Mode - this is the EM's normal mode of operation,

as it runs in this mode in the background throughout the design of a product, II
from specification onwards

Operation in either of these modes requires use of one or more types of

expertise, each of which has been defined as an expert module based on the

KRM. Hence, the Engineering Moderator is made up of a collection of expert II
modules, each of which can be thought of as an 'Expert' in its own right. See

figure 6.9, which is a Booch representation of the EM's expertise, showing that Z!:,

it comprises of three types of expertise, represented by knowledge acquisition

module, design moderation module and design agent modules, the purpose and

implementations of each are described below.

87

PRODUCTý_MODFL

Supphes

DESIGN-, MO DERATION-MODULE

DESIGNSHANGE

USER UqPU

MANUFACTURING-MODEL

ENGIN9MRIN(I-MODERATOR

TJpd"
-
by

KNCViUDGB-ACQLTLSMON-MODLTLR

DESIGN-AGENT
-.
MODULE

Add. ý-to
xUsing

DESIGN-EXPERT-ID; O%'LEDGE

DeWL-JECSTING
Intarwgacs_NEW-AND_RX3SnNG

EXPERTISB
_,
F-XPERTISE

Figure 6.9: A Representation of Engineering Moderator Expertise Using
Booch Object Oriented Design Graphical Notation

88

MaTKrJAODULE

ILNOVaJ3DG3-ACQUISMON-WDLTLE

_r_JLf-UWA=

VMRIGNG-)oMf0RY

Cr-m6nd-M. difles
k"

13-A
KNOWLEDGE3ASE Updawd-by

Is-A

MAIN-DESIGN-CRZnMLA ADD-OR-UPDATE-EXM7=8

MUMARYJQýOWLEDGE

lDL=TugAlcm-. NEW-AND-KwnNo

EXMRnSE

KNOVvIEDGIE ACQLOMON-KNOWLEDGE

USAGE

6.2.2.1

Figure 6.10: A Representation of EM's Knowledge Acquisition Module
Expertise Using Booch Object Oriented Design Graphical Notation

Knowledge Acquisition Module

This aspect of the EM's expertise enables the EM to update its knowledge

of the expertise which exists within and interacts with the CAE system.

This is an expert module, and its structure as an instance of the KRM is

modelled in figure 6.10, where it is shown to be associated with the

following objects-

89

Working Memory Object: which is implemented as an object of the class

KNOWLEDGE-ACQU_W_M, which is one of the derived types (or

subclasses) of working memory, which can be seen in figure 6.1. To

operate, the EM only requires one object of this class (the particular
instance is normally called 'Knowledge-Ac-memory' and this is generally

created in the database MOD-WORKING-MEMORIES, where the

working memory objects for all the constituent expert modules of the EM

are stored - as can be seen in figure 6.11). This is a persistent object, as

are all subclasses of working memory, but present research indicates that

objects of this class strictly only need to be a transitory object since they

are required only when a new expert is added or an existing agent's

knowledge base is updated, thus the information it contains is only of value

for a very limited time.

Knowledge Base Object: which is implemented as a database object

containing all the Ruleset objects (and their associated objects) which

provide the knowledge of how to add or update knowledge for design

agents. These are the aeneral rules comprising the engineering C- C

moderator's knowledge about how to update its knowledge about design

agents and their knowledge (the engineering moderator's mental models of
I Cý C

the design agents). This knowledge base object is normally called Zý
'KNOWLEDGE-ACQ-RULES'.

Inference Engine Object: which is currently implemented as a function

within the main EM program, Mod_mk4. C. (It is the function

know-ac-rules-fire-all). This could just as easily be implemented as an

object within the object oriented database, where the functionality of the

behaviour of the object matches the functionality of the function

90

know-ac-ru les-fire-al 1. The functionality enables the knowledge

information contained within the knowledge base to be used (processed).
1: 1

DEC Object/0B - Browse FO

File Edit Browse Search View Help

I

Py

Nk [A

EQU"j 1
51

0 E-1 E
Conjhýxý Bave otocts

SDFFE-RULES
-:

lmiirmlwmm*)ýý[
_ooDefaWtContObj KNOWLEDGE ACQ RL DESIGN EXPERT IVIEMO

DESIGN MOD RULES V-6-2-3-3
V-6-2-3-4

SDFFE-KNOWLEDGE KNOWLEDGE AC MEM(
MAN STRAT KNOWLE V-6-2-3-6
DESIGN MOD RULES V-6-2-3-7
MAN U FACT URING IvI(DESIGN-MOD-MEMORY
CD KNOWLEDGE r-6-2-3-9
BEAIvIA 426-2-3-10
CD PAST EXPERIENCI V26-2-23-11

EY
IQ-

1=

_ooDefaultContObj
ooDefaultContObj

_ooDefadtCont0bi /, systemNar-ne

j. Unt16 db Id= 26
uint16 odd =2
uint32 n0j)en = ý)
ubit32 nClose 0

py

Nk [A [Quj[

s]

0

E-1

Figure 6.11: Database Browser showing the Moderator Working
6 Memory database, which contains the Working Memory objects for

all the Expert Module Components of the Engineering Moderator.

91

6.2.2.2 Design Moderation Module

This aspect of the EM's expertise enables the EM to analyse the

significance of a change to the design, by processing its knowledge of the

expertise which exists within and interacts with the CAE system. This is

an expert module and therefore is associated with the following objects: -

g
Working Memojýý Object:. which is implemented in two parts, which can
both be seen in figure 6.11. The first part Is implemented as an object of

the class DES IGN-MODERATION-W-M (the particular instance is

normally called 'Design Mod memory' and this is generally created in the
database MOD-WORKING-MEMOREES). This is a persistent object as

are all subclasses of working memory, but present research indicates that

this only needs to be a transitory object, since the information it contains
has a very temporary value, as it is required only whilst the current object

change is being evaluated. The second part is implemented as an object of

the class DESIGN-EXPERT_W_M (the particular instance is normally

called 'Design Expert memory', and this is also generally created in the C
database MOD-WORKING-MEMORIES. This needs to be a persistent

object, as it is required whenever the engineering moderator is operated, to

provide information as to which design agents are currently known to the

engineering moderator. This object provides the link for the many

separate sets of design agent knowledge associated with the engineering In ZP
moderator.

Knowledge Base Objects: there are currently 3 knowledge base objects

associated with this expert module, since this module uses three types of

expert knowledge. Firstly it requires knowledge of how to obtain and use

92

information related to the object which has been changed, i. e. product

model objects. Secondly it requires knowledge of how to use the
Engineering Moderator's knowledge of design agent(s)'s expertise.
Thirdly it requires knowledge of how to communicate the results of its

moderation activities. Currently these knowledge base objects are
implemented as three database objects called
DES IGN-MOD-RULES-GEN, DES IGN-MOD-RULES-AGENT and
DES IGN-MOD_RULES-REPORT, each of which contains all the

rulesets which comprise the knowledge related to its specific type of

expertise applied to evaluating the current design change.

Inference Engine Object: which is currently implemented as a function

within the Mod-rnk4. C program. (It is the function

mode rate-ru le s_fire-al 1). This Could just as easily be implemented as an

object within the object oriented database, where the functionality of the

behaviour of the object matches the functionality of the function

moderate-rules-fire-all. The functionality enables the knowledge

information contained within the knowledge bases to be used (processed).

6.2.2.3 Design Agent Modules tý
This aspect of the EM's expertise enables the EM to utilise knowledge of

the expertise of particular design agents. The EM requires knowledge of

the expertise which exists within, or interacts with the CAE system. This

knowledge is not the same as the actual design expert's knowledge, but

research has shown that there is a mapping between the design expert's

knowledge, and the EM's knowledge of the design expert's knowledge.

The EM's knowledge of design agents is stored as several expert modules,

i. e. one for each design al(, ent. A Booch representation of the design

911

expert knowledge stored as part of a design agent module, is shown in
Figure 6.12.

DESIGN-AGENT-MODULE

KNOWIZýE-BASE
coataw

DEM N EXPERT-KNOVa-EDGE

Identfficd by

-Nn hv

PROFILE

Assews-ititerest-ý-dcsign__ýhange

COMM'MCATION-MMTHOD

MAIN-DESIGN-CRITERIA

ConsLsts of Adapted using 9i

PRIýýY-KNOT; =- GE USAGE

Figure 6.12: A Representation of the knowledge stored by the EM
relating to design agent expertise existing within or interacting with
the CAE system.

Each design agent module is therefore associated with the following C$

objects--.

94

Working Memory Object:. which is implemented as an object of the class

MOD-AGENT-VALUES (the particular instance is named appropriately

for the specific agent and is generally created in the database

MOD-WORKING-MEMOREES). This is a persistent object, as it

contains information relating to a specific design agent, and this

information may be used many times whilst the engineering moderator is

working in design moderation mode. The information in this object is

temporary in so far as it may be changed at any time when the engineering

moderator is working in knowledge acquisition mode, or is variable

dependent upon the current state of the design. The design agent's view

of the design may vary depending on the stage of the design. For example,

an agent may require notification when the first of a particular type of

decision is made, but not when every decision of that type is made. The

manufacturing strategist can offer support as soon as the requirement for a

cylindrical component or part of a component is identified, however,

additional advice cannot be offered if further cylindrical parts of

components are added, (unless additional information such as dimensions

is also known). This temporal aspect of the design is currently stored by

maintaining a list of satisfied constraints within this object. Further

research is required to determine the value of this and other mechanisms.

95

F44

CL

CL ýý 0Q2A
S -'ý: -6 CL

-

.0

C- LLJ
>

0 :ýb iý
Z >

' I Z

:ý
Im

LI
0

ý:
.,

- M
Lu

z I,
>>

>
V) LIJ

V)
L, 4 V2

0 W P4

cy P4 W0-: C
uj -1

U43

ýt!
w
Cý
x

!
-)ý

L. 41 X

ý: "
A
0 0 (D zu

Lul

d

UJI w UJ, Y- 2: W

W
1

= o
zzz=

0-
i)

Q 1
K

L L COD,

w

l l

LO Ln rr. V) ii-) 73 Z' Ltj W LL L: j LLJ Lli
-w L--J p a

l

1,

LLJ

uj
44

4
:3 x

OIL

C-1 Cý "I C-)
17 17

"

.

4 c" C
' ' LI-4

o L
0 aZ

19 c-9
L

I LJ z
Lu

ýw
P4

1

" i E 0 1 1 1 z: 1 Li

V) I <
, ýtz -Z - Itz

cu 434 V)
U 1 I

7 -I ýý ICU 1ý -
>1

<0<

-

P4 P4 P4 C4 t

U. J z =) -ýl x ;; _ , : E, C-) -
Z Ll

CO -01"1
Iz

Ný ýý: (D
. V,

LL I C, 3 m r. <
ýý 0-

.ý .5
In

LQ
z

L: j LIZ
r-ý r: j im

I

P. zamrmlllmllrammý MI., I

Figure 6.13: Database Browser showing the relationships between
the EM's Design Expert element of the Design Moderation

working memory and instances of Mod Agent Values working
memories (for an implemented example of the EM).

96

D. 9tabasrs
SDFFE-RULES
KNOWLEDGE

-
ACQ

-
RU

DESIGN_MOD_RULES_ý

S "DFFE KNOWLEDGE
MAN_STRAT

-
KNOVILEý

DESIGN-MOD_RULES_
IVIANUFACTURING-lyl(
CD KNOWLEDGE
BEAIYIA
CD PAST EXPERIENCI

Co1n? iney
ooDefaWtContObj

DESIGN
-

EXPERT_MEMC
26-2-3-3 V

r-6-2-3-4
KNOWLEDGE AC MEM(
r16 -2 -3 -6

DESIGN
-

IVICD_MEMORY
V-6-2 9
#26-2-3-10
; 26-2-3-11

#26-2-3-7

OD AGENT VALUES r"6-2-ý-'?
'3/. ve r3icn-ing Mode = ooci-IloVers
ehal-Agent-blome[lCO] = 'bl. 41i ')TF-4T'
ehaxDesign-chte: ri; a-DB(100j = "', WAiV

.
172ý4T KýVOWLEDGE'

char special conditions[101 [1001 =ý
[0] E: --l Fad, us, 410 r-7
[2] fl'y

[4]
[5]
[6]

int32 Conditions metf 101
[0] 1) Lo [1] 0

0
[510
1010

Figure 6.14: Database Browser showing the instance of a Mod Agent
Values Working Memory containing knowledge of the Manufacturing
Strategist design agent. t5 6

97

The relationship between the MOD-AGENT_VALUES objects (for each

of the design agent modules) and the DESIGN-EXPERT-WM object
(from the design moderation module) is demonstrated in figure 6.13. The

right hand side of the figure shows the structure of the type (class) which
indicates that the DESIGN-EXPERT-WM object has a bi-directional

association with many MOD-AGENT-VALUES, whilst the left hand side

of the figure shows the instance data for a particular example of the EM,

which was implemented for a case study demonstration. It can be seen

that the example of the EM shown in the database has knowledge of three
design agents (#26-2-3-4, #26-2-3-7 and #26-2-3-9).

1

Figure 6.14 shows the working memory object for the one of these agents, Zý
#26-2-3-7, which is the Manufacturing Strategist discussed in the previous

paraggaph.

Knowledge Base Object: which is implemented as a database object

containing all the Ruleset objects (and their associated objects) which

provide the engineering moderator's knowledge of this design agent's Z: I 1ý
knowledge. The database object is named appropriately for the particular

desio-n a(Tent. 15 Zý

Inference En, (,,, ine Object: which is currently implemented as a function

called process-agent-knowledge. This could just as easily be implemented

as an object within the object onented database, where the functionality of

the behaviour of the object matches the functionality of the function

process-agent-knowledge. The functionality enables the knowledge

information contained within the knowledge bases to be used (processed).

98

6.3 Extensions of the Knowledge Representation Model

The KRM has been tested through case study work, and its value established.
Inevitably this has led to the identification of aspects of the research which can
be extended and improved. In the next version of the KRM, a class structure for

inference engine objects will be implemented and tested. Also, whilst the flexible

hybrid structure of the KRM has already been tested through embedding neural

network simulation code (Harding & Popplewell, 1995), it is hoped that further

experimentation of this nature can be undertaken using Genetic Algorithm

applications. Indeed, it should be possible to extend the KRM to support any

artificial intelligence paradigm which can be simulated or captured in program

code.

More flexible methods for extending the working memory class hierarchy should

also be implemented, since this will facilitate the creation of additional software

experts to integrate with the existing CAE system. Further effort should also be

expended in determining ways in which the temporal aspects of design

knowledge may best be captured using the KRM, since it is clear from the

existing research that the value of particular pieces of knowledge changes over

time, i. e. at different stages of product design.

99

7. Conclusions

This thesis has shown that the Knowledge Representation Model can satisfy the

requirements for supporting CE teams. The KRM facilitates the design and
implementation of the multiple, diverse forms of software expertise, which should

exist as part of the support for CE team working provided by future CAE systems.

This has been achieved by initially identifying the range of support which should be

provided by CAE systems. The KRM is specifically of value in creating intelligent

software systems, so aspects of support in which artificial intelligence could be

usefully employed were then analysed. Two broad categories of essential software

expertise were identified. Firstly, intelligent support may be provided for highly

focused, specialist work. The requirement for this type of application is well

established, and a variety of examples of such software expertise can be identified in

many of the software systems discussed in chapter 4. The second form of essential

software expertise identified is required to provide intelligent support for

coordination of team-working activities. More than an integration environment or a

CSCW system to support synchronous team working activities is generally needed.

In addition, concurrent team working must be actively encouraged, therefore there

is the need for communication between team members to be actively promoted, or

even driven when a change from asynchronous to synchronous working methods is

required. This requirement is not adequately addressed by most of the identified

software systems.

The KRM has been proved to effectively support design and implementation of both

of the above types of software expertise. This has been done through production of

significant software demonstrations which are described in detail in chapters 5 and

6. The concepts have been well tested since software has been written to instantiate

100

the KRM itself, and to instantiate different examples of software expertise which
have been modelled using the KRM. Hence it is believed that the principle aim of
this work has been fully satisfied.

The main strengths of the KRM approach are as follow: -
It is flexible. It enables knowledge to be captured within any commercially
supported, object oriented database system.

It is versatile. It supports design and implementation of a wide range of diverse
software experts - as demonstrated in chapter 6

It is hybrid in nature and enables knowledge to be cap-tured in a variety of forms,
e. g. production rules, neural networks, etc. Indeed, any simulation or activity which
can be captured as program code can be activated through the KRM.

* It supports knowledge sharing, since knowledge is available in a normal database
system.

In its current form, the main limitations of the KRM are as follow: -

It does not effectively support the changing value of knowledge over time. That is,
there are currently no in-built metrics for evaluating worth of knowledge, and
prioritising its use.

It does not support conflict resolution - implementation of fully automated software
systems has not been attempted, since they have not been considered valuable in the
context of the research so far. The KRM concept may need to be extended to
enable their implementation.

However, these limitations are not considered to be insurmountable. They are believed
to be limits of the current research rather than serious restrictions on the KRM
Concept.

Hence, the purpose of the thesis has been satisfied, since the KRM
requirements which have been identified as necessary to support CE teams.
been achieved since the KRM provides a sound basis for the creation of
software applications.

meets the
This has

necessary

101

REFERENCES

Adler M, Durfee E, Huhns M, Punch W and Simoudis E, (1992) AAAI Workshop on Cooperation Among Heterogeneous Intelligent Agents, V Magazine, Summer 1992.

Bird SD (1993) Toward a taxonomy of multi-agent systems. International Journal of
Man-Machine Studies, 39,689-709.

Blessing Lucienne (1991) Engineering design and artificial intelligence: a promising
marriage? Research in design thinking proceedings of a workshop meeting held at
Faculty of Industrial Design Engineering, Delft University of Technology, The
Netherlands, May 29-31,1991. eds N Cross, K Dorst and N Roozenburg.

Booch Grady (1991) Object Oriented Design with Applications The
Benjamin/Cummings Publishing Company, Inc.

Bobrow DG (1991) AAAI-90 Presidential Address, Dimensions of Interaction, in Al
Magazine, Fall 1991 64-80.

Boýa Vicente (1995) Product and Manufacturing Models applied to reverse
engineering, Annual PhD report, March, 1995.

Bracewell R H, Bradley D A, Chaplin R V, Langdon PM and Sharpe JEE (1993)
Schemebuilder, A Design Aid for the Conceptual Stages of Product Design. ICED'93
International conference on engineering design, The Hague, August 17-19,1993.

Bracewell R H, Chaplin P M, Landon P M, Li M, Oh V K, Sharpe JEE and Yan XT
(1994). Integrated Computer Support for Inter-disciplinary System Design,
Engineering Design Centre Internal Report, January 1994.

Chandrasekaran B, (1981) Natural and Social System Metaphors for Distributed
Problem Solving: Introduction to the Issue. IEEE Transactions on Systems, Man and
Cybernetics, Vol SMC- II No: I January 198 1.

Corbett J et al. (1991) Design for Manufacture: Strategies, principles and techniques
Addison-Wesley Publishing Company, Wokingham.

Crowder R, Hall W, Heath I and Bernard R (1995) The Application of Large-Scale
Hypermedia Information Systems to Training, IETI, 32,3,245-255.

102

Cutkosky M R, Engelmore R S, Fikes R E, Genersereth MR, Gruber T R, Mark W
S, Tenenbaum JM and Weber J C, (1993) PACT: An Experiment in Integrating
Concurrent Engineering Systems. Computer Vol 26 #1.

Dean JW& Susman G1 (1989) Organizing for Manufacturable Design, in Harvard
Business Review, Jan-Feb

Douglas RE& Brown (1993) Concurrent accumulation of knowledge: a view of
concurrent engineering, in Concurrent Engineering: Contemporary Issues and
Modern Design Tools, eds HR Parsaei &WG Sullivan, Chapman & Hall

Dowlatshahi S (1994) A Comparison of Approaches to Concurrent Engineering, in
The International Journal of Advanced Manufacturing Technology 9; 106 113

Ekvall G (1991) The Organizational culture of idea- management: a creative climate C5 It) for the management of ideas. Managing Innovation eds Jane Henry & David Walker,
Sage Publications. ISBN 0-8039-8506-1.

Ellis TIA, Young RIM, Bell R (1993) Modelling Manufacturing Process
Information to Support Simultaneous Engineering, published in Proceedings of z::,

International Conference on Engineering Design, (ICED '93), The Hague, August
17-19,1993.

Ellis TIA, Molina A, Young RIM, Bell R (1994) The Development of an
Information Sharing Platform for Concurrent Engineering, presented at the
International Manufacturing Systems Engineering Workshop, December 12-14,1994, : -n zn Grenoble, France.

Erens F, McKay A, Bloor MS (1995) Product Modelling using Multiple Levels of
Abstraction, Instances as Types, Computers in Industry, 24(l) 17-28.

Feltham GA& Xie J (1994) Performance-Measure Congruity and Diversity in
Multitask Principal-Agent Relations. Accounting Review, V69 N3, P429-453.

Gaines BR& NoMe D H. Mediator: Information and Knowledge Management for
the Virtual Factory. Knowledge Science Institute & Division of Manufacturing
Engineering, University of Calgary, Calgary, Alberta, Canada. T2N 1NA. ZP

Galbraith, J (1973) Designing Complex Organizations, Reading M A: Addison-
Wesley.

103

Gannon, S (1995) The Embedding of a neural network into a knowledge based system.
Final year project submitted to Dept. of Manufacturing Engineering, Loughborough
University of Technology, May, 1995.

Ginsberg, ML (1991) Knowledge Interchange Fon-nat: The KIF of Death. AI
Magazine, Fall 1991.

Gu P and Chan Kam, (1995) Product Modelling Using STEP. Computer-Aided
Design, Vol 27, No3, ppl63-179

Halasz FG (1988) Reflections on Notecards: Seven Issues for the next generation of
hypermedia systerns. Communications of the ACM Vol 31 (7)

Hale D P, Hurd J E, Kasper GM (1991) A Knowledge Exchange Architecture for
Collaborative Human-Computer Communication. IEEE Transactions on Systems,
Man and Cybernetics Vol 2 1, No 3, May/June, 199 1.

Harding, JA& Popplewell, K (1994) (1) The Rationale for an Engineering Moderator.
MOSES report series 35, November 1994.

Harding, JA& Popplewell, K (1994) (2) Engineering Moderation Within A
Concurrent Engineering Environment. MOSES report series 36, November 1994.

Harding, JA& Popplewell, K (1995) A Shaft Design for Function Expert with Object
Oriented Database Knowledge. MOSES report series 40, May 1995.

Hayes-Roth F, Davidson J E, Erman L D, and Lark JS (1991) Frameworks for
Developing Intelligent Systems, IEEE Expert. June, 199 1.

Heath 1, Hall W, Crowder R M, Pasha MA and Soper PJ (1994) Integrating a
knowledge base with an open hypermedia system and its application in an industrial
environment. Proceedings of the 3rd international workshop on information and
knowledge management, CIKM94, Workshop on Intelligent Hypertext, NIST
Gaithersburg, November 1994.

Ishii, Hiroshi & miyake, Naomi (1991) Toward an Open Shared Workspace:
Computer & Video Fusion Approach to Team Work Station. Communications of the
ACM, Dec 1991, Vol 34, No: 12

Jackson P (1990) Introduction to Expert Systems. Addison-Wesley Publishing
Company, ISBN 0-201-17578-9.

104

Jennings NR (1995) Controlling Cooperative Problem Solving in Industrial Multi-
Agent Systems Using Joint Intentions. Artificial Intelligence 75,195-240.

Jennings N R. Cooperation In Industrial Systems, Proc ESPRIT Conf., Brussels,
Belgium, 253-263 (Obtained via Queen Mary Westfield World Wide Web page, 1995)

Jo H H, Parsaei H R, and Sullivan WG (1993) Principles of Concurrent Engineering,
in Concurrent Engineering: Contemporary Issues and Modern Design Tools, eds H. R.
Parsaei and W. G. Sullivan, Chapman & Hall.

Knaus Rodger and Jay Chris (1990) Transporting Knowledge Bases: A Standard, AI
Expert, November 1990.

Krause F L, Kimura F, Kjellberg T, Lu SCY (1993) Product Modelling, Annals of
the CIRP vol 42/2/1993

Lawley M (1992) System Workbench for Integrating and Facilitating Teams (SWIFT)
Knowledge-Based Engineering Systems Research Laboratory Annual Report. Dept of
Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign.

Londono F, Cleetus KJ and Reddy Y V, 'A Blackboard Scheme for Cooperative
Problem Solving by Human Experts' Proceedings of MIT-JSME Workshop on t) I

Cooperative Product Development, November 1989.

Lu, Stephen C-Y (1992) Research, Development, and Implementation of Knowledge
Processing Tools to Support Concurrent Engineering Tasks. Knowledge-Based
Engineering Systems Research Laboratory Annual Report. Dept of Mechanical and
Industrial Engineering, University of Illinois at Urbana- Champaign.

1-17

Majaro S (1992) Managing Ideas for Profit, the creative gap. McGraw-Hill Book
Company.

Manola Frank, (1990) Object-Oriented Knowledge Bases, A[Expert, March, 1990.

Mayer RJ& Painter MK (1991) Roadmap for Enterprise Integration, Autofact '91
Conference Proceedings, November 10-14, Chicago, Illinois.

McBrien P, Seltveit A H, Wangler B (1992) An Entity- Relationship Model Extended
to Describe Historical Information. Proceedings of CISMOD92, Bangalore India.

McKay A, Bloor M S, de Pennington A, (1995)(1) A Framework for Product Data.
IEEE Trans Knowledge and Data. (accepted for publication)

105

McKay A, Juster N P, Harding J A, Popplewell K (1995)(2) Tendering for Improved
Competitiveness: a case study. ISATA (28th International Symposium on Automotive
Technology & Automation), Stuttgart, 18-22 September, 1995.

Meerkamm H (1994) Design for X-A Core Area of Design Methodology. Journal of
Engineering Design Vol 5, No 2.

Meyer, Christopher (1993) Fast Cycle Time, How to Align Strategy & Structure for
Speed, Free Press, New York, ISNBN 0-02-921181-6.

Molina A, Ellis TIA, Young RIM, Bell R (1994) Modelling Manufacturing
Resources, Processes and Strategies to Support Concurrent Engineering, lst
International Conference on Concurrent Engineering Research & Applications, August
29-31,1994, Pittsburgh, PA, USA.

Molina A, AI-Ashaab A H, Ellis TIA, Young RIM, Bell R (1995), A Review of :D Computer Aided Simultaneous Engineering Systems, Research in Engineering Design,
7, --38-63.

Moynihan, Gary P., (1993) Application of expert systems to Engineering Design, in
Concurrent Engineering: Contemporary Issues and Modern Design Tools, eds HR
Parsaei and WG Sullivan, Chapman & Hall.

Nevins JL& Whitney DE (199 1) in Computer Integrated Design and Manufacturing
(D D Bedworth, MR Henderson &PM Wolfe) Ch 4, McGraw-Hill, Inc. New York.

Oh V (1993) Intelligent Design Assistant Systems for Engineering Design. Technical
Report EDC-1993102, Lancaster University Engineering Design Centre.

Parsaei HR& Sullivan WG (1993) eds Concurrent Engineering: Contemporary
Issues and Modern Design Tools Chapman & Hall

Pinto JK& Slevin DP (1987) Critical Factors in Successful Project Implementation,
IEEE Transactions on Engineering Management, Vol, EM-34, No: 1 February, pages
22-27.

Popplewell K, Harding JA (1995) Engineering Moderation: Supporting Concurrency
in Engineering Using Hybrid Knowledge Representation. IFIP WG5.7 Working
Conference on Managing Concurrent Manufacturing to Improve Industrial
Performance, September 11-15,1995, Seattle, Washington, USA. Zý

106

Rational (1993) The Booch Method: A Case Study for Rational Rose Rational, 3320
Scott Boulevard, Santa Clara, California 95054

Rich E& Knight K (199 1) Artificial Intelligence, McGraw Hill.

Roth K& Ricks DA (1994) Goal Configuration in a Global Industry Context.
Strategic Management Journal v 15, n2, p 103-120

Sadler James (1994) The Development of an Expert System to Aid the Identification of
Conflict in a Simultaneous Engineering CAE System. MSc project submitted
September, 1994, Dept of Manufacturing Engineering, Loughborough University of
Technology.

Schein Edgar H. (1984) Coming to a new awareness of organizational culture. In
Sloan Management Review, winter 1984,3-16.

Schoemaker PJH (1993) Strategic Decisions in Organizations - Rational and
Behavioural Views. Journal of Management Studies v30 n1p 107-129.

Scott, MG (1994) Concurrent engineering in a global manufacturing context. In
proceedings of Information Systems for Competitive Manufacture, Dept. of
Manufacturing Engineering, Loughborough University of Technology, September
1994.

Sheth AP& Larson JA (1990) Federated Database Systems for Managing
Distributed, Heterogeneous and Autonomous Databases ACM Computing Surveys,
Vol 22, No 3, September 1990.

Stork D& Sapienza A (1992) Task and Human Messages Over the Project Life
Cycle: Matching Media to Messages. Project Management Journal vol XXII, No: 4,
pages 44-49.

Sycara KP (1990) Co-operative Negotiation in Concurrent Engineering Design, Co-
operative Engineering Design, Springer Verlag Publications

Toye G, Cutkosky M R, Leifer L J, Tenenbaum J M, Glicksman J, (?) SHARE: A
Methodology and Environment for Collaborative Product DeveloPment, In Post-
Proceedings of the IEEE Infrastructure for Collaborative Enterprises (CDR-TR
#19930507)

107

Vancouver JB& Schmitt NW (1991) An Exploratory Examination of Person-
Organization Fit - Organizational Goal Congruence. Personnel Psychology V44 N2
p333-352.

Whitney Daniel E, (1990) Designing the Design Process, Research in Engineering
Design, 1990 2: 3-13.

Winner R 1, Pennell J P, Bertrand H E, Slusarczuk MMG (1988) The Role of
Concurrent Engineering in Weapons System Acquisition, IDA Report R-338,
Institute for Defence Analyses, 18081 N. Beauregrad Street, Alexandria, Virginia 4n

22311-1772

Wittig T, Jennings NR& Mamdani E H, (1995) ARCHON -A Framework for I=
Intelligent Co-operation. Queen Mat7 ýVesý'ield Publication, world wide web page

World Wide Web (1994) URL http: //Ieva. leeds. ac. Lik/www-moses/moses. html

Wu J K, Liu TH and Fischer G W, 1992, PDES/STEP-Based Information Model for
CAE and CAM Integration, The University of Iowa, International Journal of Systems
Automation: Research and Application, October, 1992, pp 375-393.

108

GLOSSARY OF TERMS

The definitions of important words and phrases used in this thesis are listed here, with
the section number in which the main or initial usage can be found.

Agent a combination of human and software expertise, interacting with the CAE
system. (3.1)

Concurrent Engineering An holistic methodology for the co-ordination of
distributed, heterogeneous expertise to achieve cost-effective, market-driven products
in minimum time scales. (2)

Data relates simply to words or numbers the meaning of which may vary and is
dependent upon the context in which the data is used. (1)

Design for X designing a product from a particular design perspectiVe which has its
Zý

own design criteria, rules and heuristics to which the product design should conform.
For example, design for manufacture. (4.2.3)

Expert System any computer program which demonstrates expert performance in a
given domain. (3.1)

Engineering Moderator a specialist manager of coordination program whose role is
to drive concurrency within the MOSES system. (4.2.5)

Information is data which is structured or titled in some way so that it has a
particular meaning. (1)

Knowledge is information with added detail relating to how it may be used or applied.
(1)

MOSES Model Oriented Simultaneous Engineering Systems. The MOSES

architecture for future CAE systems is based on the use of two information models
which can be accessed by any number of information models via an integration

environment. (4.2)

Manufacturing Model A manufacturing model is an information model which
contains information of available manufacturing processes, resources and strategies for

an organisation. (4.2.2)

Organisational Culture 'The pattern of basic assumptions that a given group has
invented, discovered or developed in learning to cope with its problems of external

109

adaptation and internal integration and that have worked well enough to be considered
valid and therefore to be taught to new members as the correct way to perceive, think
and feel in relation to those problems. ' (2)

Product Model A product model is an information model which contains all the
information about a product from its conception to disposal. (4.2.1)

110

APPENDIX I

Data Definitions for Knowledge Representation Model as
Implemented in DecObjectDB

H Written by JA Harding, Dept Manufacturing Engineering, LUT.
// MOSES PROJECT - October 1994
H
H MOSES RULES SCHEMA
H rules. ddl
H
H Last changed 1/2/95

#include <work i ng_memory. h>

enum logical [True, False, Unknown);

enum logical_comparator (less_than, less_than_or-equal, greater-than,
greater-than-or-equal, equal, none);

enum logical-operator (AND, OR);

enum proceed-type (cont, stop);

enum value-type [float-val, integer-val);

enum memory_vars fsft, sft-ext, m-sft-in, m_sft-out, sft-ext-in, sft-ext-out,
bear I, bear2);

enum memory slots f ms shaft, ms shaft ext, ms-bearino, A, ms_bearin(y B,
ms_reserve-factor, ms-uts, ms_uss, ms_full_load-power, ms_full_load-speed,
ms-percent_start-torque, ms-calculation);

enum field_names ffn_name, fn-tappered, fn-normal, fn-min-rad, fn-lnput-sec,
fn_output-sec, fn_lnput-loc, fn_input_hold, fn-output-loc, fn-output_hold,
fn-cyl_sec_A, fn-cyl-sec-B, fn-groove_A, fn-groove_B, fn-keyway-A, fn-keyway-ýB);

enum feature-type (cyl-shaft, tap-shaft, trans_null, Lrans_rad, trans_u_rad,
trans-cham, trans-step, term-rad, term-cham, bl_r-h, flat-b_r-h, slt, kway,

open_kway, grve);

enuM creat_type [comp, feat);

// RULE_SET Class

class RULE_SET: public ooObj

Appendix I-I

H number of rule-set-elements currently associated with rule set
pnvate:

char
ooHandle(RULE-SET_ELENtENT)

description[100];
the-rules[] <-> the-rule-set : prop(delete);

char terminate-ins[100];
int rule_set_number;
int number-of-elements;
int hasfired;

public:
RULE-SETO;
RULE_SET(char* thename);
int fire_first(ooHandle(WORKING_MEMORY) my-memory);
int fire_all(ooHandle(WORKING-MEMORY) my_memory);
int fire-first-whilst(ooHandle(WORKING-MEMORY) my-memory,

ooHandle(CONDITION) conH);
int fire_all_whilst(ooHandle(WORKING_MEMORY) my_memory,

ooHandle(CONDITION) conH);
char* get-termination_instructionso;
int get-rule-set-numbero;
void print-descriptiono;
void add-predefined_rule_to_seto;
void add-new-rule-to-seto;

// RULE-SET-ELENIENT Class
class RULE-SET_ELENiENT: public ooObj

private:
int element - number;
ooHandle(RULE) the

- rule <-> rule-element: prop(delete);
ooHandle(RUI-E_SET) the_rule-set <-> Lhe-rules[] : prop(delete);

public:
RULE-SET-ELEMENT(char* thename, int number, ooHandle(RULE) aruleH);
void re-number-element(int number);
int get-element-numbero;
ooHandle(RULE) get_ruleo;

H RULE Class
class RULE: public ooObj

private:
char
ooHandle(CONDITION)
ooHandle(RESULTING-ACTION)
ooHandle(RULE-SET_ELEMENT)
char
int

description[1001;
the_condiLion <-> the-rule : prop(delete);
the

- result <-> the_rule : prop(delete);
rule-element <-> the-rule : prop(delete);
completion_ins[100];
hasfired;

Appendix I-2

public:
RULEO;
RULE(char* thename);
int fire(ooHandle(WORKING-MEMORY) my-memory, char* instructions);
H Returns I if action carried out and 0 if rule does not fire
void print -

descriptiono;
void initialise_result-messageo;

CONDITION Class
class CONDITION: public ooObj

protected:
char description[1001;
ooHandle(RULE) the_rule <-> Lhe_condition : prop(delete);
logical negate;

public:
NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS
INTENDED AS AN ABSTRACT SUPERCLASS FOR SIMPLE-CONDITION AND
COMPOUND-CONDITION

virtual void printo;
virtual int get_condition_value(ooHandle(WORKING-NIEMORY) my-memory);
H Returns I for True, 0 for False, & -I for Error
void readin -

descriptiono;
void print-descriptiono;
void print-negateo;
logical get-negateo;

H SIWLE-CONDITION Class
class SINMLE-CONDITION: public CONDITION

I
private:

ooHandle(EXPRESSION) the_element <-> the-simp_con prop(delete);
public:

SIMPLE-CONDITONO;
SIMPLE_CONDITION(char* thename);
int get-condiLion_value(ooHandle(WORKING_MEMORY) my-memory);
H Retums I for True, 0 for False, & -1. for Error

H EXPRESSION Class

class EXPRESSION: public ooObj
f
protected:

the-simp-con <-> the_element : prop(deletej, ooHandle(SIMPLE CONDITION)

public:

Appendix I-3

NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS
INTENDED AS A SUPERCLASS FORALL THE DIFFERENT EXPRESSIONS

virtual int get-expression-val ue(ooHandle(WOR KING- MEMORY) my-memory);
H Retums I for True, 0 for False, & -1. for Error

// COMPOUND-CONDITION Class
class COMPOUND-CONDITION: public CONDITION

private:
ooHandle(SIMPLE_CONDITION) first-element : prop(delete);
logical-operator conjunction;
ooHandle(CONDITION) second-element : prop(delete);

public:
COMPOUND_CONDITONO;
COMPOUND_CONDITION(char* thename);
int get-condition-value(ooHandle(WORKING-MEMORY) my-memory);
H Returns I for True, 0 for False, & -1. for Error

// RESULTING_ACTION Class
class RESULTING_ACTION: public ooObj

I
protected:

ooHandle(RULE) the-rule <-> the-result: prop(delete);
char result-message[100];

public:
NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS INTENDED AS
AN ABSTRACT SUPERCLASS FOR SIMPLE_RESULTING_ACTION AND
COMPOUND_RESULTING_ACTION

virtual char* execute - action(ooHandle(WORKING_MEMORY) my-memory);
void initialise-result_message(char* the_message);

// SIMPLE_RESULTING_ACTION Class
class SIMPLE_RESULTING-ACTION: public RESULTING_ACTION

public:
H NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS INTENDED AS
H AN ABSTRACT SUPERCLASS FOR ALL THE ACTUAL CLASSES OF
H RESULTING_ACTION
char* execute-action(ooHandle(WORKING_MEMORY) my_memory);

// CONVOUND-RESULTING-ACTION Class
class COMEPOUND-RESULTING_ACTION: public RESULTING_ACTION

Appendix I-4

pnvate:
ooHandle(SIMPLE_RESUILTING_ACTION) first-element : prop(delete);
ooHandle(RESULTING_ACTION) second-element : prop(delete);

public:
COMPOUND-RESULTING_ACTIONo;
COMEPOUND-RESULTING_ACTION(char* thename);
char* exec ute-ac bon(ooHandle(WORKING_MEMORY) my_memory);

USER_INPUT-RESPONSE_EXPRESSION Class
The primary function of objects of this class is to write a pre-defined

H question to the screen, and obtain the user's response. The message is
H requested when an object of this class is created, and is held in the
H question attribute. If the user types 'y'or 'Y' in response to the
H question, this expression returns 1 (TRUE), if the user types any other
H character, this expression returns 0 (FALSE).
class US ER-INPUT_RES PONS E_EXPRES SION: public EXPRESSION

private:
char question[200];

public:
USER_INPUT_RESPONSE-EXPRESSION(char* Lhename);
int get_expression_value(ooHandle(WORKING -

MEMORY) my_memory);
H Returns I for True, 0 for False, & -I for Error

I;

ALWAY S-TRUE_EXPRES SION Class
The primary function of objects of this class Is to ensure that
its related resulting action is ALWAYS carried. ie This expression
ALWAYS returns I (TRUE).

class ALWAYS_TRUE_EXPRES SION: public EXPRESSION
I
public:

ALWAYS-TRUE_EXPRESSION(char* thename);
int get-expression-value(ooHandle(WORKING_NIEMORY) my_memory);
H Returns I for True, 0 for False, & -1 for Error

// MENU
-

SELECTION_MADE_EXPRESS ION Class
//The primary function of objects of this class is to ensure that a valid
// selection is made from a menu. There can be a maximum of 20 elements in
H the menu, currently. If one of the menu list elements is chosen,
// its number will be entered into the TENT VALS integer value slot of the
H working memory object, my-memory, and this expression will return 1 (TRUE).
H if the value 0 is entered, ie the select nothing from the menu option,
H this expression will return 0 (FALSE). (If the size of the array, menu-
H menu-elements is increased above 20, the size of the rulenames-list array

Appendix I-5

// in class FIRE
-A-

SELECTED_RULE_ACTION can also be increased).
class MENU_SELECTION-MADE-EXPRESS ION: public EXPRESSION

private:
char menu-header[100];
char menu-elements [20] [100];
char menu - comment[1001;
int number-of-menti-elements;

public:
MENU-SELECTION-MADE-EXPRESSION(char* thename);
int get-expression-value(ooHandle(WORKING-MEMORY) my-memory);
H Returns I for True, 0 for False, & -I for Error

WI-MENU-SELECTION
-

MADE
-
EXPRESSION Class

The primary function of objects of this class is to ensure that a valid
H selection is made from a pop-up menu. There can be a maximum of 20 elements in
H the menu, currently. If one of the menu list elements is chosen,

its number will be entered into the TEMP VALS integer value slot of the
working memory object, my-memory, and this expression will return I (TRUE).

H If the value 0 is entered, ie the select nothing from the menu option,
H this expression will return 0 (FALSE). (If the size of the array, menu
H menu_elements is increased above 20, the size of the rulenames -

list array
in class FIRE-A_SELECTED_RULE_ACTION can also be increased).
class WI-MENU-SELECTION_MADE_EXPRESS ION: public EXPRESSION

pnvate:
char menu-header[100];
char menu-elemenLs[20] [100];
char menu-comment[100];
int number-of-menu-elements;

public:
WI-MENU-SELECTION_MADE_EXPRESSION(char* thename);
int get-expression-value(ooHandle(WORKING -

MEMORY) my-memory);
H Returns I for True, 0 for False, & -I for Error

CO MPONENT-OF-S PECIFIED-TYPE-EXISTS-EXPRES SION Class
The primary function of objects of this class is to check the product model
to see if a component of a specified type already exists.
Used by SDFFE to see if a shaft currently exists. The type of the

#component is specified by the attribute comp-type. If a component of
the specified type is found in the product model this expression returns I
// (TRUE). If no component of the specified type exists,
H this expression will return 0 (FALSE).
class CONMONF-NT-OF_SPECIFIED_TYPE_EXISTS-EXPRESS ION: public EXPRESSION

private:

Appendix I-6

char
public:

comp-type[100];

COMEPONENT_OF-SPECIFIED_TYPE_EXISTS-EXPRESSION(char* Lhename);
int get-expression_value(ooHandle(WORKING

-
MEMORY) my-memory);

H Returns I for True, 0 for False, & -I for Error

SDFFE_MEMORY_EQUALS_SPECIFIED-VALUE-EXPRESS ION Class
The primary function of objects of this class is to determine if a

H pre-defined slot in the SDFFE Working Memory contains a string, integer,
// or float which equals the value specified at creation of this object,
H which is stored in one of the attributes the-string, the-int or the -

float.
class SDFFE_MEMORY-EQUALS-SPECIFIED_VALUE-EXPRESS ION: public EXPRESSION

private:
char slotl[20];
char slot2[20];
char slot3 [20];
char slot4[20];
char var-is-a[20];
char the_string[100];
int the-int;
float Lhe-float;

public:
S DFFE_NIEMORY_EQUALS_SPECIFIED-VAL UE-EXPRES SION (char* thename);
int get-expression_value(ooHandle(WORKING -

MEMORY) my-memory);
Retums I for True, 0 for False, & -I for Error

S DFFE_MEMORY_LES S-THAN_SPECIFIED-VAL UE-EXPRES SION Class
The primary function of objects of this class is to determine if a

H pre-defined slot in the SDFFE Working Memory contains a string, integer
or float which is less than the value specified at creation of this object,
H and which is stored in one of the attributes the-string, the-int or the

-
float.

class S DFFE-MEMORY-LES S-THAN-SPECIFIED-VALU E-EXPRES SION: public
EXPRESSION

private:
char slotl [20];
char slot2[20];
char slot3 [20];
char slot4[20];
char var_is-a[20];
char the-string[100];
int the-int;
float the_float;

public:
SDFFE-MEMORY_LESS_THAN_SPECIFIED_VALUE_EXPRESSION(char* thename);

Appendix I-7

int get-expression_value(ooHandle(WORKING-MEMORY) my-memory);
H Retums I for True, 0 for False, & -I for Error

SDFFE_MIEMORY_GREATER_THAN_SPECIFIED_VALUE_EXPPESS ION Class
The primary function of objects of this class is to determine if a
pre_defined slot in the SDFFE Working Memory contains a suing, integer
or float which is greater than the value specified at creation of this object,
and which is stored in the attribute the

- string, the-int or the
-

float.
class SDFFE_MEMORY_GPEATER_THAN_SPECIFIED_VALUE-EXPRES SION: public
EXPRESSION

pnvate:
char slotl[20];
char sIoL2[201;
char sIoL3[20];
char sI ot4 [20];
char var_is-a[20];
char the-sLring[100];
int the

-
int;

float Lhe-float;
public:

SDFFE_MEMORY_GREATER_THAN_SPECIFIED_VALUE_EXPRESSION(char* Lhename);
int get_expression_value(ooHandle(WORKING-MEMORY) my_memory);
H Returns I for True, 0 for False, & -I for Error

STRAT_MEMORY_EQUALS_SPECIFIED-VALUF--EXPRESS ION Class
The primary function of objects of this class is to determine if a
pre_defined slot in the STRAT Working Memory contains a string, integer,
or float which equals the value specified at creation of this object, and

H which is stored in one of the attributes the_string, the_int or the-float.
class STRAT_MEMORY-EQUALS_SPECIFIED_VALUE_EXPRESS ION: public EXPRESSION

private:
char slotl [20];
char sloL2[20];
char sloG [20];
char slot4[20];
char var is-a[20];

char the-string[100];
int the

-
int;

float the_float;
public:

STRAT_NlEMORY_EQUALS-SPECIFIED_VALUE_EXPRESSION(char* thename);
int get_expression-value(ooHandle(WORKING_MEMORY) my_memory);
H Retums I for True, 0 for False, &A for Error

Appendix I-8

STRAT_NIEMORY_LESS_THAN-SPECIFIED-VALUE-EXPRESS ION Class
The primary function of objects of this class is to determine if a
pre-defined slot in the STRAT Working Memory contains a string, integer
or float which is less than the value specified at creation of this object,

H and which is stored in one of the attributes the
- string, thc_lnt or the -

float.
class STRAT-MEMORY-LESS_THAN-SPECIFIED_VALUE_EXPRESS ION: public
EXPRESSION

pnvate:
char slotl [20];
char slot2[20];
char slot3[20];
char slot4[20];
char var-is-a[20];
char the-sLring[100];
int the-int;
float the_float;

public:
STRAT_MEMORY-LESS_THAN_SPECIFIED-VALUE_EXPRESSION(char* thename);
int get-expression - value(ooHandle(WORKING -

MEMORY) my_mcmory);
Returns I for True, 0 for False, & -I for Error

STRAT_MEMORY-GREATER_THAN_SPECIFIED_VALUE_EXPRESS ION Class
The primary function of objects of this class is to determine if a

H pre-defined slot in the STRAT Working Memory contains a string, integer
// or float which is greater than the value specified at creafion of this object,
H and which is stored in the attribute the-string, the-int or the-float.
class STRAT-MEMORY-GREATER-THAN-SPECIFIED-VALUE-EXPRES SION: public
EXPRESSION

pnvate:
char slotl [20];
char slot2[20];
char sloL3[20];
char slot4[20];
char var_is-a[20];
char the string[100];
int the int;
float the_float;

public:
STRAT-MEMORY_GREATER_THAN_SPECIFIED_VALUE_EXPRESSION(char* Lhename);
int get-expression-value(ooHandle(WORKING -

MEMORY) my_memory);
H Retums I for True, 0 for False, &-1 for Error

Appendix I-9

PRINT-MIESSAGE_ACTION Class
The primary function of objects of this class is to write a pre-defined
message to the screen. The message is requested when an object of this

H class is created, and is held in the message attribute.
class PRINT_MESSAGE-ACTION: public SIMPLE-RESULTING-ACTION

pnvate:
char

public:
message[200];

PRINT_MESSAGE_ACTION(char* thename);
char* execute_acbon(ooHandle(WORKING_NIEMORY) my-memory);

POSTSCRIPT_DISPLAY_ACTION Class
The primary function of objects of this class is to display a postscript
file, whose name is stored in the message attribute of objects of this
class, and which must be stored in the Postscript-files directory. The
postscript file is displayed using Pageview, on the workstation specified
by the value of the machine-name attribute in the working memory object
(my_memory), which must be passed as a parameter to the execute_action method
of objects of this class.

class POSTSCRIPT_DISPLAY-ACTION: public SIMPLE-RESULTING-ACTION

private:
char message[100]; postscript file name
char machinc_name[20];

public:
POSTSCRIPT_DISPLAY-ACTION(char* thename);
char* exec u te_ac bon(ooHandle(WORKING_N/tEMORY) my_memory);

I;

// UPDATE-SDFFE_MEMORY_ACTION Class
The primary function of objects of this class is to update a pre-defined
H slot in the SDFFE Working Memory with a value which already exist
// in the TENT

-
VALUES object within the SDFFE working memory.

class UPDATE_SDFFE-MEMORY-ACTION: public SIMPLE-RESULTING-ACTION

private:
char slotl [20];
char slot2[20];
char sloL3[20]-,
char slot4[20];
char var_is-a[20];

public:
UPDATE_SDFFE_MEMORY-ACTION(char* thename);
char* exec ute_acfion(ooHandle(WORKING_MF-MORY) my-memory);
void print(void);

1;

Appendix I- 10

READ
-

INTO
-

MF-MORY-ACTION Class
The primary function of objects of this class is to update a slot in the
TEUIP-VALUES object in the Working Memory of an expert with a value provided

H by the user at run time.
class READ-INTO-MEMORY-ACTION: public SIMPLE-RESULTING_ACTION

pnvate:
char prompt-message[2001;
char var_is-a[20];

public:
READ_INTO-MEMORY-ACTION(char* thename);
char* exec ute-acbon(ooHandle(WORKING_MEMORY) my-memory);
void print(void);

SPEC_VALUE_INTO-NIEMORY-ACTION Class
The primary function of objects of this class is to update a slot in the
TEMPYALUES object in the Working Memory of an expert with a value provided
by the product model in the form of a quality or quantity within the spec.
The required context string to be searched for among the product requirements
has to be specified when initialising objects of this class.

class SPEC-VALUE-INTO-MF-MORY-ACTION: public SIMPLE-RESULTING-ACTION

pnvate:
char context_string[200];
char value-is_a[20];

public:
SPEC-VALUE_INTO-MEMORY-ACTION(char* Lhename);
char* exec u te-ac tion(oo Handle(WORKI NG_MEMORY) my_memory);
void print(void);

H FIRE_A_SELECTED_RULE-ACTION Class
The primary function of objects of this class is to select a particular rule to fire,
H dependent upon the current value of the integer slot in the TEMP

-
VALUES

H object. The names of the rules which might possibly be fired are stored
// in the attribute rulename_list. SO currently, objects of this class can
H select from a maximum of 20 possible rules which might be fired. This
H number could be increased if the size of the menu-elements array attribute
H of MENU-S ELECTION-MADE_EXPRES SION class is increased. The number of rules
H which can be selected from is stored in the attribute, num_of-rules, and
H this, and the rule names, must be specified when initialising objects of
H this class.
class FIRE_A_SELECTED_RULE-ACTION: public SIMPLE_RESULTING_ACTION

private:

Appendix I-II

char
int

public:

ruiename-list[20] [100];
num-of-rules;

FIRE_A-SELECTED_RULE-ACTION(char* thename);
char* execute-acbon(ooHandle(WORKING-MEMORY) my_memory);
void print(void);

CREATE_BASIC-FEATURE_ACTION Class
The primary function of objects of this class is to create a BASIC feature
of a type specified by the attribute feature-type, in the product model

class CREATE_BASIC-FEATURE_ACTION: public SIMPLE_RESULTING_ACTION

pnvate:
char feature_type[1001;
char feature-name[100];
char functional_info[100];
char slotl[20];
char slot2[20];
char slot3 [20];
char sloL4[20];

public:
CREATE_BASIC_FEATLTRE_ACTION(char* thename);
char* execute-action(ooHandle(WORKING_MEMORY) my_memory);
void print(void);

H CREATE_SPECIFIED_COMPONENT_ACTION Class
H The primary function of objects of this class is to create a component
H of a type specified by the attribute comp-type, in the product model
class CREATE-SPECIFIED-COMIPONENT_ACTION: public SINMLE_RESULTING_ACTION

private:
char

public:
comp_type[1001;

CREATE_SPECIFIED_COMPONENT_ACTION(char* thename);
char* execute_action(ooHandle(WORKING_MEMORY) my-memory);
void print(void);

CREATE-SPECIFIED_DEFINITION_ACTION Class
The primary function of objects of this class is to create a component

H definition of a type specified by the attribute defn-type in the product model
class CREATE-SPECIFIED_DEFINITION_ACTION: public SINIPLE_RESULTING_ACTION

private:
char defn_type[100];

Appendix 1- 12

public:
CREATE

-
SPECIFIED-DEFINITION-ACTION(char* thename);

char* exec u te-ac 6on(ooHandle(WORKING-VEMORY) my-memory);
void print(void);

MATERIAL_VALUE_INTO_MEMORY-ACTION Class
The primary function of objects of this class is to update a slot in the
TEMP-VALUES object in the Working Memory of an expert with a value provided
by the product model in the form of a property of a material.

class MATERIAL-VALUE-INTO-MEMORY-ACTION: public SIMPLE-RESULTING-ACTION
I
pnvate:

char
char

public:

property_str[200];
value-ls_a['-10];

MATERIAL_VALUE_INTO-MEMORY-ACTION(char* thename);
char* execute-acdon(ooHandle(WORKING_? VIEMORY) my_memory);
void print(vold);

EXECUTE-NEURAL_NETWORK-ACTION Class
The primary function of objects of this class is to update a slot in the
TEMP-VALUES object in the Working Memory of an expert with a value obtained

H by running a neural network to select a BEARING.
class EXECUTE-NEURAL_NETWORK_ACTION: public SIMPLE_RESULTING_ACTION

public:
EXEC UTE-NEURAL_NETWORK_ACTION(char* thename);
char* exec u te-acfion(ooHandle(WORKING_MEMORY) my_memory);
void print(void);

UPDATE_STRAT_MIEMORY_ACTION Class
The primary function of objects of this class is to update a pre-defined

slot in the STRAT Working Memory with a value which already exist
in the TEMPYALUES object within the STRAT working memory.

class UPDATE-STRAT-MEMORY-ACTION: public SIMPLE_RESULTING_ACTION

private:
char slotl [20];
char slot2[20];
char slot3[20];
char slot4[20];
char var_is-a[20];

public:
UPDATE-STRAT-MEMORY-ACTION(char* thenarne);

Appendix 1- 13

char* execute-action(ooHandle(WORKING-MEMORY) my-memory);
void print(void);

EXECUTE_NAMED_FUNCTION_ACTION Class
The primary function of objects of this class is to execute a function
whose name is stored in the attribute 'name', and which requires a

H number of parametes, as stored in the attribute 'num-params'.
class EXECUTE-NAMED-FUNCTION-ACTION: public SIMPLE-RESULTING-ACTION

pnvate:
char name[30];
int num-params;

public:
EXF-CUTE_NAMED_FUNCTION-ACTION(char* thename);
char* execute-action(ooHandle(WOPKING_MEMORY) my_mcmory);
void print(void);

SPECIFIED-VALUE-INTO-MEMORY-ACTION Class
The primary function of objects of this class is to update a slot in the
TEMPYALUES object in the Working Memory of an expert with a pre-defined value

class SPECIFIED-VAIUE-INTO-MEMORY_ACTION: public SINfPLE-R-ESULTING_ACTION

pnvate:
char value -

is
- a[201;

int the_int;
float the-float,
char the_string[100];

public:
SPECIFIED_VALUE_INTO_MEMORY_ACTION (char* Lhename);
char* exec ute_action(ooHandle(WORK ING-MEMORY) my-memory);
void print(void);

ADD_DIMENS ION
-

ACTION Class
The primary function of objects of this class is to add a dimension
to a previously created feature. The feature is identified by the
slot attributes. The dimension to be added is identified by the

H dimension attribute, and the type of dimension (ie nominal, +tol or
// -tol) is identified by the dim-type attribute. The value of the
H dimension is taken from the temp float slot in working memory

class ADD_DIMENSION_ACTION: public SIN4PLE_RESULTING_ACTION

private:
char slotl[20];

Appendix I- 14

char slot2[20];
char slot3 [201;
char slot4[20];
char feature-narne[100];
char dimension[20];
char dim_tol[20];

public:
ADD_DIMENSION_ACTION(char* thename);
char* exec ute-action(ooHandle(WORKING_ MEMORY) my_memory);
void print(void);

CHANGE-FEATURE_TYPE_ACTION Class
The primary function of objects of this class is to change a feature of
one type into a feature of another type. The feature to be changed is
identified by the slot attributes.

class CHANGE-FEATURE_TYPE_ACTION: public SIMPLE_RESULTING_ACTION

private:
char feature-name[100];
char feature-type[1001;
char slotl[20];
char sloL2[20];
char slot3 [20];
char slot4[20];

public:
CHANGE_FEATURE-TYPE_ACTION(char* thename);
char* execute-acdon(ooHandle(WORKING_MEMORY) my_memory);
void print(void);

// JOIN-SHAFT_SECTION_ACTION Class
H The primary function of objects of this class is to change a feature of
// one type into a feature of another type. The feature to be changed is
identified by the slot attributes.
class JOIN_SHAFT_SECTION-ACTION: public SIMPLE_RESULTING_ACTION

pnvate:
char feature_namel[1001;

char feature-name2[100];
char joln_type[20];

public:
JOIN-SHAFF_SECTION_ACTION(char* thename);
char* exec u te-action(ooHandle(WO R-K ING_MEMOR Y) my_memory);
void print(void);

Appendix I- 15

// UPDATE_SLTRFACE-FINISH_ACTION Class
H The primary function of objects of this class is to change the value of the
// surface finish attribute of a feature object which already exists in the product model
class UPDATE-SURFACE_FINISH_ACTION: public SINTLE-RESULTING_ACTION

private:
char

public:
feature-name[100];

UPDATE_SURFACE_FINISH_ACTION(char* thename);
char* exec ute-ac6on(ooHandle(WORKING-MEMORY) my-memory);
void print(void);

UPDATE_FUNCTIONAL_INFO-ACTION Class
The primary function of objects of this class is to change the value of the
functional information string attribute of a feature object which already exists
in the product model

class UPDATE_FUNCTIONAL_INFO-ACTION: public SINMLE_RESULTING-ACTION
I

private:
char
char

public:

feature-name[1001;
info_sLring[100];

UPDATE_FUNCTIONAL_INFO-ACTION(char* Lhename);
char* exec ute_ac Uon(ooHandle(WORKING_MEMORY) my-memory);
void print(vold);

Appendix I- 16

H Written by JA Harding, Dept Manufacturing Engineering, LUT.
// MOSES PROJECT - February 1995
H
// MOSES MODERATOR SPECIFIC RULES SCHEMA
H mod-rules. ddl
H (Moderator specific rules)
H
H Last changed 13/4/95

#include <working-memory. h>
#include <rules. h>

DESIGN
-

MOD_W_M_EQUALS_SPECIFIED-VALUE_EXPRES SION Class
The primary function of objects of this class is to determine if a

H prejefined slot in the DESIGN
-

MOD Working Memory contains a string, integer,
H or float which equals the value specified at creation of this object,
H which is stored in one of the attributes the-string, Lhe_int or Lhe-float.
class DES IGN_MOD_W_M_EQUALS_SPECIFIED_VALUE_EXPRES SION: public EXPRESSION

private:
char slotl [20];
char slot2[20];
char slot3 [20];
char slot4[20];
char var_is_a[20];
char the_sLring[100];
int the_int;
float the-float;

public:
DES IGN-MOD_W-M-EQUALS-SPECIFIED-VALUE-EXPRESS ION(char* thename);
int get-expression - value(ooHandle(WORKING_MEMORY) my_memory);
H Returns I for True, 0 for False, & -I for Error

DES IGN_MOD_W_M_LESS_THAN_SPECEFIED_VAL UE-EXPRES SION Class
The primary function of objects of this class is to determine if a

H pre_defined slot in the DESIGN MOD Working Memory contains a string, integer
9 or float which is less than the value specified at creation of this object,
H and which is stored in one of the attributes the

- string, the-int or the_float.
class DES IGN-MOD_W_M_LES S-THAN-S PECIFIED-VALUE-EXPRESS ION: public
EXPRESSION

private:
char slot2[20];
char slot3 [20];

char slot4 [20];

char var_is_a[20];
char the_string[1001;

Appendix 1- 17

int the-int;
float Lhe-float;

public:
DES IGN_MOD_W_M_LES S_THAN_SPECIFIED-VAL UE-EXPRES S ION(char* thename);
int get-expression-value(ooHandle(WORKING-MEMORY) my_memory);
H Retums I for True, 0 for False, & -I for Error

I;

DESIGN_MOD-W-M-GREATER-THAN_SPECEFIED_VALUE-EXPRESS ION Class
The primary function of objects of this class is to determine if a

H pre_defined slot in the DESIGN MOD Working Memory contains a string, integer
H or float which is greater than the value specified at creation of this object,
H and which is stored in the attribute the_string, the_lnt or the

-
float.

class DES IGN-MOD_W_M-GREATER_THAN_S PECIFIED-V ALUE-EXPRES SION: public
EXPRESSION

private:
char slotl [20];
char slot2[20];
char slot3[20];
char slot4[20];
char var-is-a[201;
char the_string[100];
int thejnt;
float the-float;

public:
DES IGN_MOD_W_M-GREATER_THAN_S PECIFIED_VAL UE-EXPRESS ION(char*

thename);
int get - expression_value(ooHandle(WORKING-MEMORY) my_memory);
H Retums I for True, 0 for False, & -I for Error

OBJECT_OF_SPECIFIED_CLASS-EXPRESSION Class
The primary function of objects of this class is to determine if an object found in the product
model is of a pre-defined class

class OBJECT_OF_SPECIFIED CLASS_EXPRESSION: public EXPRESSION

private:
char

public:
the_kind[20];

OBJECT_OF_SPECIFIED_CLASS-EXPRESSION(char* thename);
int get - expression-value(ooHandle(WORKING_MEMORY) my_memory);
H Retums I for True, 0 for False, & -I for Error

I;

H OBJECT-IS_FUNCTIONAL_EXPRESS ION Class
The primary function of objects of this class is to determine if an object found in the product

Appendix 1- 18

// model has a non-null functional info string attribute value
class OBJECT_IS_FUNCTIONAL_E,,, TRESS ION: public EXPRESSION

private:
char slotl [20];
char slot2[20];
char slot3 [20];
char slot4[20];
char var-is-a[20];
char the-string[100];
int the_int;
float the-float;

public:
OBJF-CT-IS-FUNCTIONAL-EXPRESSION(char* thename);
int get_expression_value(ooHandle(WORKING-MEN/IORY) my_memory);

Returns I for True, 0 for False, &A for Error

UPDATE_DESIGN_MOD_W-M-ACTION Class
The primary function of objects of this class is to update a pre -

defined
slot in the DESIGN MOD Working Memory with a value which already exist
in the TEMPYALUES object within the SDFFE working memory.

class UPDATE_DESIGN_MOD-W-M-ACTION: public SIMPLE_RESULTING-ACTION

private:
char SIOLI [201;
char slot'-)[20];
char slot3 (20];
char slot4[20];
char var-is-a[20];

public:
UPDATE-DESIGN-MOD_W_M_ACTION(char* thename);
char* exec ute-action(ooHandle(WOPKING_N/IEMORY) my_memory);
void print(void);

H GET_OBJ-TYPE_ACTION Class
The primary function of objects of this class is to update a pre-defined
// slot in the Working Memory with the class of an object
class GET-OBJ-TYPE-ACTION: public SIMPLE-RESULTING-ACTION

pnvate:
char sloLl [20];
char sioL2[-? O];
char sloL3 [20];
char slot4[20];

Appendix I- 19

public:
GET_OBJ_TYPE_ACTION(char* thename);
char* execute-ac6on(ooHandle(WORKING_MEMORY) my_memory);
void print(vold);

GET_OBJECT_DETAILS-ACTION Class
// The primary function of objects of this class is to update slot in the
H Moderators Working Memory with a values relating to the changed
9 object.
class GET-OBJECT-DETAILS-ACTION: public SIMPLE-RESULTING-ACTION

public:
GET_OBJECT_DETAILS-ACTION(char* thename);
char* exec u Le-ac tion(ooHandle (W 0 RK ING_ N/IE MOR Y) my-memory);
void print(vold);

ACTIVATE_OTHER_PROCES S
_ACTION

Class
The primary function of objects of this class is to activate another pre-defined
process, eg to seek advice on significance of a change to an object.

class ACTIVATE-OTHER_PROCESS-ACTION: public SIMPLE_RESULTING_ACTION

pnvate:
char path_list[100];
char message[100];

public:
ACTIVATE_OTHER-PROCESS-ACTION(char* Lhename);
char* execute-ac6on(ooHandle(WORKING-N/LEMORY) my-memory);
void print(void);

IDENTIFY-MODERATOR_ACTION Class
H The primary function of objects of this class is to determine what action the Engineering
H Moderator should undertake
class IDENTIFY-MODERATOR_ACTION: public SIMPLE_RESULTING-ACTION

public:
IDENTIFY-MODERATOR-ACTION(char* Lhename);
char* execute-acbon(ooHandle(WORKING-NIEMORY) my_memory);
void print(void);

Appendix I- 20

H DES IGN_EX_W_M_EQUALS_SPECIFIED_VAL UE_EXPRES SION Class
The primary function of objects of this class is to determine if a
pre-defined slot in the DESIGN EXPERT Working Memory contains a string, integer,
or float which equals the value specified at creation of this object,
which is stored in one of the attributes the-string, the

-
int or the-float.

class DES IGN_EX-W-M-EQUALS-SPECIFIED_VALUE-EXPRES SION: public EXPRESSION

pnvate:
char slotl[20];
char slot2[20];
char slot3[20];
char slot4[20];
char var_is-a[20];
char the

- string[100];
int the_int;
float Lhe-float;

public:
DES IGN_EX_W-M-EQUALS-S PECIFIED-VALUE_EXPRESS ION(char* thename);
int get-expression-value(ooHandle(WORKING

-
MEMORY) my_memory);

H Returns I for True, 0 for False, &-1 for Error
I;

DESIGN
-

EX
-W-M-

LES S-THAN_S PECIFIED_VA-LUE-EXPRES SION Class
9 The primary function of objects of this class is to determine if a
H pre-defined slot in the DESIGN EXPERT Working Memory contains a string, integer
// or float which is less than the value specified at creation of this object,
H and which is stored in one of the attributes the

- string, the-int or Lhe_float.
class DES IGN_EX-W-M-LES S-THAN-SPECIFIED-VAL UE-EXPRES SION: public
EXPRESSION

private:
char slotl [20];
char slot2[20];
char slot3 [20];
char slot4[20];
char var_is-a [20];

char the_string[1001;
int the_int;
float the-float;

public:
DES IGN_EX-W-M-LES S-THAN-S PEC IFIED_VALUF-_EXPRES S ION(char* thename);
int get-expression-value(ooHandle(WORKING-MEMORY) my-memory);
H Retums I for True, 0 for False, &-I for Error

H DES IGN-EX-W-M-GREATER-THAN_S PECIFIED-VALUE-EXPRES SION Class
H The primary function of objects of this class is to determine if a
H pre_defined slot in the DESIGN EXPERT Working Memory contains a string, integer

Appendix I- 21

or float which is greater than the value specified at creation of this object,
H and which is stored in the attribute the-string, the_int or the

-
float.

class DES IGN_EX_W_M_GREATER_THAN-SPECIFIED_VAL UE_EXPRES SION: public
EXPRESSION

private:
char slot 1 [20];
char slot2[20];
char sI oL3 [20];
char slot4 [20];
char var_is-a['-)Ol;
char thc_string[100];
int. the_int;
float Lhe_float;

public:
DES IGN_EX-W-M-GREATER-THAN_SPECIFIED-VALUE-EXPRESS ION(char* thename);
int get-expression_value(ooHandle(WORKING -

MIEMORY) my_memory);
H Retums I for True, 0 for False, & -I for Error

// DES IGN-EXPERT_EXISTS-EXPRESS ION Class
H The primary function of objects of this class is to determine if the Engineering Moderator has
// knowledge of a particular design agent's knowledge
class DES IGN_EXPERT_EXISTS-EXPRES SION: public EXPRESSION

private:
char slotl[20];
char slot2[201;
char sloL3 [20];
char slot4[20];
char the_expert-name[100];

public:
DES IGN-EXPERT-EXIS TS-EXPRES S ION(ch ar* thename);
int get-expression_value(ooHandle(WORKING_ MEMORY) my_memory);
H Returns I for True, 0 for False, & -I for Error

ADD_NEW_DESIGN_EXPERT_ACTION Class
The primary function of objects of this class is to add details of a new
design agent to the Design Expert Working Memory of the Engineering Moderator

class ADD_NF-W-DESIGN_EXPERT_ACTION: public SIMPLE_RESULTING_ACTION

private:
char

public:
the_expert-name[20];

ADD_NEW_DESIGN_EXPERT-ACTION(char* thename);
char* exec ute-ac6on(ooHandle(WORK ING-MEMORY) my_memory);

Appendix I- 22

void print(void);

ADD_DESIGN-EXPERT-KNOWLEDGE
-

ACTION Class
Ile primary function of objects of this class is to add knowledge, in the
form of Rulesets and Rules for the design agent specified in the Knowledge

H acquisition working memory of the Engineering Moderator.
class ADD_DESIGN_EXPERT_KNOWLEDGE_ACTION: public
SIMEPLE_RESULTING_ACTION

private:
char

public:
the-expert-name[20];

ADD-DESIGN-EXPERT-KNOWLEDGE
-

ACTION(char* Lhename);
char* exec ute_ac don(ooHandle(WORKING-MEMORY) my_memory);
void print(void);

1;

H ADD-KNOWLEDGE_ACTION Class
The primary function of objects Of this class is to add knowledge, in the
form of Rulesets and Rules into a database specified by the user at runtime.

class ADD-KNOWLEDGE_ACTION: public SIMPLE-P-ESULTING_ACTION

public:
ADD_KNOWLEDGE_ACTION(char* thename);
char* execute_ac6on(ooHandle(WORKING_MEMORY) my-memory);
void print(void);

H UPDATE_DESIGN_EX_W_M_ACTION Class
H The primary function of objects of this class is to update a pre-defined
H slot in the DESIGN EXPERT Working Memory with a value which already exist
// in the TEMP

-
VALUES object within the DESIGN EXPERT working memory.

class UPDATE_DESIGN_EX-W_M-ACTION: public SIMPLE-RESULTING-ACTION

private:
char slotl [20];
char slot2[20];
char slot3[201;
char slot4[20];
char var_is_a[20];

public:
UPDATE-DESIGN_EX_W_M_ACTION(char* thename);
char* exec ute_action(ooHandle(WORKI NG-MEMORY) my-memory);

Appendix I- 23

void print(void);

KNOW-ACQ_WýM_EQUALS-SPECIFIED
-

VALUE
-

E-NPRESSION Class
The primary function of objects of this class is to determine if a

H pre_defined slot in the KNOWLEDGE ACQ Working Memory contains a string, integer,
or float which equals the value specified at creation of this object,
which is stored in one of the attributes the_string, the-int or the

-
float.

class KNOW_ACQ_W_M_EQUALS-SPECIFIED-VAL UE-EXPRESS ION: public EXPRESSION

private:
char slotl [20];
char slot2[20];
char slot3[201;
char slot4[20];
char var_is_a[20];
char the_string[1001;
int thejnt;
float Lhe-floaL;

public:
KNOW_ACQ_W_M-EQUALS-SPECIFIED-VALUE_EXPRESSION(char* Lhename);
int get-expression_value(ooHandle(WORKING -

MEMORY) my_mcmory);
H Retums I for True, 0 for False, & -I for Error

// KNOW_ACQ_ýW_M-LESS-THAN_SPECIFIED_VAL UE_EXPRESS ION Class
The primary function of objects of this class is to determine if a
H prejefined slot in the KNOWLEDGE ACQ Working Memory contains a string, integer
H or float which is less than the value specified at creation of this object,
H and which is stored in one of the attributes the-string, the_int or the-float.
class KNOW-ACQ-W-M-LES S-THAN_SPECIFIED-VAL UE-EXPRES SION: public
EXPRESSION

private:
char slotl[20];
char slot2[20];
char slot3[20];
char slot4[20];
char var - is-a[20];
char Lhe_sLring[1001;
int the-int;
float Lhe-float;

public:
KNOW_ACQ_W_M_LESS-THAN_SPECIFIED_VALUE_EXPRESSION(char* thename);
int get_expression_value(ooHandle(WORKING_MEMORY) my_memory);
H Retums I for True, 0 for False, & -I for Error

Appendix I- 24

KNOW
-

ACQ-W-M-GREATER-THAN-S PECIFIED-VAL UE-EXPRES SION Class
The primary function of objects of this class is to determine if a

H pre-defined slot in the KNOWLEDGE ACQ Working Memory contains a string, integer
or float which is less than the value specified at creation of this object,
H and which is stored in the attribute the-sLring, the-int or the-float.
class KNOW-ACQ-W-M-GREATER-THAN-SPECIFIED_VALUE-EXPPES SION: public
EXPRESSION

pnvate:
char slot 1 [20];
char slot2[20];
char slot3 [20];
char slot4[20];
char var-is-a[20];
char the-sLring[100];
int the-int;
float the-float;

public:
KNOW-ACQ-W-M-GREATER-THAN-SPECIFIED-VALUE-EXPRESSION(char* thenarne);
int get_expression_value(ooHandle(WORKING_NIEMORY) my_memory);
H Retums I for True, 0 for False, & -I for Error

UPDATE_KNOW-ACQ_W_M-ACTION Class
The primary function of objects of this class is to update a pre-defined

slot in the KNOWLEDGE ACQ Working Memory with a value which already exist
// in the TEMPYALUES object within the KNOWLEDGE ACQ working memory.
class UPDATE_KNOW-ACQ-W-M_ACTION: public SIMPLE_RESULTING_ACTION

private:
char slotl [20];

char slot2[20];
char slot3 [20];

char slot4[20];
char var-is-a[20];

public:
UPDATE-KNOW-ACQ-W_M_ACTION(char* thename);
char* exec ute-ac tion(ooHandle(WORKING_MEMORY) my_memory);
void print(void);

WI_USER_INPUT-RESPONSE_EXPRES SION Class
The primary function Of objects of this class is to write a pre-defined
question to the screen (in a dialogure box), and obtain the user's response. The
message is requested when an object of this class is created, and is held in the
question attribute. If the user selects Yes in response to the question, this expression returns

Appendix I- 25

HI (TRUE), if the user selects NO this expression returns 0(' FALSE).
class WI_US ER_I NP UT_RES PONS E_EXPRES SION: public EXPRESSION

private:
char quesbon[200];

public:
WI-US ER_I NPUT-RES PONS E-EXPRES S ION(char* thename);
int get_expression_value(ooHandle(WORKING

-
MEMORY) my-memory);

H Returns I for True, 0 for False, & -I for Error

WI_PRINT_MESSAGE_ACTION Class
The primary function of objects of this class is to write a pre-defined
message to the screen, in a message box. The message is requested when an object of this
class is created, and is held in the message attribute.

class WI-PRINT-NIESSAGE-ACTION: public SIMPLE_RESULTING_ACTION
I
private:

char message[200];
public:

WI-PRINT_, N, tESSAGE-ACTION(char* thename);
char* exec ute-action(ooHandle(WORKING_MEMORY) my_memory);

WI_READ_INTO_MEMORY-ACTION Class
The primary function of objects of this class is to update a slot in the
TEMP-VALUES object in the Working Memory of an expert with a value provided

H by the user at run time, via a dialogue box
class WI-READ_INTO-MEMORY-ACTION: public SINIPLE_RESULTING_ACTION

private:
char promp t-m es sage [2001;
char var-is-a[20];

public:
WI-READ_I, NTO_NIF-MORY-ACTION(char* thename);
char* exec ute-ac fion(ooHandle(WORKING_MEMORY) my-memory);
void print(void);

J;

H CD_REQ_CHANGE_EXPRESS ION Class
H The primary function of objects of this class is to determine if a
// change made to a cost -

dely-product
- model requirements object is

H significant. This is a single implementation done specifically for
// RRIPG Case Study demo.

class CD_REQ-CHANGE_EXPRES SION: public EXPRESSION

public:

Appendix I- 26

CD_REQ-CHANGE-EXPRESSION(char* thename);
int "net-ex press ion-value(ooHandle(W OR KI NG-MEMOR Y) my-memory);
11 Returris I for True, 0 for False, & -I for Error

1;

Appendix I- 27

Written by JA Harding, Dept Manufacturing Engineering, LUT.
MOSES PROJECT - October 1994

MOSES WORKING MEMORY SCHEMA
working-memory. ddl

Last changed 9/2/95

SDFF
-

SPEC-VALUES Class
class SDFF_SPEC-VALUES public ooObj

I
protected:

char
float
float
float
char
float
float
float
char
char
ooHandle(SDFF_WORKING-MEMORY)

public:
SDFF_SPEC_VALUESO;
void printo;
void update-string(char* slot, char* update-val);
void update_float(char* slot, float update_val);
char* get-string(char* slot);
float get-float(char* slot);

// SDFF_MATERIAL-VALUF-S Class

class SDFF-MATERIAL-VALUES : public ooObj
I
protected:

char
char
char
float
float
float
ooHandle(SDFF_WORKING_MEMORY)

public:
SDFF_MATERIAL-VALUESO;
void printo;
void update_string(char* slot, char* update_val);
void update_float(char* slot, float update_val);
char* get_string(char* slot);

DB-Name[1001; H Database containing Spec
full_load_power;
full-load-speed;
percent-sLart_Lorque;
dULy[1001; // eg high, medium or low
no-of-revolutions;
life-expectancy;
length_z;
torque[100];
axial[1001;
wm5 <-> spec-requirements : prop(deleLe);

DB-Name[100]; //Database of materials
mat-name[100];
mat_grade[100];
UTS;
USS;
youngs-mod;
wm6 <-> material-details : prop(delete);

Appendix I- 28

float get-float(char* slot);

SDFF FEATURE Class
class SDFF_FEATURE: public ooObj

I
protected:

char
char
ooHandle(SDFF_BEARING_JOURNAL)
ooHandle(SDFF_BEARING_JOURNAL)
ooHandle(SDFF_SHAFT_REQUIREMF-NTS)
ooHandle(SDFF_SHAFT_REQUIREMENTS)
ooHandle(SDFF_SHAFT-REQUIRENMNTS)

public:
SDFF-FEATUREO;
void printo;
void update_string(char* slot, char* update-val);
char* get-string(char* slot);

feature-type[1001;
feature-name[1001;
bl-journal <-> axial- locate: prop(delete);
b2-journal <-> radial -locate : prop(delete);
shaft-reql <-> axial- locate : prop(delete);
shaft-req2 <-> radial -locate : prop(delete);
shaft-req3 <-> torque

-transmit : prop(delete);

// SDFF_BEARING-JOURNAL Class
class SDFF_BEARING-JOURNAL: public ooObj

protected:
ooHandle(SDFF_FEATURE) axial-locate <-> bl_joumal : prop(delete),
ooHandle(SDFF_FEATURE) radial-locate <-> b2_joumal : prop(delete);
ooHandle(SDFF_WORKING_MEMORY) wrn 1 <-> bearing-A prop(delete);
ooHandle(SDFF-WORKING_NEMORY) wm2 <-> bearing-B prop(delete);
float mln_rad;
char bearing_chosen[100];

public:
SDFF_BEARING-JOURNALo;
void printo;
void update_string(char* slot, char* slot - attrib, char* update_val);
void update_float(char* slot, float update-val),
char* get-string(char* slot, char* slot-attrib);
float get_float(char* slot);

// SDFFý_SHAFr-REQUIREMIENTS Class

class SDFF_SHAFr_REQUIREMEENTS : public ooObj

protected:
ooHandle(SDFF_FEATLTRE) axial-locate <-> shaft_reql : prop(delete);
ooHandle(SDFF_FEATURE) radial -

locate <-> shaft-req2 : prop(delete);
ooHandle(SDFF_FEATURE) torque_Lransmit <-> shaft-req3 : prop(delete);

Appendix I- 29

ooHandle(SDFF-SHAFr-SECTION) shaftl <-> input : prop(delete);
ooHandle(SDFF-SHAFr-SECTION) shaft2 <-> output : prop(delete);

public:
SDFF-SHAFr-REQUIREMF-NTSo;
void printo;
void update-string(char* slot, char* slot-attrib, char* update-val);
char* get-sLring(char* slot, char* slot-attrib);

// S DFF SHAFT SECTION Class
class SDFF_SHAFT-SECTION: public ooObj

I
protected:

ooHandle(SDFF_SHAFT_REQUIP, EMENTS) input <-> shaftl : prop(delete);
ooHandle(SDFF_SHAF'F_REQUIP, EMENTS) output <-> shaft2 : prop(delete);
ooHandle(SDFF_WORKING_MEMORY) wm3 <-> shaft-ex tension : prop(delete);
ooHandle(SDFF_WORKING_MEMORY) wm4 <-> main-shaft: prop(delete);
float mln_rad;

public:
SDFF_SHAFT-SECTION0;
void printo;
void update-string(char* slot, char* slot-atLrib, char* slot-aLLrib-slot, char* update_val);
void update_float(char* slot, float update_val);
char* get-string(char* slot, char* slot-attrib, char* slot-atLrib-slot);
float get_float(char* slot);

// TENIPYALUES Class

class TENIPYALUES : public ooObj
I
protected:

char
float

int
ooHandle(SDFF_WORKING_NIEMORY)
ooHandle(STRAT_WORKING_NlEMORY)
ooHandle(DESIGN_MODERATION-W_M)
ooHandle(DESIGN_EXPERT_W_M)
ooHandle(KNOWLEDGE_ACQU_W_M)

public:
TEMPYALUESO;
void printo;
void win_printo;
void update-string(char* slot, char* update_val);
void update-float(char* slot, float update-val);
void update-int(char* slot, int update_val);
char* get_string(char* slot);
float get-float(char* slot);

asLring[100];
afloat;
anint;
wm7 <-> temp-, v
wms7 <-> stemp.
wmm I <-> temp.
wmm2 <-> temp.
wmm3 <-> temp.

als : prop(delete);
yals prop(delete);
yals prop(delete)-,
yals prop(delete);
yals prop(delete);

Appendix 1- 30

int get_int(char* slot);

fl WORKING_MEMORY Class
class WORKING-MEMORY: public ooObj

public:
H There is no CONSTRUCTOR for this class as it is an abstract super class and therefore should
// never be created

virtual void printo;
virtual void update_string(char* slot, char* slot-attrib, char* slot-attrib-slot,

char* slot-attrib_slot-attrib, char* update_val);
virtual void update-float(char* slot, char* slot-atLrib, char* slot-attrib-slot,

char* slot - attrib - slot-attrib, float update_val);
virtual void update_int(char* slot, char* slot-atLrib, char* slot-attrib-slot,

char* slot-attrib_slot_attrib, int update_val);
virtual char* get-string(char* slot, char* slot-attrib, char* slot-attrib-slot,

char* slot-attrib-slot-attrib);
virtual float get-float(char* slot, char* SlOt-aLtrib, char* slot-attrib-slot,

char* slot-attrib-slot-attrib);
virtual int get-Int(char* slot, char* slot-atLrib, char* slot_attrlb-slot,

char* slot-attrib-slot-attrib);

1;

// SDFF_WORKING_MEMORY Class
class SDFF-WORKING-MEMORY: public WORKING_MEMORY

protected:
char
char
char
ooHandle(SDFF- BEARING-JOURNAL)
ooHandle(SDFF- BEARING-JOURNAL)
ooHandle(SDFF_ SHAFT_SECTION)
ooHandle(SDFF_ SHAFT_SECTION)
ooHandle(SDFF_ SPEC-VALUES)
ooHandle(SDFF_ MATERIAL_VALUES)
ooHandle(TEMP _VALUES)
char
float
float

public:

DB-Name[100]; // Database for output
Shaft-Name[100]; // Name of current shaft design
Comp-Name[1001; H Name of shaft in PM
bearing_A <-> wmI : prop(delete);
bearing_B <-> wm2: prop(delete);
shaft_extension <-> wm3 : prop(delete);
main_shaft <-> wm4 : prop(delete);
spec-requirements <-> wm5 : prop(delete);
material-de tails <-> wm6: prop(delete);
temp_vals <-> wm7 : prop(delete);
machine-Name[100]; H Machine Displays on
dynamic-forces;
min_rad;

SDFFý_WORKING-MEMORYO-,
S DFF-WORK ING_MEMORY (char* Lhename);
void printo;
void update_string(char* slot, char* slot-attrib, char* slot-attrib-slot,

char* slot-aLtrlb_slot_attrib, char* update_val);

void update-float(char* slot, char* slot-aLLrib, char* slot-attrib-slot, char* slot-attrib-slot-attrib,

Appendix I- 31

float update_val);
void update_int(char* slot, char* slot-aurib, char* slot-atLrib_slot, char* slot-attrib_slot-attrib,

int update_val);
char* get-string(char* slot, char* slot-attrib, char* slot - attrib_slot, char* slot-attrib-slot-attrib);
float get_float(char* slot, char* slot-attrib, char* slot - attrib-slot, char* slot-attrib-slot-attrib);
int get-int(char* slot, char* slot_attrib, char* slot-attrib-slot, char* slot_attrib_slot_attrib);

// STRAT_SPEC-VALUES Class
class STRAT_SPEC_VALUES : public ooObj

protected:
char
int
int
int
int
int
int
float
float
float
int
int
ooHandle(STRAT-WORKING-MEMORY)

public:
STRAT_SPEC_VALUESO;
void printo;
void update-string(char* slot, char* update_val);
void update_float(char* slot, float update_val);
void update-Int(char* slot, int update-val);
char* get-string(char* slot);
float get-float(char* slot);
int get-int(char* slot);

// STRAT
-

WORKING-MEMORY Class

class STRAT-WORKING-MEMORY:
I
protected:

char
ooHandle(STRAT-SPEC-VALLi-ES)
char
ooHandle(TENIP_VALUF-S)

public:

DB_Name[100]; H Database containing Spec
number-req;
date-due;
init_bat-size;
subs-bat-size;
init-lead-Urne;
subs-lead-time;
depth-x;
height-y;
length-z;
pmat-code;
pform-code;
wms5 <> sspec-requiremenLs: prop(delete);

public WORKING-MEMORY

Appendix I- 32

DB-Name[1001; H Database for output
sspec_requirements <-> wms5 : prop(delete);
machine_Name[100];
stemp_vals <-> wms7 : prop(delete);

STRAT-WORKING-MEMORYO;
STRAT

-
WORKING-MEMORY (char* thename);

void printo;
void update-string(char* slot, char* slot_attrib, char* slot-attrib_slot,

char* slot_attrib_slot_attrib, char* update_val);
void update_float(char* slot, char* slot-attrib, char* slot-attrib-slot, char* slot_attrib_slot-attrib,

float update-val);
void update_int(char* slot, char* slot_atLrib, char* slot-attrib_slot, char* slot-attrib-slot-attrib,

int update_val);
char* get-string(char* slot, char* slot-atLrib, char* slot-attrib-slot, char* slot-attrib-slot_attrib);
float get_float(char* slot, char* slot-attrib, char* slot-atLrib_slot, char* slot - attrib-slot-attrib);
int get-int(char* slot, char* slot-attrib, char* slot-attrib-slOL, char* slot-attrib_slot-attrib);

Appendix I- 33

H Written by JA Harding, Dept Manufacturing Engineering, LUT.
// MOSES PROJECT - October 1994
H

MOSES WORKING MEMORY SCHEMA
working_memory. ddl

H
H Last changed 9/2/95

// SDFF SPEC VALUES Class
class SDFF_SPEC_VALUES public ooObj

protected:
char
float
float
float
char
float
float
float
char
char
ooHandle(SDFF_WORKING_MEMORY)

public:
SDFF_SPEC_VALUESO;
void printo;
void update-string(char* slot, char* update_val);
void update_float(char* slot, float update-val);
char* get-string(char* slot);
float get_float(char* slot);

// SDFF_MATERIAL_VALUES Class

class SDFF_MATERIAL-VALUES : public ooObj
f

protected:
char
char
char
float
float
float
ooHandle(SDFF-WORKING-NlEMORY)

public:
SDFF-MATERIAL_VALUESO;
void printo;
void update-string(char* slot, char* update_val);
void update_ fl oat(c har* slot, float update-val);
char* get-string(char* slot);

DB_Name[100]; // Database containing Spec
full-load_power;
full-load_speed;
percent-start-torque;
duty[1001; // eg high, medium or low
no-of-revolutions;
life-expectancy;
length_z;
torque[100];
axial[100];
wm5 <-> spec_requirements : prop(delete);

DB_Name[100]; //Database of materials
m at-n am e[1001;
mat_grade[100];
UTS;
USS;
youngs-mod;
wm6 <-> material-details : prop(delete);

Appendix I- 34

float get_float(char* slot);

// SDFF_FEATURE Class
class SDFF_FEATURE: public ooObj

protected:
char feature_type[100];
char feature-name[100];
ooHandle(SDFF _BEARING-JOURNAL)

bl-journal <-> axial -
locate : prop(delete);

ooHandle(SDFF -BEARING-JOURNAL)
b2-journal <-> radial -locate : prop(delete);

ooHandle(SDFF -SHAFT-REQUIREMENTS) shaft-reql <-> axial- locate prop(delete);
ooHandle(SDFF -SHAFT-REQUUý-EM[ENTS) shaft-req2 <-> radial -locate prop(delete);
ooHandle(SDFF_ SHAFT_REQUIREMENTS) shaft-rcq3 <-> torque

-transmit: prop(delete);
public:

SDFF-FEATUREO;
void printo;
void update_string(char* slot, char* update_val);
char* get-sLring(char* slot);

SDFF_BEARING_JOURNAL Class
class SDFF_BEARING-JOURNAL: public ooObj

protected:
ooHandle(SDFF _FEATURE)
ooHandle(SDFF_ FEATURE)
ooHandle(SDFF_ WORKING_MEMORY)
ooHandle(SDFF_ WORKING_N4EMORY)
float
char

public:
SDFF-BEARING-JOURNALo;

axial-locate <-> bljoumal prop(delete);
radialjocate <-> b2journal prop(delete);
wm I <-> bearing-A prop(delete);
wm2 <-> bearing-B prop(delete);
min-rad;
bearing_chosen[100];

void printo;
void update-string(char* slot, char* slot_atLrib, char* update-val);
void update_float(char* slot, float update_val);
char* get - string(char* slot, char* slot-atLrib);
float get-float(char* slot);

// SDFF_SHAFT_REQUIREMENTS Class
class SDFF-SHAFr-REQUIREMENTS : public ooObj

protected:
ooHandle(S DFF_FEATURE) ax ial locate <-> shaft_reql prop(delete);
ooHandle(S DFF_FEATURE) radial locate <-> shaft-req2 prop(delete);
ooHandle(SDFF_FEATUR-E) torque_transmit <-> shaft_req3 : prop(delete);

Appendix I- 35

ooHandle(SDFF_SHAFT_SECTION) shaftl <-> input: prop(delete);
ooHandle(SDFF-SHAFT-SECTION) shaft2 <-> output : prop(delete);

public:
SDFF_SHAFT

-
REQUIREMENTSO;

void printo;
void update-string(char* slot, char* slot - attrib, char* update_val);
char* get-string(char* slot, char* slot-attrib)-,

// SDFF-SHAFT_SECTION Class
class SDFF_SHAFT-SECTION: public ooObj

protected:
ooHandle(SDFF-SHAFT_REQUIREMENTS) input <-> shaftl : prop(delete);
ooHandle(S DFF_S HAFT

-
REQUIREMENTS) output <-> shaft2 : prop(delete);

ooHandle(SDFF_WORKING-MEMORY) wm3 <-> shaft - extension : prop(delete);
ooHand1e(SDFF_WORKING_MEMORY) wm4 <-> main_shaft: prop(delete);
float min_rad;

public:
SDFF_SHAFT-SECTIONO;
void printo;
void update_string(char* slot, char* slot-attrib, char* slot-attrib_slot, char* update-val);
void update_float(char* slot, float updaLe-val);
char* get-string(char* slot, char* slot-attrib, char* slot-attrib-slot);
float get_float(char* slot);

TENIP-VALUES Class
class TENIP-VALUES : public ooObj

protected:
char
float
int
ooHandle(SDFF-WORKING-MEMORY)
ooHandle(STRAT_WORKING-MEMORY)
ooHandle(DESIGN-MODERATION_W-M)
ooHandle(DESIGN_EXPERT-W-M)
ooHandle(KNOWLEDGE-ACQLLW_M)

public:
TEMPYALUESO;
void printo;
void win-printo;
void update-string (char* slot, char* update_val);
void update_float(char* slot, float update-val);
void update-int(char* slot, int update_val);
char* get-string(char* slot);
float get_float(char* slot);

astring[100];
afloat;
anint;
wm7 <-> temp-, v
wms7 <-> stemp,
wmml <-> temp.
wmm2 <-> temp.
wmm3 <-> temp.

als : prop(delete);
yals prop(delete);
yals prop(delete);
yals prop(delete);
yals prop(delete);

Appendix 1- 36

int get-int(char* slot);

H WORKING MEMORY Class
class WORKING_MEMORY: public ooObj

public:
H There is no CONSTRUCTOR for this class as it is an abstract super class
H and therefore should never be created

virtual void printo;
virtual void update-string(char* slot, char* slot-attrib, char* slot - attrib-slot,

char* slot-attrib-slot-atLrib, char* update_val);
virtual void update-float(char* slot, char* slot_attrib, char* slot-attrib-slot,

char* slot_attrib_slot_attrib, float update_val);
virtual void update_int(char* slot, char* slot-attrib, char* slot-attrib_slot,

char* slot-attrib_slot_atLrib, int update-val);
virtual char* get-sLring(char* slot, char* slot-attrib, char* slot-attrib-slot,

char* slot-attrib-slot-attrib);
virtual float get-float(char* slot, char* slot-attrib, char* slot_attrib-slot,

char* slot-attrib-slot_attrib);
virtual int get-int(char* slot, char* slot_atLrib, char* slot_aLtrib-slot,

char* slot-attrib-slot-attrib);

SDFF_WORKING
_MEMORY

Class
class SDFF-WORKING-MEMORY: public WORKING-MEMORY

I
protected:

char DB-Name[1001; // Database for output
char Shaft-Name[100]; Name of current shaft design
char Comp-Namc[100]; Name of shaft in PM
ooHandle(SDFF_ BEARING_JOUP, NAL) bearing-A <-> wml : prop(delete);
ooHandle(SDFF_ BEARING_JOUP, NAL) bearing-B <-> wm2: prop(delete);
ooHandle(SDFF- SHAFT_SECTION) shaft-extension <-> wm3 : prop(delete);
ooHandle(SDFF- SHAFT-SECTION) main_shaft <-> wm4: prop(delete);
ooHandle(S DFF_ SPEC_VALUES) spec-requirements <-> wm5 : prop(delete);
ooHandle(SDFF_ MATERIAL_VALUES) material-details <-> wm6 : prop(delete);
ooHandle(TEMP -VALUES)

temp-vals <-> wm7: prop(delete);
char machine_Name[100];
float dynamic-forces;
float mln_rad;

public:
SDFF-WORKING-MEMORY0;
S DFF-WORK ING-MEMORY (char* thename);
void printo;
void update-string(char* slot, char* slot_atLrib, char* sloL_attrib-slot,

char* slot_attrlb_slot_attrib, char* update_val);

Appendix I- 37

void update-float(char* slot, char* slot-atLrib, char* slot-attrib-slot, char* slot-atLrib-slot-attrib,
float update-val);

void update-int(char* slot, char* slot_attrib, char* slot-attrib-slot, char* slot_atLrib_slot-attrib,
int update_val);

char* get-string(char* slot, char* slot
- attrib, char* slot

- attrib
- slot, char* slot - attrib - slot - attrib);

float get-float(char* slot, char* slot - attrib, char* slot
- attrib-slot, char* slot - attrib

- slot
-

attrib);
int get-int(char* slot, char* slot-attrib, char* slot-attrib-slot, char* slot-attrib-slot_attrib);

STRAT
-

SPEC-VALUES Class
class STRAT-SPEC-VALUES : public ooObj

I
protected:

char
int
int
int
int
int
int
float
float
float
int
int
ooHandle(STRAT-WORKING_MEMORY)

public:
STRAT-SPEC-VALUESO;
void printo;
void update-string(char* slot, char* update_val);
void update_float(char* slot, float update_val);
void update_int(char* slot, int update_val);
char* get-string(char* slot);
float get-float(char* slot);
int get-int(char* slot);

DB_Name[1001; H Database containing Spec
number_req;
daLe-due;
init-bat-size;
subs-bat-size;
iniL-Iead_time;
subs-lead-ume;
depth-x;
height-y;
length_z;
pmat-code;
pform-code;
wms5 <-> sspec-requirements prop(delete);

// STRAT
-

WORKING
-

MEMORY Class
class STRAT_WORKING-MEMORY: public WORKING-MEMORY

f
protected:

char DB_Name[100]; H Database for output
ooHandle(STRAT-SPEC-VALUES) sspec-requirnts <-> wms5 : prop(delete);
char machine_Name[100];
ooHandle(TEMP-VALUES) stemp_vals <-> wms7 : prop(delete);

Appendix I- 38

public:
STRAT-WORKING-MEMORYO;
STRAT_WORKING-MEMORY(char* Lhename);
void printo;
void update_string(char* slot, char* slot-attrib, char* slot-attrib-slot,

char* slot-attrib-slot-atLrib, char* update-val);
void update_float(char* slot, char* slot-attrib, char* slot-attrib_slot, char* slot_attrib_slot_attrib,

float update-val);
void update_int(char* slot, char* slot_attrib, char* slot-attrib_slot, char* slot-attrib_slot_attrib,

int update_val);
char* get-string(char* slot, char* slot-attrib, char* slot-attrib-slot, char* slot-attrib-slot-attrib);
float get_float(char* slot, char* slot-attrib, char* slot-atLrlb_slot, char* slot-attrib_slot_attrib);
int get-int(char* slot, char* slot_attrib, char* slot-attrib_slot, char* slot-attrib-slot-attrib);

Appendix I- 39

APPENDIX 11

Tables showing implemented Sub-Classes of Expression
and Simple Resulting Action

TABLE

Implemented Sub-Classes of Expression

USER INPUT RESPONSE EXPRESSION Objects of this class display a pre-defined question
on the screen and obtain the user's response. The
message is defined when an object of this class is
created. If the user answers y (yes) to the question
this expression returns I (True) if the user gives
any other response, this expression returns 0 (False)

WI USER INPUT RESPONSE EXPRESSION Objects of this class display a pre-defined question
on the screen, using a dialogue box and obtain the
user's response. The message is defined when an
object of this class is created. If the user answers y
(yes) to the question this expression returns I
(True) if the user gives any other response, this
expression returns 0 (False)

ALWAYS TRUE EXPRESSION Objects of this class always return I(True). They
are used to ensure that a particular resulting action
is always carried out.

MENU SELECTION MADE EXPRESSION Objects of this class display a pre-defined menu.
The menu items are defined when an object of this
class is created. If the user enters an integer
representing a valid menu selection, the expression
returns I (True) if the user enters any other value,
this expression returns 0 (False).

WI MENU SELECTION MADE EXPRESSION Objects of this class display a pre-defined pop-up
menu. The menu items are defined when an object
of this class is created. If the user makes a valid
selection from the menu, this expression returns I
(True) otherwise this expression returns 0 (False)

COMPONENT OF SPECIFIED TYPE EXISTS Objects of this class check the current product
model to see if a component of a pre-defined typed
already exists. The component type is defined

when an object of this class is created. If such a
component exists, this expression returns I (True)
otherwise this expression returns 0 (False)

Appcndix 11 -I

SDFFE MEMORY EQUALS SPECIFIED Objects of this class check if a pre-defined attribute
VALUE in the SDFFE's working memory equals a pre-

defined value. The attribute and the value are both
defined when an object of this class is created. If
the attribute's value is equal to the pre-defined
value, this expression returns I (True) otherwise
this expression returns 0 (False)

SDFFE MEMORY LESS THAN SPECIFIED Objects of Lhis class check if a pre-defined attribute
VALUE in the SDFFE's working memory is less than a pre-

defined value. The attribute and the value are both
defined when an object of this class is created. If
the attribute's value is less than the pre-defined
value, this expression returns I (True) other-wise
this expression returns 0 (False)

SDFFE MEMORY GREATER THAN Objects of this class check if a pre-defined attribute
SPECIFIED VALUE in the SDFFE's working memory is greater than a

pre-defined value. The attribute and the value are
both defined when an object of this class is created.
If the attribute's value is greater than the pre-
defined value, this expression returns I (True)
otherwise this expression returns 0 (False)

STRAT NIENIORY EQUALS SPECIFIED Objects of this class check if a pre-defined attribute
VALUE in the Manufacturing Strategist's working memory

equals a pre-defined value. The attribute and the
value are both defined when an object of this class
is created. If the attribute's value is equal to the
pre-defined value, this expression returns I (True)
otherwise this expression returns 0 (False)

STRAT MEMORY LESS THAN SPECIFIED Objects of this class check if a pre-defined attribute
VALUE in the Manufacturing Strategist's working memory

is less than a pre-defined value. The attribute and
the value are both defined when an object of this
class is created. If the attribute's value is less than
the pre-defined value, this expression returns I
(True) otherwise this expression returns 0 (False)

ST AT MEMORY GREATER THAN Objects of this class check if a pre-defined attribute
SPECIFIED VALUE in the Manufacturing Strategist's working memory

is greater than a pre-defined value. The attribute
and the value are both defined when an object of
this class is created. If the attribute's value is
greater than the pre-defined value, this expression
returns I (True) otherwise this expression returns 0

1 False)

Appendix II -2

DESIGN MODERATION MEMORY EQUALS Objects of this class check if a pre-defined attribute
SPECIFIED VALUE in the Design Moderation working memory equals

a pre-defined value. The attribute and the value are
both defined when an object of this class is created.
If the attribute's value is equal to the pre-defined
value, this expression returns I (True) otherwise
this expression returns 0 (False)

DESIGN MODERATION MEMORY LESS Objects of this class check if a pre-defined attribute
THAN SPECIFIED VALUE in the Design Moderation working memory is less

than a pre-defined value. The attribute and the
value are both defined when an object of this class
is created. If the attribute's value is less than the
pre-defined value, this expression returns I (True)
otherwise this expression returns 0 (False)

DESIGN MODERATION MEMORY GREATER Objects of this class check if a pre-defined attribute
THAN SPECIFIED VALUE in the Design Moderation working memory is

greater than a pre-defined value. The attribute and
the value are both defined when an object of this
class is created. If the attribute's value is greater
than the pre-defined value, this expression returns
I (True) otherwise this expression returns 0 (False)

OBJECT OF SPECIFIED CLASS Objects of this class determine if an object within
the product model is of a specified class. If it is of
the specified class, this expression returns 1 (True)
otherwise this expression returns 0 (False)

OBJECT IS FUNCTIONAL Objects of this class determine if an object within
the product model has a non-null value in its
functional info string attribute. If it has a non-null
value, this expression returns I (True) otherwise
this expression returns 0 (False)

DESIGN EXPERT MEMORY EQUALS Objects of this class check if a pre-defined attribute
SPECIFIED VALUE in the Design Expert working memory equals a pre-

defined value. The attribute and the value are both
defined when an object of this class is created. If
the attribute's value is equal to the pre-defined
value, this expression returns I (True) otherwise
this expression returns 0 (False)

DESIGN EXPERT MEMORY LESS THAN Objects of this class check if a pre-def ined attribute
SPECIFIED VALUE in the Design Expert working memory is less than

a pre-defined value. The attribute and the value are
both defined when an object of this class is created.
If the attribute's value is less than the pre-defined
value, this expression returns I (True) otherwise

I this expression returns 0 (False)

Appendix Il -3

DESIGN EXPERT MEMORY GREATER Objects of this class check if a pre-defined attribute
THAN SPECIFIED VALUE in the Design Expert working memory is greater

than a pre-defined value. The attribute and the
value are both defined when an object of this class
is created. If the attribute's value is greater than
the pre-defined value, this expression returns I
(True) otherwise this expression returns 0 (False)

DESIGN EXPERT EXISTS Objects of this class check if the Engineering
Moderator has knowledge of the existence of a
particular design agent. This expression returns 1
(True) otherwise this expression returns 0 (False)

KNOWLEDGE ACQUISITION MEMORY Objects of this class check if a pre-defined attribute
EQUALS SPECIFIED VALUE in the Knowledge Acquisition working memory

equals a pre-defined value. The attribute and the
value are both defined when an object of this class
is created. If the attribute's value is equal to the
pre-defined value, this expression returns I (True)
otherwise this expression returns 0 (False)

KNOWLEDGE ACQUISITION MEMORY LESS Objects of this class check if a pre-defined attribute
THAN SPECIFIED VALUE in the Knowledge Acquisition working memory is

less than a pre-defined value. The attribute and the
value are both defined when an object of this class
is created. If the attribute's value is less than the
pre-defined value, this expression returns 1 (True)
otherwise this expression returns 0 (False)

KNOWLEDGE ACQUISITION MEMORY Objects of this class check if a pre-defined attribute
GREATER THAN SPECIFIED VALUE in the Knowledge Acquisition working memory is

greater than a pre-defined value. The attribute and
the value are both defined when an object of this
class is created. If the attribute's value is greater
than the pre-defined value, this expression returns
I (True) otherwise this expression returns 0 (False)

CD REQ CHANGE EXPRESSION Objects of this class determine if a change made to
a cost and delivery product model requirements
object is significant. Single implementation
specifically done for the RRIPG Case Study
Demonstration. If the change is significant this
returns I (True), otherwise this expression returns
0 (False)

Appendix II -4

TABLE 2

Implemented Sub-Classes of Simple Resulting Action

PRINT MESSAGE ACTION Objects of this class display a pre-defined message
on the screen. The message is defined when an
object of this class is created.

WI PRINT M[ESSAGE ACTION Objects of this class display a pre-defined message
in a message box on the screen. The message is
defined when an object of this class is created.

POSTSCRIPT DISPLAY ACTION Objects of this class display a postscript file, whose
name is stored in the message attribute of objects of
this class.

UPDATE SDFFE MEMORY ACTION Objects of this class update a pre-defined attribute
in the SDFFE Working Memory with the value
which exists in the Temp attribute of SDFFE
Working Memory. The attribute to be updated is
defined when this expression is created.

UPDATE STRAT MEMORY ACTION Objects of this class update a pre-defined attribute
in the STRAT Working Memory with the value
which exists in the Temp attribute of STRAT
Working Memory. The attribute to be updated is
defined when this expression is created.

UPDATE DESIGN MODERATION MEMORY Objects of this class update a pre-defined attribute
ACTION in the DESIGN MODERATION Working Memory

with the value which exists in the Temp attribute of
DESIGN MODERATION Working Memory. The
attribute to be updated is defined when this
expression is created.

UPDATE DESIGN EXPERT MEMORY Objects of this class update a pre-defined attribute
ACTION in the DESIGN EXPERT Working Memory with

the value which exists in the Temp attribute of
DESIGN EXPERT Working Memory. The
attribute to be updated is defined when this
expression is created.

DATE KNOWLEDGE ACQUISITION Objects of this class update a pre-defined attribute
MEEMORY ACTION in the KNOWLEDGE ACQUISITION Working

Memory with the value which exists in the Temp
attribute of KNOWLEDGE ACQUISITION
Working Memory. The attribute to be updated is
defined when this expression is created.

V711EAZ INTO MýMOýRY ACTIOTN Objects of this class update the Temp attribute of a
working memory object (or any sub-class). It is
updated with a value typed in by the user, using a
dialogue box, at runtime.

Appendix 11 -5

READ INTO MEMORY ACTION Objects of this class update the Temp attribute of a
working memory object (or any sub-class). It is
updated with a value typed in by the user at
runtime.

SPEC VALUE INTO MIEMORY ACTION Objects of this class update the Temp attribute of a
working memory object (or any sub-class), with a
value extracted from the product model. The Temp
attribute is updated by a value from the
specification section of the product model. The
value will be a quality or quantity related to a
product requirement. Details of the product
requirement to be used are determined when this
object is created.

FIRE A SELECTED RULE ACTION Objects of this class fire one of several pre-defined
rules, the one actually fired at run-time is chosen
dependent on the current contents of working
memory.

CREATE BASIC FEATURE ACTION Objects of this class can create a feature of a pre-
defined type in the product model. The type of the
feature created is determined when this action is
created.

CREATE SPECIFIED COMPONENT ACTION Objects of this class can create a component of a
pre-defined type in the product model. The type of
the component created is determined when this
action is created.

CREATE SPECIFIED DEFINITION ACTION Objects of this class can create a component
definition in the product model

MATERIAL VALUE INTO MEMORY Objects of this class update the Temp attribute of a
ACTION working memory object (or any sub-class), with a

value extracted from the product model. The Temp
attribute is updated by a value from the materials
section of the product model. The material
attribute from which the value is to be extracted is
determined when this action is created

EXECUTE NEURAL NETWORK ACTION Objects of this class update the Temp attribute of a
working memory object (or any sub-class), with a
value calculated by running a neural network
simulation to select a bearing

SPECIFIED VALUE INTO MEMORY Objects of this class update the Temp attribute of a
ACTION working memory object (or any sub-class), with a

pre-defined value, which is set when this action is
created

ADD DIMENSION ACTION Objects of this class update a dimension of a feature
object in the product model with the value currently
in the Temp attribute of a working memory object
(or any sub-class).

CHANGE FEATURE TYPE ACTION Objects of this class can change a feature object in
I the product model to a feature of a different type

Appendix 11 -6

JOIN SHAFT SECTION ACTION Objects of this class can join two pre-existing
feature objects in the product model

UPDATE SURFACE FINISH ACTION _ Objects of this class can change the value of the
surface finish attribute of a pre-existing feature
object within the product model

UPDATE FUNCTIONAL INFORMATION Objects of this class can change the value of the
ACTION functional information string attribute of a pre-

existing feature object within the product model
GET OBJECT TYPE ACTION Objects of this class find the class of an object

which exists within the product model
GET OBJECT DETAILS ACTION Objects of this class extract details of an object

which exists within the product model
ACTIVATE OTHER PROCESS ACTION Objects of this class activate another pre-defined

process, for example this could be used by the EM
to request advice from the Manufacturing
Strategist.

IDENTIFY MODERATOR ACTION Objects of this class may be used to determine the
course of action to be followed by the EM

ADD N`EW DESIGN EXPERT ACTION Objects of this class enable the EM knowledge of
existing design agents to be updated by adding a
new agent to the known system

ADD NEW DESIGN EXPERT KNOWLEDGE Objects of this class enable the EM knowledge of
ACTION existing design agents to be updated by adding new

knowledge of a design agent
ADD KNOWLEDGE ACTION Objects of this class can be used to add knowledge

in the form of ruleset and rule objects to a
knowledge base which is specified by the user at
run-time.

Appendix 11 -7

