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Abstract 

This thesis demonstrates that a knowledge representation model can provide 

considerable support to concurrent engineering teams, by providing a sound basis for 

creation of necessary software applications. This is achieved by demonstrating that use 

of the knowledge representation model facilitates the capture, interpretation and 

implementation of important aspects of the multiple, diverse types of expertise which 

are essential to the successful working of concurrent engineering project teams. 

The varieties of expertise which can be modelled as instances of the knowledge 

representation model range from specialist applications, which support particular 

aspects of design, by assisting human designers with highly focused skills and 

knowledge sets, to applications which specialise in management or coordination of 

team activities. It is shown that both these types of expertise are essential for effective 

working of a concurrent engineering team. 

Examination of the requirements of concurrent engineering team working indicate that 

no single artificial intelligence paradigm can provide a satisfactory basis for the whole 

range of possible solutions which may be provided by intelligent software applications. 

Hence techniques, architectures and environments to support design and development 

of hybrid software expertise are required, and the knowledge representation model 

introduced in this research is such an architecture. The versatility of the knowledge 

representation model is demonstrated through the design and implementation of a 

variety of software applications. 
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1. An Introduction 

The purpose of this thesis is to demonstrate that a knowledge representation model 

(KRM) can provide considerable support to concurrent engineering (CE) teams, by 

providing a sound basis for creation of necessary software applications. This is 

achieved by demonstrating that use of the KRM facilitates the capture, 

interpretation and implementation of important aspects of the multiple, diverse 

types of expertise which are essential to the successful working of CE project 

teams. Varieties of expertise which can be modelled as instances of the KRM range 

from specialist applications which support human designers with highly focused 

skills and knowledge sets, to applications which specialise in management or 

coordination of team activities. Thus it will be shown through exploration of the 

KRM concept and structure, consolidated by several examples of implementations 

of software instances of the KRM, that the KRM can successfully support CE 

project teams by facilitating the capture and implementation of the range of 

software expertise which is essential for effective working of a CE team. 

In most situations, the problem must be examined before a solution may be 

obtained, therefore, initially an examination is made of the team activities which 

must be supported. In order to do this, consideration is first given to the aims, 

practices and problems related to CE team working. These issues are explored in 

chapter 2. Then in chapter 3, ways in which information technology based systems 

can provide solutions, and thereby support CE team working are considered. 

Analysis of the findings of chapters 2 and 3 indicates that various types of intelligent 

support are required within Computer Aided Engineering (CAE) systems in order 

to provide comprehensive support for CE team working. Existing and proposed 

software solutions and architectures which may provide some support for CE team 
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working are considered in chapter 4. The strengths and weaknesses of these 

solutions are discussed. 

Examination of the identified requirements and proposed solutions indicate that 

there are various areas in which intelligent software solutions may support and 

empower the CE team, without restricting their modes of working. These include 

design strategists or design suggesters, which can work with the user and offer 

support to him through innovative aspects of the design. More self-reliant, 

automated, artificial intelligence solutions may be appropriate for repetitive, well- 
defined aspects of the design. Intelligent support may also be provided for 

coordination, integration and communication activities. The depth and breadth of 

these examples indicate that no single artificial intelligence paradigm can provide a 

satisfactory basis for such wide-ranging requirements. Hence techniques, 

architectures and environments to support design and development of hybrid 

software expertise are required, and the KRM introduced in this research is such an 

architecture. The KRM which facilitates the design and implementation of hybrid 

software experts is proposed in chapter 5. 

In chapter 6, examples of diverse types of software expertise which have been 

designed and implemented as instances of the KRM, using case studies, are given. 

The diversity of knowledge structures and expert functions within these examples 

demonstrates the value and flexibility of the KRM. This has been proved further 

through case study demonstrations involving implementations of the example 

software experts. Further details of the software implementations are given in 

appendix 1, and appendix 11. 

The meaning of particular terms can vary in different papers, therefore, a glossary of 

terms has been included at the end of this publication, to clarify the meaning of key 
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words and phrases which are of importance throughout this thesis. For example, 

throughout this work the terms data, information and knowledge should be 

considered to have distinct meanings. Data relates simply to words or numbers, the 

meaning of which may vary and is dependent upon the context in which the data is 

used. Information is data which is structured or titled in some way so that it has a 

particular meaning. Knowledge is information with added detail relating to how it 

may be used or applied. Thus, in terms of a value line, data is at one end (being 

least valuable), and knowledge at the other (being most valuable), with information 

somewhere between. 
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2. Aims, practices and problems related to Concurrent Engineering 
team working 

Most manufacturing industries work under great pressures to produce their 

products more efficiently and cheaply in order to perform effectively in a highly 

competitive market place. In recent years an increasing number of manufacturing 

organisations have introduced policies and working methods intended to promote 

the adoption of Concurrent Engineering (CE) principles. The philosophy of CE 

advocates the design of the 'right' product in the first instance by consideration, at 

the design stage, of all aspects of the product life cycle, from conception through 

disposal. The main objectives behind these policies are the reduction of product 
life-cycle costs and product development time scales whilst improving product 

quality. (Winner et al, 1988), (Nevins & Whitney, 1991), (Parsaei & Sullivan, 

1993). Thus CE means that concerns from downstream of the product life-cycle, 

like manufacturing, are taken into account much earlier on at the conceptual design 

stage, and CE also implies that a multi-disciplinary approach to design is adopted 

(Oh, 1993). 
4 

Organisations have approached the implementation of CE philosophy in many ways. 

Issues, such as organisation and work force structure, team working, supplier 

status, communication and cooperation with customers, etc., have all been tackled. 

Process improvement techniques, such as statistical process control, Kanban 

systems, and total quality management strategies, which aim at continuous 

improvement within processes, are often adopted. Indeed CE is a multi-faceted 

philosophy for which no single approach can produce all the promised benefits. 

Many of the approaches which have been advanced for attainment of CE are 

complimentary in nature, and a thorough comparison of approaches to CE can be 

found in Dowlatshahi, 1994. CE is a philosophy, not a technology, and some of the 
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principles it advocates have been practised by different organisations, in different 

ways, for many years (Jo et al, 1993) 

This chapter examines key elements of CE which need to be supported by 

Computer Aided Engineering (CAE) Systems, and ways in which this may be 

achieved will be discussed in chapter 3. Essentially, CE is a creative process for the 

design and development of new products. A creative process can only thrive within 

an organisation if the organizational culture supports and nurtures it. (Majaro, 

1992). Organizational culture has been defined by Schein (1984) as 'the pattern of 

basic assumptions that a given group has invented, discovered or developed in 

learning to cope with its problems of external adaptation and internal integration 

and that have worked well enough to be considered valid and therefore to be taught 

to new members as the correct way to perceive, think and feel in relation to those 

problems. ' 

CE enables creative solutions to problems to be achieved through a clear 

articulation of the problem and/or goal, using a bank of relevant information. The 

steps of the process which require experience or expertise, and new thinking, are 

essentially human processes, and are a manifestation of an individual personality and 

behavioural responses. These personal traits are influenced strongly by the context 

of operation (team, management structure and organisational systems), but have a 

dependency upon data and the way in which information is presented. Thus 

communication is an important, if not critical ingredient for project success (Pinto 

& Slevin, 1987). Communication is required to reduce uncertainty. Task 

uncertainty has been defined by Galbraith (1973) as the difference between (1) the 

amount of information that must be processed in order to accomplish a task and (2) 

the amount of information the system (e. g. the project team) already possesses. 

The greater the uncertainty, the greater the information processing needs of the 
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group. Communication is dependent upon the way information is presented, and 

two key aspects of this are media richness and media selection (Stork & Sapienza, 

1992). Routine problems with a low level of ambiguity may be handled using lean 

media, such as memoranda, and group email messages, which are impersonal, and 

allow only limited feedback. Non-routine problems, which have a high level of 

ambiguity need to be handled using rich media, such as face-to-face communication, 

video conferencing or telephone conversations, as these provide immediate 

feedback, have multiple cues about meaning and allow the message to have a 

personal focus. Hence CE, which is the outcome of projects for which CE 

processes have been used is a strongly interdependent mixture of hard and soft 
issues. 

The main factors relating to CE may be categorised into three areas, firstly there are 

the hard issues, the environments and systems within which people work i. e. the 

organisational and management structures, processes and techniques introduced to 

facilitate the introduction and maintenance of CE principles. Secondly there are the 

soft issues, the factors relating to how people work, to their individual behaviour 

and the interactions between CE team members. Organizational culture, as defined 

above, provides the relationship between these hard and soft issues. (Ekvall, 1991) 

Finally there are information technology issues, which relate to tools and support 

systems which can be provided to satisfy requirements identified though 

consideration of both of the above mentioned factors. Good information 

technology provision establishes a infra-structure within which both hard and soft 

issued may coexist and when necessary be resolved. 

Accurate, easily accessible information and knowledge are arguably the most 

valuable asset of any business. Indeed they are fundamental to the attainment of CE 

objectives, since consideration can only be given to all aspects of the product life- 
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cycle during design, if both suitable information, and the knowledge of how to use 

that information, exist to support that activity. Information technology provides the 

mechanism by which the clear articulation of problem and goal may be achieved 

between individuals, team and organisation. To fully facilitate CE team working a 

CAE system of the future, as part of a company's information technology system, 

must provide support for both the hard and soft elements of the CE principles. 

One key area in the successful implementation of CE principles is that of 

Information Management. Accurate, up to date information must be readily 

available to product design team members to enable them to make correct 

decisions. One view of 'concurrent design' is literally simultaneous design in the 

sense of many designers working on the same design at the same time (Londono et 

al 1989), which requires many designers to access and modify the same design 

database (Whitney, 1990). Effective use of information technology becomes 

increasingly important as design teams which are distributed over multiple sites 

become more common, and this in turn places increased demands upon CAE 

systems which are required to support such design teams. The requirements of CE 

team members are very varied, for example, they may simply require quick, simple 

means of communication between themselves, or alternatively, they may require 

access to complex analysis software systems. The creative process of design must 

also be progressed in some manner, i. e. the concurrency aspect of design must be 

managed or even driven, to ensure positive coordination of the available expertise 

within the CE team is achieved. The CE philosophy enables creative solutions to be 

produced and information technology can provide the infra-structure through which 

access to the necessary bank of knowledge and information is gained. 

Innovative design is essentially a human process, and therefore no single automated 

system will solve all design problems, but integrated, cooperating systems may 
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serve to keep human designers informed, involved and committed to each others' 

activities as these bear on their own primary fields of interest. 

HUMAN COMPUTER 

- permanent external memory 
support 

flexible op consistency maintenance 
possess common sense information structuring 

CD creative and intuitive powerful retrieval capabilities 
bouts of inspiration visualisation support 

U) simulation 
modelling 

- mental and memory capacity 
constraint 

U) 9 slips of skills and attention lack common sense CI) 
CD * memory lapses not creative 
C: succumb to work pressure does not know when to break 
le knowledge decay the rules 
CU insufficient knowledge with 

limited discipline breadth, i. e. 
unable to know it all 

Figure 2.1 Relative Strengths and Weaknesses of Humans and Computers 

(Oh, 1993) 

In an automated system approach, problem-solving is almost completely performed 

by the computer, i. e. the computer assumes control of the design activity proper, 
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whereas if a cooperative problem solving approach is adopted, the computer and 

human share the problem-solving tasks in a kind of synergistic relationship. In 

order to determine delegation of responsibilities of both the computer and the 

human designer, it has been considered helpful to list out the strengths and 

weaknesses of each, see figure 2.1 (Oh, 1993). The belief that the appropriate 

approach to computer-based design tools is for the computer to provide decision 

support and allow the human designer to apply the judgement, is shared by 

Bracewell et al (1994). 

Many types of expertise will be involved at different stages of the product design 

and development, and historically the information and knowledge used and 

generated has been stored in various forms and in different locations. This 

distribution of information restricts information sharing and leads to problems of 

information duplication and information inconsistency. Thus an information- 

integrated system is required, i. e. one in which the primary mechanism for achieving 

system integration is information (Mayer & Painter, 199 1). 

Significant challenges must be met by management and workforce to initiate and 

maintain effective CE team working in any environment. It is commonly felt that 

the multi-discipline project team should be formed at the start of the design process 

(Corbett et al, 1991), and it is helpful if teams can remain together and develop 

throughout the project. Unfortunately this is just not practical when any individual 

team member may be a member of several different teams (Scott, 1994). Also the 

complexity and magnitude of these challenges increases enormously when team 

members are widely distributed both geographically and culturally. Therefore, in 

this research consideration will be given to the requirements and challenges to be 

satisfied by future CAE systems in order to support design teams which use CE 

9 



techniques in the context of modern, changing, multi-site or global enterprises. In 

this context, the author defines CE as being: 

'An holistic methodology for the coordination of distributed, 

heterogeneous expertise to achieve cost-effective, market-driven products in 

minimum time scales'. 

To effectively work within such a context future CAE systems require elements 
beyond those available in existing systems. They particularly require elements to 

actively promote concurrent working. The need for human integrators to Raise 

between functional groups or program managers (mediators) to coordinate the 

activities of cross-functional teams has long been recognised as crucial in achieving 

reductions in product design time and costs (Dean and Susman, 1989). The duties, 

responsibilities and interdependencies of these individuals become much more 

complex when the CE team is widely distributed and particular team members may 

be members of several CE teams. It is therefore proposed that future CAE systems 

must also provide support for these integrating and coordinating activities, and that 

the support required goes beyond the provision of an integration environment to 

enable different software packages to work together. These support requirements 

will be examined in detail in chapter 3. 

The discussion in this chapter highlights the multi-facetted aspects of CE. Various 

types of expertise must be combined and work together in a successful 

implementation of the CE philosophy. Such expertise falls into two categories, 

specialists with highly focused skills and managers whose role is to co-ordinate the 

activities of specialists and promote concurrency in working. Ways of supporting 

both these categories of expertise will be explored throughout this thesis. 
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3. Requirements from Information Technology Systems to support 
Concurrent Engineering team working 

3.1 Concurrent Engineering team work as a form of co-operative working 

Chapter 2 highlighted the important role which future CAE systems, as part of 

industry's information technology networks, have in promoting and enabling CE 

philosophy to fulfill its promised potential in improving product design and 

development. The primary function of the CAE system should be to support the 

human designer, not to attempt to replace him with automated artificial 

intelligence systems. Part of the role, i. e. through maintaining information and 

knowledge bases, and facilitating the sharing of a common consistent copy of 

these, can be clearly identified. CAE systems must however do more if they are 

to actively facilitate CE team working. They must provide support for the 

diverse types of expertise which enable the various, difficult issues relating to 

both the hard and soft aspects of CE team working to be handled and controlled. 

Historically such expertise has existed in the guise of human experts, both 

specialists and managers, most likely supported by pieces of application 

software, taking various forms (Moynihan 1993) which can range from 

applications supporting simple data processing activities, through decision 

support systems, using complex algorithms, to expert systems. In this work an 

expert system is considered to be any computer system which demonstrates 

expert performance in a given domain. 

Thus human experts with knowledge of the specific problem domain may be 

supported by software expertise, and there is a requirement from future CAE 

systems that they must easily integrate with many types of software expertise, so 
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that the user should not be unduly restricted in his methods of working. A 

human expert, interacting with the CAE system, by means of a software 

application which may demonstrate an associated form of artificial expertise, will 

be referred to in this work as an agent. The purpose of collaborative 

human/computer problem solving systems is to attain a level of decision quality 

superior to the level attainable by either the human or computer alone. (Hale et 

al, 199 1) 

d 

Asynchronous 
Design 

Froduct 
Desigii 
Data 

Synchronous 
Design 

Figure 3.1: Synchronous and Asynchronous Decision Making 

In this chapter, several types of expertise which are essential for effective CE 

team working are identified, and these will be considered in detail below. When 

these are read, it should be remembered that CE team members have 2 basic 

modes of working, either asynchronously, when individual members can continue 

with their own area of design, and safely make decisions without reference to 

agents with different types of design expertise, or synchronously, when some 
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negotiation is required between design agents, as a current aspect of the design 

may impinge upon the domains of several design experts, (figure 3.1). The real 

difficulty lies in deciding when the changes between synchronous and 

asynchronous activity should be made, particularly when the design team is 

highly distributed. This will be discussed further later in this chapter, and in 

chapter 4. 

CE team working is a form of collaborative or co-operative working, and 

therefore some insight into the requirements which a software system to support 

CE team working must exhibit may be obtained by examining software systems 

to support other types of co-operative working. In particular the observations of 

Halasz (1988), and his reflections on the issues to be faced by the next 

generation of hypermedia systems have proved to be valuable. He observes that 

any system to support co-operative working must promote two types of activity, 

i. e. mutual intelligibility and active participation. The first of these is commonly 

accepted, although stated in many different terms. In basic terms, mutual 

intelligibility is taken to mean the existence of a common understanding. If two 

agents are to successfully communicate together, they must be able to 

understand each other. This may be achieved in many ways, e. g. by a common 

language and/or culture, effective translations, or use of common sources of 

information which may be individually accessed and comprehended by each. The 

task of actively promoting participation of all team members is an important part 

of the duties of an effective project manager, and these duties become more 

difficult to carry out effectively when the team is widely distributed. Yet the 

need for the software system to actively promote participation of human 
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designers is not conunonly considered, or explicitly dealt with within proposed 

software system architectures. Individual agents must be actively encouraged to 

interact with other team members whenever this is most effective for the team 

activities and attainment of team goals. Often individual agents are very wining 

to make such switches between asynchronous and synchronous working, but 

may be unaware when such a switch should be made, particularly when team 

members seldom, if ever meet, and their disciplines are very different. Therefore 

some sort of management activity may be required to actively promote 

participation in a change of working mode. 

Bobrow (1991) also considers issues of interactions. He examines systems 

consisting of active agents, which may be human or programmed machines, 

communicating among themselves and interacting with the world to solve 

multiple goals. He claims there are three dimensions of interaction which must 

be considered. The first dimension is communication i. e. there must be some 

common ground of mutual understanding. The second dimension is 

coordination, which is necessary both to share resources, and to jointly commit 

to future action. The third dimension is integration i. e. to be useful, agents must 

fit in with the current work practices of both people and other computer systems. 

These views, although expressed in different terms, relate closely to the previous 

observations made in this thesis. Mutual intelligibility and mutual understanding 

are clearly similar requirements, and the dimension of integration appears to be 

closely allied to the view that creative process can only thrive if it fits into an 

organizational culture which supports and nurtures it. 
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3.2 Requirements from Future CAE Systems 

The distribution of CE team members is considered to be critical when 

examining the support which must be provided by CAE Systems. Each 

individual team member must be helped to apply his particular expertise to 

design the best possible product but he also needs to be aware of when or how 

design decisions he makes could affect the views or aims of other members of 

the CE team, or of how his decisions may be affected by the overall product 

strategy, and the work of other product CE teams within the organisation. 

These are very taxing demands to place on an individual whose working location 

is remote from parts of the organisation, and may even be in a different time 

zone from other members of his CE team. Each team member therefore requires 

the best possible support which can be provided from computer-based design 

tools. The support required from the CAE system is multi-faceted, and for this 

reason examination has been made of the types of support required, at different 

levels, and dimensions, in an attempt to simplify the necessary analysis. Clearly 

the breakdown can be made in a variety of ways, but the following has proved to 

be useful in better understanding the requirements from future CAE systems. 

The author believes that CAE systems of the future must be able to provide 

support on at least three levels: at an organisational level, at a team level and at 

an individual level. Support at the organisational level covers the satisfaction of 

the requirements of the organisation within which the team operates. This could 

include interactions and information exchange between different design teams, or 

between individual team members and other members of their particular 

discipline group (figure 3.2). It could also include provision of information to 

support senior management strategic decision making. 
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Support at the team level covers the satisfaction of any requirements imposed by 

team working methods, for example, any activities which will assist the team to 

work as a single, effective, efficient entity. This could include promotion and 

maintenance of a common view of the team's objectives, and encouragement of 

exchange of knowledge and comprehension between team members. 

Project Team 

0 

0 .. 
e 

%ý 0- ý 

0 

Functional Team 

Figure 3.2: Members of a Project Team are often also members of 
Functional Teams. Each Team can benefit from an individual's 
membership of the other. 

Support at the individual level requires the CAE system to be sufficiently flexible 

to provide assistance for all members of the design team, irrespective of their 

role within the team. The CE product design and process development team will 

.« 
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be multi -disciplinary, its members representing many functions, including design, 

manufacturing, marketing, finance, production and senior management. The 

CAE system should therefore contain applications and software experts to 

support the diverse disciplines of each individual member of the team. 

Satisfaction of requirements at these three levels places diverse and even 

contradictory demands upon the CAE system. The remainder of this chapter 

explores a range of these requirements, and considers the problems they impose. 

These findings are then consolidated throughout chapter 4, initially in section 4.1 

where examination is made of existing information technology solutions and then 

in section 4.2 suggestions are made as to how the requirements might be 

satisfied by a proposed architecture for CAE systems of the future. 

INFORMATION FLO WS CHANGE 
THROUGH THE PRO CESH 

ita in 
ation 

IDEAS 

Figure 3.3: Speed of transition depends upon 'New Work' required and 
the rate of exchange of information. Models, Infrastructure and Culture 

(Scott, 1994) 
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Why is it necessary to examine the environment within which the CAE system 

operates? Why are the demands placed upon the CAE system so diverse? An 

enterprise which has adopted the CE philosophy is clearly a multi-agent system, 
(Sycara, 1990) (Bobrow, 1991) and considered from the three levels described 

above, can in fact be considered as several different types of multi-agent system. 
Problems may occur in the design since individual agents may have different 

mental models of the design, and they may not 'speak the same language'. 

(Sycara, 1990). So, during the design process, many views of the product must 

evolve into a common view or vision, through the passage and exchange of 
information, see figure 3.3, (Scott, 1994). 

The multiple multi-agent systems could be broken down as multiple design 

teams, or as multiple functional groups within the organisation, or as individuals, 

each with a different design perspective within a particular design team. Bird 

(1993) believes that multi-agent systems should be characterised in at least three 

dimensions, i. e. distribution, heterogeneity, and autonomy. These are the same 

three orthogonal dimensions which Sheth & Larson (1990) use to classify and 

define multiple database systems, and federated database systems. The 

integration of expertise within multi-disciplinary project design teams has 

previously been characterised in these dimensions by Harding & Popplewell 

(1994)(1). However, in order to appreciate the diversity of support demanded 

from future CAE systems, it is helpful to consider how the system might be 

characterised in these dimensions, at each of the levels: organisational, team and 

individual. A breakdown can be achieved by considering the three levels and the 

three dimensions as the rows and columns of a three by three matrix, (figure 

3.4). The breakdown in this matrix is not exhaustive, but it does highlight 

problems which must be tackled by the CAE system, and help to identify 
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priorities in the requirements which the CAE architecture must satisfy. An 

example breakdown is given in the following section. 

Levels 

"- 

E 

Organisational Team Individual 

Reduce remoteness 
Move information and promote Make information 

Distribution between multiple exchange of available to 

sites information between individuals 

team members at 
different physical 
locations 

Support Individuals 
Support Support Project to perform different 

Heterogeneity Organisations Teams to achieve jobs 
to achieve different different goals 
missions 

Support team 
Discourage members to work a,, Support individual's 

Autonomy multiple individuals, or as a preferred manner 
individual stores group, and of working 
of information transitions between 

these two types of 
working 

Figure 3.4: Support Requirement Matrix 
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3.3 Challenges to be met by Future CAE Systems 

CAE systems should support human designers to make the best, innovative use 

of their expert skills possible. This section explores the challenges which need to 

be met by future CAE systems in order for them to support distributed CE team 

working, viewed in the context of individual, team and organisational levels 

described above. The section has been included to provide a requirements 

context against which the proposed architectures, described in chapter 4, can be 

evaluated. No existing CAE architecture has been identified which can meet all 

the challenges identified, especially relating to the requirements of coordination 

and promoting concurrent working. A thorough review of the capabilities of 

current and proposed computer aided simultaneous engineering systems and 

architectures can be found in Molina et al, 1995. 

3.3.1 Distribution 

Consideration must be given to distribution relating to both human and 

computing issues. Discussion on distributed computing generally places 

emphasis at a level that is closely related to physical connection of different 

processors, secure transmission of data among them and the corresponding 

operating system problems of scheduling different processors. Yet distributed 

problem solving, i. e. the decomposition and coordination of computation in a 

distributed system are better viewed at a higher level of abstraction, and 

Chandrasekaran (1981) identifies good reasons for distribution, including 

controlling the complexity of computation, changes are easier to make to 

modular systems, and the fact that it is good research strategy to look for 

decompositions of a complex problem. 

If distribution is considered at the three levels defined in the previous section, 

the following points must be examined. The enterprise, and indeed the 

20 



project team may be distributed over many sites, even across many countries. 

For example, software modelling experts may be located in Britain, 

electronics experts sited in the United States and the production facilities 

established in the Far East. At the organisational level, there are many 

reasons why such distribution may be advantageous: for example, costs 

related to production in different areas may vary considerably, or particular 

centres of excellence may have developed over time. The enterprise win 

therefore require information of many forms to be exchanged between 

different discipline groups, or project teams located at multiple sites. The 

sites will need to be linked by networking of various types, and the CAE 

architecture must include an integration environment to support 

communications between sites. Thus the CAE system must run across 

networks, probably with different applications running on different software 

platforms and working in different software environments. 

At the team level, distribution causes different problems. The team members 

must feel they are working as a single unit, with a common goal, even though 

they may be widely distributed. Regular team meetings and discussions are an 

accepted way of promoting exchanges of views and ideas. Within large scale, 

widely distributed teams such regular face to face meetings become very 

expensive both in terms of time and money. Electronic methods of promoting 

communication and cooperation between team members should therefore be 

explored in the search for viable altematives, and these methods should be 

harnessed to the CAE system wherever possible. If co-location of team 

members is impossible on a regular basis, virtual co-location (Douglas & 

Brown, 1993) may be an acceptable altemative solution. Indeed it is arguable 

that virtual co-location provides a better solution, since it facilitates use of 
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extended knowledge networks (Scott, 1994), see figure 3.2, through 
functional teams. 

Radial 
Extent of 
Knowledge 

a) Traditional Spread of Expertise -Little shared 
Inter-disciplinary expertise 

b) Required Spread of Expertise - Greater shared 
understanding within multi-discipline team 

Figure 3.5: Project Team Members need to be aware of other Team 
Members' Views and Knowledge 

Hypermedia/Multimedia systems can meet many of the challenges faced in 

establishing a virtual working environment, and they provide valuable support 
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by reducing feelings of remoteness and isolation between co-operating team 

members who are working at a distance (Ishii & Miyake, 1991). However, 

additional elements are required to actively promote information and 
knowledge exchange between team members. For example a means of 

notifying users of important actions being taken by others, and ways of 

supporting the social interactions which are important in team working, 
(Halasz, 1988). The need for exchange of information to be actively 

encouraged exists whether people are located in the same office or thousands 

of miles apart. This problem may be tackled by the inclusion of a 

management or coordinating agent, as will be shown in chapter 4. 

Human knowledge is inherently distributed, (i. e. each person has their own 
knowledge store), so at the individual level, problems of distribution can be 

partially satisfied by exchange of knowledge between individuals using the 

network and communication channels previously discussed. This distribution 

of knowledge between individuals can also be supported by provision of 

expert systems and other application programs which support individuals with 

particular types of expert knowledge. Indeed there are good reasons for 

encouraging distribution at this level since it is generally easier and cheaper to 

develop and maintain many small knowledge bases rather than one large one, 

and parallel processing can be better exploited. (Rich & Knight, 1991). 

This identifies an apparent contradiction in the requirements from the CAE at 

the team level, and at the individual level, since at a team level, there is a 

requirement for each team member to have an awareness of other members of 

the team, figure 3.5, yet at the individual level, small distributed sources of 
knowledge are encouraged. 
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Figure 3.6: Addition of a new agent to the system requires less changes if 
a Managing Agent stores Knowledge of the expertise existing within the 
CE team rather than all existing agents storing their own mental models 
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Adler et al (1992) also identified this requirement for individual elements of 

the system to be aware of other expertise within the system, as they state, 'if 

an agent determines that it needs to cooperate with one or more of the other 

agents in the framework, then it might be necessary for the agent to possess 

and employ a model of the behavior of each agent it wants to communicate 

with'. Thus there becomes a need to increase individuals' awareness of the 

location and content of these knowledge sources, without forcing individuals 

to store an increasing amount of knowledge about other individuals within the 

team. This is significant, since it is not feasible within any but the smallest 

system for any individual to store the whole sum of expertise required to 

design all aspects of the product. 

it may however be possible for a management or co-ordination expert to 

store knowledge of all the knowledge which is available to the team. 

Additional benefits result from this solution when new agents are added to the 

system. This is demonstrated in figure 3.6, where the first image shows that 

when each agent stores models of every agent with which it might 

communicate, the addition of a new agent causes changes to be made to many 

other agents within the system. The alternative solution, shown in the second 

image of figure 3.6, indicates that when a coordination agent stores 

knowledge of all the agents within the system, addition of a new agent only 

causes changes to be made to the coordination agent. 

3.3.2 Autonomy 

At the organisational level, some level of autonomy will be required due to 

legal and financial requirements of particular countries. It is believed that 

generally autonomy should be restricted when it comes to information 

availability and exchange since many problems can arise when the same 
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information is not available to all interested parties (naturally it is accepted 

that politically sensitive information may need restricted access). Duplication 

of information in separate 'empires' should be discouraged. 

At the team level there remains the requirement to reduce individuals' private 

stores of information, as there is a high risk of inconsistency within multiple 

stores of information, and this can be achieved by use of common information 

models. However, there is an additional type of autonomy which must be 

allowed and supported, team members must be allowed to work separately, 

or as a team, whichever best suits the current stage of product design. Any 

CAE system to support CE design must support both synchronous and 

asynchronous decision making within the team, and most importantly, the 

switching between the two modes of working. This is a very complex 

requirement to satisfy, and aspects related to this will be considered further 

when examining the architecture proposed in section 4.2, since this 

architecture includes proposals relating to a managing or coordinating agent, 

which directly supports transition between asynchronous and synchronous 

working. 

At the individual level, team members should also be able to use whatever 

individual software applications they believe will best assist their work. 

Inevitably individual's views of which packages or applications are best able 

to satisfy their needs may change over a period of time, as new versions or 

software become available. Thus, the CAE support system can therefore 

never be 'complete', there must always be the potential for additional, 

probably third party, software applications and experts to be added. This 

requirement naturally adds complexity to any 'manager' or 'co-ordination' 

elements of the CAE system 
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Individual areas of expertise, which may include both human experts and their 

related software systems, will have their preferred software environments, and 

any CAE system which truly supports concurrent engineering must enable 

such environments to be linked and permit communications across the 

platforms. This is a further challenge to be met by the integration 

environment part of a CAE architecture. 

The separation of organisational, team and individual levels for autonomy can 
be considered in the following terms. At each level there will be a different 

goal, and goal congruency (Feltham & Xie, 1994) (Roth & Ricks, 19994) 

(Schoemaker, 1993) (Vancouver & Schmitt, 1991) is a driving requirement, 

so autonomy must be restricted to a level which allows this to be achieved. 
For example at the organisation level the quest for goal congruency will take 

into account resource scheduling, since resources must be shared between 

different teams, products or groups. So autonomy must be restricted to the 

extent that no individual group controls usage of a particular resource to the 

detriment of all others. At the team level the output from the team must 

satisfy the perspectives of all members of the team, so individuals must not be 

allowed to 'do their own thing' to the extent that information is hidden from 

other team members. However, at the individual level team members must be 

allowed to adopt a pure approach to the design in the sense that the 

individuals consider only aspects of the design of direct interest to themselves. 

This permits the greatest exploitation of individual expertise, but must be 

supported by a mechanism for identifying potential conflicts between the 

interests of different individuals. 
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3.3.3 Heterogeneity 

Heterogeneity can be considered at the different levels in the following terms: 

organisations have particular missions, teams have particular goals and 
individuals have particular specialities. The CAE system must support (even 

encourage) differences in approach and style to the extent that jobs, goals and 

missions can be successfully executed. Once again there may be conflict 
between the requirements at the different levels, since an organisation's 

mission may require its project teams to achieve overall wider market share, 

not cannibalizing each other's market. Whereas at team level, the primary 

requirement may be to design and produce a product that can stand up well in 

the market against any competition. 

Individual heterogeneity can be supported by Design for 'X' applications 

(Meyer, 1993), which can provide support for individual design perspectives, 

and these may be specialist or expert software applications. The writer also 

believes it is important to maintain purity of design perspectives to prevent 

trade-offs being made too soon and resulting in sub-optimal solutions. 

At the team level, the differences between individual perspectives remains 

important, but individuals need to be aware of each other's different views 

and knowledge see figure 3.5, and where this different knowledge can be 

accessed. In a true team, there is a high degree of overlap of knowledge and 

learnt competence, and the CAE system should support and facilitate this 

learning/sharing process. The CAE system can support this by prompting 

users when someone else n-fight be interested in the addition or change they 

have made to a design. 
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The CAE system should in no way restrict methods of working, as to do so 

may stifle innovation. This suggests that a high level of autonomy (and 

indeed heterogeneity) should be granted to the human and software agents 

concerned. However, the most current details of the design and the views 

and knowledge of individual team members should ideally be available to all 

team members. A common source of consistent, accurate information is 

therefore required since concealment, misunderstanding or simply lack of 

availability of information can lead to sub-optimal team performance, 
duplication of effort, and faults in the design. This issue may be addressed by 

the inclusion of information models, to provide data for applications working 

within the system. The importance of product and other information models 
is becoming widely accepted (Krause, 1993). It is believed that exchange of 

information and knowledge can only be achieved if some form of common 
language, which implies a common understanding of terms, exists between the 

participating agents (Bobrow, 1991). Since negotiation requires a common 

language in which the negotiations can be couched (Adler et al 1992). 

However, the shared or common language may be unique to the team (Scott, 

1994). The need for individual agents to co-operate in this way will thus 

require the autonomy of the individuals to be restricted. Hence, there is an 

apparent conflict in the level of autonomy which should be allowed both to 

team members using the CAE system and software components existing 

within the system. Such conflict is inevitable, yet it is considered possible for 

the CAE system to balance the permitted levels of autonomy whilst still 

providing high levels of support, as will be shown in section 4.2. 

The heterogeneity of both human team members and software components of 

the system is an important and powerful aspect of the CAE system. 
Representatives of the different functions which contribute members to the 
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project team will each have different perspectives on the emerging product 

design. Creating a design which satisfies the criteria of any one of these 

perspectives may well be a complicated process requiring compromises to be 

made in the satisfaction of multiple design criteria. Thus, satisfying the 

criteria of multiple design perspectives will inevitably require many 'trade-offs' 

to be made. Great care must be taken in deciding when the compromises 

should be made. A predefined path for problem solutions should not be 

imposed upon designers by the system. If the compromises are made too 

early, for example, at the component design stage, a less good design may be 

achieved at the assembly level. 

The importance of heterogeneity therefore cannot be over emphasised. The 

software expertise to assist a particular design perspective should be kept as 

pure as possible, and be unadulterated by the design values of different 

perspectives. This can be achieved by supporting individual areas of expertise 

with specialist strategist applications whose design criteria are concentrated 

on one specific area of design. However, satisfaction of this requirement does 

not mean that designers should work in 'splendid isolation', oblivious to all but 

one view of the product. This is clearly unacceptable, and totally against the 

advocated CE philosophy. It would inevitably result in problems with the 

design not being detected until late in the product life cycle by which time 

they are expensive or even impossible to correct. This requirement for highly 

focused design perspectives, without isolationism, places increased pressure 

on any co-ordination agent element of the CAE support system, requiring it 

to promote communication and co-operation within the team, at appropriate 

times. Elements of the CAE system should not restrict the innovation of 

human designers by leading them down a predetermined design path and 

dictating solutions to them. As previously stated, the CAE system is there to 
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support the human designer, not to attempt to replace him by an automated 

design process. The designer should rather be offered possible or alternative 

solutions, and given advance warnings of potential design problems whenever 

possible. There is, therefore, a need for a flexible, versatile means of 

detecting when the requirements of one design perspective are being infringed 

by decisions made from a different design perspective. However, the 

detection of possible problems is not adequate in itself, the system must also 

be flexible in how and when such conflicts of interest are reconciled. That is, 

some design compromises may need to be made as soon as conflicting 

interests are detected, whereas in other cases, it may be better to flag the 

problem for reconciliation some time in the future. 
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4. Information Technology Solutions and Architectures 

4.1 Related Software Systems, Environments and Architectures 
Various software system, architectures or environments relevant and of value for 

CAE systems have been proposed. The following discussions will show that 

whilst several of these make valuable contributions towards satisfying some of 

the requirements demanded of future CAE systems, none of them fully satisfy the 

requirements established in chapter 3. Indeed, it has been claimed that although 
intelligent computer support addresses many different tasks, all of these tasks 

belong to that part of the design space in which the design (the product) is 

known, as a concept, as a possible list of standard components, or in more detail 

(Blessing, 1991). 

In the following sections, each architecture or system is considered individually 

so their particular strengths or weaknesses, in the current context, may best be 

explored 

4.1.1 ABE ("A Better Environment") 
DARPA Strategic Computing Initiative 

This research is not into a CAE system directly, but it does include important 

integration environment issues. The ABE software system provides an 

environment for combinable frameworks and associated analysis tools for 

building intelligent systems. Hayes-Roth et al (1991) state that they sought 

ways to modularize and standardize knowledge-processing components so 

that system integrators could access and exploit them. Thus their goal was to 

create technologies and methodologies for building cooperative, intelligent 

systems with modular heterogeneous components. Their work has focused 

on ways to import existing modules, regardless of implementation, and to 
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treat them as if they were native to the ABE environment. This is achieved by 

'wrapping' each module with interface code to make it appear to have been 

created originally as an ABE module. An aim of this research was to shield 

software developers and designers from platform changes, and they achieved 

this by adopting the concept of a virtual machine, whose key properties can 
be described independent of platform. These key properties are basically the 

services of a distributed operating system, whose principal services include 

process creation, initialization, execution, termination and message passing 
between processes. 

As previously implied, this research is of value in the current context solely 
for integration, and communication issues related to automated systems, as it 

provides a mechanism whereby a variety of separate, heterogeneous software 

elements may be linked. 

4.1.2 ARCHON PROJECT (ESPRIT P-2256) 
Architecture for Cooperative Heterogeneous ON-line sYstems 

This research examines a general purpose architecture which can be used to 

facilitate cooperative problem solving in industrial applications, using multi- 

agent systems. (Wittig et al, 1995) (Jennings, 1995). Agents in the 

ARCHON project appear to be purely software experts, particularly pre- 

existing expert systems dealing with different aspects of decision making of a 

given complex environment. 

This research is of value in the current context solely for integration, and 

communication issues, mainly related to automated systems and legacy 

systems. It provides an architecture within which pre-existing software 

solutions may be loosely coupled and cooperate in a mutually beneficial way. 
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The human operator is also treated as an active problem solving member of 

the system, but the main focus of the research appears to be on the software 

expert elements. 

4.1.3 DEKLARE (ESPRIT) 
Design Knowledge Acquisition and Redesign Environment 

This research attempts to define a system which can encapsulate the design 

guidelines and standard of a company. The developed framework will allow 

existing CAD tools and inference engines with design databases to be 

combined in order to provide an interactive design advisory system for 

interactive redesign. In many aspects this systems is the antithesis of a system 

to satisfy the requirements identified in the previous chapters, since it 

apparently tackles the issues of ensuring cooperation by allowing definition of 

a pre-defined design project path. 

4.1.4 EUROCOOP (ESPRIT) 
IT Support for Distributed Cooperative Work 

The application area for this project is essentially that of project management 

for bridge and tunnel construction industries. However, the research does 

address many of the issues related to the requirements of concurrent 

engineering team working as identified in the earlier chapters. The approach 

allows for the integration of existing computing components and new tools, 

with the intention that they should be able to interoperate with each other. 

The need to share information is accepted, and this appears to be achieved 

and promoted through using hypermedia to link documents and databases. 

Significant use is made of hypermedia, particularly as a means of facilitating 

both individual and group working. The research also addresses the need to 

support both synchronous and asynchronous working, and implicitly touches 

on the switching from one type of activity to the other. This is done by 
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notifying users of deadlines, expected actions, and warning them of emerging 
difficulties. Regrettably, it has not yet been possible to obtain details of how 

the 'emerging difficulties' are identified. 

4.1.5 GNOSIS (Intelligent Manufacturing Systems) 

The application area for this research was enabling technologies for design 

and manufacture, with a main joint demonstration working from functional 

design to STEP based manufacturing. A commitment to information sharing 

and product modelling (Gu & Chan, 1995) is implicit in the research through 

the use of standards such as STEP (Wu et al, 1992). 

Areas of software expertise to support designers were also considered, for 

example MCOES (Manufacturing Cell Operator's Expert System) which aims 

to shorten the production lead time and improve the quality of design and 

manufacturing of one of a kind and small batch products. Integration and 

coordination issues were researched through the Mediator element of the 

project. The Mediator architecture enables users to collaborate 

synchronously or asynchronously through processes running anywhere on the 

network (Gaines & Norrie). Many of the software systems may have been 

developed separately, without any coordination facilities, and the Mediator 

architecture enables them to interact, using a range of generic and proprietary 

knowledge and data interchange formats. Thus the Mediator software needs 

to know a lot about the applications, whilst the applications need to know 

virtually nothing about Mediator. The visual language used in the system may 

be used as a 'wrapper' to existing applications, or as an embedded component 

for other, new applications. 
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This research clearly addresses most of the issues and requirements identified 

earlier in this thesis, but does not include elements to prompt or support the 

user through changes from asynchronous to synchronous working, although 
both of these modes of working are supported individually. 

4.1.6 IDEA (ESPRIT) 

Research into an intelligent object oriented database system, tested in the 

application area of biochemical structures and managing system. Basically a 
database system with explanation facilities which can support multiple 
language paradigms and parallelism. This research is of value in the current 

context solely for information exchange and sharing issues. 

4.1.7 IMAGINE (ESPRIT) 

This research aims to provide a sophisticated environment to support 
interaction and cooperation within a multi-agent system. In this research the 

definition of agent is very similar to the definition used in this thesis. The 

application area of this work was urban traffic control and airport catering 

and workflow management. Exchange of information and knowledge is 

implicit in the research, and software expertise to support human experts are 

clearly considered. The main interest of this research in the current context is 

for issues relating to coordination and integration. Human agents may be 

supported by this environment through different modes of working, but there 

is no support provided to the user to initiate changes between different modes 

of working. 

4.1.8 ITE (EPSRC Grant GR/H 43038) Southampton University 

This research explored the potential of an open model for hypermedia as an 

operational interface with an advanced manufacturing environment. It has 
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provided an environment for the implementation of large-scale hypermedia 

information systems for industrial applications. The main areas considered in 

the research were maintenance of machinery, fault finding activities and 

operator training. Integration of a knowledge based system (KBS) with the 

hypermedia system enables the user to input symptoms of the fault, which are 

then evaluated so the user is provided with details of possible causes. The 

KBS is loosely coupled with the hypermedia system, and communications are 

achieved by message passing. (Heath et al, 1994) (Crowder et al, 1995). 

This research has clearly not produced a design tool or environment as such, 

since that was not its objective, but the techniques adopted are considered to 

be valuable and transferable, for example when considering methods of 

heightening individual's awareness of other design perspectives. It therefore 

provides valuable mechanisms for transfer or sharing of information and 

possibly knowledge (since it is arguable that a video clip showing how 

something is done is transferring knowledge rather than information). 

However, the motivation for agent interaction with the system is appears to 

be their own desires or requirements, i. e. there is no coordination or 

management activity to promote individual agents' active participation with 

the system. 

4.1.9 KIWIS (ESPRIT) 

This research provides an integrated knowledge-representation language and 

programming environment for distributed databases and knowledge bases. 

Thus, in the present context the research is relevant for integration issues 

related to distributed databases. 
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4.1.10 KNOWLEDGE-BASED ENGINEERING SYSTEMS RESEARCH 
LAB 

The research from this laboratory covers a wide range of projects covering 

technologies for the next generation of computer-aided engineering systems 

and computer tools to improve engineering practice. The report from the 
laboratory (Lu, 1992), identifies one of the fundamental challenges of CE as 
being that product development practices have changed from being 

centralized to being distributed. Within this research they see that CE 

requires the four challenges of integration (of complementary engineering 

expertise), cooperation (of multiple competing perspective), communication 
(of upstream and downstream concerns) and coordination (of group problem- 

solving activities) to be simultaneously satisfied. 

Individual projects from this laboratory which are particularly relevant are 

IDEEA, which provides a way of integrating Al techniques (frame-based 

representation, constraint-based language, rule-based reasoning, truth- 

maintenance systems and object oriented composite values) through a 

blackboard structure. This would enable software expertise to be developed 

to support the human designers. INDEED which uses object oriented 

database technologies to provides consistent and persistent storage of 

information, for use by multiple designers. It effectively supports information 

sharing and both synchronous and asynchronous modes of working, but does 

not provide support to initiate or actively promote changes in mode of 

working. 

The SWIEFT (System Workbench for Integrating and Facilitating Teams) 

project provides the integration environment, covering three types of 
integration functions, namely, knowledge, tool and team integration. 
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Knowledge integration is achieved by supporting combinations of Al 

representations of knowledge (as in IDEEA). Tool integration permits users 

to access different computer tools and to handle the heterogeneous 

data/knowledge required and generated by these tools. Lawley (1992) claims 
SWIFT achieves team integration by facilitating group communication and by 

coordinating team activities, however, it is not clear that group interactions 

are actively promoted as there is no mention of either a management or 

coordination agent, or of heightening individual agents awareness of other 

users of the system. 

4.1.11 MFK (Design for X) 

This research appears to be at an early stage, although it is claimed that a 

partly realized prototype has been produced (Meerkamm, 1994). The system 

contains a product model (component model) which facilitates information 

sharing within the system. Support for individual aspects of the design is 

provided- through design modules (software experts) which provide support 

for different design for X activities, for example designing for stress, 

designing for production, design for environment/recycling. However, all the 

knowledge for these different activities appears to be captured in one 

structured knowledge base, and this would limit the use of different artificial 

intelligence paradigms, and most likely prohibit inclusion of existing systems 

of software expertise. Also, the designer has the full responsibility for 

deciding which of these tools to use at any stage of the design, thus there is 

apparently no mechanism for coordinating team activities. 

4.1.12 PACT (The Palo Alto Collaborative Testbed) 

This research examines a concurrent engineering infrastructure which 

encompasses multiple sites, subsystems and discipline. It served as a testbed 
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for emerging data-exchange standards such as PDES/Step (Product Data 

Exchange Using Step/Standard for the Exchange of Product Model Data). 

They consider information sharing by means of a design model to represent 

the evolving design, and this makes use of shared design-domain ontologies 
(that is, sets of agreed-upon terms and formally described meanings). 
Literature on this project (Cutkosky et al, 1993) claims that the design model 
forms a basis for knowledge sharing among diverse systems, but it is not clear 

that their research makes the same distinction between knowledge and 
information which has been defined in this thesis. Also, in their work, agents 

are defined as programs that encapsulate engineering tools. 

Interaction and integration of (pact) agents is achieved through facilitators 

which translate tool specific knowledge into and out of a standard knowledge 

interchange language (KIF). Thus interactions are between facilitators and 

agents, or between pairs of facilitators, but not directly between agents. 
However, there are significant problems associated with attempting to define 

a standard knowledge interchange language at present, and these are 

effectively discussed by Ginsberg, (1991). 

PACT covers many of the requirements from future CAE systems wen, both 

in terms of integration and support of individual areas of expertise, through 

inclusion of software expertise, in the guise of systems such as Next-Cut, 

which supports product and process design of mechanical assemblies. 

However the PACT system does not appear to include any element to 

stimulate active participation of human designers in the design process. 
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4.1.13 PECOS (ESPRIT) 

Basically an investigation of models for Computer Supported Cooperative 

Work (CSCW), and as such it is of interest since CSCW greatly supports 

cooperative working (of which CE is a form) by making it easier for team 

members to work together even though they may be many miles apart. It can 

also be argued that as working together is easy, people are more likely to 

want to do it - hence it promotes collaborative working. However, this is a 

passive rather than active promotion of group participation. 

4.1.14 SCHEMEBUILDER & IDEAS (Lancaster Engineering Design Centre) 

A package of software tools supporting the conceptual and embodiment 

stages of mechatronic and mechanical systems design. IDEAS stands for 

Intelligent DEsign-Assistant Systems, which are aimed at providing better 

support for augmenting and empowering the designer rather than replacing 

him. Since this research focuses on systems where the computer provides 

augmentative support to the human designer, rather than the 'expert systems' 

approach where the computer tries to perform the design with as little human 

intervention as possible (Oh, 1993), these systems are apparently conceptually 

near to the beliefs stated earlier in this thesis, i. e. that innovative design is 

essentially a human process and therefore best supported by integrated, 

cooperating systems, rather than fully automated systems. 

The combined systems developed in this research satisfy many of the 

requirements identified in earlier chapters of this thesis, including support of 

human design expertise and integration of activities. They include software 

design agents of various types, each of which exhibits particular 

characteristics, as suggested by their names. For example Design Experts can 

fully automate tedious, routine or repetitive parts of the design, whilst Design 
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Suggesters offer the human design agent solutions to parts of the design and 
Design Critics may evaluate parts of the design from particular design 

perspectives. Integration of activities is achieved through use of shared 
databases, and Design facilitators which may be used to view the design-in- 

the-large situation, i. e. from multiple different perspectives, and to help with 

the data translation between one tool and another - the mapping mechanism 
for translation from one schema definition to another may be achieved by 

object 'wrappers' (Bracewell et al, 1994). In the Schemebuilder environment, 

cross-disciplinary component descriptions in the form of bond graphs are used 

to satisfy the requirement of a common language. 

Once again, these systems potentially provide excellent support for designers 

working alone, or consciously looking at alternative design perspectives, but 

there does not appear to be any support to actively promote changes in 

working mode, when necessary. 

4.1.15 STRETCH (ESPRIT) 

This research examines the design and implementation of a system to support 

the representation and manipulation of large knowledge bases. Their database 

approach supports non-traditional data structures and provides a multi- 

paradigm programming environment including rule-based language and object 

oriented language. Thus it provides an environment which could support a 

diverse range of software expertise, but does not examine specific examples 

of such expertise. 

4.1.16 SHARE 

Described by Toye et al, the top level architecture of SHARE is a set of 

agents interacting as peers over the Internet, where each agent can represent 
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one or more of the following: a designer, his personal CAD tools, a database 

or other information service, a computational service that supports 

engineering, or the engineering process. This project potentially makes a 

significant contribution to supporting the soft elements of team interactions, 

trying to help the team reach the 'shared understanding' of the domain, the 

requirements, the artifact, the design process itself and the commitments it 

entails, i. e. the view is similar to that expressed by Scott (1994) in figure 3.3. 

The project promotes computer use in all communication-documentation 

activities, and encourages as much information as possible to be captured 

electronically. Such information ranges from email messages, to movie mail, 

to output from processing programs. This research also makes use of the 

knowledge sharing interfaces developed in the PACT research discussed 

above. 

4.1.17 TEMPORA (ESPRIT) 

This research combines a relational database with rule-based reasoning. The 

main interest of this work in the present context is that they add a temporal 

dimension to the relational model, making clear that two types of temporal 

information must be recorded, i. e. event time, which is the time over which 

we know (or think) a piece of information holds in the universe of discourse, 

and transaction time, which is the time over which the information holds in 

the information system. (McBrien et al, 1992). This research is therefore 

primarily of value when considering the information and knowledge content 

which must be exchanged or shared within the system, specifically when 

considering the changing value of particular knowledge sets at different stages 

of the product design. 
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The systems discussed in this section all satisfy some of the identified needs of 

CE, but none adequately address the issue of promoting concurrency in working. 
Greater support is needed to raise awareness of when design decisions may 

affect other team members' activities, and of when a change between 

synchronous and asynchronous working should be made. Elements of the 

MOSES system, which is described in the next section, do address this issue. 

This research contributes to the MOSES research. 
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4.2 The MOSES Architecture for Future CAE Systems 

The MOSES architecture (figure 4.1) is based on the use of 2 information 

models, a Product Model and a Manufacturing Model, which can be accessed by 

an open set of application programs, via an integration environment. 

Figure 4.1: MOSES Research Concept 

The information models are implemented as object oriented databases. The open 

set of application programs may contain any application program which may be 

used by a CE team member during the course of the product design. Such 

applications may include CAD (computer aided design) and FEA (finite element 
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analysis) packages, mathematical modellers, expert systems and any other 

application program, any or all of which may interrogate, add, modify or delete 

information within the product model database. Interactions between the 

information models and the applications are enabled through the integration 

environment. Any modifications to the product model are monitored by a 

specialist coordinator application called the Engineering Moderator, which is 

described in detail in section 4.2.5. 

The main elements of the MOSES CAE architecture are now each examined in 

turn. 

4.2.1 The Product Model 

A product model is a representation of a product in a computer, and should 

contain adequate information about the product to satisfy the product 

information needs of all the applications within the CAE System. When My 

populated it should contain all information relating to the product from 

conception through to disposal. The product model is a source and repository of 

information for many applications, and as such allows information to be shared 

between the many users and software components of the CAE System. It 

therefore helps to promote a common understanding of the product design, 

whilst not restricting the individuality of the human or software agents which are 

involved in the design process. 
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The structure of information which may be stored within a product model is 

called a product data model. Thus a populated product model, for a particular 

product, is an instance of a product data model. 

The importance of product models is increasingly accepted by research groups 

and industry (Krause, 1993). The product model adopted by the MOSES 

project is based on considerable research experience gained through this and 

previous project work at Leeds University. (Shaw et al, 1989). Significant 

recent work has been in the areas of specification modelling (McKay, 1993), 

(Erens et al, 1993) and assembly modelling (Henson et al, 1993), (Baxter et al, 

1994). 

Autonomy is not actively restricted by the use of information models but in order 

to use the CAE System to its best advantage all agents must actively participate 

in information sharing, by utilising the common product model database. If 

agents create their own individual databases of information relating to aspects of 

the product, problems may be stored up for other agents who have been unaware 

of decisions taken. Thus any additions or changes to information relating to the 

product, as made by any application from the open set of application programs 

described above, should be stored immediately in the product model rather than 

being developed in private databases or files, since all agents should be allowed 

the opportunity to access the most recent product information available. 

47 



4.2.2 The Manufacturing Model 

A manufacturing model is used to describe available manufacturing processes, 

resources and strategies. Its purpose is to provide a consistent source of 

manufacturing information for applications. This model has the potential to 

contain information which is valuable to many different parts of the enterprise as 

a whole as well as to individual project team members. Thus it may be accessed 

by many different types of application, with purposes ranging from the 

formulation of improved business strategies to real time production control. The 

model developed during the MOSES project has four levels based on a de-facto 

standard (i. e. Factory, Shop, Cell, Station). By acting as a single source of 

information on available manufacturing capabilities and status it helps to promote 

a common understanding of the manufacturing enterprise without placing undue 

restrictions on the autonomy and heterogeneity of the agents who wish to use 

this information. (Ellis et al, 1993), (Molina et al, 1994), (Al-Ashaab & Young, 

1992), (Al-Ashaab & Young, 1994). 

4.2.3 Strategist Applications 

Strategist applications are specialist expert applications which assist users of the 

CAE system to evaluate, modify and extend the product design using criteria 

which are closely allied to particular design perspectives, i. e. they form part of 

the open set of applications described at the beginning of this section. Ideally 

they offer the designer more than Computer-Aided Design (CAD) tools, which 

are valuable design aides, but which are generally used long after the major 

design decisions are settled. CAD tools do not generally support the engineer at 

a much earlier stage in the design process, i. e. at the conceptual design stage, 
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when engineers make the major and more expensive decisions (Oh 1993). A 

design agent, as referred to in this work, is most commonly a strategist 

an lication, in combination with the human designer. rp 

It is necessary to consider many different perspectives on the product in order to 

achieve a good product design which satisfies aH the requirements demanded 

from the product throughout its entire life cycle. Each design perspective has its 

own design criteria, rules and heuristics to which the product design should 

conform. Examples of design perspectives are: design for manufacture, design 

for assembly (Boothroyd & Dewhurst, 1987), design for disposal, design for 

human factors (Tayyari, 1993). Such perspectives will be termed 'Design for X 

or'DFX' hereafter since the list is endless (Meyer, 1993). 

Within the MOSES project, effort is focused on two example DFX perspectives, 

these being design for manufacture and design for function, and various 

applications have been researched in these areas. A manufacturing strategist, 

under development, may assist users in design for manufacture activities, using 

information from the manufacturing model, and product model. Additionally, 

work has been carried out into how these models can support strategic policy 

making at the enterprise level (Molina et al, 1994). Consideration has been given 

to design for manufacture specifically relating to injection moulding by Al- 

Ashaab (1993) and Lee (1995). The capture of information and knowledge 

through reverse engineering of components is currently under examination by 

Boda (1995). An application to support cost and delivery estimation for cranes 

has also been designed and implemented (McKay et al, 1995(2)). 
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Work has also been carried out on a design for function expert, specifically 

looking at shaft design for electric motors and generators (Sadler, 1994). This 

research resulted in the implementation of a rule-based expert which uses and 

produces product model information. The resulting expert is examined in detail 

in section 6.2.1, as this has been used as an example instance of a software 

expert, and was designed and instantiated using the knowledge representation 

model which is the focus of this thesis. 

As explained earlier, care must be taken that the design criteria knowledge 

incorporated in such design environments is kept as pure, in the sense that it 

must provide expert support for a particular design perspective, as possible with 

respect to the requirements of the particular perspective. This is necessary in 

order that the best possible support may be provided to the designer for their 

area of expertise. The requirements for coordination of expertise and raising 

awareness of other design perspectives are separate issues and must be 

supported by other elements of the CAE architecture. The author does not 

believe it is appropriate (or possibly even feasible) to achieve a fully automated 

system for the resolution of design conflicts which may arise when the multitude 

of Design for 'X' perspectives are considered simultaneously. This view is also 

shared by other authors (Bahler et al, 1994). A better solution is to provide 

designers with CAE support through partially automated systems, which can also 

raise their awareness of other decisions being taken relating to the design, and 

thereby empower the human designers to anticipate and resolve design problems 

as soon as they appear. For this reason information generated by Design for 'X' 
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applications should be added to the product model as soon as possible, to ensure 

that the strategists are actively sharing product information. 

4.2.4 Integration Environment 

A MOSES CAE system consists of many elements, including models and 

applications. An integration environment is required to enable these elements to 

work together even though they may be distributed over many computing 

platfonns, probably located at several sites. 

The integration environment must satisfy the requirements of each individual 

element, so that the models may store and maintain the information accurately, 

and the applications may each perform their particular functions, and access 

information as required. It must also provide support for interactions and 

communication between applications. This may require the provision and 

support of translators or wrappers to enable communications as necessary 

between agents in the system and to allow information to be exchanged. As 

previously stated, the CAE system can never be considered to be complete, since 

there is always the possibility that additional, possibly third party software may 

be needed to provide particular support for certain users of the system. 

Commercial systems, such as Digital's Object Broker, are already available to 

support integration by assisting in the exchange of information between 

applications. There is also considerable research effort currently focusing on 

integration issues, as can be seen by the review of related software systems and 

environments given in section 4.1. 
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The need for a common language, or understanding of terms to facilitate the 

exchange of knowledge and to resolve conflicts of views, has already been 

mentioned, when considering Halasz's identified requirement for mutual 

intelligibility. However, when considering the integration environment, problems 

exist in two main areas. Firstly, elements of the software systems and networks 

must be able to communicate together, and secondly, the network user (human) 

must understand the systems particular interfaces. According to Manola (1995) 

interoperability is the ambitious goal which needs to be attained by software 

systems and networks. He states that two or more systems are interoperable if 

they can interact to execute tasks jointly, and intelligent interoperability requires 

interaction among information systems, some of which may be intelligent and 

capable of functioning as intelligent agents. Such systems may be called 

knowledge-based integrated information systems (KBIIS) and they involve 

integrating any heterogeneous information sources, including heterogeneous 

distributed databases, knowledge-based systems involving heterogeneous 

knowledge representations and conventional application programs and their 

associated processors. Manola also states that the full range of KBHS 

requirements are only beginning to be addressed by researchers. 

It has also been acknowledged that the achievement of agreement of common 

meaning between experts from different disciplines, can be very difficult to 

obtain (Cutkosky et al, 1993). Regrettably there would seem to be no easy 

route to obtaining this common understanding of terms between experts of 

different disciplines, but the shared language does only need to cover an 
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intersection of expert interests. Providing agreement on terms or translation of 

terms can be achieved between experts working with specific product types, or 

in particular industries, advances can be made, as in principle the language can 

evolve from a few core concepts (Gruber et al, 1992). Information sharing, 

through common, integrated information models can significantly reduce 

translation requirements. 

4.2.5 Engineering Moderator 

The necessity to stimulate active participation of all team members, and the need 

to raise the awareness of each individual team member to the concerns and aims 

of other experts from different disciplines have already been mentioned many 

times in this work. These activities have also been identified as being part of the 

duties of a management of coordinating agent. Also, the review of related 

software systems in section 4.1 indicated that existing and proposed software 

solutions do not currently provide support for these activities. 

Within the MOSES architecture, the Engineering Moderator (EM) is a specialist 

manager or coordinating program whose role is to drive concurrency within the 

MOSES system. The previously described elements can provide excellent 

support for individual team members or groups working from particular design 

perspectives. The task undertaken by the EM is however rather different: it has 

been included specifically to promote communication and negotiation by the 

active exchange of information and knowledge between team members with 

different areas of expertise. However, it is NOT an engineering arbitrator, as it 

is not included to automatically generate compromise solutions to design 

problems. It is included to raise the awareness of human designers within the CE 
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team of how their decisions may affect, or be affected by actions of other team 

members. In this way, it stimulates communications between CE team members 

and thereby supports and empowers the human designer. As previously shown, 

this is a vital element of any CAE system in a CE environment, indeed it has been 

claimed that communication is a critical ingredient for project success (Bobrow, 

1991). 

The rationale behind the inclusion of the EM has been indicated in this thesis by 

examination of the need for a management/coordination agent, further treatment 

of this subject may be found in Harding & Popplewell (1994)(1). The EM's role 
is as a driver of concurrency within the CAE system which it does by using 
knowledge of the expertise which exists in the form of agents which may interact 

with the CAE system. Clearly this knowledge must vary over time, since the 

expertise which is available to, or relevant to, a product design will vary as the 

design evolves. Also the structuring of the knowledge within the EM is critical 

as the larger the team is, and the more diverse the expertise exhibited by team 

members, the more complex the knowledge which the EM needs to store and use 

becomes. However it must be stressed that the role of the EM is not to solve the 

design problems itself, its mission is rather to raise the awareness of individual 

team members when a particular problem may exist which should be resolved. 

Details of the design and implemented structure of the EM are given in section 

6.2.2, since it has been used as an example of a sophisticated form of software 

expertise which can be modelled using the KRM. The complexity of the EM has 

provided an excellent test of the flexibility of the KRM. 
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5. The Knowledge Representation Model Concept 

5.1. Modelling Diverse Types of Software Expertise 

The expertise within the concurrent engineering project environment comes from 

many disciplines, and it has been shown in the previous chapters that the skills 

required to meld the individual specialists into an effective proactive CE design 

team are very diverse. To really provide support for such CE team working, a 
CAE system must provide support for all elements of these skill sets, and 

therefore address all the requirements identified in chapter 3. It is believed that 

this may be achieved by basing future CAE systems on the MOSES architecture 

proposed in section 4.2. However, this only partially addresses the problem, 

since ways must still be found of implementing instances of CAE systems based 

on this architecture, and this includes the implementation of many diverse types 

of software expertise, such as the strategist applications described in section 
4.2.3. The knowledge required by an expert should be captured in whatever way 
best suits the expert's requirements, since the best approach depends on specifics 

of the problem (Knaus & Jay, 1990). Also, there are deep differences among the 

approaches taken to knowledge representation, which lead to the belief that 

attempts to automatically translate between one knowledge representation 

scheme and another are premature, and that attempts in this direction will 

inevitably constrain future knowledge representation efforts (Ginsberg, 1991). 

Therefore care has been taken to identify techniques for modelling knowledge 

which do not restrict the ways in which knowledge is captured, and represented. 

An approach to doing this, based on a knowledge representation model, KRM, 

will now be proposed. 
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Software experts may be developed to support many different aspects of human 

expertise, and these range from applications to support highly focused, specialist, 

computational work, to applications which specialise in the management or 

coordination of team activities. During the course of this research several 
different types of software expertise have been examined, designed and 
developed, these include: a Shaft Design for Function Expert (Harding & 

Popplewell, 1995), a Manufacturing Strategist (Ellis et al, 1994), a Cost and 

Delivery Expert (McKay et al, 1995), and an Engineering Moderator (Harding & 

Popplewell, 1994(l) & 1994(2)). Examination of these particular, individual, and 

diverse types of expertise has led to an understanding of the fundamental 

similarities of their concepts, i. e. the generic aspects of how the requirements 

from such expert applications may be satisfied and modelled have emerged. 

A comprehension of the similarities between the studied forms of software 

expertise has been fundamental to the modelling of knowledge to be applied and 

stored within the CAE system. Identification of a method of modelling the 

expert knowledge is considered to be of value in the creation of software 

expertise, since experience has shown that it is much easier to write well- 

structured and re-usable code to solve well defined problems than to solve 

experimental, research problems. When dealing with complex systems of a type 

not worked on before, a natural and productive approach to solving the problem 

is to make a quick model of the system, analyse it, and then refine the solution 

based on the ever-increasing understanding to the problem which is being gained. 

This approach has been called the round-trip gestalt design method (Rational 

Rose, 1993). Initially, adoption of this approach enabled a model for the capture 

of software expertise to evolve through progressive experimentation with views 
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of a diverse range of knowledge within the concurrent engineering project zn 
environment. 
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Figure 5.1: A Representation of Investigated types of soffivare expertise 
using Booch Object Oriented Design Graphical Notation. 

An object oriented approach has been taken for the modelling since 'defining a 

system in terms of objects facilitates the construction of software components 

that closely parallel the application domain, thus assisting in system design and 
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understandability' and 'using classes and inheritance provides a simple and 

expressive model for the relationship of various parts of the system's definition 

and assists in making components reusable or extensible in system construction' 

(Manola, 1990). Therefore the views obtained throuah experimentation have 

been examined using Booch Object Oriented Design methodology. 
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Figure 5.2: A Representation of Software Expertise Using Booch Object 
Oriented Design Graphical Notation 
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Using the Booch approach, a representation of software expertise was developed 

and this view is expressed in figures 5.1 and 5.2, which show the relationship of 

classes, using Booch notation, so that the clouds are object classes and the lines 

are relationships between classes, where single lines with arrows illustrate 

inheritance, and the double lines illustrate other associations between classes. 

Figure 5.1 shows that expertise can come from human experts and/or from 

software expert applications (most commonly coming from a combination of 

both - referred to as agents in this research). 

The particular types of software expertise which have been investigated during 

the research fell into two broad categories, 

1. Applications to support highly focused, specialist work, and these were 

exemplified by the Shaft Design for Function Expert, the Cost and Delivery 

Expert, and the Manufacturing Strategist. 

2. Applications to support management or coordination of team working 

activities, and these were exemplified by the Engineering Moderator. 

Detailed examination of the role of the EM showed that this should be a 

sophisticated, highly modular, single application which included knowledge of zn 
various types and hence the EM was visualised as consisting of several 

individual yet related modules of expertise. 

Details of how these particular forms of software expertise were eventually 

instantiated using the KRM are given in chapter 6. The remainder of this chapter 
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is devoted to defining the KRM concept itself which emerged through 

expefimentation with such design agents. Z: p 

5.2. The Production System Metaphor 

The KRM concept enables software expertise to be represented by one or more 

expert modules. This concept is captured in Figure 5.2, which represents the 
highest level representation of the KRM, modelled using Booch's graphical 

notation. In this figure it can be seen that each object of the expert-module class 
is associated with objects of three other classes, i. e. one or more 
knowledge-base objects, one or more working-memory objects, and an 
inference engine object. In performing an object class breakdown for the class 

expert-module, the terminology of standard expert systems, in particular of 

production systems, (Jackson, 1990) has been adopted. This has been done for 

good reason, but with some caution, since misunderstanding of the metaphor 

may result in the model being undervalued. 

The names of the three related classes, working memory, knowledge base and 

inference engine, have been used as it is believed they are sufficiently well 

known terms for some level of understanding of the primary functions of these 

objects to be immediately gained by any casual reader who has had some prior 

contact with expert systems. For example part of the behaviour of a working 

memory object enables it to hold the data and intermediate results that make up 

the current state of the problem, and this agrees well with a standard definition 

of working memory within a production system (Jackson, 1990). Similarly, part 

of the behaviour of objects belonging to the knowledge base class enables 

knowledge to be added, changed or removed from the knowledge base without 

any changes being made to objects of the other two classes. However, it must 

be remembered that in this work the names relate to classes of objects, so 
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instances of these classes have state, behaviour and identity (Booch, 1991), and 

therefore they provide all the flexibility and power of object oriented systems. 

By making use of inheritance structures and polymorphism, it has been possible 
for the similarity of behaviour of certain classes of objects to be exploited even 

though the implementations of particular classes of objects is significantly 
different. This point is central to the concepts of this work. 

Each expert module is associated with one or more knowledge base objects, an 
inference engine object and one or more working memory objects. Details of 

actual instances of these objects, as created to support instances of individual 

software experts which have been designed and implemented as examples of the 

KRM, are given in chapter 6. However the current working definitions of these 

classes of objects are as follow: - 

Knowledge base object - contains knowledge of a particular type, or related to 

a specific type of expertise or domain. In embodiments of the KRM, instances of 
knowledge base objects are normally object oriented databases within the same 

federated database. Knowledue within a knowledue base ob ect database is Z: ý Z: ' 
j 

captured in a miscellany of associated objects, and through their interactive 

behaviour, as described below. The class hierarchies for these objects are also 

based on production rules, as can be seen by the rule-set and rule classes in 

figure 5.2. However, knowledge expressed in other artificial intelligence 

paradigms (e. g. neural networks) may be embedded within the objects in such an 

object oriented database. Thus the production system metaphor does not 

constrain the ways in which expertise is represented. 

Inference engine object - carries out the processing of knowledge from one or 

more knowledge base objects. The inference engine object provides the 
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software expertise with the ability to apply and use its knowledge. In the initial 

implementations of the KRM this type of object has been represented by 

program code or function code rather than as true objects. However, this need 

not be the case, as the functionality required from their processing could be 

captured within the behaviour of object classes. 

Working memory object - this is a store of variable information, which is 

possibly only of temporary value, to be used in association with the expert's 

domain knowledge, possibly to facilitate the processing of that knowledge. In 

particular, as demonstrated in figure 5.2, such information could originate from 

product or manufacturing models, be input by the user, or be generated through 

the expert's activity. The working-memory class has been implemented as a 

parent class for a hierarchy of domain specific working memory objects. 

The production system metaphor is continued to allow storage of knowledge 

associated with any particular knowledge base object, through the definition of 

ruleset and rule objects. Figure 5.3 shows the breakdown of these classes 

leading eventually to two key classes, expression (each instance of which is 

associated with a simple condition object) and simple-action. These are parent 

classes for a wide variety of objects, see figures 5.4 and 5.5, which are similar to 

the extent that they all demonstrate a specific type or aspect of behaviour. 

Any expression object must be able to pass messages to other objects 

(particularly objects of class sImple-condition) to state whether the expression is 

currently in a true or false state. So, for example, an object of the class 

user-input-response-expression is in a true state if a user has answered yes to a 

particular question, and is in a false state if the user's answer was no. 

Altematively an object of the class object-exists-in-pm-expression is in a true 
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state if an object of a specified type can be found in the product model, and is in 

a false state is no such object exists in the product model. 

RULE-SET 

RULE 
Tcm 

CONDMON 

13-A 

RESULMIZO-AMON 

SDV97LZ-CONDMON CmKainjLa 

COMPOUNID-ACnON 
Cocuuns 

-A" CnrLRN-ý 
UDCPR13SSION: 

'rn "W 

COMPOUND-CONI)MON 

- ------ I_Jfl 

Figure 5.3: A Representation of Knowledge, captured within Rule and 
Ruleset Classes, using Booch Object Oriented Design Graphical Notation 

Similarly, any simple-action object must be able to execute, in order to carry out 

some task or tasks. For example, an object of the send-message-to-user class 

can display a predefined message in a window on the user's computer screen. 

Altematively, an object of the class fire-a-rule-set, can initiate the processing of 
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a further set of knowledge. The diversity of activities which can be incorporated 

into valid instances of these classes demonstrates the strenz(:; th, flexibility and 

potential of the KRM. 

, 
=RESSION: " 

USER-E'4PUT-RESPONSE 

Is-a 

Is-a 
Is-a 

Is-a 

OBJECT-OUSTS-IN-PM Is a 

CONfPARISON-OF__QUANTITEES 

ANY-OTHER-TEST 

MATCHED-OUTPUT-FRONI-NEURAL-NETWORK 

Figure 5.4: A Representation of the Expression Class, which is a parent 
class for a wide range of similarly behaving object classes, using Booch 
Object Oriented Notation 
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GEr-RF-SULT-FROU-NEURAL-NErWORK 

Is-a 

ADD-JNFORMATION-T'Q-PM ls_a 

GETJNr-ORMAnOM-jaOM-PM 

Figure 5.5: A Representation of the Simple_Action Class, which is the 
parent class for a wide range of similarly behaving object classes, using 
Booch Object Oriented Graphical Notation. 

Working memory objects all exhibit behaviour which enables them to be 

accessed or updated by the inference engine objects. The variable contents (or 

attributes) of a particular working memory object class will depend upon the 

type of expertise which is being modelled, but the fundamental aspects of 
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behaviour (implemented as methods for the objects) remain common to all 

working memory objects. Hence the instance of the working memory class for 

any expert embodiment based on the KRM wi. 11 be an instance of a sub-type of 

the working-memory base class. In this way polymorphism. can be used to 

enable instances of the working memory object to take many forms, depending 

upon the type of expert module it is associated with, without changes being 

made to the processing behaviour of the related inference engine object, or the 

contents of the associated knowledge base objects Thus additional sub-types or 

classes of working memory object can be developed as and when required, 

without requiring changes to be made to the knowledge base object classes, or 
inference engine software. Indeed it is possible for a knowledge base object to 

hold the knowledge required to create additional sub-classes of working memory 

to order, however the technical limitations of the current object oriented 
database system employed throughout this work has rendered the 

implementation of this capability of the model impractical at present. 

Initially, working memory was conceived as a transitory class, since it was 
believed that values of its attributes would only have temporary worth. However 

research has established there are worthwhile benefits to be gained if working 

memory is modelled as a set of persistent classes. The concretization of working 

memory as persistent objects in the object oriented database has enabled both 

temporary information and longer-term information, which is of value between 

different runs of the expert application to be stored. This latter type of expert 

information is especially valuable in implementations of sophisticated forms of 

expertise, such as the Engineering Moderator, the concept of which was 

described in section 4.2.5, and the implementation of which will be described in 

section 6.2-2. Figure 5.6 shows that the information which can be stored in 
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working memory, for example the working memory of the EM, falls into three 

categones. 

Persistent lnformafi'-oý 
Used for each 

invnr,!: )tinn nf PAA on 
WaWe, % Location 

r ry Temporary va 

Used betwf 
invocation., 

Figure 5.6: Three types of information can be stored within working 
memory objects 

5.3. Instantiation of the Knowledge Representation Model b 
Having established the conceptual basis upon which a variety of types of 

software expertise rrught be designed, it became necessary to instantiate the 1. -- 
KRM to enable particular instances of software expertise to be implemented. 

The requirement, and indeed necessity, for information and knowledge to be 

freely available and shared between all team members was clearly established in 

chapters 2 and I Hence it is believed that any instance of the KRM should 

facilitate the sharing of captured knowledge between team members. As 

67 



explained in section 4.2, the MOSES concept of future CAE systems envisages 

that information may be shared through the use of product and manufacturing 

models, which are instantiated as object oriented databases. It is believed that 

the sharing of knowledge may be facilitated in a similar manner. The 

concretization of the KRM was therefore achieved through the definition of the 

previously described class structures in object oriented database schemas. This 

enabled diverse forms software expertise to be captured in a commercially 

supported object oriented database system. 

The full data definitions in the implementation are large and have therefore been 

split across 4 schemas for efficiency. The main classes associated with the KRM 

knowledge base class are structured together, with some general purpose 

subclasses of expression and action classes in rules. ddl. Additional subclasses of 

expression and action classes are to be found in mod-rules. ddl. The classes 

associated with the KRM working memory class are grouped together in 

working-memory. ddl, and mod-working-memory. ddl. Details of all these data 

definition schemas may be found in appendix I of this thesis. 

The varied knowledge which is utilised by the software experts which have been 

implemented as instances of the KRM, has been captured using many different 

sub-classes of expression and action classes. Details of some 25 examples of 

expressions, and some 30 examples of actions, which have been implemented 

during this research may be found in the tables included in appendix Il. 

Achieving a working version of the KRM has required substantial amounts of 

software development, both for the data definitions mentioned above and for 

associated implementations of class methods and application code. This is 

partially due to the fact that there is no SQL for the object oriented database 
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system used, hence all code had to be purpose written to enable objects to be 

created, queried, modified and deleted. This was achieved by implementing 

several methods for each of the classes whose definitions are included in 

appendix 1. Also, in addition to the implementation of the software experts 
described in chapter 6, support applications to populate and modify the database 

with both product model information and knowledge for software experts have 

also been written. Without these methods and support applications the example 

software experts detailed in the next chapter could not have been implemented. 

In the implementation of the KRM, the essential associations and relationships 
between classes were captured using inheritance and class attributes. The 

essential behaviour of objects of particular classes was captured through the 

class methods. In this way the knowledge for any software expert could be 

captured by creating instances of these persistent object classes in object oriented 

databases, within the same federated database. Additional subclasses of 

working-memory, expression and simple-action classes may be implemented at 

any time without affecting the structure or overall operation of the implemented 

KRM. The KRM has been tested through the instantiation of several software 

experts in this way, as will now be shown. 

69 



6. Design and Implementation of Instances of the Knowledge 
Representation Model 

Expertise may be founded on a wide diversity of knowledge, originating from many 

different disciplines, it was therefore considered essential that the results of the 

research project did not restrict the user in the types of support systems, 

applications or artificial intelligence techniques which may be utilised. These views 

naturally influenced the conceptual desi, -,, n of the KRM. For example, production 

rule techniques, neural networks, genetic algorithms, any other knowledge support, 

or any numerical analysis software should be available to experts using a CAE 

system utilising the KRM, if they so wish. Since it is believed that an information 

technology system should support the human user, not coerce or restrict his desired 

or optimum method of working. The flexibility of the KRM permits the 

representation and utilisation of knowledge which exists in a variety of forms. The 

use and reuse of such knowledge by many different applications, and hence the Z: I 

sharing of knowledge and information between members of the CE team, is further 

simplified by the storage of knowledge as persistent objects within an object 

oriented database, which may be freely accessed by any number of varied 

applications. 

6.1 Implementation of the Knowledge Representation Model. 

Several instantiations of the KRM have been implemented using purpose written 

C++ code and DecObject DB, which is an object oriented database system, (a 

version of Objectivity). The essential information content and structure of classes 

of objects, and the relationships or associations between them, (excluding 

inheritance, which is discussed separately here as it is dealt with explicitly during 

data definition), have been captured through the attributes for object classes. 

The Knowledge base objects have been implemented as database objects, which 4ý 
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contain ruleset, rule, condition, expression and action objects. Both condition 

and action objects can be either simple or compound, as described below. 

A hierarchy of working memory objects has been implemented, where the 

working memory for any particular expert module is captured either as a single 

subclass of the working memory base class, or more commonly as a set of 

associated subclasses of the working memory class. Figure 6.1 shows a screen 
dump of a window generated by the ooToolManager application (one of the 

software tools provided with DecObject DB), which allows the database to be 

browsed, to show either the types (class structures) or the instance data within 

the database. In this image, the type (class) working-memory is being examined. 
The derived types in the box on the right hand side are sub-classes of the 

working memory class. Some of these sub-classes will be described in further 

detail later in this chapter, as they relate to particular software experts which 

have been instantiated as instances of the KRM. Future implementations of the 

KRM should enable a software expert to be designed and implemented with the 

knowledge to be able to extend this hierarchy at will, by creating additional 

subclasses of working memory. This would facilitate creation of additional 

software expertise within the CAE system whenever required. 

As previously mentioned, in the current implementations, the inference engine 

objects can be identified as particular functions in the C++ code. However, in 

future versions of the KRM, inference engine classes should be implemented, 

their behaviour being modelled on the functionality of existing experimental 

code. The limitations and complexities of the current third party software 

systems employed have restricted the software implementations to some extent, 

since any additions or modifications to the database schema require significant 
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amounts of extra source code to be written, leading to considerable re- 

compilation and linking of code. 

The use of an object oriented database system to capture instances of the KRM 

has proved to be very successful and powerful, although implementations have 

not been without problems. The technology adopted was immature, and 

consequently considerable artifice had to be employed during software design, 

and large quantities of subsidiary code written, in order to satisfactorily test the 

KRM concept, and produce the required results. As the technology matures and 

the problems experienced with the database software during this research are 

cured, the full potential of the KRM should be attainable based on object 

oriented database systems. 

However, considerable advances have been made whilst implementing 

demonstrable examples of the KRM, these include, for example, successfully 

capturing the behaviour of the various classes of objects which are fundamental 

to achieving a valid implementation of the KRM concept. This has been 

achieved by using, the object oriented database system to store persistent 

instances of the objects thus enabling their behaviour to be held within class 

methods. For example, a basic aspect of the behaviour of a condition object is 

that it must know how to test whether their current state is true or false, and 

how to pass this infori-nation on to other associated, interested objects (e. g. to a 

rule object). 

There are many different types of conditions, which can be implemented as either 

simple or compound conditions, each of which is associated with any of a variety 

of instances of sub-classes of the expression class (25 implemented versions of 
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expression are detailed in table 1, appendix IT). But however different any two 

conditions may appear they must exhibit this same aspect of behaviour. 
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Figure 6.1: Database Browser showing 5 subclasses (derived types) of 
parent class working memory 
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When this is achieved a rule object only needs to know it is communicating with 

a condition object - it does not need to know anything about what type of 

condition it is associated with, or any details of the processing of expression 

objects which is being done at the request of the condition in order to test its self 

truth. 
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------ 
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Figure 6.2: A rule object needs to communicate with an associated 

condition object and an associated resulting action object. The details of 

the types and structure of these associated objects may remain hidden from 

the rule object. 
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Figure 6-3: Database Browser, showing one to one, bidirectional 
associations between objects of rule class and objects of both condition and 
resulting action classes. 

Figure 6.2 shows that a rule object simply needs to communicate with a z: I 
condition object and a reSUItIng action object, details of the types and structure 
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of these associated object classes can remain hidden from the rule object. The 

implementation of these one to one relationships can be seen in figure 6.3, which 

shows a screen dump from the database browser. 

In figure 6.3, in the bottom box it can be seen that there is a one to one, bi- 

directional association between objects of the rule class and objects of both the 

condition class and the resulting action class. That is, the class RULE, which is 

being displayed has various attributes, which are listed in the bottom box, the 

type of each attribute is shown at the start of each line. The keyword ooHandle, 

indicates an attribute which is an association with a persistent object within the 

database. The names in boxes following ooHandle indicate the class of the 

associated object and the name following this is the identifier for the attribute. 

Thus, an object of the class RULE is associated with an object of the class 

CONDITION, and access can be made to the CONDITION object, using the 

attribute identifier, the_condifion. The symbol ý-4 indicates a bi-directional 

association can be set, thus the RULE object can be accessed via the 

CONDITION object, and the CONDITION object can be accessed via the 

RULE object. This may be compared with the conceptual design of the classes 

shown in Figure 5.3, since the association has been implemented to represent the 

relationship that a RULE tests a CONDITION, (and the corresponding 

relationship that a CONDITION may be tested by a RULE. 

A compound condition object is associated with a simple condition object and 

another condition object, which may be of either type (figure 6.4). Part of its 

behaviour therefore includes the capability of determining its self truth value, 

based on combining the truth values of these associated conditions, using either Zýý 
AND or OR. Once again, this Booch representation of the conceptual class 

structure design may be compared with the implementation of the associations, z: I 
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and inheritance within these class structures as seen in the screen dumps of the 
database browser shown in figures 6.5a and 6.5b. 

CONDMON 

SROIZ-CONDMON 

.. 
LrKPR=ON, 

Figure 6.4: A compound condition consists of a simple condition and a 
condition 

The behaviour of an object of the simple resulting action class includes the ability 

to execute, i. e. to carry out a set of instructions or duties. There are many 

different types of actions, which range between something as simple as printing 

out a message to the user, to performing complex sets of calculations related to 

the design of a specific product. Details of the 30 implemented subclasses of 

simple resulting action can be found in table 2, Appendix 11. A compound action 

is similarly executed by sequen6ally performing the actions of its associated 

simple action and another action. Thus, the order in which the associations were 

ong, inally made may well be significant, since actions are not necessarily 

commutative, so this had to be taken into account when implementing 

77 

CONVO"D-CONDMON 



constructors for the classes. Figure 6.6 shows a variety of the sub-classes of the 

simple-resulting-action class which have been captured in the database. 
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Figure 6.5a: Database Browser showing an implementation of the 
Condition class & Simple Condition class 
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Figure 6.5b: Database Browser showing an implementation of Condition 
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It is during the evaluation of expression truth status or execution of a simple 

resulting action that a variety of u-tificial intelligence paradigms ma be utilised, tý -y 
and thus activation of necessary code can be initiated through the methods for 

Zý 
these classes. The object oriented database system can be interfaced using C++ 

code, thus potentially the whole power and flexibility of that language is 

available to the user. 

6.2 Design and Implementation of Instances of the Knowledge Representation 
Model 

Several examples of software agents were examined and implemented during the 

research associated with the MOSES project. 

MDM 
Defines the 

PDN/l 
Defines the 

Structure Structure 

Figure 6.7: Instances of the Product Model, Manufacturing Model and 
Knowledge Representation Model can exist within the same federated 

object oriented database. 

The following two examples have already been implemented as instances of the 

KRM, and details of their implementations have been chosen for inclusion here 
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as they represent very different types of software expertise and hence they have 

provided significant tests of the KRM. 

The inclusion of details of these software agei-its demonstrates that 
implementation of specific software experts is facilitated by their embodiment as 
instances of the KRM. Thus the KRM is truly a model, in the same sense as a 
product data model, which may be instanced as product models for particular 

products (i. e. computer representations of specific products) (McKay et al 
1995(l)) and a manufacturing model, instances of which store information 

relating to resources, processes and strategies of a manUfacturing company 
(Molina et al 1994). Indeed instances of these infon-nation models and the KR-M 

may be stored in the same federated data base, figure 6.7. 

In the following two sections, details are given of two different types of 

expertise, both of which have been implemented as examples of the KRM. 

6.2.1 A Shaft Design for Function Expert 

The first instance of the KRM to be developed was a shaft design for function 

expert (SDFFE), and this falls in the category of applications to support 

highly focused, specialist work. The SDFFE was developed as an example of 

a design for function expert to be used in case study demonstrations provided 

by industrial collaborators. The prototype SDFFE was required to provide 

advice to support design for function activities, its specific domain being 

spinning shafts which are intended to be components for mechanical and 

electrical machines. Since it was intended to be a prototype example of a 

design for function expert, the SDFFE's design perspective was kept pure, 

focusing only on designing shafts with respect to their function, and taking no 

account of cost or manufacturing issues. L- 
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The design of shafts was primarily considered to be a form of variant design, 

and the initial implementation of the expert concentrated on taking a design 

from the conceptual stage through the embodiment stage. The knowledge 

was developed during a MSc project, and was based on a combination of the 

researchers' own experience, the content of various design text books, and 

advice from experienced design engineers at a collaborating company (Sadler, 

1994). The approach taken to defining the knowledge content was initially to 11: 1 4n 
establish the general functionality of shafts and the role their constituent 

geometric features play. Using this approach, once the need for a shaft was I 
established, the shaft was considered to have four basic requirements: 

* It must have the ability to rotate freely 

9 It must locate in space both axially and radially 

It must transmit energy and therefore include areas for both energy input 

and energy output 

* It must not fail as a result of its usual use 

The knowledge required by the SDFFE to enable it to provide advice to the :n 
designer, related to these requirements, was developed as a set of production 

rules. These rules provided recommendations for a set of functional, 

geometric features which could be included on the shaft to satisfy the above 

functional requirements. Rules were also developed to record the designer's 

decisions within a product model database. The designer may wish to base 

his design decisions on information contained within the product 

specification. He may also wish to make an initial selection of material for the 

shaft, and perform basic calculations based on physical values related to his 
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chosen material. Thus, initially knowledge was acquired for the expert in the 

form of rules of a type similar to the following example: - 

If the duty required from the shaft is not heavy, then a keyway is 

recommended as the functional feature for transmitting torque to or from the 

shaft. 

The rules were structured into rulesets related to different stages of the 

design, and different sections of the shaft. Details of the specification 

requirements, available materials and of the geometry of the shaft were stored 

in a product model database. Hence sub-classes of expression were 

implemented to enable the truth of conditions relating to current contents of 

the product model database to be tested, and sub-classes of simple resulting 

action were implemented to enable details of the created design to be added 

to the database, or subsequently changed. 

The SDFFE was then successfully implemented using a single expert module, 

whose single knowledge base (an object oriented database) held 

approximately 250 rule objects and their associated condition, expression and 

action objects. The SDFFE's working memory was comprised of several 

sections, relating to the main section of the shaft, two bearing journals, a shaft 4ý J 

extension section, specification requirements and details of the material 

chosen for the shaft construction. Hence the SDFFE's memory was 

implemented as a sub-class of the working memory base class, with 

associated classes relating to the various functional sections of the shaft. The 

implemented solution for this class structure hierarchy within the database can 

be seen in figure 6.8. Further details of the functionality and implementation 

of the SDFFE may be found in Harding & Popplewell, 1995. Z: ) 
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Figure 6.8: Database Browser showing sections of the Shaft Design for 
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6.2.2 An Engineering Moderator 

The Engineering Moderator (EM) is a specialist software agent whose role 

within the CAE system is to coordinate expertise and actively promote 

concurrency in the system, as described in section 4.2.5. This is done by 

raising CE team members' awareness of when design decisions are taken 

which may be significant to other team specialists. One of the prime functions 

of the EM is to raise awareness between team members of when a change znp 

should be made between asynchronous and synchronous working. In order to 1. 
achieve this, the EM requires knowledge about the expertise which exists 

within or interacts with the CAE system. The EM has been successfully 
implemented as an instance of the KRM. 

The EM is a complex form of software expertise, since it must utilise 

knowledge of various types, knowledge of how to perform its duties, 

knowledge of the expertise which exists within the CAE system, and 

knowledge of how to update its knowledge, (i. e. it must be adaptive). It is an tý zn 
example of an application to support management or coordination of team 

working activities. Since it is a software expert, it has been defined as an 

instance of the Knowledge Representation Model (KRM). The definition 

includes the details of several distinct expert modules. The EM has been 

designed in a modular form, and its knowledge distributed, in order to control 

the complexity of this agent as far as possible, and because as Chandrasekaran 

(1981) states, 'distribution is a natural attribute of evolutionary systems', and 

the EM must evolve and adapt as design agents, or their knowledge, change. 

The Engineering Moderator has two primary modes of working, 

e Knowledge Acquisition Mode - this is the working mode in which the 

engoineenng moderator can update its knowledgye relating to particular design 
I 1ý t: p 
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agents which may operate within the CAE system, i. e. actual software experts 

such as the SDFFE, or human expertise as considered during a case study 
involving cost and delivery knowledge (McKay, 1995(b)). Details of 

additional or new desig- 
,n expertise can also be added to the EM when it is 

operating in this mode. The EM may be run in this mode, by choice, at any 

time. 

* Design Moderation Mode - this is the EM's normal mode of operation, 

as it runs in this mode in the background throughout the design of a product, II 
from specification onwards 

Operation in either of these modes requires use of one or more types of 

expertise, each of which has been defined as an expert module based on the 

KRM. Hence, the Engineering Moderator is made up of a collection of expert II 
modules, each of which can be thought of as an 'Expert' in its own right. See 

figure 6.9, which is a Booch representation of the EM's expertise, showing that Z!:, 

it comprises of three types of expertise, represented by knowledge acquisition 

module, design moderation module and design agent modules, the purpose and 

implementations of each are described below. 
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Figure 6.9: A Representation of Engineering Moderator Expertise Using 
Booch Object Oriented Design Graphical Notation 
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Figure 6.10: A Representation of EM's Knowledge Acquisition Module 
Expertise Using Booch Object Oriented Design Graphical Notation 

Knowledge Acquisition Module 

This aspect of the EM's expertise enables the EM to update its knowledge 

of the expertise which exists within and interacts with the CAE system. 

This is an expert module, and its structure as an instance of the KRM is 

modelled in figure 6.10, where it is shown to be associated with the 

following objects- 
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Working Memory Object: which is implemented as an object of the class 

KNOWLEDGE-ACQU_W_M, which is one of the derived types (or 

subclasses) of working memory, which can be seen in figure 6.1. To 

operate, the EM only requires one object of this class (the particular 
instance is normally called 'Knowledge-Ac-memory' and this is generally 

created in the database MOD-WORKING-MEMORIES, where the 

working memory objects for all the constituent expert modules of the EM 

are stored - as can be seen in figure 6.11). This is a persistent object, as 

are all subclasses of working memory, but present research indicates that 

objects of this class strictly only need to be a transitory object since they 

are required only when a new expert is added or an existing agent's 

knowledge base is updated, thus the information it contains is only of value 

for a very limited time. 

Knowledge Base Object: which is implemented as a database object 

containing all the Ruleset objects (and their associated objects) which 

provide the knowledge of how to add or update knowledge for design 

agents. These are the aeneral rules comprising the engineering C- C 

moderator's knowledge about how to update its knowledge about design 

agents and their knowledge (the engineering moderator's mental models of 
I Cý C 

the design agents). This knowledge base object is normally called Zý 
'KNOWLEDGE-ACQ-RULES'. 

Inference Engine Object: which is currently implemented as a function 

within the main EM program, Mod_mk4. C. (It is the function 

know-ac-rules-fire-all). This could just as easily be implemented as an 

object within the object oriented database, where the functionality of the 

behaviour of the object matches the functionality of the function 
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know-ac-ru les-fire-al 1. The functionality enables the knowledge 

information contained within the knowledge base to be used (processed). 
1: 1 
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Figure 6.11: Database Browser showing the Moderator Working 
6 Memory database, which contains the Working Memory objects for 

all the Expert Module Components of the Engineering Moderator. 
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6.2.2.2 Design Moderation Module 

This aspect of the EM's expertise enables the EM to analyse the 

significance of a change to the design, by processing its knowledge of the 

expertise which exists within and interacts with the CAE system. This is 

an expert module and therefore is associated with the following objects: - 

g 
Working Memojýý Object:. which is implemented in two parts, which can 
both be seen in figure 6.11. The first part Is implemented as an object of 

the class DES IGN-MODERATION-W-M (the particular instance is 

normally called 'Design Mod memory' and this is generally created in the 
database MOD-WORKING-MEMOREES). This is a persistent object as 

are all subclasses of working memory, but present research indicates that 

this only needs to be a transitory object, since the information it contains 
has a very temporary value, as it is required only whilst the current object 

change is being evaluated. The second part is implemented as an object of 

the class DESIGN-EXPERT_W_M (the particular instance is normally 

called 'Design Expert memory', and this is also generally created in the C 
database MOD-WORKING-MEMORIES. This needs to be a persistent 

object, as it is required whenever the engineering moderator is operated, to 

provide information as to which design agents are currently known to the 

engineering moderator. This object provides the link for the many 

separate sets of design agent knowledge associated with the engineering In ZP 
moderator. 

Knowledge Base Objects: there are currently 3 knowledge base objects 

associated with this expert module, since this module uses three types of 

expert knowledge. Firstly it requires knowledge of how to obtain and use 
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information related to the object which has been changed, i. e. product 

model objects. Secondly it requires knowledge of how to use the 
Engineering Moderator's knowledge of design agent(s)'s expertise. 
Thirdly it requires knowledge of how to communicate the results of its 

moderation activities. Currently these knowledge base objects are 
implemented as three database objects called 
DES IGN-MOD-RULES-GEN, DES IGN-MOD-RULES-AGENT and 
DES IGN-MOD_RULES-REPORT, each of which contains all the 

rulesets which comprise the knowledge related to its specific type of 

expertise applied to evaluating the current design change. 

Inference Engine Object: which is currently implemented as a function 

within the Mod-rnk4. C program. (It is the function 

mode rate-ru le s_fire-al 1). This Could just as easily be implemented as an 

object within the object oriented database, where the functionality of the 

behaviour of the object matches the functionality of the function 

moderate-rules-fire-all. The functionality enables the knowledge 

information contained within the knowledge bases to be used (processed). 

6.2.2.3 Design Agent Modules tý 
This aspect of the EM's expertise enables the EM to utilise knowledge of 

the expertise of particular design agents. The EM requires knowledge of 

the expertise which exists within, or interacts with the CAE system. This 

knowledge is not the same as the actual design expert's knowledge, but 

research has shown that there is a mapping between the design expert's 

knowledge, and the EM's knowledge of the design expert's knowledge. 

The EM's knowledge of design agents is stored as several expert modules, 

i. e. one for each design al(, ent. A Booch representation of the design 
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expert knowledge stored as part of a design agent module, is shown in 
Figure 6.12. 
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Figure 6.12: A Representation of the knowledge stored by the EM 
relating to design agent expertise existing within or interacting with 
the CAE system. 

Each design agent module is therefore associated with the following C$ 

objects--. 
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Working Memory Object:. which is implemented as an object of the class 

MOD-AGENT-VALUES (the particular instance is named appropriately 

for the specific agent and is generally created in the database 

MOD-WORKING-MEMOREES). This is a persistent object, as it 

contains information relating to a specific design agent, and this 

information may be used many times whilst the engineering moderator is 

working in design moderation mode. The information in this object is 

temporary in so far as it may be changed at any time when the engineering 

moderator is working in knowledge acquisition mode, or is variable 

dependent upon the current state of the design. The design agent's view 

of the design may vary depending on the stage of the design. For example, 

an agent may require notification when the first of a particular type of 

decision is made, but not when every decision of that type is made. The 

manufacturing strategist can offer support as soon as the requirement for a 

cylindrical component or part of a component is identified, however, 

additional advice cannot be offered if further cylindrical parts of 

components are added, (unless additional information such as dimensions 

is also known). This temporal aspect of the design is currently stored by 

maintaining a list of satisfied constraints within this object. Further 

research is required to determine the value of this and other mechanisms. 
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Figure 6.13: Database Browser showing the relationships between 
the EM's Design Expert element of the Design Moderation 

working memory and instances of Mod Agent Values working 
memories (for an implemented example of the EM). 
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The relationship between the MOD-AGENT_VALUES objects (for each 

of the design agent modules) and the DESIGN-EXPERT-WM object 
(from the design moderation module) is demonstrated in figure 6.13. The 

right hand side of the figure shows the structure of the type (class) which 
indicates that the DESIGN-EXPERT-WM object has a bi-directional 

association with many MOD-AGENT-VALUES, whilst the left hand side 

of the figure shows the instance data for a particular example of the EM, 

which was implemented for a case study demonstration. It can be seen 

that the example of the EM shown in the database has knowledge of three 
design agents (#26-2-3-4, #26-2-3-7 and #26-2-3-9). 

1 

Figure 6.14 shows the working memory object for the one of these agents, Zý 
#26-2-3-7, which is the Manufacturing Strategist discussed in the previous 

paraggaph. 

Knowledge Base Object: which is implemented as a database object 

containing all the Ruleset objects (and their associated objects) which 

provide the engineering moderator's knowledge of this design agent's Z: I 1ý 
knowledge. The database object is named appropriately for the particular 

desio-n a(Tent. 15 Zý 

Inference En, (,,, ine Object: which is currently implemented as a function 

called process-agent-knowledge. This could just as easily be implemented 

as an object within the object onented database, where the functionality of 

the behaviour of the object matches the functionality of the function 

process-agent-knowledge. The functionality enables the knowledge 

information contained within the knowledge bases to be used (processed). 
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6.3 Extensions of the Knowledge Representation Model 

The KRM has been tested through case study work, and its value established. 
Inevitably this has led to the identification of aspects of the research which can 
be extended and improved. In the next version of the KRM, a class structure for 

inference engine objects will be implemented and tested. Also, whilst the flexible 

hybrid structure of the KRM has already been tested through embedding neural 

network simulation code (Harding & Popplewell, 1995), it is hoped that further 

experimentation of this nature can be undertaken using Genetic Algorithm 

applications. Indeed, it should be possible to extend the KRM to support any 

artificial intelligence paradigm which can be simulated or captured in program 

code. 

More flexible methods for extending the working memory class hierarchy should 

also be implemented, since this will facilitate the creation of additional software 

experts to integrate with the existing CAE system. Further effort should also be 

expended in determining ways in which the temporal aspects of design 

knowledge may best be captured using the KRM, since it is clear from the 

existing research that the value of particular pieces of knowledge changes over 

time, i. e. at different stages of product design. 
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7. Conclusions 

This thesis has shown that the Knowledge Representation Model can satisfy the 

requirements for supporting CE teams. The KRM facilitates the design and 
implementation of the multiple, diverse forms of software expertise, which should 

exist as part of the support for CE team working provided by future CAE systems. 

This has been achieved by initially identifying the range of support which should be 

provided by CAE systems. The KRM is specifically of value in creating intelligent 

software systems, so aspects of support in which artificial intelligence could be 

usefully employed were then analysed. Two broad categories of essential software 

expertise were identified. Firstly, intelligent support may be provided for highly 

focused, specialist work. The requirement for this type of application is well 

established, and a variety of examples of such software expertise can be identified in 

many of the software systems discussed in chapter 4. The second form of essential 

software expertise identified is required to provide intelligent support for 

coordination of team-working activities. More than an integration environment or a 

CSCW system to support synchronous team working activities is generally needed. 

In addition, concurrent team working must be actively encouraged, therefore there 

is the need for communication between team members to be actively promoted, or 

even driven when a change from asynchronous to synchronous working methods is 

required. This requirement is not adequately addressed by most of the identified 

software systems. 

The KRM has been proved to effectively support design and implementation of both 

of the above types of software expertise. This has been done through production of 

significant software demonstrations which are described in detail in chapters 5 and 

6. The concepts have been well tested since software has been written to instantiate 
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the KRM itself, and to instantiate different examples of software expertise which 
have been modelled using the KRM. Hence it is believed that the principle aim of 
this work has been fully satisfied. 

The main strengths of the KRM approach are as follow: - 
It is flexible. It enables knowledge to be captured within any commercially 
supported, object oriented database system. 

It is versatile. It supports design and implementation of a wide range of diverse 
software experts - as demonstrated in chapter 6 

It is hybrid in nature and enables knowledge to be cap-tured in a variety of forms, 
e. g. production rules, neural networks, etc. Indeed, any simulation or activity which 
can be captured as program code can be activated through the KRM. 

* It supports knowledge sharing, since knowledge is available in a normal database 
system. 

In its current form, the main limitations of the KRM are as follow: - 

It does not effectively support the changing value of knowledge over time. That is, 
there are currently no in-built metrics for evaluating worth of knowledge, and 
prioritising its use. 

It does not support conflict resolution - implementation of fully automated software 
systems has not been attempted, since they have not been considered valuable in the 
context of the research so far. The KRM concept may need to be extended to 
enable their implementation. 

However, these limitations are not considered to be insurmountable. They are believed 
to be limits of the current research rather than serious restrictions on the KRM 
Concept. 

Hence, the purpose of the thesis has been satisfied, since the KRM 
requirements which have been identified as necessary to support CE teams. 
been achieved since the KRM provides a sound basis for the creation of 
software applications. 

meets the 
This has 

necessary 
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GLOSSARY OF TERMS 

The definitions of important words and phrases used in this thesis are listed here, with 
the section number in which the main or initial usage can be found. 

Agent a combination of human and software expertise, interacting with the CAE 
system. (3.1) 

Concurrent Engineering An holistic methodology for the co-ordination of 
distributed, heterogeneous expertise to achieve cost-effective, market-driven products 
in minimum time scales. (2) 

Data relates simply to words or numbers the meaning of which may vary and is 
dependent upon the context in which the data is used. (1) 

Design for X designing a product from a particular design perspectiVe which has its 
Zý 

own design criteria, rules and heuristics to which the product design should conform. 
For example, design for manufacture. (4.2.3) 

Expert System any computer program which demonstrates expert performance in a 
given domain. (3.1) 

Engineering Moderator a specialist manager of coordination program whose role is 
to drive concurrency within the MOSES system. (4.2.5) 

Information is data which is structured or titled in some way so that it has a 
particular meaning. (1) 

Knowledge is information with added detail relating to how it may be used or applied. 
(1) 

MOSES Model Oriented Simultaneous Engineering Systems. The MOSES 

architecture for future CAE systems is based on the use of two information models 
which can be accessed by any number of information models via an integration 

environment. (4.2) 

Manufacturing Model A manufacturing model is an information model which 
contains information of available manufacturing processes, resources and strategies for 

an organisation. (4.2.2) 

Organisational Culture 'The pattern of basic assumptions that a given group has 
invented, discovered or developed in learning to cope with its problems of external 
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adaptation and internal integration and that have worked well enough to be considered 
valid and therefore to be taught to new members as the correct way to perceive, think 
and feel in relation to those problems. ' (2) 

Product Model A product model is an information model which contains all the 
information about a product from its conception to disposal. (4.2.1) 
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APPENDIX I 

Data Definitions for Knowledge Representation Model as 
Implemented in DecObjectDB 

H Written by JA Harding, Dept Manufacturing Engineering, LUT. 
// MOSES PROJECT - October 1994 
H 
H MOSES RULES SCHEMA 
H rules. ddl 
H 
H Last changed 1/2/95 

#include <work i ng_memory. h> 

enum logical [True, False, Unknown); 

enum logical_comparator (less_than, less_than_or-equal, greater-than, 
greater-than-or-equal, equal, none); 

enum logical-operator (AND, OR); 

enum proceed-type (cont, stop); 

enum value-type [float-val, integer-val); 

enum memory_vars fsft, sft-ext, m-sft-in, m_sft-out, sft-ext-in, sft-ext-out, 
bear I, bear2); 

enum memory slots f ms shaft, ms shaft ext, ms-bearino, A, ms_bearin(y B, 
ms_reserve-factor, ms-uts, ms_uss, ms_full_load-power, ms_full_load-speed, 
ms-percent_start-torque, ms-calculation); 

enum field_names ffn_name, fn-tappered, fn-normal, fn-min-rad, fn-lnput-sec, 
fn_output-sec, fn_lnput-loc, fn_input_hold, fn-output-loc, fn-output_hold, 
fn-cyl_sec_A, fn-cyl-sec-B, fn-groove_A, fn-groove_B, fn-keyway-A, fn-keyway-ýB); 

enum feature-type (cyl-shaft, tap-shaft, trans_null, Lrans_rad, trans_u_rad, 
trans-cham, trans-step, term-rad, term-cham, bl_r-h, flat-b_r-h, slt, kway, 

open_kway, grve); 

enuM creat_type [comp, feat); 

// RULE_SET Class 

class RULE_SET: public ooObj 
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H number of rule-set-elements currently associated with rule set 
pnvate: 

char 
ooHandle(RULE-SET_ELENtENT) 

description[ 100]; 
the-rules[] <-> the-rule-set : prop(delete); 

char terminate-ins[100]; 
int rule_set_number; 
int number-of-elements; 
int hasfired; 

public: 
RULE-SETO; 
RULE_SET(char* thename); 
int fire_first(ooHandle(WORKING_MEMORY) my-memory); 
int fire_all(ooHandle(WORKING-MEMORY) my_memory); 
int fire-first-whilst(ooHandle(WORKING-MEMORY) my-memory, 

ooHandle(CONDITION) conH); 
int fire_all_whilst(ooHandle(WORKING_MEMORY) my_memory, 

ooHandle(CONDITION) conH); 
char* get-termination_instructionso; 
int get-rule-set-numbero; 
void print-descriptiono; 
void add-predefined_rule_to_seto; 
void add-new-rule-to-seto; 

// RULE-SET-ELENIENT Class 
class RULE-SET_ELENiENT: public ooObj 

private: 
int element - number; 
ooHandle(RULE) the 

- rule <-> rule-element: prop(delete); 
ooHandle(RUI-E_SET) the_rule-set <-> Lhe-rules[] : prop(delete); 

public: 
RULE-SET-ELEMENT(char* thename, int number, ooHandle(RULE) aruleH); 
void re-number-element(int number); 
int get-element-numbero; 
ooHandle(RULE) get_ruleo; 

H RULE Class 
class RULE: public ooObj 

private: 
char 
ooHandle(CONDITION) 
ooHandle(RESULTING-ACTION) 
ooHandle(RULE-SET_ELEMENT) 
char 
int 

description[ 1001; 
the_condiLion <-> the-rule : prop(delete); 
the 

- result <-> the_rule : prop(delete); 
rule-element <-> the-rule : prop(delete); 
completion_ins[100]; 
hasfired; 
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public: 
RULEO; 
RULE(char* thename); 
int fire(ooHandle(WORKING-MEMORY) my-memory, char* instructions); 
H Returns I if action carried out and 0 if rule does not fire 
void print - 

descriptiono; 
void initialise_result-messageo; 

# CONDITION Class 
class CONDITION: public ooObj 

protected: 
char description[ 1001; 
ooHandle(RULE) the_rule <-> Lhe_condition : prop(delete); 
logical negate; 

public: 
NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS 
INTENDED AS AN ABSTRACT SUPERCLASS FOR SIMPLE-CONDITION AND 
COMPOUND-CONDITION 

virtual void printo; 
virtual int get_condition_value(ooHandle(WORKING-NIEMORY) my-memory); 
H Returns I for True, 0 for False, & -I for Error 
void readin - 

descriptiono; 
void print-descriptiono; 
void print-negateo; 
logical get-negateo; 

H SIWLE-CONDITION Class 
class SINMLE-CONDITION: public CONDITION 

I 
private: 

ooHandle(EXPRESSION) the_element <-> the-simp_con prop(delete); 
public: 

SIMPLE-CONDITONO; 
SIMPLE_CONDITION(char* thename); 
int get-condiLion_value(ooHandle(WORKING_MEMORY) my-memory); 
H Retums I for True, 0 for False, & -1. for Error 

H EXPRESSION Class 

class EXPRESSION: public ooObj 
f 
protected: 

the-simp-con <-> the_element : prop(deletej, ooHandle(SIMPLE CONDITION) 

public: 

Appendix I-3 



NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS 
INTENDED AS A SUPERCLASS FORALL THE DIFFERENT EXPRESSIONS 

virtual int get-expression-val ue(ooHandle(WOR KING- MEMORY) my-memory); 
H Retums I for True, 0 for False, & -1. for Error 

// COMPOUND-CONDITION Class 
class COMPOUND-CONDITION: public CONDITION 

private: 
ooHandle(SIMPLE_CONDITION) first-element : prop(delete); 
logical-operator conjunction; 
ooHandle(CONDITION) second-element : prop(delete); 

public: 
COMPOUND_CONDITONO; 
COMPOUND_CONDITION(char* thename); 
int get-condition-value(ooHandle(WORKING-MEMORY) my-memory); 
H Returns I for True, 0 for False, & -1. for Error 

// RESULTING_ACTION Class 
class RESULTING_ACTION: public ooObj 

I 
protected: 

ooHandle(RULE) the-rule <-> the-result: prop(delete); 
char result-message[100]; 

public: 
NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS INTENDED AS 
AN ABSTRACT SUPERCLASS FOR SIMPLE_RESULTING_ACTION AND 
COMPOUND_RESULTING_ACTION 

virtual char* execute - action(ooHandle(WORKING_MEMORY) my-memory); 
void initialise-result_message(char* the_message); 

// SIMPLE_RESULTING_ACTION Class 
class SIMPLE_RESULTING-ACTION: public RESULTING_ACTION 

public: 
H NOTE THERE IS NO CONSTRUCTOR HERE AS THIS IS INTENDED AS 
H AN ABSTRACT SUPERCLASS FOR ALL THE ACTUAL CLASSES OF 
H RESULTING_ACTION 
char* execute-action(ooHandle(WORKING_MEMORY) my_memory); 

// CONVOUND-RESULTING-ACTION Class 
class COMEPOUND-RESULTING_ACTION: public RESULTING_ACTION 
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pnvate: 
ooHandle(SIMPLE_RESUILTING_ACTION) first-element : prop(delete); 
ooHandle(RESULTING_ACTION) second-element : prop(delete); 

public: 
COMPOUND-RESULTING_ACTIONo; 
COMEPOUND-RESULTING_ACTION(char* thename); 
char* exec ute-ac bon(ooHandle(WORKING_MEMORY) my_memory); 

USER_INPUT-RESPONSE_EXPRESSION Class 
The primary function of objects of this class is to write a pre-defined 

H question to the screen, and obtain the user's response. The message is 
H requested when an object of this class is created, and is held in the 
H question attribute. If the user types 'y'or 'Y' in response to the 
H question, this expression returns 1 (TRUE), if the user types any other 
H character, this expression returns 0 (FALSE). 
class US ER-INPUT_RES PONS E_EXPRES SION: public EXPRESSION 

private: 
char question[200]; 

public: 
USER_INPUT_RESPONSE-EXPRESSION(char* Lhename); 
int get_expression_value(ooHandle(WORKING - 

MEMORY) my_memory); 
H Returns I for True, 0 for False, & -I for Error 

I; 

ALWAY S-TRUE_EXPRES SION Class 
The primary function of objects of this class Is to ensure that 
its related resulting action is ALWAYS carried. ie This expression 
ALWAYS returns I (TRUE). 

class ALWAYS_TRUE_EXPRES SION: public EXPRESSION 
I 
public: 

ALWAYS-TRUE_EXPRESSION(char* thename); 
int get-expression-value(ooHandle(WORKING_NIEMORY) my_memory); 
H Returns I for True, 0 for False, & -1 for Error 

// MENU 
- 

SELECTION_MADE_EXPRESS ION Class 
//The primary function of objects of this class is to ensure that a valid 
// selection is made from a menu. There can be a maximum of 20 elements in 
H the menu, currently. If one of the menu list elements is chosen, 
// its number will be entered into the TENT VALS integer value slot of the 
H working memory object, my-memory, and this expression will return 1 (TRUE). 
H if the value 0 is entered, ie the select nothing from the menu option, 
H this expression will return 0 (FALSE). (If the size of the array, menu- 
H menu-elements is increased above 20, the size of the rulenames-list array 
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// in class FIRE 
-A- 

SELECTED_RULE_ACTION can also be increased). 
class MENU_SELECTION-MADE-EXPRESS ION: public EXPRESSION 

private: 
char menu-header[100]; 
char menu-elements [20] [100]; 
char menu - comment[1001; 
int number-of-menti-elements; 

public: 
MENU-SELECTION-MADE-EXPRESSION(char* thename); 
int get-expression-value(ooHandle(WORKING-MEMORY) my-memory); 
H Returns I for True, 0 for False, & -I for Error 

WI-MENU-SELECTION 
- 

MADE 
- 
EXPRESSION Class 

The primary function of objects of this class is to ensure that a valid 
H selection is made from a pop-up menu. There can be a maximum of 20 elements in 
H the menu, currently. If one of the menu list elements is chosen, 

its number will be entered into the TEMP VALS integer value slot of the 
working memory object, my-memory, and this expression will return I (TRUE). 

H If the value 0 is entered, ie the select nothing from the menu option, 
H this expression will return 0 (FALSE). (If the size of the array, menu 
H menu_elements is increased above 20, the size of the rulenames - 

list array 
# in class FIRE-A_SELECTED_RULE_ACTION can also be increased). 
class WI-MENU-SELECTION_MADE_EXPRESS ION: public EXPRESSION 

pnvate: 
char menu-header[100]; 
char menu-elemenLs[20] [100]; 
char menu-comment[100]; 
int number-of-menu-elements; 

public: 
WI-MENU-SELECTION_MADE_EXPRESSION(char* thename); 
int get-expression-value(ooHandle(WORKING - 

MEMORY) my-memory); 
H Returns I for True, 0 for False, & -I for Error 

CO MPONENT-OF-S PECIFIED-TYPE-EXISTS-EXPRES SION Class 
The primary function of objects of this class is to check the product model 
to see if a component of a specified type already exists. 
Used by SDFFE to see if a shaft currently exists. The type of the 

#component is specified by the attribute comp-type. If a component of 
# the specified type is found in the product model this expression returns I 
// (TRUE). If no component of the specified type exists, 
H this expression will return 0 (FALSE). 
class CONMONF-NT-OF_SPECIFIED_TYPE_EXISTS-EXPRESS ION: public EXPRESSION 

private: 
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char 
public: 

comp-type[100]; 

COMEPONENT_OF-SPECIFIED_TYPE_EXISTS-EXPRESSION(char* Lhename); 
int get-expression_value(ooHandle(WORKING 

- 
MEMORY) my-memory); 

H Returns I for True, 0 for False, & -I for Error 

SDFFE_MEMORY_EQUALS_SPECIFIED-VALUE-EXPRESS ION Class 
The primary function of objects of this class is to determine if a 

H pre-defined slot in the SDFFE Working Memory contains a string, integer, 
// or float which equals the value specified at creation of this object, 
H which is stored in one of the attributes the-string, the-int or the - 

float. 
class SDFFE_MEMORY-EQUALS-SPECIFIED_VALUE-EXPRESS ION: public EXPRESSION 

private: 
char slotl[20]; 
char slot2[20]; 
char slot3 [20]; 
char slot4[20]; 
char var-is-a[20]; 
char the_string[100]; 
int the-int; 
float Lhe-float; 

public: 
S DFFE_NIEMORY_EQUALS_SPECIFIED-VAL UE-EXPRES SION (char* thename); 
int get-expression_value(ooHandle(WORKING - 

MEMORY) my-memory); 
Retums I for True, 0 for False, & -I for Error 

S DFFE_MEMORY_LES S-THAN_SPECIFIED-VAL UE-EXPRES SION Class 
The primary function of objects of this class is to determine if a 

H pre-defined slot in the SDFFE Working Memory contains a string, integer 
# or float which is less than the value specified at creation of this object, 
H and which is stored in one of the attributes the-string, the-int or the 

- 
float. 

class S DFFE-MEMORY-LES S-THAN-SPECIFIED-VALU E-EXPRES SION: public 
EXPRESSION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3 [20]; 
char slot4[20]; 
char var_is-a[20]; 
char the-string[100]; 
int the-int; 
float the_float; 

public: 
SDFFE-MEMORY_LESS_THAN_SPECIFIED_VALUE_EXPRESSION(char* thename); 
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int get-expression_value(ooHandle(WORKING-MEMORY) my-memory); 
H Retums I for True, 0 for False, & -I for Error 

SDFFE_MIEMORY_GREATER_THAN_SPECIFIED_VALUE_EXPPESS ION Class 
The primary function of objects of this class is to determine if a 
pre_defined slot in the SDFFE Working Memory contains a suing, integer 
or float which is greater than the value specified at creation of this object, 
and which is stored in the attribute the 

- string, the-int or the 
- 

float. 
class SDFFE_MEMORY_GPEATER_THAN_SPECIFIED_VALUE-EXPRES SION: public 
EXPRESSION 

pnvate: 
char slotl[20]; 
char sIoL2[201; 
char sIoL3[20]; 
char sI ot4 [20]; 
char var_is-a[20]; 
char the-sLring[ 100]; 
int the 

- 
int; 

float Lhe-float; 
public: 

SDFFE_MEMORY_GREATER_THAN_SPECIFIED_VALUE_EXPRESSION(char* Lhename); 
int get_expression_value(ooHandle(WORKING-MEMORY) my_memory); 
H Returns I for True, 0 for False, & -I for Error 

STRAT_MEMORY_EQUALS_SPECIFIED-VALUF--EXPRESS ION Class 
The primary function of objects of this class is to determine if a 
pre_defined slot in the STRAT Working Memory contains a string, integer, 
or float which equals the value specified at creation of this object, and 

H which is stored in one of the attributes the_string, the_int or the-float. 
class STRAT_MEMORY-EQUALS_SPECIFIED_VALUE_EXPRESS ION: public EXPRESSION 

private: 
char slotl [20]; 
char sloL2[20]; 
char sloG [20]; 
char slot4[20]; 
char var is-a[20]; 

char the-string[100]; 
int the 

- 
int; 

float the_float; 
public: 

STRAT_NlEMORY_EQUALS-SPECIFIED_VALUE_EXPRESSION(char* thename); 
int get_expression-value(ooHandle(WORKING_MEMORY) my_memory); 
H Retums I for True, 0 for False, &A for Error 
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STRAT_NIEMORY_LESS_THAN-SPECIFIED-VALUE-EXPRESS ION Class 
The primary function of objects of this class is to determine if a 
pre-defined slot in the STRAT Working Memory contains a string, integer 
or float which is less than the value specified at creation of this object, 

H and which is stored in one of the attributes the 
- string, thc_lnt or the - 

float. 
class STRAT-MEMORY-LESS_THAN-SPECIFIED_VALUE_EXPRESS ION: public 
EXPRESSION 

pnvate: 
char slotl [20]; 
char slot2[20]; 
char slot3[20]; 
char slot4[20]; 
char var-is-a[20]; 
char the-sLring[100]; 
int the-int; 
float the_float; 

public: 
STRAT_MEMORY-LESS_THAN_SPECIFIED-VALUE_EXPRESSION(char* thename); 
int get-expression - value(ooHandle(WORKING - 

MEMORY) my_mcmory); 
Returns I for True, 0 for False, & -I for Error 

STRAT_MEMORY-GREATER_THAN_SPECIFIED_VALUE_EXPRESS ION Class 
The primary function of objects of this class is to determine if a 

H pre-defined slot in the STRAT Working Memory contains a string, integer 
// or float which is greater than the value specified at creafion of this object, 
H and which is stored in the attribute the-string, the-int or the-float. 
class STRAT-MEMORY-GREATER-THAN-SPECIFIED-VALUE-EXPRES SION: public 
EXPRESSION 

pnvate: 
char slotl [20]; 
char slot2[20]; 
char sloL3[20]; 
char slot4[20]; 
char var_is-a[20]; 
char the string[100]; 
int the int; 
float the_float; 

public: 
STRAT-MEMORY_GREATER_THAN_SPECIFIED_VALUE_EXPRESSION(char* Lhename); 
int get-expression-value(ooHandle(WORKING - 

MEMORY) my_memory); 
H Retums I for True, 0 for False, &-1 for Error 
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PRINT-MIESSAGE_ACTION Class 
The primary function of objects of this class is to write a pre-defined 
message to the screen. The message is requested when an object of this 

H class is created, and is held in the message attribute. 
class PRINT_MESSAGE-ACTION: public SIMPLE-RESULTING-ACTION 

pnvate: 
char 

public: 
message[200]; 

PRINT_MESSAGE_ACTION(char* thename); 
char* execute_acbon(ooHandle(WORKING_NIEMORY) my-memory); 

POSTSCRIPT_DISPLAY_ACTION Class 
The primary function of objects of this class is to display a postscript 
file, whose name is stored in the message attribute of objects of this 
class, and which must be stored in the Postscript-files directory. The 
postscript file is displayed using Pageview, on the workstation specified 
by the value of the machine-name attribute in the working memory object 
(my_memory), which must be passed as a parameter to the execute_action method 
of objects of this class. 

class POSTSCRIPT_DISPLAY-ACTION: public SIMPLE-RESULTING-ACTION 

private: 
char message[100]; postscript file name 
char machinc_name[20]; 

public: 
POSTSCRIPT_DISPLAY-ACTION(char* thename); 
char* exec u te_ac bon(ooHandle(WORKING_N/tEMORY) my_memory); 

I; 

// UPDATE-SDFFE_MEMORY_ACTION Class 
# The primary function of objects of this class is to update a pre-defined 
H slot in the SDFFE Working Memory with a value which already exist 
// in the TENT 

- 
VALUES object within the SDFFE working memory. 

class UPDATE_SDFFE-MEMORY-ACTION: public SIMPLE-RESULTING-ACTION 

private: 
char slotl [20]; 
char slot2[20]; 
char sloL3[20]-, 
char slot4[20]; 
char var_is-a[20]; 

public: 
UPDATE_SDFFE_MEMORY-ACTION(char* thename); 
char* exec ute_acfion(ooHandle(WORKING_MF-MORY) my-memory); 
void print(void); 

1; 

Appendix I- 10 



READ 
- 

INTO 
- 

MF-MORY-ACTION Class 
The primary function of objects of this class is to update a slot in the 
TEUIP-VALUES object in the Working Memory of an expert with a value provided 

H by the user at run time. 
class READ-INTO-MEMORY-ACTION: public SIMPLE-RESULTING_ACTION 

pnvate: 
char prompt-message[2001; 
char var_is-a[20]; 

public: 
READ_INTO-MEMORY-ACTION(char* thename); 
char* exec ute-acbon(ooHandle(WORKING_MEMORY) my-memory); 
void print(void); 

SPEC_VALUE_INTO-NIEMORY-ACTION Class 
The primary function of objects of this class is to update a slot in the 
TEMPYALUES object in the Working Memory of an expert with a value provided 
by the product model in the form of a quality or quantity within the spec. 
The required context string to be searched for among the product requirements 
has to be specified when initialising objects of this class. 

class SPEC-VALUE-INTO-MF-MORY-ACTION: public SIMPLE-RESULTING-ACTION 

pnvate: 
char context_string[200]; 
char value-is_a[20]; 

public: 
SPEC-VALUE_INTO-MEMORY-ACTION(char* Lhename); 
char* exec u te-ac tion(oo Handle(WORKI NG_MEMORY) my_memory); 
void print(void); 

H FIRE_A_SELECTED_RULE-ACTION Class 
# The primary function of objects of this class is to select a particular rule to fire, 
H dependent upon the current value of the integer slot in the TEMP 

- 
VALUES 

H object. The names of the rules which might possibly be fired are stored 
// in the attribute rulename_list. SO currently, objects of this class can 
H select from a maximum of 20 possible rules which might be fired. This 
H number could be increased if the size of the menu-elements array attribute 
H of MENU-S ELECTION-MADE_EXPRES SION class is increased. The number of rules 
H which can be selected from is stored in the attribute, num_of-rules, and 
H this, and the rule names, must be specified when initialising objects of 
H this class. 
class FIRE_A_SELECTED_RULE-ACTION: public SIMPLE_RESULTING_ACTION 

private: 
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char 
int 

public: 

ruiename-list[20] [ 100]; 
num-of-rules; 

FIRE_A-SELECTED_RULE-ACTION(char* thename); 
char* execute-acbon(ooHandle(WORKING-MEMORY) my_memory); 
void print(void); 

# CREATE_BASIC-FEATURE_ACTION Class 
The primary function of objects of this class is to create a BASIC feature 
of a type specified by the attribute feature-type, in the product model 

class CREATE_BASIC-FEATURE_ACTION: public SIMPLE_RESULTING_ACTION 

pnvate: 
char feature_type[1001; 
char feature-name[100]; 
char functional_info[ 100]; 
char slotl[20]; 
char slot2[20]; 
char slot3 [20]; 
char sloL4[20]; 

public: 
CREATE_BASIC_FEATLTRE_ACTION(char* thename); 
char* execute-action(ooHandle(WORKING_MEMORY) my_memory); 
void print(void); 

H CREATE_SPECIFIED_COMPONENT_ACTION Class 
H The primary function of objects of this class is to create a component 
H of a type specified by the attribute comp-type, in the product model 
class CREATE-SPECIFIED-COMIPONENT_ACTION: public SINMLE_RESULTING_ACTION 

private: 
char 

public: 
comp_type[1001; 

CREATE_SPECIFIED_COMPONENT_ACTION(char* thename); 
char* execute_action(ooHandle(WORKING_MEMORY) my-memory); 
void print(void); 

CREATE-SPECIFIED_DEFINITION_ACTION Class 
The primary function of objects of this class is to create a component 

H definition of a type specified by the attribute defn-type in the product model 
class CREATE-SPECIFIED_DEFINITION_ACTION: public SINIPLE_RESULTING_ACTION 

private: 
char defn_type[100]; 
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public: 
CREATE 

- 
SPECIFIED-DEFINITION-ACTION(char* thename); 

char* exec u te-ac 6on(ooHandle(WORKING-VEMORY) my-memory); 
void print(void); 

MATERIAL_VALUE_INTO_MEMORY-ACTION Class 
The primary function of objects of this class is to update a slot in the 
TEMP-VALUES object in the Working Memory of an expert with a value provided 
by the product model in the form of a property of a material. 

class MATERIAL-VALUE-INTO-MEMORY-ACTION: public SIMPLE-RESULTING-ACTION 
I 
pnvate: 

char 
char 

public: 

property_str[200]; 
value-ls_a['-10]; 

MATERIAL_VALUE_INTO-MEMORY-ACTION(char* thename); 
char* execute-acdon(ooHandle(WORKING_? VIEMORY) my_memory); 
void print(vold); 

EXECUTE-NEURAL_NETWORK-ACTION Class 
The primary function of objects of this class is to update a slot in the 
TEMP-VALUES object in the Working Memory of an expert with a value obtained 

H by running a neural network to select a BEARING. 
class EXECUTE-NEURAL_NETWORK_ACTION: public SIMPLE_RESULTING_ACTION 

public: 
EXEC UTE-NEURAL_NETWORK_ACTION(char* thename); 
char* exec u te-acfion(ooHandle(WORKING_MEMORY) my_memory); 
void print(void); 

# UPDATE_STRAT_MIEMORY_ACTION Class 
# The primary function of objects of this class is to update a pre-defined 

slot in the STRAT Working Memory with a value which already exist 
in the TEMPYALUES object within the STRAT working memory. 

class UPDATE-STRAT-MEMORY-ACTION: public SIMPLE_RESULTING_ACTION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3[20]; 
char slot4[20]; 
char var_is-a[20]; 

public: 
UPDATE-STRAT-MEMORY-ACTION(char* thenarne); 
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char* execute-action(ooHandle(WORKING-MEMORY) my-memory); 
void print(void); 

EXECUTE_NAMED_FUNCTION_ACTION Class 
The primary function of objects of this class is to execute a function 
whose name is stored in the attribute 'name', and which requires a 

H number of parametes, as stored in the attribute 'num-params'. 
class EXECUTE-NAMED-FUNCTION-ACTION: public SIMPLE-RESULTING-ACTION 

pnvate: 
char name[30]; 
int num-params; 

public: 
EXF-CUTE_NAMED_FUNCTION-ACTION(char* thename); 
char* execute-action(ooHandle(WOPKING_MEMORY) my_mcmory); 
void print(void); 

SPECIFIED-VALUE-INTO-MEMORY-ACTION Class 
The primary function of objects of this class is to update a slot in the 
TEMPYALUES object in the Working Memory of an expert with a pre-defined value 

class SPECIFIED-VAIUE-INTO-MEMORY_ACTION: public SINfPLE-R-ESULTING_ACTION 

pnvate: 
char value - 

is 
- a[201; 

int the_int; 
float the-float, 
char the_string[100]; 

public: 
SPECIFIED_VALUE_INTO_MEMORY_ACTION (char* Lhename); 
char* exec ute_action(ooHandle(WORK ING-MEMORY) my-memory); 
void print(void); 

ADD_DIMENS ION 
- 

ACTION Class 
The primary function of objects of this class is to add a dimension 
to a previously created feature. The feature is identified by the 
slot attributes. The dimension to be added is identified by the 

H dimension attribute, and the type of dimension (ie nominal, +tol or 
// -tol) is identified by the dim-type attribute. The value of the 
H dimension is taken from the temp float slot in working memory 

class ADD_DIMENSION_ACTION: public SIN4PLE_RESULTING_ACTION 

private: 
char slotl[20]; 
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char slot2[20]; 
char slot3 [201; 
char slot4[20]; 
char feature-narne[100]; 
char dimension[20]; 
char dim_tol[20]; 

public: 
ADD_DIMENSION_ACTION(char* thename); 
char* exec ute-action(ooHandle(WORKING_ MEMORY) my_memory); 
void print(void); 

CHANGE-FEATURE_TYPE_ACTION Class 
The primary function of objects of this class is to change a feature of 
one type into a feature of another type. The feature to be changed is 
identified by the slot attributes. 

class CHANGE-FEATURE_TYPE_ACTION: public SIMPLE_RESULTING_ACTION 

private: 
char feature-name[100]; 
char feature-type[1001; 
char slotl[20]; 
char sloL2[20]; 
char slot3 [20]; 
char slot4[20]; 

public: 
CHANGE_FEATURE-TYPE_ACTION(char* thename); 
char* execute-acdon(ooHandle(WORKING_MEMORY) my_memory); 
void print(void); 

// JOIN-SHAFT_SECTION_ACTION Class 
H The primary function of objects of this class is to change a feature of 
// one type into a feature of another type. The feature to be changed is 
# identified by the slot attributes. 
class JOIN_SHAFT_SECTION-ACTION: public SIMPLE_RESULTING_ACTION 

pnvate: 
char feature_namel[1001; 

char feature-name2[100]; 
char joln_type[20]; 

public: 
JOIN-SHAFF_SECTION_ACTION(char* thename); 
char* exec u te-action(ooHandle(WO R-K ING_MEMOR Y) my_memory); 
void print(void); 
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// UPDATE_SLTRFACE-FINISH_ACTION Class 
H The primary function of objects of this class is to change the value of the 
// surface finish attribute of a feature object which already exists in the product model 
class UPDATE-SURFACE_FINISH_ACTION: public SINTLE-RESULTING_ACTION 

private: 
char 

public: 
feature-name[100]; 

UPDATE_SURFACE_FINISH_ACTION(char* thename); 
char* exec ute-ac6on(ooHandle(WORKING-MEMORY) my-memory); 
void print(void); 

UPDATE_FUNCTIONAL_INFO-ACTION Class 
The primary function of objects of this class is to change the value of the 
functional information string attribute of a feature object which already exists 
in the product model 

class UPDATE_FUNCTIONAL_INFO-ACTION: public SINMLE_RESULTING-ACTION 
I 

private: 
char 
char 

public: 

feature-name[1001; 
info_sLring[ 100]; 

UPDATE_FUNCTIONAL_INFO-ACTION(char* Lhename); 
char* exec ute_ac Uon(ooHandle(WORKING_MEMORY) my-memory); 
void print(vold); 
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H Written by JA Harding, Dept Manufacturing Engineering, LUT. 
// MOSES PROJECT - February 1995 
H 
// MOSES MODERATOR SPECIFIC RULES SCHEMA 
H mod-rules. ddl 
H (Moderator specific rules) 
H 
H Last changed 13/4/95 

#include <working-memory. h> 
#include <rules. h> 

DESIGN 
- 

MOD_W_M_EQUALS_SPECIFIED-VALUE_EXPRES SION Class 
The primary function of objects of this class is to determine if a 

H prejefined slot in the DESIGN 
- 

MOD Working Memory contains a string, integer, 
H or float which equals the value specified at creation of this object, 
H which is stored in one of the attributes the-string, Lhe_int or Lhe-float. 
class DES IGN_MOD_W_M_EQUALS_SPECIFIED_VALUE_EXPRES SION: public EXPRESSION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3 [20]; 
char slot4[20]; 
char var_is_a[20]; 
char the_sLring[100]; 
int the_int; 
float the-float; 

public: 
DES IGN-MOD_W-M-EQUALS-SPECIFIED-VALUE-EXPRESS ION(char* thename); 
int get-expression - value(ooHandle(WORKING_MEMORY) my_memory); 
H Returns I for True, 0 for False, & -I for Error 

DES IGN_MOD_W_M_LESS_THAN_SPECEFIED_VAL UE-EXPRES SION Class 
The primary function of objects of this class is to determine if a 

H pre_defined slot in the DESIGN MOD Working Memory contains a string, integer 
9 or float which is less than the value specified at creation of this object, 
H and which is stored in one of the attributes the 

- string, the-int or the_float. 
class DES IGN-MOD_W_M_LES S-THAN-S PECIFIED-VALUE-EXPRESS ION: public 
EXPRESSION 

private: 
char slot2[20]; 
char slot3 [20]; 

char slot4 [20]; 

char var_is_a[20]; 
char the_string[1001; 
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int the-int; 
float Lhe-float; 

public: 
DES IGN_MOD_W_M_LES S_THAN_SPECIFIED-VAL UE-EXPRES S ION(char* thename); 
int get-expression-value(ooHandle(WORKING-MEMORY) my_memory); 
H Retums I for True, 0 for False, & -I for Error 

I; 

DESIGN_MOD-W-M-GREATER-THAN_SPECEFIED_VALUE-EXPRESS ION Class 
The primary function of objects of this class is to determine if a 

H pre_defined slot in the DESIGN MOD Working Memory contains a string, integer 
H or float which is greater than the value specified at creation of this object, 
H and which is stored in the attribute the_string, the_lnt or the 

- 
float. 

class DES IGN-MOD_W_M-GREATER_THAN_S PECIFIED-V ALUE-EXPRES SION: public 
EXPRESSION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3[20]; 
char slot4[20]; 
char var-is-a[201; 
char the_string[ 100]; 
int thejnt; 
float the-float; 

public: 
DES IGN_MOD_W_M-GREATER_THAN_S PECIFIED_VAL UE-EXPRESS ION(char* 

thename); 
int get - expression_value(ooHandle(WORKING-MEMORY) my_memory); 
H Retums I for True, 0 for False, & -I for Error 

OBJECT_OF_SPECIFIED_CLASS-EXPRESSION Class 
The primary function of objects of this class is to determine if an object found in the product 
model is of a pre-defined class 

class OBJECT_OF_SPECIFIED CLASS_EXPRESSION: public EXPRESSION 

private: 
char 

public: 
the_kind[20]; 

OBJECT_OF_SPECIFIED_CLASS-EXPRESSION(char* thename); 
int get - expression-value(ooHandle(WORKING_MEMORY) my_memory); 
H Retums I for True, 0 for False, & -I for Error 

I; 

H OBJECT-IS_FUNCTIONAL_EXPRESS ION Class 
# The primary function of objects of this class is to determine if an object found in the product 
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// model has a non-null functional info string attribute value 
class OBJECT_IS_FUNCTIONAL_E,,, TRESS ION: public EXPRESSION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3 [20]; 
char slot4[20]; 
char var-is-a[20]; 
char the-string[100]; 
int the_int; 
float the-float; 

public: 
OBJF-CT-IS-FUNCTIONAL-EXPRESSION(char* thename); 
int get_expression_value(ooHandle(WORKING-MEN/IORY) my_memory); 

Returns I for True, 0 for False, &A for Error 

UPDATE_DESIGN_MOD_W-M-ACTION Class 
The primary function of objects of this class is to update a pre - 

defined 
slot in the DESIGN MOD Working Memory with a value which already exist 
in the TEMPYALUES object within the SDFFE working memory. 

class UPDATE_DESIGN_MOD-W-M-ACTION: public SIMPLE_RESULTING-ACTION 

private: 
char SIOLI [201; 
char slot'-)[20]; 
char slot3 (20]; 
char slot4[20]; 
char var-is-a[20]; 

public: 
UPDATE-DESIGN-MOD_W_M_ACTION(char* thename); 
char* exec ute-action(ooHandle(WOPKING_N/IEMORY) my_memory); 
void print(void); 

H GET_OBJ-TYPE_ACTION Class 
# The primary function of objects of this class is to update a pre-defined 
// slot in the Working Memory with the class of an object 
class GET-OBJ-TYPE-ACTION: public SIMPLE-RESULTING-ACTION 

pnvate: 
char sloLl [20]; 
char sioL2[-? O]; 
char sloL3 [20]; 
char slot4[20]; 
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public: 
GET_OBJ_TYPE_ACTION(char* thename); 
char* execute-ac6on(ooHandle(WORKING_MEMORY) my_memory); 
void print(vold); 

# GET_OBJECT_DETAILS-ACTION Class 
// The primary function of objects of this class is to update slot in the 
H Moderators Working Memory with a values relating to the changed 
9 object. 
class GET-OBJECT-DETAILS-ACTION: public SIMPLE-RESULTING-ACTION 

public: 
GET_OBJECT_DETAILS-ACTION(char* thename); 
char* exec u Le-ac tion(ooHandle (W 0 RK ING_ N/IE MOR Y) my-memory); 
void print(vold); 

ACTIVATE_OTHER_PROCES S 
_ACTION 

Class 
The primary function of objects of this class is to activate another pre-defined 
process, eg to seek advice on significance of a change to an object. 

class ACTIVATE-OTHER_PROCESS-ACTION: public SIMPLE_RESULTING_ACTION 

pnvate: 
char path_list[100]; 
char message[100]; 

public: 
ACTIVATE_OTHER-PROCESS-ACTION(char* Lhename); 
char* execute-ac6on(ooHandle(WORKING-N/LEMORY) my-memory); 
void print(void); 

# IDENTIFY-MODERATOR_ACTION Class 
H The primary function of objects of this class is to determine what action the Engineering 
H Moderator should undertake 
class IDENTIFY-MODERATOR_ACTION: public SIMPLE_RESULTING-ACTION 

public: 
IDENTIFY-MODERATOR-ACTION(char* Lhename); 
char* execute-acbon(ooHandle(WORKING-NIEMORY) my_memory); 
void print(void); 
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H DES IGN_EX_W_M_EQUALS_SPECIFIED_VAL UE_EXPRES SION Class 
The primary function of objects of this class is to determine if a 
pre-defined slot in the DESIGN EXPERT Working Memory contains a string, integer, 
or float which equals the value specified at creation of this object, 
which is stored in one of the attributes the-string, the 

- 
int or the-float. 

class DES IGN_EX-W-M-EQUALS-SPECIFIED_VALUE-EXPRES SION: public EXPRESSION 

pnvate: 
char slotl[20]; 
char slot2[20]; 
char slot3[20]; 
char slot4[20]; 
char var_is-a[20]; 
char the 

- string[100]; 
int the_int; 
float Lhe-float; 

public: 
DES IGN_EX_W-M-EQUALS-S PECIFIED-VALUE_EXPRESS ION(char* thename); 
int get-expression-value(ooHandle(WORKING 

- 
MEMORY) my_memory); 

H Returns I for True, 0 for False, &-1 for Error 
I; 

# DESIGN 
- 

EX 
-W-M- 

LES S-THAN_S PECIFIED_VA-LUE-EXPRES SION Class 
9 The primary function of objects of this class is to determine if a 
H pre-defined slot in the DESIGN EXPERT Working Memory contains a string, integer 
// or float which is less than the value specified at creation of this object, 
H and which is stored in one of the attributes the 

- string, the-int or Lhe_float. 
class DES IGN_EX-W-M-LES S-THAN-SPECIFIED-VAL UE-EXPRES SION: public 
EXPRESSION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3 [20]; 
char slot4[20]; 
char var_is-a [20]; 

char the_string[1001; 
int the_int; 
float the-float; 

public: 
DES IGN_EX-W-M-LES S-THAN-S PEC IFIED_VALUF-_EXPRES S ION(char* thename); 
int get-expression-value(ooHandle(WORKING-MEMORY) my-memory); 
H Retums I for True, 0 for False, &-I for Error 

H DES IGN-EX-W-M-GREATER-THAN_S PECIFIED-VALUE-EXPRES SION Class 
H The primary function of objects of this class is to determine if a 
H pre_defined slot in the DESIGN EXPERT Working Memory contains a string, integer 
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# or float which is greater than the value specified at creation of this object, 
H and which is stored in the attribute the-string, the_int or the 

- 
float. 

class DES IGN_EX_W_M_GREATER_THAN-SPECIFIED_VAL UE_EXPRES SION: public 
EXPRESSION 

private: 
char slot 1 [20]; 
char slot2[20]; 
char sI oL3 [20]; 
char slot4 [20]; 
char var_is-a['-)Ol; 
char thc_string[100]; 
int. the_int; 
float Lhe_float; 

public: 
DES IGN_EX-W-M-GREATER-THAN_SPECIFIED-VALUE-EXPRESS ION(char* thename); 
int get-expression_value(ooHandle(WORKING - 

MIEMORY) my_memory); 
H Retums I for True, 0 for False, & -I for Error 

// DES IGN-EXPERT_EXISTS-EXPRESS ION Class 
H The primary function of objects of this class is to determine if the Engineering Moderator has 
// knowledge of a particular design agent's knowledge 
class DES IGN_EXPERT_EXISTS-EXPRES SION: public EXPRESSION 

private: 
char slotl[20]; 
char slot2[201; 
char sloL3 [20]; 
char slot4[20]; 
char the_expert-name[ 100]; 

public: 
DES IGN-EXPERT-EXIS TS-EXPRES S ION(ch ar* thename); 
int get-expression_value(ooHandle(WORKING_ MEMORY) my_memory); 
H Returns I for True, 0 for False, & -I for Error 

ADD_NEW_DESIGN_EXPERT_ACTION Class 
The primary function of objects of this class is to add details of a new 
design agent to the Design Expert Working Memory of the Engineering Moderator 

class ADD_NF-W-DESIGN_EXPERT_ACTION: public SIMPLE_RESULTING_ACTION 

private: 
char 

public: 
the_expert-name[20]; 

ADD_NEW_DESIGN_EXPERT-ACTION(char* thename); 
char* exec ute-ac6on(ooHandle(WORK ING-MEMORY) my_memory); 
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void print(void); 

ADD_DESIGN-EXPERT-KNOWLEDGE 
- 

ACTION Class 
Ile primary function of objects of this class is to add knowledge, in the 
form of Rulesets and Rules for the design agent specified in the Knowledge 

H acquisition working memory of the Engineering Moderator. 
class ADD_DESIGN_EXPERT_KNOWLEDGE_ACTION: public 
SIMEPLE_RESULTING_ACTION 

private: 
char 

public: 
the-expert-name[20]; 

ADD-DESIGN-EXPERT-KNOWLEDGE 
- 

ACTION(char* Lhename); 
char* exec ute_ac don(ooHandle(WORKING-MEMORY) my_memory); 
void print(void); 

1; 

H ADD-KNOWLEDGE_ACTION Class 
The primary function of objects Of this class is to add knowledge, in the 
form of Rulesets and Rules into a database specified by the user at runtime. 

class ADD-KNOWLEDGE_ACTION: public SIMPLE-P-ESULTING_ACTION 

public: 
ADD_KNOWLEDGE_ACTION(char* thename); 
char* execute_ac6on(ooHandle(WORKING_MEMORY) my-memory); 
void print(void); 

H UPDATE_DESIGN_EX_W_M_ACTION Class 
H The primary function of objects of this class is to update a pre-defined 
H slot in the DESIGN EXPERT Working Memory with a value which already exist 
// in the TEMP 

- 
VALUES object within the DESIGN EXPERT working memory. 

class UPDATE_DESIGN_EX-W_M-ACTION: public SIMPLE-RESULTING-ACTION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3[201; 
char slot4[20]; 
char var_is_a[20]; 

public: 
UPDATE-DESIGN_EX_W_M_ACTION(char* thename); 
char* exec ute_action(ooHandle(WORKI NG-MEMORY) my-memory); 
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void print(void); 

KNOW-ACQ_WýM_EQUALS-SPECIFIED 
- 

VALUE 
- 

E-NPRESSION Class 
The primary function of objects of this class is to determine if a 

H pre_defined slot in the KNOWLEDGE ACQ Working Memory contains a string, integer, 
or float which equals the value specified at creation of this object, 
which is stored in one of the attributes the_string, the-int or the 

- 
float. 

class KNOW_ACQ_W_M_EQUALS-SPECIFIED-VAL UE-EXPRESS ION: public EXPRESSION 

private: 
char slotl [20]; 
char slot2[20]; 
char slot3[201; 
char slot4[20]; 
char var_is_a[20]; 
char the_string[1001; 
int thejnt; 
float Lhe-floaL; 

public: 
KNOW_ACQ_W_M-EQUALS-SPECIFIED-VALUE_EXPRESSION(char* Lhename); 
int get-expression_value(ooHandle(WORKING - 

MEMORY) my_mcmory); 
H Retums I for True, 0 for False, & -I for Error 

// KNOW_ACQ_ýW_M-LESS-THAN_SPECIFIED_VAL UE_EXPRESS ION Class 
# The primary function of objects of this class is to determine if a 
H prejefined slot in the KNOWLEDGE ACQ Working Memory contains a string, integer 
H or float which is less than the value specified at creation of this object, 
H and which is stored in one of the attributes the-string, the_int or the-float. 
class KNOW-ACQ-W-M-LES S-THAN_SPECIFIED-VAL UE-EXPRES SION: public 
EXPRESSION 

private: 
char slotl[20]; 
char slot2[20]; 
char slot3[20]; 
char slot4[20]; 
char var - is-a[20]; 
char Lhe_sLring[1001; 
int the-int; 
float Lhe-float; 

public: 
KNOW_ACQ_W_M_LESS-THAN_SPECIFIED_VALUE_EXPRESSION(char* thename); 
int get_expression_value(ooHandle(WORKING_MEMORY) my_memory); 
H Retums I for True, 0 for False, & -I for Error 
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KNOW 
- 

ACQ-W-M-GREATER-THAN-S PECIFIED-VAL UE-EXPRES SION Class 
The primary function of objects of this class is to determine if a 

H pre-defined slot in the KNOWLEDGE ACQ Working Memory contains a string, integer 
# or float which is less than the value specified at creation of this object, 
H and which is stored in the attribute the-sLring, the-int or the-float. 
class KNOW-ACQ-W-M-GREATER-THAN-SPECIFIED_VALUE-EXPPES SION: public 
EXPRESSION 

pnvate: 
char slot 1 [20]; 
char slot2[20]; 
char slot3 [20]; 
char slot4[20]; 
char var-is-a[20]; 
char the-sLring[100]; 
int the-int; 
float the-float; 

public: 
KNOW-ACQ-W-M-GREATER-THAN-SPECIFIED-VALUE-EXPRESSION(char* thenarne); 
int get_expression_value(ooHandle(WORKING_NIEMORY) my_memory); 
H Retums I for True, 0 for False, & -I for Error 

UPDATE_KNOW-ACQ_W_M-ACTION Class 
The primary function of objects of this class is to update a pre-defined 

# slot in the KNOWLEDGE ACQ Working Memory with a value which already exist 
// in the TEMPYALUES object within the KNOWLEDGE ACQ working memory. 
class UPDATE_KNOW-ACQ-W-M_ACTION: public SIMPLE_RESULTING_ACTION 

private: 
char slotl [20]; 

char slot2[20]; 
char slot3 [20]; 

char slot4[20]; 
char var-is-a[20]; 

public: 
UPDATE-KNOW-ACQ-W_M_ACTION(char* thename); 
char* exec ute-ac tion(ooHandle(WORKING_MEMORY) my_memory); 
void print(void); 

WI_USER_INPUT-RESPONSE_EXPRES SION Class 
The primary function Of objects of this class is to write a pre-defined 
question to the screen (in a dialogure box), and obtain the user's response. The 
message is requested when an object of this class is created, and is held in the 
question attribute. If the user selects Yes in response to the question, this expression returns 
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HI (TRUE), if the user selects NO this expression returns 0(' FALSE). 
class WI_US ER_I NP UT_RES PONS E_EXPRES SION: public EXPRESSION 

private: 
char quesbon[200]; 

public: 
WI-US ER_I NPUT-RES PONS E-EXPRES S ION(char* thename); 
int get_expression_value(ooHandle(WORKING 

- 
MEMORY) my-memory); 

H Returns I for True, 0 for False, & -I for Error 

WI_PRINT_MESSAGE_ACTION Class 
The primary function of objects of this class is to write a pre-defined 
message to the screen, in a message box. The message is requested when an object of this 
class is created, and is held in the message attribute. 

class WI-PRINT-NIESSAGE-ACTION: public SIMPLE_RESULTING_ACTION 
I 
private: 

char message[200]; 
public: 

WI-PRINT_, N, tESSAGE-ACTION(char* thename); 
char* exec ute-action(ooHandle(WORKING_MEMORY) my_memory); 

WI_READ_INTO_MEMORY-ACTION Class 
The primary function of objects of this class is to update a slot in the 
TEMP-VALUES object in the Working Memory of an expert with a value provided 

H by the user at run time, via a dialogue box 
class WI-READ_INTO-MEMORY-ACTION: public SINIPLE_RESULTING_ACTION 

private: 
char promp t-m es sage [2001; 
char var-is-a[20]; 

public: 
WI-READ_I, NTO_NIF-MORY-ACTION(char* thename); 
char* exec ute-ac fion(ooHandle(WORKING_MEMORY) my-memory); 
void print(void); 

J; 

H CD_REQ_CHANGE_EXPRESS ION Class 
H The primary function of objects of this class is to determine if a 
// change made to a cost - 

dely-product 
- model requirements object is 

H significant. This is a single implementation done specifically for 
// RRIPG Case Study demo. 

class CD_REQ-CHANGE_EXPRES SION: public EXPRESSION 

public: 
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CD_REQ-CHANGE-EXPRESSION(char* thename); 
int "net-ex press ion-value(ooHandle(W OR KI NG-MEMOR Y) my-memory); 
11 Returris I for True, 0 for False, & -I for Error 

1; 
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Written by JA Harding, Dept Manufacturing Engineering, LUT. 
MOSES PROJECT - October 1994 

MOSES WORKING MEMORY SCHEMA 
working-memory. ddl 

Last changed 9/2/95 

# SDFF 
- 

SPEC-VALUES Class 
class SDFF_SPEC-VALUES public ooObj 

I 
protected: 

char 
float 
float 
float 
char 
float 
float 
float 
char 
char 
ooHandle(SDFF_WORKING-MEMORY) 

public: 
SDFF_SPEC_VALUESO; 
void printo; 
void update-string(char* slot, char* update-val); 
void update_float(char* slot, float update_val); 
char* get-string(char* slot); 
float get-float(char* slot); 

// SDFF_MATERIAL-VALUF-S Class 

class SDFF-MATERIAL-VALUES : public ooObj 
I 
protected: 

char 
char 
char 
float 
float 
float 
ooHandle(SDFF_WORKING_MEMORY) 

public: 
SDFF_MATERIAL-VALUESO; 
void printo; 
void update_string(char* slot, char* update_val); 
void update_float(char* slot, float update_val); 
char* get_string(char* slot); 

DB-Name[1001; H Database containing Spec 
full_load_power; 
full-load-speed; 
percent-sLart_Lorque; 
dULy[1001; // eg high, medium or low 
no-of-revolutions; 
life-expectancy; 
length_z; 
torque[100]; 
axial[1001; 
wm5 <-> spec-requirements : prop(deleLe); 

DB-Name[100]; //Database of materials 
mat-name[100]; 
mat_grade[100]; 
UTS; 
USS; 
youngs-mod; 
wm6 <-> material-details : prop(delete); 
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float get-float(char* slot); 

# SDFF FEATURE Class 
class SDFF_FEATURE: public ooObj 

I 
protected: 

char 
char 
ooHandle(SDFF_BEARING_JOURNAL) 
ooHandle(SDFF_BEARING_JOURNAL) 
ooHandle(SDFF_SHAFT_REQUIREMF-NTS) 
ooHandle(SDFF_SHAFT_REQUIREMENTS) 
ooHandle(SDFF_SHAFT-REQUIRENMNTS) 

public: 
SDFF-FEATUREO; 
void printo; 
void update_string(char* slot, char* update-val); 
char* get-string(char* slot); 

feature-type[1001; 
feature-name[1001; 
bl-journal <-> axial- locate: prop(delete); 
b2-journal <-> radial -locate : prop(delete); 
shaft-reql <-> axial- locate : prop(delete); 
shaft-req2 <-> radial -locate : prop(delete); 
shaft-req3 <-> torque 

-transmit : prop(delete); 

// SDFF_BEARING-JOURNAL Class 
class SDFF_BEARING-JOURNAL: public ooObj 

protected: 
ooHandle(SDFF_FEATURE) axial-locate <-> bl_joumal : prop(delete), 
ooHandle(SDFF_FEATURE) radial-locate <-> b2_joumal : prop(delete); 
ooHandle(SDFF_WORKING_MEMORY) wrn 1 <-> bearing-A prop(delete); 
ooHandle(SDFF-WORKING_NEMORY) wm2 <-> bearing-B prop(delete); 
float mln_rad; 
char bearing_chosen[100]; 

public: 
SDFF_BEARING-JOURNALo; 
void printo; 
void update_string(char* slot, char* slot - attrib, char* update_val); 
void update_float(char* slot, float update-val), 
char* get-string(char* slot, char* slot-attrib); 
float get_float(char* slot); 

// SDFFý_SHAFr-REQUIREMIENTS Class 

class SDFF_SHAFr_REQUIREMEENTS : public ooObj 

protected: 
ooHandle(SDFF_FEATLTRE) axial-locate <-> shaft_reql : prop(delete); 
ooHandle(SDFF_FEATURE) radial - 

locate <-> shaft-req2 : prop(delete); 
ooHandle(SDFF_FEATURE) torque_Lransmit <-> shaft-req3 : prop(delete); 
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ooHandle(SDFF-SHAFr-SECTION) shaftl <-> input : prop(delete); 
ooHandle(SDFF-SHAFr-SECTION) shaft2 <-> output : prop(delete); 

public: 
SDFF-SHAFr-REQUIREMF-NTSo; 
void printo; 
void update-string(char* slot, char* slot-attrib, char* update-val); 
char* get-sLring(char* slot, char* slot-attrib); 

// S DFF SHAFT SECTION Class 
class SDFF_SHAFT-SECTION: public ooObj 

I 
protected: 

ooHandle(SDFF_SHAFT_REQUIP, EMENTS) input <-> shaftl : prop(delete); 
ooHandle(SDFF_SHAF'F_REQUIP, EMENTS) output <-> shaft2 : prop(delete); 
ooHandle(SDFF_WORKING_MEMORY) wm3 <-> shaft-ex tension : prop(delete); 
ooHandle(SDFF_WORKING_MEMORY) wm4 <-> main-shaft: prop(delete); 
float mln_rad; 

public: 
SDFF_SHAFT-SECTION0; 
void printo; 
void update-string(char* slot, char* slot-atLrib, char* slot-aLLrib-slot, char* update_val); 
void update_float(char* slot, float update_val); 
char* get-string(char* slot, char* slot-attrib, char* slot-atLrib-slot); 
float get_float(char* slot); 

// TENIPYALUES Class 

class TENIPYALUES : public ooObj 
I 
protected: 

char 
float 

int 
ooHandle(SDFF_WORKING_NIEMORY) 
ooHandle(STRAT_WORKING_NlEMORY) 
ooHandle(DESIGN_MODERATION-W_M) 
ooHandle(DESIGN_EXPERT_W_M) 
ooHandle(KNOWLEDGE_ACQU_W_M) 

public: 
TEMPYALUESO; 
void printo; 
void win_printo; 
void update-string(char* slot, char* update_val); 
void update-float(char* slot, float update-val); 
void update-int(char* slot, int update_val); 
char* get_string(char* slot); 
float get-float(char* slot); 

asLring[100]; 
afloat; 
anint; 
wm7 <-> temp-, v 
wms7 <-> stemp. 
wmm I <-> temp. 
wmm2 <-> temp. 
wmm3 <-> temp. 

als : prop(delete); 
yals prop(delete); 
yals prop(delete)-, 
yals prop(delete); 
yals prop(delete); 
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int get_int(char* slot); 

fl WORKING_MEMORY Class 
class WORKING-MEMORY: public ooObj 

public: 
H There is no CONSTRUCTOR for this class as it is an abstract super class and therefore should 
// never be created 

virtual void printo; 
virtual void update_string(char* slot, char* slot-attrib, char* slot-attrib-slot, 

char* slot-attrib_slot-attrib, char* update_val); 
virtual void update-float(char* slot, char* slot-atLrib, char* slot-attrib-slot, 

char* slot - attrib - slot-attrib, float update_val); 
virtual void update_int(char* slot, char* slot-atLrib, char* slot-attrib-slot, 

char* slot-attrib_slot_attrib, int update_val); 
virtual char* get-string(char* slot, char* slot-attrib, char* slot-attrib-slot, 

char* slot-attrib-slot-attrib); 
virtual float get-float(char* slot, char* SlOt-aLtrib, char* slot-attrib-slot, 

char* slot-attrib-slot-attrib); 
virtual int get-Int(char* slot, char* slot-atLrib, char* slot_attrlb-slot, 

char* slot-attrib-slot-attrib); 

1; 

// SDFF_WORKING_MEMORY Class 
class SDFF-WORKING-MEMORY: public WORKING_MEMORY 

protected: 
char 
char 
char 
ooHandle(SDFF- BEARING-JOURNAL) 
ooHandle(SDFF- BEARING-JOURNAL) 
ooHandle(SDFF_ SHAFT_SECTION) 
ooHandle(SDFF_ SHAFT_SECTION) 
ooHandle(SDFF_ SPEC-VALUES) 
ooHandle(SDFF_ MATERIAL_VALUES) 
ooHandle(TEMP _VALUES) 
char 
float 
float 

public: 

DB-Name[100]; // Database for output 
Shaft-Name[ 100]; // Name of current shaft design 
Comp-Name[1001; H Name of shaft in PM 
bearing_A <-> wmI : prop(delete); 
bearing_B <-> wm2: prop(delete); 
shaft_extension <-> wm3 : prop(delete); 
main_shaft <-> wm4 : prop(delete); 
spec-requirements <-> wm5 : prop(delete); 
material-de tails <-> wm6: prop(delete); 
temp_vals <-> wm7 : prop(delete); 
machine-Name[100]; H Machine Displays on 
dynamic-forces; 
min_rad; 

SDFFý_WORKING-MEMORYO-, 
S DFF-WORK ING_MEMORY (char* Lhename); 
void printo; 
void update_string(char* slot, char* slot-attrib, char* slot-attrib-slot, 

char* slot-aLtrlb_slot_attrib, char* update_val); 

void update-float(char* slot, char* slot-aLLrib, char* slot-attrib-slot, char* slot-attrib-slot-attrib, 
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float update_val); 
void update_int(char* slot, char* slot-aurib, char* slot-atLrib_slot, char* slot-attrib_slot-attrib, 

int update_val); 
char* get-string(char* slot, char* slot-attrib, char* slot - attrib_slot, char* slot-attrib-slot-attrib); 
float get_float(char* slot, char* slot-attrib, char* slot - attrib-slot, char* slot-attrib-slot-attrib); 
int get-int(char* slot, char* slot_attrib, char* slot-attrib-slot, char* slot_attrib_slot_attrib); 

// STRAT_SPEC-VALUES Class 
class STRAT_SPEC_VALUES : public ooObj 

protected: 
char 
int 
int 
int 
int 
int 
int 
float 
float 
float 
int 
int 
ooHandle(STRAT-WORKING-MEMORY) 

public: 
STRAT_SPEC_VALUESO; 
void printo; 
void update-string(char* slot, char* update_val); 
void update_float(char* slot, float update_val); 
void update-Int(char* slot, int update-val); 
char* get-string(char* slot); 
float get-float(char* slot); 
int get-int(char* slot); 

// STRAT 
- 

WORKING-MEMORY Class 

class STRAT-WORKING-MEMORY: 
I 
protected: 

char 
ooHandle(STRAT-SPEC-VALLi-ES) 
char 
ooHandle(TENIP_VALUF-S) 

public: 

DB_Name[100]; H Database containing Spec 
number-req; 
date-due; 
init_bat-size; 
subs-bat-size; 
init-lead-Urne; 
subs-lead-time; 
depth-x; 
height-y; 
length-z; 
pmat-code; 
pform-code; 
wms5 <> sspec-requiremenLs: prop(delete); 

public WORKING-MEMORY 
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STRAT-WORKING-MEMORYO; 
STRAT 

- 
WORKING-MEMORY (char* thename); 

void printo; 
void update-string(char* slot, char* slot_attrib, char* slot-attrib_slot, 

char* slot_attrib_slot_attrib, char* update_val); 
void update_float(char* slot, char* slot-attrib, char* slot-attrib-slot, char* slot_attrib_slot-attrib, 

float update-val); 
void update_int(char* slot, char* slot_atLrib, char* slot-attrib_slot, char* slot-attrib-slot-attrib, 

int update_val); 
char* get-string(char* slot, char* slot-atLrib, char* slot-attrib-slot, char* slot-attrib-slot_attrib); 
float get_float(char* slot, char* slot-attrib, char* slot-atLrib_slot, char* slot - attrib-slot-attrib); 
int get-int(char* slot, char* slot-attrib, char* slot-attrib-slOL, char* slot-attrib_slot-attrib); 
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H Written by JA Harding, Dept Manufacturing Engineering, LUT. 
// MOSES PROJECT - October 1994 
H 

MOSES WORKING MEMORY SCHEMA 
working_memory. ddl 

H 
H Last changed 9/2/95 

// SDFF SPEC VALUES Class 
class SDFF_SPEC_VALUES public ooObj 

protected: 
char 
float 
float 
float 
char 
float 
float 
float 
char 
char 
ooHandle(SDFF_WORKING_MEMORY) 

public: 
SDFF_SPEC_VALUESO; 
void printo; 
void update-string(char* slot, char* update_val); 
void update_float(char* slot, float update-val); 
char* get-string(char* slot); 
float get_float(char* slot); 

// SDFF_MATERIAL_VALUES Class 

class SDFF_MATERIAL-VALUES : public ooObj 
f 

protected: 
char 
char 
char 
float 
float 
float 
ooHandle(SDFF-WORKING-NlEMORY) 

public: 
SDFF-MATERIAL_VALUESO; 
void printo; 
void update-string(char* slot, char* update_val); 
void update_ fl oat(c har* slot, float update-val); 
char* get-string(char* slot); 

DB_Name[100]; // Database containing Spec 
full-load_power; 
full-load_speed; 
percent-start-torque; 
duty[1001; // eg high, medium or low 
no-of-revolutions; 
life-expectancy; 
length_z; 
torque[100]; 
axial[100]; 
wm5 <-> spec_requirements : prop(delete); 

DB_Name[100]; //Database of materials 
m at-n am e[ 1001; 
mat_grade[100]; 
UTS; 
USS; 
youngs-mod; 
wm6 <-> material-details : prop(delete); 
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float get_float(char* slot); 

// SDFF_FEATURE Class 
class SDFF_FEATURE: public ooObj 

protected: 
char feature_type[100]; 
char feature-name[100]; 
ooHandle(SDFF _BEARING-JOURNAL) 

bl-journal <-> axial - 
locate : prop(delete); 

ooHandle(SDFF -BEARING-JOURNAL) 
b2-journal <-> radial -locate : prop(delete); 

ooHandle(SDFF -SHAFT-REQUIREMENTS) shaft-reql <-> axial- locate prop(delete); 
ooHandle(SDFF -SHAFT-REQUUý-EM[ENTS) shaft-req2 <-> radial -locate prop(delete); 
ooHandle(SDFF_ SHAFT_REQUIREMENTS) shaft-rcq3 <-> torque 

-transmit: prop(delete); 
public: 

SDFF-FEATUREO; 
void printo; 
void update_string(char* slot, char* update_val); 
char* get-sLring(char* slot); 

# SDFF_BEARING_JOURNAL Class 
class SDFF_BEARING-JOURNAL: public ooObj 

protected: 
ooHandle(SDFF _FEATURE) 
ooHandle(SDFF_ FEATURE) 
ooHandle(SDFF_ WORKING_MEMORY) 
ooHandle(SDFF_ WORKING_N4EMORY) 
float 
char 

public: 
SDFF-BEARING-JOURNALo; 

axial-locate <-> bljoumal prop(delete); 
radialjocate <-> b2journal prop(delete); 
wm I <-> bearing-A prop(delete); 
wm2 <-> bearing-B prop(delete); 
min-rad; 
bearing_chosen[100]; 

void printo; 
void update-string(char* slot, char* slot_atLrib, char* update-val); 
void update_float(char* slot, float update_val); 
char* get - string(char* slot, char* slot-atLrib); 
float get-float(char* slot); 

// SDFF_SHAFT_REQUIREMENTS Class 
class SDFF-SHAFr-REQUIREMENTS : public ooObj 

protected: 
ooHandle(S DFF_FEATURE) ax ial locate <-> shaft_reql prop(delete); 
ooHandle(S DFF_FEATURE) radial locate <-> shaft-req2 prop(delete); 
ooHandle(SDFF_FEATUR-E) torque_transmit <-> shaft_req3 : prop(delete); 
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ooHandle(SDFF_SHAFT_SECTION) shaftl <-> input: prop(delete); 
ooHandle(SDFF-SHAFT-SECTION) shaft2 <-> output : prop(delete); 

public: 
SDFF_SHAFT 

- 
REQUIREMENTSO; 

void printo; 
void update-string(char* slot, char* slot - attrib, char* update_val); 
char* get-string(char* slot, char* slot-attrib)-, 

// SDFF-SHAFT_SECTION Class 
class SDFF_SHAFT-SECTION: public ooObj 

protected: 
ooHandle(SDFF-SHAFT_REQUIREMENTS) input <-> shaftl : prop(delete); 
ooHandle(S DFF_S HAFT 

- 
REQUIREMENTS) output <-> shaft2 : prop(delete); 

ooHandle(SDFF_WORKING-MEMORY) wm3 <-> shaft - extension : prop(delete); 
ooHand1e(SDFF_WORKING_MEMORY) wm4 <-> main_shaft: prop(delete); 
float min_rad; 

public: 
SDFF_SHAFT-SECTIONO; 
void printo; 
void update_string(char* slot, char* slot-attrib, char* slot-attrib_slot, char* update-val); 
void update_float(char* slot, float updaLe-val); 
char* get-string(char* slot, char* slot-attrib, char* slot-attrib-slot); 
float get_float(char* slot); 

# TENIP-VALUES Class 
class TENIP-VALUES : public ooObj 

protected: 
char 
float 
int 
ooHandle(SDFF-WORKING-MEMORY) 
ooHandle(STRAT_WORKING-MEMORY) 
ooHandle(DESIGN-MODERATION_W-M) 
ooHandle(DESIGN_EXPERT-W-M) 
ooHandle(KNOWLEDGE-ACQLLW_M) 

public: 
TEMPYALUESO; 
void printo; 
void win-printo; 
void update-string (char* slot, char* update_val); 
void update_float(char* slot, float update-val); 
void update-int(char* slot, int update_val); 
char* get-string(char* slot); 
float get_float(char* slot); 

astring[100]; 
afloat; 
anint; 
wm7 <-> temp-, v 
wms7 <-> stemp, 
wmml <-> temp. 
wmm2 <-> temp. 
wmm3 <-> temp. 

als : prop(delete); 
yals prop(delete); 
yals prop(delete); 
yals prop(delete); 
yals prop(delete); 
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int get-int(char* slot); 

H WORKING MEMORY Class 
class WORKING_MEMORY: public ooObj 

public: 
H There is no CONSTRUCTOR for this class as it is an abstract super class 
H and therefore should never be created 

virtual void printo; 
virtual void update-string(char* slot, char* slot-attrib, char* slot - attrib-slot, 

char* slot-attrib-slot-atLrib, char* update_val); 
virtual void update-float(char* slot, char* slot_attrib, char* slot-attrib-slot, 

char* slot_attrib_slot_attrib, float update_val); 
virtual void update_int(char* slot, char* slot-attrib, char* slot-attrib_slot, 

char* slot-attrib_slot_atLrib, int update-val); 
virtual char* get-sLring(char* slot, char* slot-attrib, char* slot-attrib-slot, 

char* slot-attrib-slot-attrib); 
virtual float get-float(char* slot, char* slot-attrib, char* slot_attrib-slot, 

char* slot-attrib-slot_attrib); 
virtual int get-int(char* slot, char* slot_atLrib, char* slot_aLtrib-slot, 

char* slot-attrib-slot-attrib); 

# SDFF_WORKING 
_MEMORY 

Class 
class SDFF-WORKING-MEMORY: public WORKING-MEMORY 

I 
protected: 

char DB-Name[1001; // Database for output 
char Shaft-Name[100]; Name of current shaft design 
char Comp-Namc[100]; Name of shaft in PM 
ooHandle(SDFF_ BEARING_JOUP, NAL) bearing-A <-> wml : prop(delete); 
ooHandle(SDFF_ BEARING_JOUP, NAL) bearing-B <-> wm2: prop(delete); 
ooHandle(SDFF- SHAFT_SECTION) shaft-extension <-> wm3 : prop(delete); 
ooHandle(SDFF- SHAFT-SECTION) main_shaft <-> wm4: prop(delete); 
ooHandle(S DFF_ SPEC_VALUES) spec-requirements <-> wm5 : prop(delete); 
ooHandle(SDFF_ MATERIAL_VALUES) material-details <-> wm6 : prop(delete); 
ooHandle(TEMP -VALUES) 

temp-vals <-> wm7: prop(delete); 
char machine_Name[100]; 
float dynamic-forces; 
float mln_rad; 

public: 
SDFF-WORKING-MEMORY0; 
S DFF-WORK ING-MEMORY (char* thename); 
void printo; 
void update-string(char* slot, char* slot_atLrib, char* sloL_attrib-slot, 

char* slot_attrlb_slot_attrib, char* update_val); 
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void update-float(char* slot, char* slot-atLrib, char* slot-attrib-slot, char* slot-atLrib-slot-attrib, 
float update-val); 

void update-int(char* slot, char* slot_attrib, char* slot-attrib-slot, char* slot_atLrib_slot-attrib, 
int update_val); 

char* get-string(char* slot, char* slot 
- attrib, char* slot 

- attrib 
- slot, char* slot - attrib - slot - attrib); 

float get-float(char* slot, char* slot - attrib, char* slot 
- attrib-slot, char* slot - attrib 

- slot 
- 

attrib); 
int get-int(char* slot, char* slot-attrib, char* slot-attrib-slot, char* slot-attrib-slot_attrib); 

# STRAT 
- 

SPEC-VALUES Class 
class STRAT-SPEC-VALUES : public ooObj 

I 
protected: 

char 
int 
int 
int 
int 
int 
int 
float 
float 
float 
int 
int 
ooHandle(STRAT-WORKING_MEMORY) 

public: 
STRAT-SPEC-VALUESO; 
void printo; 
void update-string(char* slot, char* update_val); 
void update_float(char* slot, float update_val); 
void update_int(char* slot, int update_val); 
char* get-string(char* slot); 
float get-float(char* slot); 
int get-int(char* slot); 

DB_Name[1001; H Database containing Spec 
number_req; 
daLe-due; 
init-bat-size; 
subs-bat-size; 
iniL-Iead_time; 
subs-lead-ume; 
depth-x; 
height-y; 
length_z; 
pmat-code; 
pform-code; 
wms5 <-> sspec-requirements prop(delete); 

// STRAT 
- 

WORKING 
- 

MEMORY Class 
class STRAT_WORKING-MEMORY: public WORKING-MEMORY 

f 
protected: 

char DB_Name[100]; H Database for output 
ooHandle(STRAT-SPEC-VALUES) sspec-requirnts <-> wms5 : prop(delete); 
char machine_Name[100]; 
ooHandle(TEMP-VALUES) stemp_vals <-> wms7 : prop(delete); 
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public: 
STRAT-WORKING-MEMORYO; 
STRAT_WORKING-MEMORY(char* Lhename); 
void printo; 
void update_string(char* slot, char* slot-attrib, char* slot-attrib-slot, 

char* slot-attrib-slot-atLrib, char* update-val); 
void update_float(char* slot, char* slot-attrib, char* slot-attrib_slot, char* slot_attrib_slot_attrib, 

float update-val); 
void update_int(char* slot, char* slot_attrib, char* slot-attrib_slot, char* slot-attrib_slot_attrib, 

int update_val); 
char* get-string(char* slot, char* slot-attrib, char* slot-attrib-slot, char* slot-attrib-slot-attrib); 
float get_float(char* slot, char* slot-attrib, char* slot-atLrlb_slot, char* slot-attrib_slot_attrib); 
int get-int(char* slot, char* slot_attrib, char* slot-attrib_slot, char* slot-attrib-slot-attrib); 
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APPENDIX 11 

Tables showing implemented Sub-Classes of Expression 
and Simple Resulting Action 

TABLE 

Implemented Sub-Classes of Expression 

USER INPUT RESPONSE EXPRESSION Objects of this class display a pre-defined question 
on the screen and obtain the user's response. The 
message is defined when an object of this class is 
created. If the user answers y (yes) to the question 
this expression returns I (True) if the user gives 
any other response, this expression returns 0 (False) 

WI USER INPUT RESPONSE EXPRESSION Objects of this class display a pre-defined question 
on the screen, using a dialogue box and obtain the 
user's response. The message is defined when an 
object of this class is created. If the user answers y 
(yes) to the question this expression returns I 
(True) if the user gives any other response, this 
expression returns 0 (False) 

ALWAYS TRUE EXPRESSION Objects of this class always return I(True). They 
are used to ensure that a particular resulting action 
is always carried out. 

MENU SELECTION MADE EXPRESSION Objects of this class display a pre-defined menu. 
The menu items are defined when an object of this 
class is created. If the user enters an integer 
representing a valid menu selection, the expression 
returns I (True) if the user enters any other value, 
this expression returns 0 (False). 

WI MENU SELECTION MADE EXPRESSION Objects of this class display a pre-defined pop-up 
menu. The menu items are defined when an object 
of this class is created. If the user makes a valid 
selection from the menu, this expression returns I 
(True) otherwise this expression returns 0 (False) 

COMPONENT OF SPECIFIED TYPE EXISTS Objects of this class check the current product 
model to see if a component of a pre-defined typed 
already exists. The component type is defined 

when an object of this class is created. If such a 
component exists, this expression returns I (True) 
otherwise this expression returns 0 (False) 
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SDFFE MEMORY EQUALS SPECIFIED Objects of this class check if a pre-defined attribute 
VALUE in the SDFFE's working memory equals a pre- 

defined value. The attribute and the value are both 
defined when an object of this class is created. If 
the attribute's value is equal to the pre-defined 
value, this expression returns I (True) otherwise 
this expression returns 0 (False) 

SDFFE MEMORY LESS THAN SPECIFIED Objects of Lhis class check if a pre-defined attribute 
VALUE in the SDFFE's working memory is less than a pre- 

defined value. The attribute and the value are both 
defined when an object of this class is created. If 
the attribute's value is less than the pre-defined 
value, this expression returns I (True) other-wise 
this expression returns 0 (False) 

SDFFE MEMORY GREATER THAN Objects of this class check if a pre-defined attribute 
SPECIFIED VALUE in the SDFFE's working memory is greater than a 

pre-defined value. The attribute and the value are 
both defined when an object of this class is created. 
If the attribute's value is greater than the pre- 
defined value, this expression returns I (True) 
otherwise this expression returns 0 (False) 

STRAT NIENIORY EQUALS SPECIFIED Objects of this class check if a pre-defined attribute 
VALUE in the Manufacturing Strategist's working memory 

equals a pre-defined value. The attribute and the 
value are both defined when an object of this class 
is created. If the attribute's value is equal to the 
pre-defined value, this expression returns I (True) 
otherwise this expression returns 0 (False) 

STRAT MEMORY LESS THAN SPECIFIED Objects of this class check if a pre-defined attribute 
VALUE in the Manufacturing Strategist's working memory 

is less than a pre-defined value. The attribute and 
the value are both defined when an object of this 
class is created. If the attribute's value is less than 
the pre-defined value, this expression returns I 
(True) otherwise this expression returns 0 (False) 

ST AT MEMORY GREATER THAN Objects of this class check if a pre-defined attribute 
SPECIFIED VALUE in the Manufacturing Strategist's working memory 

is greater than a pre-defined value. The attribute 
and the value are both defined when an object of 
this class is created. If the attribute's value is 
greater than the pre-defined value, this expression 
returns I (True) otherwise this expression returns 0 

1 False) 
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DESIGN MODERATION MEMORY EQUALS Objects of this class check if a pre-defined attribute 
SPECIFIED VALUE in the Design Moderation working memory equals 

a pre-defined value. The attribute and the value are 
both defined when an object of this class is created. 
If the attribute's value is equal to the pre-defined 
value, this expression returns I (True) otherwise 
this expression returns 0 (False) 

DESIGN MODERATION MEMORY LESS Objects of this class check if a pre-defined attribute 
THAN SPECIFIED VALUE in the Design Moderation working memory is less 

than a pre-defined value. The attribute and the 
value are both defined when an object of this class 
is created. If the attribute's value is less than the 
pre-defined value, this expression returns I (True) 
otherwise this expression returns 0 (False) 

DESIGN MODERATION MEMORY GREATER Objects of this class check if a pre-defined attribute 
THAN SPECIFIED VALUE in the Design Moderation working memory is 

greater than a pre-defined value. The attribute and 
the value are both defined when an object of this 
class is created. If the attribute's value is greater 
than the pre-defined value, this expression returns 
I (True) otherwise this expression returns 0 (False) 

OBJECT OF SPECIFIED CLASS Objects of this class determine if an object within 
the product model is of a specified class. If it is of 
the specified class, this expression returns 1 (True) 
otherwise this expression returns 0 (False) 

OBJECT IS FUNCTIONAL Objects of this class determine if an object within 
the product model has a non-null value in its 
functional info string attribute. If it has a non-null 
value, this expression returns I (True) otherwise 
this expression returns 0 (False) 

DESIGN EXPERT MEMORY EQUALS Objects of this class check if a pre-defined attribute 
SPECIFIED VALUE in the Design Expert working memory equals a pre- 

defined value. The attribute and the value are both 
defined when an object of this class is created. If 
the attribute's value is equal to the pre-defined 
value, this expression returns I (True) otherwise 
this expression returns 0 (False) 

DESIGN EXPERT MEMORY LESS THAN Objects of this class check if a pre-def ined attribute 
SPECIFIED VALUE in the Design Expert working memory is less than 

a pre-defined value. The attribute and the value are 
both defined when an object of this class is created. 
If the attribute's value is less than the pre-defined 
value, this expression returns I (True) otherwise 

I this expression returns 0 (False) 
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DESIGN EXPERT MEMORY GREATER Objects of this class check if a pre-defined attribute 
THAN SPECIFIED VALUE in the Design Expert working memory is greater 

than a pre-defined value. The attribute and the 
value are both defined when an object of this class 
is created. If the attribute's value is greater than 
the pre-defined value, this expression returns I 
(True) otherwise this expression returns 0 (False) 

DESIGN EXPERT EXISTS Objects of this class check if the Engineering 
Moderator has knowledge of the existence of a 
particular design agent. This expression returns 1 
(True) otherwise this expression returns 0 (False) 

KNOWLEDGE ACQUISITION MEMORY Objects of this class check if a pre-defined attribute 
EQUALS SPECIFIED VALUE in the Knowledge Acquisition working memory 

equals a pre-defined value. The attribute and the 
value are both defined when an object of this class 
is created. If the attribute's value is equal to the 
pre-defined value, this expression returns I (True) 
otherwise this expression returns 0 (False) 

KNOWLEDGE ACQUISITION MEMORY LESS Objects of this class check if a pre-defined attribute 
THAN SPECIFIED VALUE in the Knowledge Acquisition working memory is 

less than a pre-defined value. The attribute and the 
value are both defined when an object of this class 
is created. If the attribute's value is less than the 
pre-defined value, this expression returns 1 (True) 
otherwise this expression returns 0 (False) 

KNOWLEDGE ACQUISITION MEMORY Objects of this class check if a pre-defined attribute 
GREATER THAN SPECIFIED VALUE in the Knowledge Acquisition working memory is 

greater than a pre-defined value. The attribute and 
the value are both defined when an object of this 
class is created. If the attribute's value is greater 
than the pre-defined value, this expression returns 
I (True) otherwise this expression returns 0 (False) 

CD REQ CHANGE EXPRESSION Objects of this class determine if a change made to 
a cost and delivery product model requirements 
object is significant. Single implementation 
specifically done for the RRIPG Case Study 
Demonstration. If the change is significant this 
returns I (True), otherwise this expression returns 
0 (False) 
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TABLE 2 

Implemented Sub-Classes of Simple Resulting Action 

PRINT MESSAGE ACTION Objects of this class display a pre-defined message 
on the screen. The message is defined when an 
object of this class is created. 

WI PRINT M[ESSAGE ACTION Objects of this class display a pre-defined message 
in a message box on the screen. The message is 
defined when an object of this class is created. 

POSTSCRIPT DISPLAY ACTION Objects of this class display a postscript file, whose 
name is stored in the message attribute of objects of 
this class. 

UPDATE SDFFE MEMORY ACTION Objects of this class update a pre-defined attribute 
in the SDFFE Working Memory with the value 
which exists in the Temp attribute of SDFFE 
Working Memory. The attribute to be updated is 
defined when this expression is created. 

UPDATE STRAT MEMORY ACTION Objects of this class update a pre-defined attribute 
in the STRAT Working Memory with the value 
which exists in the Temp attribute of STRAT 
Working Memory. The attribute to be updated is 
defined when this expression is created. 

UPDATE DESIGN MODERATION MEMORY Objects of this class update a pre-defined attribute 
ACTION in the DESIGN MODERATION Working Memory 

with the value which exists in the Temp attribute of 
DESIGN MODERATION Working Memory. The 
attribute to be updated is defined when this 
expression is created. 

UPDATE DESIGN EXPERT MEMORY Objects of this class update a pre-defined attribute 
ACTION in the DESIGN EXPERT Working Memory with 

the value which exists in the Temp attribute of 
DESIGN EXPERT Working Memory. The 
attribute to be updated is defined when this 
expression is created. 

DATE KNOWLEDGE ACQUISITION Objects of this class update a pre-defined attribute 
MEEMORY ACTION in the KNOWLEDGE ACQUISITION Working 

Memory with the value which exists in the Temp 
attribute of KNOWLEDGE ACQUISITION 
Working Memory. The attribute to be updated is 
defined when this expression is created. 

V711EAZ INTO MýMOýRY ACTIOTN Objects of this class update the Temp attribute of a 
working memory object (or any sub-class). It is 
updated with a value typed in by the user, using a 
dialogue box, at runtime. 
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READ INTO MEMORY ACTION Objects of this class update the Temp attribute of a 
working memory object (or any sub-class). It is 
updated with a value typed in by the user at 
runtime. 

SPEC VALUE INTO MIEMORY ACTION Objects of this class update the Temp attribute of a 
working memory object (or any sub-class), with a 
value extracted from the product model. The Temp 
attribute is updated by a value from the 
specification section of the product model. The 
value will be a quality or quantity related to a 
product requirement. Details of the product 
requirement to be used are determined when this 
object is created. 

FIRE A SELECTED RULE ACTION Objects of this class fire one of several pre-defined 
rules, the one actually fired at run-time is chosen 
dependent on the current contents of working 
memory. 

CREATE BASIC FEATURE ACTION Objects of this class can create a feature of a pre- 
defined type in the product model. The type of the 
feature created is determined when this action is 
created. 

CREATE SPECIFIED COMPONENT ACTION Objects of this class can create a component of a 
pre-defined type in the product model. The type of 
the component created is determined when this 
action is created. 

CREATE SPECIFIED DEFINITION ACTION Objects of this class can create a component 
definition in the product model 

MATERIAL VALUE INTO MEMORY Objects of this class update the Temp attribute of a 
ACTION working memory object (or any sub-class), with a 

value extracted from the product model. The Temp 
attribute is updated by a value from the materials 
section of the product model. The material 
attribute from which the value is to be extracted is 
determined when this action is created 

EXECUTE NEURAL NETWORK ACTION Objects of this class update the Temp attribute of a 
working memory object (or any sub-class), with a 
value calculated by running a neural network 
simulation to select a bearing 

SPECIFIED VALUE INTO MEMORY Objects of this class update the Temp attribute of a 
ACTION working memory object (or any sub-class), with a 

pre-defined value, which is set when this action is 
created 

ADD DIMENSION ACTION Objects of this class update a dimension of a feature 
object in the product model with the value currently 
in the Temp attribute of a working memory object 
(or any sub-class). 

CHANGE FEATURE TYPE ACTION Objects of this class can change a feature object in 
I the product model to a feature of a different type 
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JOIN SHAFT SECTION ACTION Objects of this class can join two pre-existing 
feature objects in the product model 

UPDATE SURFACE FINISH ACTION _ Objects of this class can change the value of the 
surface finish attribute of a pre-existing feature 
object within the product model 

UPDATE FUNCTIONAL INFORMATION Objects of this class can change the value of the 
ACTION functional information string attribute of a pre- 

existing feature object within the product model 
GET OBJECT TYPE ACTION Objects of this class find the class of an object 

which exists within the product model 
GET OBJECT DETAILS ACTION Objects of this class extract details of an object 

which exists within the product model 
ACTIVATE OTHER PROCESS ACTION Objects of this class activate another pre-defined 

process, for example this could be used by the EM 
to request advice from the Manufacturing 
Strategist. 

IDENTIFY MODERATOR ACTION Objects of this class may be used to determine the 
course of action to be followed by the EM 

ADD N`EW DESIGN EXPERT ACTION Objects of this class enable the EM knowledge of 
existing design agents to be updated by adding a 
new agent to the known system 

ADD NEW DESIGN EXPERT KNOWLEDGE Objects of this class enable the EM knowledge of 
ACTION existing design agents to be updated by adding new 

knowledge of a design agent 
ADD KNOWLEDGE ACTION Objects of this class can be used to add knowledge 

in the form of ruleset and rule objects to a 
knowledge base which is specified by the user at 
run-time. 
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