18 research outputs found

    Analysis of Countermeasures Against Remote and Local Power Side Channel Attacks using Correlation Power Analysis

    Get PDF
    Countermeasures and deterrents to power side-channel attacks targeting the alteration or scrambling of the power delivery network have been shown to be effective against local attacks where the malicious agent has physical access to the target system. However, remote attacks that capture the leaked information from within the IC power grid are shown herein to be nonetheless effective at uncovering the secret key in the presence of these countermeasures/deterrents. Theoretical studies and experimental analysis are carried out to define and quantify the impact of integrated voltage regulators, voltage noise injection, and integration of on-package decoupling capacitors for both remote and local attacks. An outcome yielded by the studies is that the use of an integrated voltage regulator as a countermeasure is effective for a local attack. However, remote attacks are still effective and hence break the integrated voltage regulator countermeasure. From the experimental analysis, it is observed that within the range of designs\u27 practical values, the adoption of on-package decoupling capacitors provides only a 1.3x increase in the minimum number of traces required to discover the secret key. However, the injection of noise in the IC power delivery network yields a 37x increase in the minimum number of traces to discover. Thus, increasing the number of on-package decoupling capacitors or the impedance between locally measured power and the IC power grid should not be relied on as countermeasures to power side-channel attacks, for remote attack schemes. Noise injection should be considered as it is more effective at scrambling the leaked signal to eliminate sensitive identifying information

    Review on Lightweight Cryptography Techniques and Steganography Techniques for IOT Environment

    Get PDF
    In the modern world, technology has connected to our day-to-day life in different forms. The Internet of Things (IoT) has become an innovative criterion for mass implementations and a part of daily life. However, this rapid growth leads the huge traffic and security problems. There are several challenges arise while deploying IoT. The most common challenges are privacy and security during data transmission. To address these issues, various lightweight cryptography and steganography techniques were introduced. These techniques are helpful in securing the data over the IoT. The hybrid of cryptography and steganography mechanisms provides enhanced security to confidential messages. Any messages can be secured by cryptography or by embedding the messages into any media files, including text, audio, image, and video, using steganography. Hence, this article has provided a detailed review of efficient, lightweight security solutions based on cryptography and steganography and their function over IoT applications. The objective of the paper is to study and analyze various Light weight cryptography techniques and Steganography techniques for IoT. A few works of literature were reviewed in addition to their merits and limitations. Furthermore, the common problems in the reviewed techniques are explained in the discussion section with their parametric comparison. Finally, the future scope to improve IoT security solutions based on lightweight cryptography and steganography is mentioned in the conclusion part

    Comprehensive Designs of Innovate Secure Hardware Devices against Machine Learning Attacks and Power Analysis Attacks

    Get PDF
    Hardware security is an innovate subject oriented from growing demands of cybersecurity and new information vulnerabilities from physical leakages on hardware devices. However, the mainstream of hardware manufacturing industry is still taking benefits of products and the performance of chips as priority, restricting the design of hardware secure countermeasures under a compromise to a finite expense of overheads. Consider the development trend of hardware industries and state-of-the-art researches of architecture designs, this dissertation proposes some new physical unclonable function (PUF) designs as countermeasures to side-channel attacks (SCA) and machine learning (ML) attacks simultaneously. Except for the joint consideration of hardware and software vulnerabilities, those designs also take efficiencies and overhead problems into consideration, making the new-style of PUF more possible to be merged into current chips as well as their design concepts. While the growth of artificial intelligence and machine-learning techniques dominate the researching trends of Internet of things (IoT) industry, some mainstream architectures of neural networks are implemented as hypothetical attacking model, whose results are used as references for further lifting the performance, the security level, and the efficiency in lateral studies. In addition, a study of implementation of neural networks on hardware designs is proposed, this realized the initial attempt to introduce AI techniques to the designs of voltage regulation (VR). All aforementioned works are demonstrated to be of robustness to threats with corresponding power attack tests or ML attack tests. Some conceptional models are proposed in the last of the dissertation as future plans so as to realize secure on-chip ML models and hardware countermeasures to hybrid threats

    Time- and Amplitude-Controlled Power Noise Generator against SPA Attacks for FPGA-Based IoT Devices

    Get PDF
    Power noise generation for masking power traces is a powerful countermeasure against Simple Power Analysis (SPA), and it has also been used against Differential Power Analysis (DPA) or Correlation Power Analysis (CPA) in the case of cryptographic circuits. This technique makes use of power consumption generators as basic modules, which are usually based on ring oscillators when implemented on FPGAs. These modules can be used to generate power noise and to also extract digital signatures through the power side channel for Intellectual Property (IP) protection purposes. In this paper, a new power consumption generator, named Xored High Consuming Module (XHCM), is proposed. XHCM improves, when compared to others proposals in the literature, the amount of current consumption per LUT when implemented on FPGAs. Experimental results show that these modules can achieve current increments in the range from 2.4 mA (with only 16 LUTs on Artix-7 devices with a power consumption density of 0.75 mW/LUT when using a single HCM) to 11.1 mA (with 67 LUTs when using 8 XHCMs, with a power consumption density of 0.83 mW/LUT). Moreover, a version controlled by Pulse-Width Modulation (PWM) has been developed, named PWM-XHCM, which is, as XHCM, suitable for power watermarking. In order to build countermeasures against SPA attacks, a multi-level XHCM (ML-XHCM) is also presented, which is capable of generating different power consumption levels with minimal area overhead (27 six-input LUTS for generating 16 different amplitude levels on Artix-7 devices). Finally, a randomized version, named RML-XHCM, has also been developed using two True Random Number Generators (TRNGs) to generate current consumption peaks with random amplitudes at random times. RML-XHCM requires less than 150 LUTs on Artix-7 devices. Taking into account these characteristics, two main contributions have been carried out in this article: first, XHCM and PWM-XHCM provide an efficient power consumption generator for extracting digital signatures through the power side channel, and on the other hand, ML-XHCM and RML-XHCM are powerful tools for the protection of processing units against SPA attacks in IoT devices implemented on FPGAs.Junta de AndaluciaEuropean Commission B-TIC-588-UGR2

    Systematic Literature Review of EM-SCA Attacks on Encryption

    Full text link
    Cryptography is vital for data security, but cryptographic algorithms can still be vulnerable to side-channel attacks (SCAs), physical assaults exploiting power consumption and EM radiation. SCAs pose a significant threat to cryptographic integrity, compromising device keys. While literature on SCAs focuses on real-world devices, the rise of sophisticated devices necessitates fresh approaches. Electromagnetic side-channel analysis (EM-SCA) gathers information by monitoring EM radiation, capable of retrieving encryption keys and detecting malicious activity. This study evaluates EM-SCA's impact on encryption across scenarios and explores its role in digital forensics and law enforcement. Addressing encryption susceptibility to EM-SCA can empower forensic investigators in overcoming encryption challenges, maintaining their crucial role in law enforcement. Additionally, the paper defines EM-SCA's current state in attacking encryption, highlighting vulnerable and resistant encryption algorithms and devices, and promising EM-SCA approaches. This study offers a comprehensive analysis of EM-SCA in law enforcement and digital forensics, suggesting avenues for further research

    Aeronautical engineering: A continuing bibliography with indexes (supplement 227)

    Get PDF
    This bibliography lists 418 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1988

    Nuclear Power - Control, Reliability and Human Factors

    Get PDF
    Advances in reactor designs, materials and human-machine interfaces guarantee safety and reliability of emerging reactor technologies, eliminating possibilities for high-consequence human errors as those which have occurred in the past. New instrumentation and control technologies based in digital systems, novel sensors and measurement approaches facilitate safety, reliability and economic competitiveness of nuclear power options. Autonomous operation scenarios are becoming increasingly popular to consider for small modular systems. This book belongs to a series of books on nuclear power published by InTech. It consists of four major sections and contains twenty-one chapters on topics from key subject areas pertinent to instrumentation and control, operation reliability, system aging and human-machine interfaces. The book targets a broad potential readership group - students, researchers and specialists in the field - who are interested in learning about nuclear power

    Bibliography of Lewis Research Center Technical Publications announced in 1991

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific engineering work performed and managed by the Lewis Research Center in 1991. All the publications were announced in the 1991 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav
    corecore